

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Ph.D. DISSERTATION

End-to-End Optimizations for Fast and

Efficient IoT Stream Processing in the Cloud

클라우드 환경에서 빠르고 효율적인 IoT 스트림 처리를

위한 엔드-투-엔드 최적화

AUGUST 2021

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

COLLEGE OF ENGINEERING

SEOUL NATIONAL UNIVERSITY

Taegeon Um

Abstract

As a large amount of data streams are generated from Internet of Things (IoT)

devices, two types of IoT stream queries are deployed in the cloud. One is a

small IoT-stream query, which continuously processes a few IoT data streams

of end-users’s IoT devices that have low input rates (e.g., one event per second).

The other one is a big IoT-stream query, which is deployed by data scientists

to continuously process a large number and huge amount of aggregated data

streams that can suddenly fluctuate in a short period of time (bursty loads).

However, existing work and stream systems fall short of handling such workloads

efficiently because their query submission, compilation, execution, and resource

acquisition layer are not optimized for the workloads.

This dissertation proposes two end-to-end optimization techniques— not

only optimizing stream query execution layer (runtime), but also optimizing

query submission, compiler, or resource acquisition layer. First, to minimize

the number of cloud machines and maintenance cost of servers in process-

ing many small IoT queries, we build Pluto, a new stream processing system

that optimizes both query submission and execution layer for efficiently han-

dling many small IoT stream queries. By decoupling IoT query submission and

its code registration and offering new APIs, Pluto mitigates the bottleneck in

query submission and enables efficient resource sharing across small IoT stream

queries in the execution. Second, to quickly handle sudden bursty loads and

scale out big IoT stream queries, we build Sponge, which is a new stream

system that optimizes query compilation, execution, and resource acquisition

layer altogether. For fast acquisition of new resources, Sponge uses a new cloud

i

computing service, called Lambda, because it offers fast-to-start lightweight

containers. Sponge then converts the streaming dataflow of big stream queries

to overcome Lambda’s resource constraint and to minimize scaling overheads

at runtime.

Our evaluations show that the end-to-end optimization techniques signif-

icantly improve system throughput and latency compared to existing stream

systems in handling a large number of small IoT stream queries and in han-

dling bursty loads of big IoT stream queries.

Keywords: Stream processing, distributed data processing, IoT, Cloud, Lambda,

Serverless framework

Student Number: 2014-22686

ii

Contents

Abstract i

Chapter 1 Introduction 1

1.1 IoT Stream Workloads . 1

1.1.1 Small IoT Stream Query 2

1.1.2 Big IoT Stream Query . 4

1.2 Proposed Solution . 5

1.2.1 IoT-Aware Three-Phase Query Execution 6

1.2.2 Streaming Dataflow Reshaping on Lambda 7

1.3 Contribution . 8

1.4 Dissertation Structure . 9

Chapter 2 Background 10

2.1 Stream Query Model . 10

2.2 Workload Characteristics . 12

2.2.1 Small IoT Stream Query 12

2.2.2 Big IoT Stream Query . 13

Chapter 3 IoT-Aware Three-Phase Query Execution 15

iii

3.1 Pluto Design Overview . 16

3.2 Decoupling of Code and Query Submission 19

3.2.1 Code Registration . 19

3.2.2 Query Submission API . 20

3.3 IoT-Aware Execution Model . 21

3.3.1 Q-Group Creation and Query Grouping 24

3.3.2 Q-Group Assignment . 24

3.3.3 Q-Group Scheduling and Processing 25

3.3.4 Load Rebalancing: Q-Group Split and Merging 28

3.4 Implementation . 29

3.5 Evaluation . 30

3.5.1 Methodology . 30

3.5.2 Performance Comparison 34

3.5.3 Performance Breakdown 36

3.5.4 Load Rebalancing: Q-Group Split and Merging 38

3.5.5 Tradeoff . 40

3.6 Discussion . 41

3.7 Related Work . 43

3.8 Summary . 44

Chapter 4 Streaming Dataflow Reshaping for Fast Scaling Mech-

anism on Lambda 46

4.1 Motivation . 46

4.2 Challenges . 47

4.3 Design Overview . 50

4.4 Reshaping Rules . 51

4.4.1 R1: Inserting Router Operators 52

iv

4.4.2 R2: Inserting Transient Operators 54

4.4.3 R3: Inserting State Merger Operators 57

4.5 Scaling Protocol . 59

4.5.1 Redirection Protocol . 59

4.5.2 Merging Protocol . 60

4.5.3 Migration Protocol . 61

4.6 Implementation . 61

4.7 Evaluation . 63

4.7.1 Methodology . 63

4.7.2 Performance Analysis . 68

4.7.3 Performance Breakdown 70

4.7.4 Latency-Cost($) Trade-Off 76

4.8 Discussion . 77

4.9 Related Work . 78

4.10 Summary . 80

Chapter 5 Conclusion 81

초록 95

v

List of Tables

Table 3.1 TP and TPQ with network connection and code sharing

for performance breakdown of Pluto. 37

Table 4.1 Notation used in this paper. 48

Table 4.2 The characteristics of the NEXMark queries used in our

evaluation. 65

vi

List of Figures

Figure 1.1 The illustration of (a) small and (b) big IoT stream

workloads. In small IoT workloads, a large number of

small IoT stream queries are created and executed on

backend servers. In big IoT workloads, a small number

of big IoT stream queries process a large volume of data

streams that can suddenly fluctuate in a short period of

time (bursty loads). 2

Figure 2.1 The dataflow (DAG) example of (a) small and (b) big

IoT stream queries. A small IoT stream query has a sin-

gle instance of an operator, but a big IoT stream query

has multiple instances of an operator to parallelize the

query processing due to the large volume of data. 11

Figure 3.1 A system overview of Pluto. The gray-box is a single node. 16

Figure 3.2 (a) The execution model of existing stream processing

systems that creates separate system resources (network

connection, thread, codes) for individual queries. (b) The

overview of Pluto’s IoT-aware execution model. 22

vii

Figure 3.3 The detail of Pluto execution model in a worker. 23

Figure 3.4 The performance of Pluto and other systems. 35

Figure 3.5 The results of the performance breakdown 38

Figure 3.6 The number of (a) last-level cache misses, and (b) CPU

usage of TP+NC and Pluto. 39

Figure 3.7 The cumulative distribution function of latency when we

turn on/off the rebalancing mechanism in Pluto. When

we turn off the rebalancing, the P95 and P99 (95th- and

99th-percentile) latencies are 49, 453 ms and 94, 384 ms,

respectively. When we enable the rebalancing, the P95

and P99 latencies are 598ms and 961ms, respectively. . . 40

Figure 3.8 The throughput of Pluto and Flink in various input rates. 41

Figure 4.1 The illustration of Lambda that does not allow direct

data communication when tasks perform N-to-N (shuf-

fle) operations. For example, a1 cannot send data to b1

and b2. 48

Figure 4.2 The overview of (a) existing stream scaling mechanism

and (b) Sponge’ scaling mechanism. 50

Figure 4.3 The illustration of applying the R1 reshaping rule to a

stream query and how the execution layer supports the

converted DAG for scaling. 52

Figure 4.4 The example of applying the R2 reshaping rule and how

the execution layer supports the redirection to transient

operators for scaling. 54

viii

Figure 4.5 The example of applying the R3 reshaping rule and how

the execution layer supports the merging operators to

minimize state migration overheads. 57

Figure 4.6 The illustration of redirection (a) and merging (b) pro-

tocols of Sponge. 60

Figure 4.7 The simplified original DAG of queries used in our eval-

uation (Origin-L). M is a map operator, F is a filter

operator, GBK is a group-by-key window operator, SI

is a operator that handles side inputs. We migrate oper-

ators in gray box to Lambda when bursty loads happen

to prevent the bottleneck in VMs. All of the GBKs are

commutative and associative stateful operators, and SI

is a non-mergeable stateful operator. 64

Figure 4.8 An example of the bursty input pattern used in our

evaluation. At time t = 380, the input rate suddenly

increases during 60 seconds. 67

Figure 4.9 The latency graph in various baselines. The bursty load

happens at t = 380s. We configure all of the systems to

detect the bursty load and make a scaling decision at

t = 381s. 69

Figure 4.10 The latency graphs of Origin-L, SpongeR1, SpongeR2,

and Sponge to analyze and breakdown the performance

of Sponge. 71

Figure 4.11 The latency during bursty period with various burstiness

in scaling Q4 and Q6. 72

ix

Figure 4.12 The latency graph with various parallelism (number of

tasks per operator) in SpongeR1 (a) and SpongeR2 (b)

for scaling Q4. As the parallelism increases, the number

of tasks to be migrated or redirected also increases. . . . 74

Figure 4.13 (a) The latency during bursty period. (b) The back-of-

the-envelope calculation of cost according to the bursty

duration in a day. 76

x

Chapter 1

Introduction

1.1 IoT Stream Workloads

Stream queries (jobs) continuously process real-time data and extract insights

with low latency [99, 88, 98, 75, 16]. Different from batch analytics jobs that

process the finite amount of data [103], stream queries are long-running jobs

that handle infinite data streams.

Recently, as the number of IoT devices and sensors rapidly increases, IoT

devices generate diverse IoT data streams such as real-time temperature at

home [69], heart rate of patients [36], and real-time location of children [2].

Each IoT device creates several events per second (e.g., current temperature per

second), so the volume (size) of individual IoT data streams is small. However,

due to the large number of devices and data streams, the aggregated volume is

large.

Such characteristics of IoT data streams bring the following two stream

workloads, which we call small and big IoT stream workloads. Section 1.1.1

1

Figure 1.1: The illustration of (a) small and (b) big IoT stream workloads. In

small IoT workloads, a large number of small IoT stream queries are created

and executed on backend servers. In big IoT workloads, a small number of big

IoT stream queries process a large volume of data streams that can suddenly

fluctuate in a short period of time (bursty loads).

and Section 1.1.2 illustrate the IoT stream workloads with Figure 1.1.

1.1.1 Small IoT Stream Query

To provide useful services for end users who use IoT devices, diverse IoT appli-

cations create small IoT stream queries on behalf of end users. An IoT stream

query processes a small amount of IoT data streams related to a certain user,

where the small data stream has low event rate (e.g., less than 10 events per sec-

ond) [69]. For example, when a user clicks a button, a smart home application

creates an IoT stream query that continuously controls the user’s air condi-

tioner while processing the current home temperature event generated from an

IoT sensor every second [82].

2

In the small IoT stream workload, there are two main participants: IoT

application developers and end users. IoT application developers write the ap-

plication logic of IoT stream queries on behalf of end users and deploy IoT

applications to end users. These applications could be mobile or desktop pro-

grams, or web services that help users to easily create and configure their IoT

stream queries with user-specific parameters [30, 4, 69].

Although such small IoT stream queries can be executed in edge devices,

recently, IoT device vendors and application developers have shifted the burden

of executing small IoT stream queries from the edge devices to cloud backend

servers such as AWS IoT [7] and Azure IoT[9] due to the following benefits.

First, IoT device companies can reduce the operational cost and investment

of IoT device hardwares [50, 76], delegating the burden of query execution to

the backend servers. For instance, according to RFC-7228 [80], constrained IoT

devices have small RAM and code size (less than 100 KiB) with low computing

power, which is limited to executing stream queries on the devices. Second,

deploying the codes to the server enables the agile deployment of software codes.

Third, application developers can easily connect multiple data streams together

and control remote IoT devices in the cloud server [27]. Fourth, IoT applications

can use and join data stored in the cloud.

As billions of IoT devices are being used [37], and as a large number of small

IoT stream queries are generated from various applications, the number of small

IoT stream queries submitted to the cloud backend servers is also expected to

grow significantly. To minimize the maintenance cost and reduce the number of

cloud machines for query processing, we focus on handling as many small IoT

stream queries as possible on a single node.

Existing distributed stream processing systems [16, 88, 19, 63] fall short of

handling a large number of small IoT stream queries in a machine because their

3

system resources easily become a bottleneck due to their inefficient query sub-

mission and execution layer. First, their query submission layer is tightly-coupled

with the code registration. Whenever a query is submitted, its code file is also

submitted and uploaded to the systems. The more IoT queries are submitted,

the more codes are uploaded, which leads to the bottleneck in uploading a large

number of codes. Second, their query execution layer is inefficient in handling

many small IoT stream queries because system resources are separately allocated

for each query. For instance, modern distributed stream processing systems such

as Flink [16] and Storm [88] are designed for optimizing individual queries that

process data streams with high volumes. For each query, they create separate

network connections and threads [88, 53, 16, 104], as well as separately allo-

cating memory for each query code. However, this design causes high query

maintenance overheads (e.g., threading overheads) and requires huge system

resources when a large number of IoT stream queries are submitted.

1.1.2 Big IoT Stream Query

Different from the small IoT stream workload, in big IoT stream workload (Fig-

ure 1.1(b)), the number of queries is small, but a big stream query processes a

huge volume of aggregated IoT data streams. Data scientists in companies and

governments or system operators in datacenters deploy big queries on backend

servers and analyze the aggregated IoT data streams to extract useful infor-

mation or insights. For instance, a big IoT stream query analyzes crowds of

people in various locations by processing a large number of IoT data streams

generated from user’s IoT devices (e.g., smart watches or wrist bands).

The traffic of aggreagted IoT data streams would be bursty and unpre-

dictable [100, 62, 44], which means that the input rate and the load of big

stream queries can significantly fluctuate in a short period of time. Due to

4

the wide spread of social media and IoT devices, users can send data (e.g.,

text message) to the cloud at any time through their devices in reaction to

unexpected real-world events, such as influencers’s tweets, breaking news, or

earthquake [81, 77]. As a result, the volume of data and events generated from

IoT devices can be bursty and unpredictable [21].

Big IoT stream queries continuously process the real-time data streams to

extract insights or make business-critical decisions with low latency [99, 88,

98, 75, 16]. In addition, as stream queries are long running, computing re-

sources should be efficiently used for low maintenance cost ($). However, ex-

isting work does not handle unpredictable bursty loads with low latency and

cost ($). First, over-provisioning computing machines causes under-utilization

of resources in the load at the bottom and leads to high maintenance cost ($).

Second, dynamically (de)allocating cloud virtual machines (VMs) according to

the load [18, 39] can reduce the maintenance cost ($) of computing resources,

but the slow start-up time of VMs that may take several minutes could delay

the handling of unexpected bursty loads and increase processing latency. For

instance, if the sudden bursty loads happen but creating VMs take one minute,

handling the bursty load will be delayed until new VM resources are started.

Preparing VMs in advance by predicting the future traffic patterns is not ap-

plicable for unpredictable bursty traffic. This paper focuses on designing a fast

scaling mechanism of big IoT stream queries when scaling decision is made in

reaction to unpredictable bursty loads.

1.2 Proposed Solution

In this dissertation, we propose end-to-end system optimization techniques, not

only optimizing the query execution layer, but also optimizing the query sub-

5

mission layer for small IoT-query workloads (Section 1.2.1), and compilation

and resource acquisition layer for bursty loads of big IoT stream queries (Sec-

tion 1.2.2).

1.2.1 IoT-Aware Three-Phase Query Execution

To efficiently execute a large number of small IoT stream queries in a node,

we propose IoT-aware three-phase query execution that optimizes both query

submission and execution layer. We realize our proposed technique by designing

Pluto, a new stream processing system for small IoT stream queries.

The end-to-end query execution of Pluto consists of a code-registration,

query submission, and execution phase. Pluto allows application developers to

register code before query submission by decoupling the tightly-coupled query

and code submission. It enables Pluto to keep the registered code information

and to be aware of the common application code shared across small IoT queries

and to eliminate duplicate code registration overheads from query submission.

In the execution layer, we propose a new IoT-aware query execution model.

Pluto shares system resources such as network connections, codes, and threads

among small IoT queries to minimize resource bottleneck. Moreover, Pluto

performs a locality-aware scheduling that processes the events of small IoT

queries in a way that exploits the temporal locality of code references. Pluto en-

ables locality-aware processing by using Q-group (IoT query group), a new IoT

stream query scheduling unit for efficient load (re)balancing and locality-aware

scheduling on multiple cores. A Q-group contains an event queue of multiple

IoT stream queries that refer to the same application code, and Pluto dynam-

ically (re)balances the load of Q-group assigning each of them to a thread for

high throughput and low latency query execution.

Our evaluations on a 24-core machine with various IoT applications show

6

that Pluto improves the number of small IoT stream queries that can be handled

in a machine by an order of magnitude compared to existing distributed stream

processing systems (Storm and Flink) and a stream database (PipelineDB),

while keeping 99th-percentile latency below one second.

1.2.2 Streaming Dataflow Reshaping on Lambda

To quickly handle sudden bursty loads of big IoT stream queries, we propose

Sponge, which is a new stream system that optimizes query compiler, execution,

and resource acquisition layer for fast scaling of big IoT stream queries.

First, Sponge dynamically creates Lambda instances instead of VMs when

bursty loads happen because Lambda offers lightweight containers faster to start

than VMs [6, 8, 38, 42]. The start-up time of Lambda instances is less than a

few seconds, which is at least 10× faster than that of VMs [34], as cloud vendors

create Lambda containers on already running VMs that are pre-allocated for

Lambda services.

However, realizing fast scaling of big stream queries on Lambda is chal-

lenging because of Lambda’s data communication constraint (it does not al-

low direct data communication across Lambda instances) and the slow scaling

mechanism of existing work [40, 94].

To address this problem, Sponge also optimizes the compiler layer by reshap-

ing the logical dataflow of streaming queries to a fast-scaling-friendly dataflow

on Lambda. Once a big stream query is submitted as a dataflow graph, Sponge

inserts three utility stream operators in the logical graph for dataflow reshaping:

router operators (ROs), transient operators (TOs), and state mergers operators

(MOs), according to dataflow patterns and query semantics. Inserting ROs en-

able Sponge to easily distribute the load of operators with shuffle data commu-

nications to multiple Lambda instances. Inserting TOs and MOs reduces the

7

delay of the slow scaling mechanism and allows Sponge to quickly redistribute

the load of operators to Lambda.

We evaluate Sponge on EC2 instances (5× r5.xlarge) and AWS Lambda

instances (up to 200 Lambda instances of 1, 769 MB memory) and show that

reshaping the dataflow graph of stream queries can significantly reduce tail

latencies when bursty loads happen compared to scaling queries without re-

shaping on VMs and Lambda instances.

1.3 Contribution

In this dissertation, we make the following contributions:

• We provide the insight and the workload characteristics of two different

(small and big) IoT workloads and identify their problem.

• We propose end-to-end system optimization techniques to solve the prob-

lem of IoT stream workloads. Specifically, we propose IoT-characteristic-

aware optimization that optimizes query submission and execution layer

for handling a large number of small IoT stream queries. In addition, we

propose optimizing query compilation, execution, and resource acquisition

layer by reshaping streaming dataflow on Lambda to enable fast scaling

mechanism and reduce latency spikes when bursty loads happen in big

IoT stream queries.

• We design and implement complete and working systems that embody

our idea and show that our proposed techniques significantly improve the

performance in terms of throughput and latency.

8

1.4 Dissertation Structure

The rest of this thesis is organized as follows. Chapter 2 describes the character-

istics of IoT stream queries and workloads. In Chapter 3, we present IoT-aware

three-phase execution, which optimizes both query submission and execution

layer, to efficiently handle small IoT stream queries in a node. Chapter 4 pro-

poses a streaming dataflow reshaping approach on Lambda, which optimizes

query compilation, execution, and resource acquisition layer, to handle sudden

bursty loads of big IoT stream queries cost efficiently. In Chapter 5, we conclude

the work.

9

Chapter 2

Background

In this chapter, we illustrate the stream query model and characteristics of

small and big IoT stream queries through an example for better understanding

of this dissertation.

2.1 Stream Query Model

A small and big IoT stream query (q) is represented as a directed acyclic graph

(DAG), which describes stream queries that many stream processing systems

adopt [88, 16, 104]. In a DAG, a vertex is either a source (s), which subscribes to

IoT data streams, an operator (o), which processes the data with user-defined

functions (UDFs), or a sink (k), which publishes the processed data. An edge

represents the stream of data flowing from the upstream vertex to the down-

stream vertex (e.g., s→ o).

Small Stream Query. Figure 2.1 shows the DAG example of small and big

IoT stream queries. In Figure 2.1(a), there are two small IoT stream queries

10

src

q1 (for user1)
M

e
s
s
a
g

e

B
ro

k
e
r

user1/temp1 Map

Wind
ow

Acti
on

sin
k

M
e
s
s
a
g

e

B
ro

k
e
r

user2/temp1

user1/ac1

user2/ac1

q2 (for user2)

src

Map

Wind
ow

sin
k

Acti
on

(a) small IoT stream queries

src

Map

GBK

GBK

sinkM
e
s
s
a
g

e

B
ro

k
e
r

(b) big IoT stream query

GBKWind
ow

srcsrc

Map
Map

GBKGBK

sinksink

Figure 2.1: The dataflow (DAG) example of (a) small and (b) big IoT stream

queries. A small IoT stream query has a single instance of an operator, but a

big IoT stream query has multiple instances of an operator to parallelize the

query processing due to the large volume of data.

that continuously control air conditioners for two different users generated from

a smart-home IoT application. Each stream query (q1 or q2) receives a tem-

perature data stream related to a user (user1/temp1 or user2/temp1) from

different devices, The Map operator pre-processes the raw temperature data to

change the data format, the Window operator gathers recent temperature data

in a sliding window, and the Action operator decides the necessary action to

control the target cooling temperature of the air conditioner according to the

processing logic of the registered code. The sink then emits the decision to the

message broker to change the cooling temperature of the air conditioner. Fi-

nally, the air conditioner (user1/ac1 or user2/ac1) receives the decision event

from the message broker and adjusts its cooling temperature. Each user can

customize her query by setting the IoT temperature sensor, the air conditioner,

and the target cooling temperature of the air conditioner via the web or smart-

phone IoT application [82].

11

Big Stream Query. Figure 2.1(b) shows a big IoT stream query that counts

the number of people in locations. The query first receives the aggregated IoT

data streams from the message broker, converts each event into a pair of key

(location) and value (count) in the Map operator, assigns windows to the pairs

and collects events within the windows (Window operator), and aggregates the

windowed data to count the number of people in each location (GBK). As an

example, the GBK operator receives events, consisting of the triple of key (loca-

tion), value (1), and assigned window ([window-start-time, window-end-time)).

The GBK operator then aggregates events with the same location and the same

window to calculate the count of active users in each location.

2.2 Workload Characteristics

In this section, we highlight the workload characteristics of small and big IoT

stream queries.

2.2.1 Small IoT Stream Query

Small Stream Size. A small IoT stream query processes a small amount of

data streams because it receives data from a few IoT devices or sensors related to

a certain user. The small data stream has a low event rate, as each IoT device

usually samples metrics and generates an event periodically every second or

minute. For instance, smart sensors generate data every one second [102, 69].

In this dissertation, we focus on the text-based or event-based IoT data streams

(not images, video, or voice data) with low input rate. Due to the low event

rate, there is little benefit of data parallelization for small IoT stream queries.

Therefore, instead of distributing an IoT stream query across nodes, executing

many IoT stream queries on a single node is important in reducing the required

12

number of nodes and the server maintenance cost, which is the main topic of

Chapter 3.

Large Numbers of Codes and Queries. In small IoT stream query work-

loads, various IoT application codes can be registered to the cloud backend

server due to the diverse needs for different end users. For instance, in the

workloads of IFTTT [43] that is a platform for automating IoT devices, the

number of IoT applications (called applets) is more than 75 millions, which

represents that diverse IoT applications are registered for end users.

The more applications are developed and more IoT devices are installed,

the more small IoT stream queries will be generated for many end users. As

an example, 75K stream queries can be submitted per second in the IFTTT

workload even if 0.1% of IoT applications are triggered by end users. In addition,

location-based IoT applications offer new services for end users such as taxi

hailing [90] with GPS-equipped IoT devices. According to the workload of taxi-

hailing service in China, more than a thousand taxi-hailing requests per second

are created by end users [58] during the peak load. These workloads indicate

that a large number of small IoT stream queries can be submitted by end users,

so it is important to process and handle as many stream queries as possible on

a node to minimize the maintenance cost of backend servers.

2.2.2 Big IoT Stream Query

Large Stream Size and Bursty Loads. In contrast to small IoT queries,

big IoT stream processing queries process a large volume of real-time data and

extract insights with low latency [99, 88, 98, 75, 16]. The size of data streams

that distributed stream processing [88, 16] targets is usually large, like 1M

events per second as shown in the recent distributed stream benchmark [49].

13

Due to the aggregated data streams, the input rate and the load of the jobs

fluctuate over time according to the real-time workload. Furthermore, at times,

the input rate can increase sharply.

The number of big IoT stream queries is relatively smaller than the small

IoT stream query workloads, so the important topic is to optimize individual

big stream queries and to handle the bursty loads of a big stream query with

low latency results, which is the main topic of Chapter 4.

Parallelism (Multiple Tasks). Each stream operator processes a large vol-

ume of data streams. Therefore, a big stream query parallelizes the processing of

data streams by creating multiple instances of operators, which we call tasks. A

task is a scheduling and execution unit that handles a part of big data streams.

N-to-N Communication (Shuffle). A task can send data to and commu-

nicate with multiple tasks of its downstream operator, which leads to N-to-N

communication (shuffle). Data with specific keys can be sent to specific tasks in

the shuffle communication. For instance, in Figure 2.1(b), tasks of the Window

operator shuffle data based on the location and perform N-to-N communication

with the tasks of the GBK operator.

Large State Size. Due to the large volume of data, the size of states of

big IoT stream queries can be large. In the GBK operator in Figure 2.1(b),

it aggregates data by keys. When the input rate increases, the number of keys

(number of locations of users) and the size of aggregated values can also increase

(e.g., when the operator appends values to calculate quantile), which results in

the large state size of big IoT stream queries.

14

Chapter 3

IoT-Aware Three-Phase Query
Execution

In this chapter, we explain how to efficiently process a large number of small

IoT stream queries in a machine with IoT-characteristic-aware optimization.

Although a large number of small IoT stream queries are created from vari-

ous applications, there are two commonalities among small IoT queries that we

can exploit when they are executed on the cloud backend server. First, we have

observed that many small IoT stream queries are created from the same IoT

application and reference the common application code during the execution in

the server, because multiple end-users use the same IoT application to create

their IoT queries [82]. For instance, according to the IFTTT workload, one ap-

plication is installed by 97K end users [10], which means that more than 90K

IoT queries will reference the same code. Second, even if IoT stream queries pro-

cess different IoT streams for different end-users’ IoT devices, many IoT stream

queries receive data streams from a common message broker, each of which han-

dles hundreds of thousands of IoT connections [26] due to the lightweight IoT

15

Pluto

Code Manager (CM)

Pluto Worker
Pluto

Client

Message

Broker
Message

Broker
Message

Broker

A
p

p
lic

a
ti
o

n
s

(1)

(2)
(3)

(4)

(5)

Figure 3.1: A system overview of Pluto. The gray-box is a single node.

messaging protocols (e.g., MQTT [67]). For example, EMQ [26], the message

broker for MQTT connection, can support 1M MQTT connections and data

streams.

3.1 Pluto Design Overview

Pluto is a new stream processing system that optimizes the end-to-end execu-

tion of large numbers of IoT stream queries by being aware of the IoT-query

characteristics. Pluto addresses the limitations of existing stream systems by

applying the following key design principles:

1. Decoupling of Code and Query Submission: Pluto decouples code

registration from the query submission phase and performs a three-phase

end-to-end query execution with new APIs. The decoupling of the code

and query submission enables Pluto to optimize each phase individually

with lightweight query submission, as well as code/network connection

sharing across IoT queries.

16

2. IoT-Aware Query Execution for Low-Latency and High-Throug-

hput: Pluto executes a large number of IoT stream queries (high through-

put) by sharing system resources as much as possible on a node, while

keeping sub-second latency results and evenly (re)balancing the load of

IoT stream queries across multiple cores in a machine. In doing so, Pluto

leverages commonalities among IoT stream queries and uses a new schedul-

ing unit for groups of IoT stream queries, called Q-group. Pluto assigns

the multiple IoT queries that refer to the same application code to a

Q-group and schedules the group of queries for locality-aware scheduling

that maximizes CPU code cache localities, while dynamically dividing the

Q-group for load rebalancing across multiple cores.

For three-phase execution, Pluto is designed with three components: the

client, code manager (CM), and worker, as shown in Figure 3.1.

To execute IoT stream queries, first, developers should implement appli-

cations and register their codes. Pluto client provides programming APIs to

support various user-defined functions (UDFs), such as map, filter, window,

flatMap, union, join, and complex event processing (CEP) [97]. Once the UDF

is developed, the developer registers the application UDF code using the code

registration API (Section 3.2.1). The client then sends the code file from the

local code file path to the CM through the network.

The CM manages the registered code: it checks whether the code is already

submitted or not. If it is a newly submitted code, the CM stores the code

into the Pluto worker (Figure 3.1(2)) and returns a unique code identifier of

the registered code to the developer (Figure 3.1(3)). Otherwise, it returns the

existing code identifier for the duplicate code. To efficiently check for duplicate

code during the registration, the CM compares the hash value of the bytes of

codes. In the future, we plan to check malicious codes with static code analysis

17

techniques [13, 20] to reject them for security.

Once the code is registered, the application developer should deploy the code

identifier to end-user devices to submit IoT queries with the code identifier. The

code identifier plays an important role for grouping and sharing codes across

IoT queries in Pluto’s worker, and the detail is described in Section 3.3.

For the query submission, the Pluto client provides a dataflow query sub-

mission API that converts a query as a directed acyclic graph. For each query,

Pluto client explicitly receives the message broker address of the source of a

query, the code identifier of the application code that the query references, and

the values of user-specific parameters to customize the query logic for each end

user (Section 3.2.2).

The query submission is lightweight, as Pluto decouples the code and query

submission path. When submitting queries, Pluto client submits only the code

identifier instead of the actual code bytes with the dataflow graph and user-

specific parameters of the query. If there is a single path for the code and

query submission without code registration, duplicate codes will be sent and

uploaded to the server multiple times, which is the limitation of existing stream

processing systems.

A worker, which is a long-running process that runs on a single node, au-

tomatically and quickly instantiates UDFs from the registered code for the

submitted IoT queries (Figure 3.1(4)) and connects with the message broker

(Figure 3.1(5)). To efficiently process many IoT stream queries, the worker

shares system resources and performs locality-aware scheduling by being aware

of the broker address and code identifier.

In the following sections, we explain the details of code registration and

query submission API (Section 3.2), and the IoT-aware query execution model

on a worker (Section 3.3).

18

Listing 3.1: Parameter Declaration API

1 @ParameterDeclare

2 public class Threshold implements ParameterDeclare<Double> {}

3.2 Decoupling of Code and Query Submission

3.2.1 Code Registration

At a high level, in the code registration phase, Pluto offers APIs for building

and submitting UDFs and annotating UDF parameters, by which the actual

user-specific values for customized queries are set in the query submission phase.

Specifically, the Pluto client provides the following APIs: i) parameter decla-

ration, ii) UDFs with parameter binding, and iii) code registration. Here, we

explain the client APIs with a simple example written in Java.

Parameter Declaration (Listing 3.1). Application developers should first

declare classes for parameters used in their UDFs, using @ParameterDeclare

annotation (line 1 in Listing 3.1) and creating a class for the parameter (line

2). Here, as an example, a Threshold parameter with Double type is declared.

The actual value of the parameter will be set in the query submission phase.

UDFs with Parameter Binding (Listing 3.2) Next, application developers

should create their UDFs and bind the declared parameters to the UDFs. We

show a simple MyFilter UDF example that filters a temperature value if the

value is less than a certain threshold parameter, configured by an end-user in

query submission.

To bind the threshold parameter to MyFilter UDF, @ParameterBinding

annotation should be used, wrapping the declared parameter class name Thres-

hold.class (line 4). In addition, @Inject annotation should be added above

19

Listing 3.2: Parameter Binding API

1 class MyFilter implements PlutoFilter<Double> {

2 private double threshold;

3 @Inject

4 MyFilter(@ParameterBinding(Threshold.class) double threshold) {

5 this .threshold = threshold;

6 }

7 @Override

8 public boolean filter (double temperature) {

9 return temperature < threshold;

10 }

11 }

the class constructor (line 3). With the @Inject and @ParameterBinding an-

notations, the Pluto worker automatically injects the actual parameter value of

threshold and instantiates MyFilter whenever a query is submitted with the

actual parameter values.

Code Registration. After writing the UDFs, application developers compile

and submit the codes through Pluto’s command-line API. The procedure re-

turns a unique code identifier of the submitted jar file, as explained in Sec-

tion 3.1.

3.2.2 Query Submission API

Once the code is registered in the code registration phase, application devel-

opers deploy the code identifier to end-user devices. IoT queries are submitted

with the code identifier and query DAG from the device, setting the UDFs and

the actual user-specific values of the annotated parameters. . As an example,

20

Listing 3.3: Query Submission API

1 parameters = PlutoClient.parameterBuilder()

2 // value defined by an end−user

3 .setParameter(Threshold.class, value)

4 .build() ;

5 PlutoQueryBuilder.mqtt(brokerAddress)

6 . filter (MyFilter.class)

7 ... // dataflow API

8 .submit(codeIdentifier , parameters)

for each IoT application, Listing 3.3 code is executed to submit a query for an

end user.

In Listing 3.3, a query is written with Pluto’s dataflow API. In lines 1—3,

the value of the annotated Threshold parameter is set, which is defined and

registered in the code registration phase. In lines 4—7, the query DAG is built,

with the brokerAddress (line 4) and UDF class name used in the query (line

5). The query is then submitted with the codeIdentifier and parameters in

line 7, and transformed into a DAG. As Pluto sets only the metadata of the

registered code, as well as the actual value for binded parameters, the query

submission is lightweight.

3.3 IoT-Aware Execution Model

In the worker, to minimize resource bottlenecks and improve the system per-

formance while processing many IoT stream queries, Pluto exploits the com-

monalities among IoT stream queries. Figure 3.2 illustrates the key difference

of execution models between the existing stream processing systems and Pluto.

First, compared to the existing stream processing systems that allocate sys-

21

Message
Broker1

q1

q2

App. Code1

q3

App. Code1

App. Code2

Memory
region

Processing
threads

I/O
threads

Network
connections

q1

q2

App. Code1

q3 App. Code2

Memory
region

Processing
threads

Message
Broker2

Network
connections

I/O
threads

O
S

 s
c
h

e
d

u
le

r

L
o

c
a

li
ty

-

a
w

a
re

s
c

h
e

d
u

li
n

g

O
S

 s
c
h

e
d

u
le

r

(a)

(b)

Message
Broker1

Message
Broker2

thread pool thread pool

… …* q_x: an IoT stream query

resource sharing

Figure 3.2: (a) The execution model of existing stream processing systems that

creates separate system resources (network connection, thread, codes) for indi-

vidual queries. (b) The overview of Pluto’s IoT-aware execution model.

tem resources separately for each query (Figure 3.2(a)), Pluto shares network

connections, I/O and processing threads using the thread pools [35, 19], and

memory region for the same application code among IoT stream queries (Fig-

ure 3.2(b)). Each I/O and processing thread pool has a fixed number of threads

(2× of cores by default, and it can be configured by system administrators), and

threads are uniformly pinned to cores as illustrated in Figure 3.3. Separating

the threads for I/O operations (sources and sinks) and CPU operations (opera-

tors) and pinning threads to cores prevent frequent context switching and CPU

22

Q-group2

App. code1

q1q4q6Q-group1

App. code1

Message
Broker1

Message
Broker2

Message
Broker3

q1q4q10…

sub Q-
group

I/
O

 t
h

re
a
d

 p
o

o
l

group split/merge

add Q-group to the active Q-group queue wake up

a
d

d
 e

v
e
n

ts
 t

o
 Q

-g
ro

u
p

c
o

re
c
o

re

P
ro

c
e
s
s
in

g
 t

h
re

a
d

 p
o

o
l

sub Q-
group

Worker

Figure 3.3: The detail of Pluto execution model in a worker.

cache misses [95]. To share network connections among queries, Pluto checks

whether an open network connection exists for brokerAddress of the query.

If the connection exists, the worker retrieves the source event from the open

connection. Otherwise, the worker opens a new network connection and assigns

it to an I/O thread.

Second, to further minimize the CPU bottleneck, Pluto adopts locality-

aware scheduling that schedules the events of IoT queries in a way that exploits

the temporal locality of code references. For instance, in Figure 3.2(b), as q1

and q2 queries look up the same code memory region (App. code1), Pluto

consecutively processes the events of q1 and q2 on the same core to exploit the

temporal locality of code references and minimize CPU cache misses.

Pluto uses a new scheduling unit, called Q-group, which groups stream

queries for locality-aware processing. In the following section, we illustrate

how Pluto creates Q-groups (Section 3.3.1), assigns Q-groups to threads (Sec-

23

tion 3.3.2), processes the events within Q-groups (Section 3.3.3) for locality-

aware processing, and dynamically rebalances the load of Q-groups across threads

for low latency results (Section 3.3.4).

3.3.1 Q-Group Creation and Query Grouping

To share codes across IoT stream queries that refer to the same application

codes, Pluto creates a Q-group for each unique codeIdentifier. A Q-group

contains IoT stream queries referring to the code codeIdentifier. We define

a Q-group G = {ref(C),Q} where ref(C) is a reference of code C, and Q

is a set of queries that access code C when they are executed. A Q-group is

created whenever a new application code is registered (Figure 3.1(2)). When a

query is submitted to the worker, the worker looks up the Q-group with the

codeIdentifier of the query, and assigns the query to the Q-group for query

grouping.

3.3.2 Q-Group Assignment

During the execution, many Q-groups can be created as various application

codes are registered by diverse application developers. If the number of Q-

groups is larger than the number of processing threads, multiple Q-groups are

assigned to a processing thread. Pluto properly distributes the load of Q-groups

among multiple processing threads by assigning the Q-groups with a variant

of the least-load-based balancing mechanism [17]. To assign a Q-group, Pluto

selects k smallest-load processing threads, and randomly selects one of them to

prevent many Q-groups from being assigned to a thread in a short period of

time. k is 2 by default, based on the power of two choices [64].

Pluto measures the load of a processing thread following the M/M/1 queue-

ing model [24] as the event arrival of IoT stream is usually approximated with

24

the Poisson distribution [61]. Pluto estimates the load of each thread by sum-

ming up the load of assigned queries in the Q-group. The load of each query is

calculated by dividing the mean event arrival rate by the mean event processing

rate.

3.3.3 Q-Group Scheduling and Processing

The processing thread should process events within Q-groups to exploit the

temporal locality of code references, while minimizing processing latency for

low latency results. To achieve both goals, Pluto adopts the event driven ar-

chitecture [95], where processing threads are activated whenever an event is

received.

To realize this architecture, each processing thread P maintains a two-level

queue structure. The first-level queue, called active group queue, contains ac-

tive Q-groups, Ga={Ga
1,G

a
2,...,G

a
k} (k ∈ Z>0), where Ga

k is one of the assigned

Q-groups to P that holds at least one event. Each Ga
k has a second-level queue,

event queue, that contains the events of the assigned queries. If there are no ac-

tive Q-groups in a processing thread, the processing thread sleeps, and waits un-

til active Q-groups exist. This reactive approach enables processing new events

with low latency without wasting CPU cycles for checking for Q-groups that

have no events.

Algorithm 1 presents the algorithm of how Pluto schedules and processes

events in detail. Lines 1–8 show the event scheduling. The I/O thread retrieves

query events from network connections and adds the events to the Q-group

event queue where queries are assigned. In addition, an I/O thread schedules a

Q-group to the active Q-group queue of each processing thread and notify the

processing thread when there are events in the Q-group. When a source I/O

thread receives an event e of query q from the network connection, the Event-

25

Algorithm 1: Event Scheduling and Processing

// Source I/O thread

1 Function EventScheduling(e, q)

2 // e: an event of query q;

3 G ← queryGroupTable(q) ;

4 add e to the event queue of G;

5 if G becomes active then

6 P ← groupProcessingThreadTable(G);

7 add G to the active group queue of P ;

8 awake(P);

// Processing thread P

9 Function EventProcessing(P)

10 QP ← activeGroupQueue of P ;

11 while QP is not empty do

12 startTime ← currentTime();

13 Ga ← poll an active group from QP ;

14 while until event queue of Ga is empty do

15 if elapsedTime(startTime) < timeout then

16 (e, q) ← poll an event from the event queue;

17 processEvent(e, q);

18 else

19 // preemption and rescheduling ;

20 add Ga to QP ;

21 break;

22 if QP is Empty then

23 wait();

26

Scheduling function is invoked. The thread first finds the Q-group G where

q is assigned (line 3). If the G becomes active at this time, which means that

G has one event to process at this time from its empty event queue, the I/O

thread adds G to the active Q-group queue of P , where G is assigned (line 7).

After adding G to the active Q-group queue of P , the I/O thread sends a signal

to P where an active Q-group is added.

Lines 9–23 of Algorithm 1 illustrate how a processing thread processes the

Q-group and events in the two-level queue structure. The EventProcessing

function is invoked only once for each processing thread P when the Pluto

worker starts. In line 23, P sleeps if an active Q-group queue is empty and

wakes up when an I/O thread adds an active Q-group to the queue and sends

a signal.

By processing all the events in the same Q-group consecutively, the Pluto

worker utilizes the code locality. P processes the events in the event queue of

each Q-group one after another consecutively (line 16) to exploit the temporal

locality of code references. In doing so, P accesses the same code repeatedly,

which reduces cache misses and CPU use.

To prevent a processing thread P from being occupied for a long time by

an active Q-group (Ga) with a lot of events to be processed, Pluto preempts

the active Q-group with a timeout value (line 15) to fairly process events in

different Q-groups. When Ga is preempted, P adds the Q-group into the end

of the active Q-group queue because Ga has remaining events (line 20). By

rescheduling Ga to the end of the queue, Pluto provides other groups of stream

queries with a fair chance to be processed by P . When the load of a certain Q-

group is too large, Pluto eventually splits the large Q-group and distributes the

load to other processing threads, which is illustrated in the following section.

27

3.3.4 Load Rebalancing: Q-Group Split and Merging

The load of Q-groups may change over time and threads could be overloaded

while processing events. Pluto dynamically splits the Q-group into multiple

sub Q-groups, and merges the sub Q-groups again for load rebalancing among

multiple processing threads (and cores). Each sub Q-group inherits the parent

Q-group’s code reference, and has the subset of queries and events of the parent

Q-group.

For load rebalancing, Pluto periodically checks the load of each process-

ing thread, and detects overloaded and underloaded threads. Pluto then splits

Q-groups assigned to the overloaded threads and moves the sub-groups to un-

derloaded threads, or just reassigns the Q-groups from the overloaded to un-

derloaded threads. In doing so, two threshold parameters are used to find the

overloaded and underloaded threads, α and β (α < β). We consider a thread T

as overloaded or underloaded, if the load of T (ρT) is greater than β or lower

than α. Threads with loads between α and β are considered stable, and they

do not participate in the load rebalancing process to prevent the oscillation

between the overloaded and the underloaded state. Through our evaluation, we

empirically found that the rebalancing process works well with α = 0.8 and

β = 0.95. If β > 0.95 or α > 0.8, the tail latency increases significantly be-

cause the threshold is too high to trigger rebalancing. In contrast, when we set

β < 0.95 or α < 0.8, the rebalancing occurs frequently, which increases the

rebalancing overhead of Q-group split/merge or reassignment.

We iterate the following process for each overloaded thread To for load

rebalancing: we select the Q-group Gl with the largest load among Q-groups

assigned to To. We then try to move Gl to an underloaded thread Tu, if (1)

ρTu +ρGl
< β, and update the load of To and Tu. If the updated ρTu is between

28

α and β (Tu becomes stable), we select another underloaded thread. We repeat

this process until the load of To is less than β (not overloaded).

When the load of Gl is too large, the condition (1) may not be satisfied

for all underloaded threads, while ρTo is still larger than β (overloaded). In

this situation, we split the Q-group Gl and create two sub Q-groups, Gl1, Gl2.

The events in the event queue of Gl are evenly distributed to Gl1 and Gl2,

and the assigned queries to Gl are also evenly reassigned to Gl1 and Gl2. Pluto

moves one of the sub Q-groups to underloaded threads with condition (1) until

ρTo < β. If the sub Q-group is too large to be moved, Pluto splits the sub Q-

group again recursively like a binary tree structure, where the root is Gl. Pluto

also merges split sub Q-groups into one again to maximize the locality-aware

processing, when threads are underloaded again.

3.4 Implementation

We have implemented Pluto with approximately 17K lines of code (excluding

test code) in Java 1.8. For parameter declaration and binding in Pluto’s API,

we use Tang [85], a dependency injection framework. For communication with

message brokers, we use EMQ [26] that supports thousands of connections in

the broker.

In a worker, multiple I/O threads and a processing thread P can concur-

rently access the active Q-group queue of P . To minimize the thread contention,

we use lock-free atomic counters. Using the counters minimizes the number of

access to the active Q-group queue and the overhead of thread contention be-

tween I/O threads and processing threads. Each Q-group G maintains a counter

that indicates the number of events in G. An I/O thread increments the counter

and P decrements it concurrently. When the counter becomes one from zero in

29

a Q-group, the I/O thread adds the Q-group to the active Q-group queue of P .

3.5 Evaluation

We answer the following questions in our evaluation:

i) How does Pluto improve the performance compared to existing distributed

stream processing and stream database systems (Section 3.5.2?

ii) Which factors contribute to the performance of Pluto (Section 3.5.3)?

iii) Does Pluto well-balance the load among cores in a skewed workload while

keeping low latency (Section 3.5.4)?

iv) Is Pluto still effective in large stream sizes (Section 3.5.5)?

Environment. For evaluation on a single machine, we run Pluto and other

systems on a 24-core NUMA machine (2× Intel Xeon E5-2680 2.5GHz, 30M

Cache, 8× 16GB RDIMM, Ubuntu 14.04.5, Kernel 4.4.0-124-generic). In this

evaluation, the number of I/O and processing threads is set to 48, respectively

(2× cores). All the events generated from the data streams and query results are

delivered via MQTT [67], and EMQ [26] is used as the message broker server.

We use two additional machines, one for the event stream generating and the

other for the message brokering.

3.5.1 Methodology

For evaluation, we emulate many data streams, applications, and IoT stream

queries with real-world datasets.

30

Workload

To emulate a large number of IoT data streams, we use 9 types of data (stypei,

1 ≤ i ≤ 9) by extracting the necessary data from real-world datasets [65, 73, 78,

66, 109, 79, 91]: temperature and humidity [78], heart rate and motion [79], user

GPS [109], taxi GPS [66], livestock GPS [91], soil moisture [65], and household

power consumption [73]. We then generate a new data stream by uniformly

choosing the one of stypei for each query, and each data stream is generated

following the Poisson process model. The input rate is one event per second on

average.

To emulate the real-world scenario where a various number of codes is regis-

tered by application developers, we implemented 15 base application codes (Ci,

1 ≤ i ≤ 15) referring to real-world IoT applications such as smart home and

health care, and register thousands of application codes to Pluto from the 15

base codes (6000 codes in our evaluation). We copy each code Ci n times, creat-

ing codes Ci,1, ..., Ci,n. Pluto then treats Ci,x and Ci,y (x ̸= y) as different code

for our evaluation to emulate real-world scenario: the code manager creates a

unique code identifier for each Ci,x, and the worker loads each registered code

in different memory locations by creating a separate Java Classloader. The full

list of applications is described in Section 3.5.1.

To create many IoT stream queries, we iterate the following step. First, we

select a code C among the registered codes. Second, we create a new data stream

(stream) from one of the 9 types of data. Third, we create a stream query that

subscribes to a stream that refers to code C. We uniformly choose a code C

among registered codes for each stream query by default. We further show the

performance when the created queries are skewed to certain application codes

in Section 3.5.4.

31

Metrics

We measure the throughput (the number of processed queries) and the end-

to-end latency to evaluate the performance of Pluto. The throughput is the

number of processed events per second in Pluto, and the latency shows how

responsive Pluto is in processing the incoming events. As each query processes

one event per second on average of the IoT data stream in our evaluation, if

the throughput is K, the number of processed queries is also K.

We find the maximum throughput following these steps: First, we submit

X stream queries for each step. Second, we begin to generate the data streams

for the submitted queries. Third, we measure the throughput and the latency.

We repeat these steps until we find the point at which the median latency rises

above 100 ms (sub-second latency) and the P99 latency rises above one second

as many stream queries used in our evaluation require sub second latency for

notification and anomaly detection.

Applications

This section describes 15 base IoT applications that we implement for our eval-

uation based on real-world scenarios. In the following list, (a) is the application

name, (b) is the description, and (c) is the type of dataset used in the applica-

tion. We create a large number of diverse small stream queries by changing the

parameters.

1. (a) A/C control ∥ (b) Controls air conditioners by analyzing the temper-

ature data within a window generated from remote IoT sensors at home.

Users can set the target temperature. ∥ (c) Temperature [78]

2. (a) Abnormal heart rate (b) Detects abnormal heart rates from patient’s

heartbeat data streams generated from heart rate sensors within a window .

32

If more than 10% of measured heart rates inside a window exceed a

threshold , it sends a notification to doctors. (c) Heart rate [79]

3. (a) Remote child care ∥ (b) Notifies the parents when their children are far

away from a list of safe places for a certain distance. ∥ (c) User GPS [109]

4. (a) Elderly care ∥ (b) Detects the inactive motions of elderly people by

analyzing the movement data streams within a certain window of time

and notifies the detection to their caregivers. ∥ (c) Motion [79]

5. (a) Lightbulb control ∥ (b) Turns off light bulbs at home when users are

far away by a certain distance from their homes, or turns on the light

bulbs when users are inside or near home. ∥ (c) Taxi GPS [66]

6. (a) Child mood monitoring ∥ (b) Continuously monitors the mood of a

baby from the heart rate and notifies the parents if the child is in a bad

mood. We determine the baby is in a bad mood if the average heart rate

is constantly high (included in a high heart rate range) in a window . ∥

(c) Heart rate [79]

7. (a) Medication management ∥ (b) Detects whether the medication depos-

itory temperature is within the acceptable range or not in a window . ∥ (c)

Temperature [78]

8. (a) Fire alarm ∥ (b) Continuously monitors the temperature and detect

a fire at home if the temperature increases rapidly and constantly with a

small deviation in a window . ∥ (c) Temperature [78]

9. (a) Soil moisture monitoring ∥ (b) Monitors the soil moisture in a window

and informs the farmer when the moisture is not in a normal range. ∥ (c)

Soil moisture [65]

33

10. (a) Moisture removal ∥ (b) Monitors humidity data stream in warehouses

in a window and automatically turns on the dehydrator when the humid-

ity is higher than the humidity limit . ∥ (c) Humidity [78]

11. (a) Green house ∥ (b) Automatically detects the temperature anomaly

inside the green house if the current temperature is deviated from the

previous temperatures in a window , and notifies the anomaly to the green

house owner. ∥ (c) Temperature [78]

12. (a) Find gas station ∥ (b) Automatically informs the near of gas stations

that offer the price range set by users. ∥ (c) Taxi GPS [66]

13. (a) Find Parking lots ∥ (b) Automatically informs the nearby parking lots

when the car slows down or stops. ∥ (c) Taxi GPS [66]

14. (a) Electricity warning ∥ (b) Monitors home electric usage traffic in a

window and if the total usage inside the window is bigger than the

designated limit , warns it to users. ∥ (c) Power consumption [73]

15. (a) Animal care ∥ (b) Notifies the sheepdog owner when their sheepdogs

are far away by a certain distance from their livestock. ∥ (c) Livestock

GPS [91]

3.5.2 Performance Comparison

Figure 3.4 shows the performance of Pluto and various stream processing sys-

tems. We evaluate Storm and Flink for distributed stream processing systems,

and PipelineDB [71], which is a stream database based on PostgreSQL [72] that

supports continuous SQL queries.

Overall, Pluto outperforms other stream processing systems because of its

IoT-characteristic-aware optimization.

34

StormPipelin
eDB Flink TPQ TP Pluto

0K
200K
400K
600K

M
ax
. #

 o
f q

ue
rie

s

400 2K 4K 50K 50K

690K

Figure 3.4: The performance of Pluto and other systems.

Storm. First, we evaluate Storm [88], a big stream query processing system.

However, it executes up to a few hundred IoT stream queries (400) on the

machine because it creates a JVM process for each stream query, which causes

a memory bottleneck. Like Storm, we observed that Spark Streaming [104] also

does not handle many stream queries because it creates multiple processes for

each query.

Flink. We also evaluate Flink [16], which uses system resources more efficiently

than Storm. Flink shares a process for multiple queries, while creating separate

threads, network connections, and codes for each query in the shared process.

Even though Flink creates a single process for multiple queries, we observed

that Flink cannot handle stream queries over 4K on the machine due to the

bottleneck in query submission. It has huge query submission overheads such as

uploading and downloading code files (jar files) for each stream query because

the query submission and code registration is tightly coupled.

PipelineDB. We evaluate PipelineDB [71] that supports continuous queries.

However, we found that it cannot handle more than 2K stream queries in our

evaluation environment because a large number of separate network connections

35

and threads are created in the execution of queries to retrieve different data

streams.

TPQ. As we cannot evaluate all of the modern stream processing systems,

we implemented a TPQ (threads per query) model, which follows the Flink

execution model that creates threads separately for each query. To compare

the performance without the query submission overheads, we optimize TPQ

by decoupling the code registration and query submission similar to Pluto.

However, as TPQ is unaware of the commonalities of codes and message brokers,

it has bottlenecks in creating thousands of network connections for the source

and sink and query codes of each stream query, which results in a 50K maximum

throughput.

TP.We also implemented a TP (thread pool) model that shares threads among

stream queries to compare the thread pool model with Pluto’s IoT-aware exe-

cution model. We also optimize the query submission in TP like TPQ. However,

the performance of TP is still low compared to Pluto as it has the same bot-

tlenecks with the TPQ due to the large number of generated connections and

codes.

3.5.3 Performance Breakdown

In this section, we break down the performance of Pluto. We implemented the

variant of TPQ and TP, as illustrated in Table 3.1 and Figure 3.5 to evaluate

the performance gain of sharing resources.

Query Submission. First, decoupling the code registration and query sub-

mission reduces the bottleneck in query submission. We can see the benefit by

comparing Flink with TPQ in Figure 3.4.

Network Connection Sharing. Comparing TP with TP+N, and TPQ with

TPQ+N shows the effectiveness of sharing network connections. The maximum

36

Name Description

TP+N TP + exposing broker address for network sharing

TPQ+N TPQ + exposing broker address for network sharing

TP+NC TP + exposing broker address and application code for net-

work and code sharing

TPQ+NC TPQ + exposing broker address and application code for

network and code sharing

Table 3.1: TP and TPQ with network connection and code sharing for perfor-

mance breakdown of Pluto.

throughput of TP+N and TPQ+N is 120K, which is 2.4× larger than that of

TP and TPQ (50K). TPQ and TP still have the bottleneck in creating many

codes.

Code Sharing. We can see the benefit of code sharing by comparing TP+N

with TP+NC and TPQ+N with TPQ+NC. When sharing the codes, the max-

imum number of stream queries of TPQ+NC and TP+NC reaches 220K and

500K, respectively. TPQ+NC has the bottleneck in creating and maintaining

thousands of threads, whereas TP+NC reduces the threading overheads with

the thread pool model. This is why TP+NC shows better performance than

TPQ+NC.

Locality-Aware Scheduling. Comparing TP+NC and Pluto shows the per-

formance enhancement by the locality-aware scheduling of Pluto. TP+NC pro-

cesses stream queries without exploiting the locality of code references. In con-

trast, the locality-aware scheduling of Pluto uses the Q-group for exploiting the

temporal locality of code references among queries and minimizes CPU cache

37

TPQ TP
TPQ

+N TP+
N
TPQ

+NCTP+
NC Plut

o
0K

200K
400K
600K

M
ax

. #
 o
f q

ue
rie

s

50K 50K 120K 120K
220K

500K
690K

Figure 3.5: The results of the performance breakdown

misses.

Figure 3.6 shows the number of last-level CPU cache misses and CPU usage

of TP+NC and Pluto, as well as showing the maximum throughput (number

of queries). We measure the numbers up to the maximum number of queries

that each system can handle. In this graph, we observe that TP+NC has more

cache misses than Pluto (Figure 3.6(a)), especially when the number of queries

is large. This shows that Pluto exploits the temporal locality of code references

well by scheduling and processing queries with the Q-group. This difference

leads to less CPU usage in Pluto, which enables Pluto to process more stream

queries by up to 690K (Figure 3.6(b)) compared to TP+NC.

3.5.4 Load Rebalancing: Q-Group Split and Merging

To show that multiple IoT stream queries have little performance interference on

multiple cores in skewed applications, we emulate an environment where many

queries are submitted from a few applications. We create stream queries by

selecting the registered codes in Zipfian distribution, setting the Zipf parameter

to 1.0 for highly skewed distribution. This evaluation emulates the situation

38

100K 200K 300K 400K 500K 600K 700K
of queries

1B
3B
5B
7B

of
 c
ac
he
 m
iss
es

(a) Last-level cache miss

100K 200K 300K 400K 500K 600K 700K
of queries

0.2
0.4
0.6
0.8
1.0

CP
U
us
e

(b) CPU use

TP+NC Pluto

Figure 3.6: The number of (a) last-level cache misses, and (b) CPU usage of

TP+NC and Pluto.

where many IoT stream queries share the popular IoT application codes.

Figure 3.7 shows the CDF of the latency when we turn on/off the load

rebalancing (Q-group split/merging and reassignment) in Pluto. When the re-

balancing mechanism is turned off, the P99 latency significantly increases up

to 95 seconds as Pluto does not efficiently rebalance the load among multiple

cores. However, when the rebalancing mechanism is turned on, the P99 latency

becomes 961 ms, which indicates that Pluto well-balances the load among mul-

tiple threads and keeps latency.

39

0 20000 40000 60000 80000 100000
Latency (ms)

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

Rebal. Off
Rebal. On

Figure 3.7: The cumulative distribution function of latency when we turn on/off

the rebalancing mechanism in Pluto. When we turn off the rebalancing, the P95

and P99 (95th- and 99th-percentile) latencies are 49, 453 ms and 94, 384 ms,

respectively. When we enable the rebalancing, the P95 and P99 latencies are

598ms and 961ms, respectively.

3.5.5 Tradeoff

We showed that Pluto outperforms existing stream processing systems when

processing a large number of small IoT stream queries. In this section, we

evaluate how the performance and the benefit of Pluto varies by increasing the

input rates of data streams (stream sizes). We vary the input data rate of a

stream query from 1/s to 100K/s and show the throughput of Pluto and Flink.

The input data rate indicates the size of the data stream for each query. If it is

large, it means that the query processes a big data stream.

Figure 3.8 shows the evaluation of Pluto and Flink. In this graph, the num-

ber of submitted queries is T/I, where T is the maximum throughput and I

is the input rate of each query. Pluto outperforms Flink when the input rate

of each query is small (1/s, 10/s, 100/s, and 1K/s), as Pluto is optimized for

processing small IoT stream queries. In contrast, Flink outperforms Pluto when

the input rate of a query is large (10K/s, and 100K/s), as they are targeted

40

100K/s 10K/s 1K/s 100/s 10/s 1/s
Avg. input rate of each query

0K
200K
400K
600K

M
ax

. t
hr

ou
gh

pu
t

500K 500K 420K
180K

30K 4KX X

620K 670K 660K 690K

Flink Pluto

Figure 3.8: The throughput of Pluto and Flink in various input rates.

for processing individual big stream queries with massive parallelism.

Pluto cannot digest the large data stream (100K/s and 10K/s), which shows

the limitation of Pluto in handling a small number of big stream queries because

Pluto does not parallelize individual queries. As a single thread processes all

of the events of a query in Pluto, the incoming events of a query are piled up

and the processing latency significantly increases. This is why the throughput

of Pluto is marked as X in 100K/s and 10K/s. In contrast, Flink executes

stream queries well when the input rate is large (100K/s and 10K/s) because

it parallelizes individual big stream queries to multiple threads. However, when

the input rate of each stream query becomes small (< 1K/s), Pluto outperforms

Flink thanks to its IoT-aware optimization.

3.6 Discussion

API. As Pluto offers a new API for registering codes and building IoT queries,

it requires additional steps for code and query submission. Different from exist-

ing stream processing systems, developers have to declare parameters and bind

them to their UDF functions with Pluto’s API to register codes. However, this

41

step does not require the modification of the main application logic. If the main

application code is written in the same language with Pluto’s client, developers

can reuse the code snippet. In addition, as Pluto’s query building API follows

the widely-used dataflow programming model, we believe that building a com-

piler that translates existing applications through Pluto’s dataflow API and

supporting various programming languages like Python can further reduce the

developer’s effort for porting and rewriting application codes, which is future

work.

Edge-Cloud Query Processing. Although this paper focuses on query pro-

cessing in the cloud, small IoT stream queries can be executed on the backend,

on the edge IoT devices [96, 102], or on both [57] according to the IoT ap-

plication workload and IoT devices. For instance, if an IoT device has enough

computing power (e.g., RaspberryPi) for processing a query, and the query pro-

cesses data streams generated from the local IoT device, we can execute the

query on the edge device. In addition, if the network bandwidth of edge devices

is limited, we can process data in the edge devices instead of sending data to the

cloud. For optimization, the techniques used in Pluto’s execution model (e.g.,

network/code sharing, thread-pool model) can also be applied on the edge de-

vices. In contrast, if stream queries require joining remote data streams, or there

are computations that can be shared across multiple stream queries, we can ex-

ecute them in the cloud. Furthermore, when the query requires processing data

streams generated from remote devices, or the edge device has limited comput-

ing power, delegating the query execution to the cloud is essential. Expanding

the query processing on both edge and cloud is an interesting research topic,

and building a compiler that automatically decides the placement of queries on

edge and cloud based on the application workload and IoT device type is future

42

work.

3.7 Related Work

Edgewise [35] optimizes stream processing in edge devices using the TP model.

Fleet [87] is a framework for optimizing big stream queries on FPGAs, and

FineStream optimizes them on a CPU-GPU integrated architecture [106]. Wuko-

ng+S [108] efficiently handles concurrent RDF stream queries dealing with both

timeless and timing data. Different from RDF queries and the queries run-

ning on the edge devices, FPGA, or CPU-GPU integrated architecture, IoT

stream queries submitted to the backend servers have commonalities (codes

and network connections). Pluto exploits such characteristics, proposing the

three-phase end-to-end query execution with new APIs and efficient execution

model.

Stream databases [19, 71] are optimized for executing many stream database

queries, which are different from IoT stream queries. The characteristic of

stream database queries is that they usually process the same data streams

of the same stream database fields and perform common SQL operations on

the same data. Therefore, stream databases have optimized the execution of

multiple stream database queries by extracting common computations in the

SQL expression (e.g., multiple windows, join) and merging the same compu-

tations [25, 23, 107, 41]. Different from stream database queries, IoT stream

queries perform user-defined operations on the different data streams for dif-

ferent IoT devices and users. Therefore, the query merging technique is limited

because there are little duplicate computations among IoT stream queries.

Pluto’s locality-aware processing and execution model is on the lines of Co-

hort [55] scheduling used in web servers in the sense that both consecutively

43

process events with the same code. However, there are two fundamental differ-

ences. First, in Cohort scheduling, system developers should manually decide

how to group events at compile time. Moreover, Cohort scheduling is applica-

ble for events that invoke compiled server-side codes (e.g., HTTP web servers).

In contrast, Pluto’s locality-aware processing is designed for processing events

that invoke UDF codes, registered at runtime by application developers (not by

system developers). Therefore, Pluto automatically creates Q-groups to group

events and queries that reference the same UDF codes. Pluto proposes new

code registration and query submission APIs to achieve this. Second, Cohort

scheduling is not optimized when the number of groups is large, as it is targeted

for compiled server codes and does not provide load balancing mechanism for

groups of events. In contrast, Pluto’s locality-aware processing handles a large

number of registered codes and Q-groups with a rebalancing mechanism by

reassigning, splitting and merging Q-groups across threads.

Commercial IoT platforms such as AWS IoT [5], Scriptr [83], and Azure

IoT [86] provide the backend servers for running IoT stream queries. Unfortu-

nately, their proprietary backend systems are closed-source. Pluto is the first

research work that investigates the characteristics of IoT stream queries and

performs the IoT-aware optimization. We believe that Pluto can be adopted in

the cloud platforms.

3.8 Summary

Pluto is a new IoT stream processing system with IoT-aware optimization. To

efficiently share resources and map queries to the shared resources, Pluto de-

couples query submission and code registration with new APIs. Moreover, the

IoT-aware execution model of Pluto exploits the temporal locality of code ref-

44

erences and efficiently (re)balances the load among multiple cores with a new

stream query scheduling unit, called Q-group. Our evaluation on various appli-

cations shows that Pluto improves the throughput by an order of magnitude

compared to other stream processing and stream databases systems on a node

with low latency.

45

Chapter 4

Streaming Dataflow Reshaping for
Fast Scaling Mechanism on
Lambda

4.1 Motivation

Big IoT stream processing queries process a large volume of real-time data and

extract insights with low latency [99, 88, 98, 75, 16]. Due to the aggregated data

streams, the input rate and the load of the jobs fluctuate over time according

to the real-time workload. Furthermore, at times, the input rate can increase

sharply.

Prior work has investigated fast, accurate, and automatic scaling decisions

for streaming queries in the policy layer when bursty loads happen [48], such

as quickly deciding when to trigger scaling and how much load to redistribute

from existing resources to new resources. However, even if the policy is fast

enough and makes quick decisions when bursty loads happen, if the underlying

scaling mechanism (action) layer is slow, processing latency will increase until

46

the scaling action is completed.

Unfortunately, when cloud virtual machines (VMs) are used to handle the

load spikes cost efficiently without resource over-provisioning, the scaling of jobs

is mainly delayed by the VM provisioning time. Dynamically (de)allocating VMs

may take several minutes or tens of seconds to (re)start [34, 74, 51], but sudden

bursty loads can happen in a few seconds [100, 62, 44].

Recently, cloud vendors provide new cloud computing resources called Lam-

bda (a.k.a., serverless frameworks) that offer lightweight containers faster to

start than VMs [6, 8, 38, 42]. The start-up time of Lambda instances is less

than a few seconds (at least 10× faster than that of VMs [34]). Although the cost

of using Lambda is more expensive than that of VMs, using Lambda instances

only for infrequent bursty loads does not significantly increase the usage cost. In

addition, even though there is a timeout for running Lambda instances [54], the

maximum allowed timeout is usually longer than the duration of bursty loads

that last few minutes [45], which is enough to handle the short-term bursty loads

(e.g., the maximum timeout in AWS Lambda is 900 seconds). Recent research

harnesses such properties of Lambda for low-latency data processing jobs that

do not frequently happen, such as analyzing cold data or interactive video

analytics [68, 34]. Our work is in the line of the existing work that harnesses

Lambda for data processing. To the best of our knowledge, it is the first work

to exploit Lambda for handling bursty loads of streaming queries.

4.2 Challenges

However, there are two key technical challenges in realizing fast scaling of stream

queries on Lambda.

First, as data communication between Lambda instances is prohibited, it is

47

VM

A B

VM

a1

a2

a3

a4

b1

b2

b3

b4

: task : operator : state

a1

a2

a3

a4

b1

b2

b3

b4

Scale

 out

: Lambda instance

shuffle

Figure 4.1: The illustration of Lambda that does not allow direct data com-

munication when tasks perform N-to-N (shuffle) operations. For example, a1

cannot send data to b1 and b2.

Symbol Description

λoi The input rate of operator oi

Λoi The maximum processing rate of oi in a VM

Table 4.1: Notation used in this paper.

not possible to redistribute the load of tasks that are connected to each other

to Lambda instances. To explain this situation, we use the notation defined

in Table 4.1. For simplicity, we suppose that there is one VM, two operators

o1 ⇒ o2 with shuffle edge are running on the VM, and the input rate of operators

is proportional to the source rate. When λo1 + λo2 <
Λo1+Λo2

2 , the VM is not

a bottleneck in processing the events of the operators because
Λo1+Λo2

2 , the

maximum throughput of processing o1 and o2 events in the VM, is larger than

the input rate of o1 and o2 (λo1 +λo2). We divide Λo1 +Λo2 by two to calculate

the maximum throughput because the two operators share the CPU cores of

the VM.

48

Once bursty loads happen, the input rate of o1 and o2 can be larger than

the maximum throughput, λo1 + λo2 >
Λo1+Λo2

2 , which means that the events

of o1 and o2 are piled up, and the processing latency increases. To mitigate

the CPU bottleneck in the VM, we should migrate the tasks of o1 and o2 to

Lambda instances, but it is not possible because direct communication is not

allowed between different Lambda instances, as shown in Figure 4.1.

A simple solution that overcomes this limitation is to avoid migrating the

tasks with shuffle communication to Lambda at the same time. For instance,

we can move all of the tasks of o2 (if Λo2 < Λo1) to Lambda instances and

reduce the load of o2 in the VM. However, even though we reduce the overhead

of o2 from the VM, if λo1 > Λo1 , the VM can be the bottleneck, and latency

increases. This situation happens when λo1 is high, or Λo1 is low (e.g., CPU-

intensive aggregation). We investigate various stream query workloads in our

evaluation to show the limitation.

Second, the overhead of migrating tasks and their states increases as the

bursty load increases, which leads to the bottleneck in scaling stream queries

on Lambda. When the peak load is high, it requires a huge amount of load

redistribution and task migration to Lambda. In addition, the number of tasks

(parallelism) should be large to reduce the portion of data that a task processes

when bursty loads happen. As the number of tasks and amount of states dis-

tributed to Lambda instances increase, the time to task stopping, rescheduling,

(de)serializing their states, and restarting tasks also increase. This situation

indicates that we cannot fully take advantage of the fast-to-start Lambda in-

stances because of the slow task migration mechanism.

49

LambdaLambdaVMVM

Scaling policy

Application DAG

Runtime

mechanism

Scaling policy

DAG reshaper

New runtime

mechanism

(a)
VM Lambda

(b)

Figure 4.2: The overview of (a) existing stream scaling mechanism and (b)

Sponge’ scaling mechanism.

4.3 Design Overview

To address the challenges, our key idea is to optimize both query compiler layer

and execution layer for fast scaling on Lambda. We found that there are oppor-

tunities to optimize stream queries by converting the logical dataflow graph to a

fast-scaling-friendly DAG on Lambda, by being aware of query semantics: data

communication patterns and stateful operators, and by being aware of Lambda’s

container properties: indirect data communication and warm instances. In doing

so, we propose a novel streaming dataflow reshaping algorithm by inserting new

utility stream operators into the logical DAG of streaming queries: router op-

erators (ROs), transient operators (TOs), and state mergers operators (MOs),

and the detail is explained in the next section.

To realize the DAG reshaping approach, we design a new stream system,

called Sponge. Figure 4.2 illustrates the key difference between existing stream

systems and Sponge. Sponge receives a query as a DAG, and the DAG reshaper

converts the DAG (Section 4.4). Once the DAG is converted, Sponge creates a

50

physical plan, consisting of tasks of operators. The number of tasks per operator

is configurable and decided by users. Sponge schedules and deploys the tasks

to the runtime (VM workers), which supports new utility operators with a

new scaling protocol for correctness guarantee (Section 4.5). Once bursty loads

happen and the scaling policy decides to scale out, Sponge redistributes the

load of tasks from VM workers to Lambda workers.

In this work, we do not claim the novelty of the policy layer, such as deciding

when to scale in/out, and which operators and tasks to scale in/out, because

the policy is sensitive to traffic workloads. Rather than building a universal

and automatic policy, it is more desirable for system developers, who have

domain-specific knowledge on their workloads, to build an optimized policy

based on their workload characteristics. Therefore, we expose scaling primitives

in the policy layer, in order for the system developers to easily plug in/out their

policies and scale in/out queries to Lambda, to VMs, or to both (Lambda and

VMs) (Section 4.6).

4.4 Reshaping Rules

Algorithm 2: The algorithm of reshaping rules.

1 Function Reshaping(DAG)

2 return R3(R2(R1(DAG)))

In this section, we illustrate the algorithm of three reshaping rules and how

Sponge realizes the fast scaling on Lambda while preserving application seman-

tics. Basically, Sponge receives as input a logical streaming DAG at compile

time and applies three reshaping rules: R1, R2, and R3, consecutively (Algo-

rithm 2) before creating a physical plan. The output of the reshaping algorithm

51

A B

DAG reshaper

N2N

A B

N2N

R

O

O2O

R1

Sponge runtime

VM

a1

a2

a3

a4

ro1

ro2

ro3

ro4

b1

b2

b3

b4

Figure 4.3: The illustration of applying the R1 reshaping rule to a stream query

and how the execution layer supports the converted DAG for scaling.

is a modified logical DAG, which is converted to a physical plan and executed

on the runtime.

4.4.1 R1: Inserting Router Operators

First, to enable data communication across tasks on Lambda instances, we

insert a router operator (RO) between two operators with N-to-N data commu-

nication. The router operator routes data coming from upstream operators to

the downstream operators and decouples N-to-N data communication between

them. By keeping router operators on VMs, Sponge can move and scale out

upstream and downstream operators together to Lambda instances.

Algorithm 2 and Figure 4.3 describes how Sponge converts a DAG by insert-

ing router operators. Sponge traverses the DAG in a topological order to insert

ROs. As a rule of thumbs, Sponge skips adding a router operator when o1 → o2

has one-to-one connection (Line 4) because tasks with one-to-one edges can

be executed in the same Lambda instance without data communication across

Lambda. Increasing the parallelism of o1 and o2 prevents the Lambda instance

52

Algorithm 3: The algorithm of inserting router operators.

1 Function R1(DAG)

2 for vertex, inedges in DAG.topological sort() do

3 for inedge in inedges do

4 if inedge.comm != OneToOne then

// insert a router operator

5 RO = new RO(); DAG.add vertex(RO); DAG.remove(inedge)

6 o1 = inedge.src(); o2 = inedge.dst()

7 edge to router = Edge({o1→RO, inedge.comm})

8 edge from router = Edge({RO→o2, OneToOne comm})

9 DAG.add edges([edge to router, edge from router])

10 return DAG

from being a bottleneck although multiple tasks with one-to-one edges are co-

located in the same Lambda instance, and preserving one-to-one connection

without inserting a router operator can also reduce additional data transfer

overheads. Therefore, Sponge migrates them together in the same Lambda in-

stance when operators are connected with one-to-one connection.

In contrast, whenever the N-to-N communication (shuffle) edge is encoun-

tered, Sponge inserts a router operator between o1 and o2. Adding an RO

between o1 and o2 enables scaling o1 and o2 on Lambda at the same time and

mitigates VM bottleneck, as shown in Figure 4.3. As RO only routes data with-

out additional computations, RO has no input/output (de)serialization over-

head, and the computational overhead of RO is smaller than other streaming

operators. Therefore, ΛRO is always higher than Λoi , and Sponge can relax the

bottlenecks in VMs by keeping ROs instead of other streaming operators on

VMs. Sponge sets the parallelism of an RO equal to that of the downstream

53

DAG reshaper

A B
R
O

R
O

R2

A

B’
R
O

R
O

A’

B

(1) data path

a’1

a’2

b’1

b’2

VM

ro1 a1 ro3 b1

ro1 a2 ro4 b2

transient operators

Sponge runtime

(2) redirection

signal

a’1

a’2

b’1

b’2

VM

ro1 a1 ro3 b1

ro1 a2 ro4 b2

Policy
(3) redirection

Figure 4.4: The example of applying the R2 reshaping rule and how the execu-

tion layer supports the redirection to transient operators for scaling.

operator when generating a physical plan after the rule is applied, because an

RO has one-to-one connection with its downstream operator (e.g., ro1→ b1 in

Figure 4.3).

The limitation of inserting router operators is that VMs could be a bot-

tleneck if the number of events to route and the routing overhead is large:

λRO > ΛRO. In this situation, it is inevitable to over-provision resources or

dynamically create new VMs to mitigate the VM bottleneck. For this situation,

Sponge provides scaling primitives that enable scaling on VMs (Section 4.6), in

order for policy developers to design a policy that dynamically allocates both

VMs and Lambda for various traffic workloads.

4.4.2 R2: Inserting Transient Operators

Applying R1 enables scaling of tasks with N-to-N data communications, so

Sponge can migrate a large number of tasks from VMs to Lambda to mitigate

54

Algorithm 4: The algorithm of inserting transient operators.

1 Function R2(DAG)

2 for origin, inedges in DAG.topological sort() do

3 if origin is not RO vertex then

4 trans = new TransOperator(origin); DAG.add vertex(trans)

5 origin.set trans(trans); trans.set origin(origin)

6 for inedge in inedges do

7 src = if inedge.src() is RO: inedge.src() else inedge.src().trans()

8 dst = if origin is RO: origin else trans

9 trans edge = TransEdge({src→dst, inedge.comm})

10 DAG.add edge(trans edge)

11 return DAG

bursty loads. Sponge minimizes the overheads of migrating a large number of

tasks with the R2 reshaping rule, which harnesses Lambda’s warm container

property and inserts transient operators (TOs).

A transient operator (otrans) is a copy of an existing streaming operator

(oorigin), and it is deployed and scheduled on Lambda. By default, Sponge

runs one transient task on a Lambda instance to prevent the CPU bottleneck

in Lambda, but the scheduling of transient tasks can be configured by users.

Sponge then redirects data from oorigin running on VMs to otrans running on

Lambda to reduce the task stop, restart, and rescheduling overheads when

bursty loads happen. For redirection, an RO conditionally routes data from

oorigin to otrans based on the control signal provided by Sponge.

Sponge harnesses Lambda’s warm container property to quickly redistribute

the load from VMs to Lambda and reduce the task migration overheads. When

Lambda instances are invoked and used once, they are not reclaimed by cloud

55

vendors for a time even if we do not use them, which is known as warm contain-

ers (instances) [93]. Recent study [93] shows that periodically invoking warm

Lambda instances can increase the retention time of Lambda. Sponge there-

fore pre-schedules transient operators to the warmed Lambda instances and

periodically invokes the Lambda instances (every one minute by default). The

duration of periodic invocation is small (less than 100 ms), so the warm-up cost

is negligible.

Algorithm 4 illustrates the R2 reshaping rule, and Figure 4.4 shows an

example of applying the R2 reshaping rule and how the runtime supports redi-

rection. For each stream operator oorigin except for ROs in the input DAG of

R2 function, Sponge creates a new corresponding TO (Lines 3—5). After cre-

ating and adding a TO, Sponge creates transient edges for redirection (Lines

6—10). In Figure 4.4, A′ and B′ represent transient operators of A and B,

respectively. When the load is stable, Sponge processes data through A and B

(Figure 4.4(1)). Once bursty loads happen, Sponge sends the redirection signal

to router tasks (ro1 and ro3 in Figure 4.4(2)). The router tasks then redirect

data from the original tasks (a1 and b1) to the tasks of transient operators (a′1

and b′1) (Figure 4.4(3)). Such redirection is a lightweight mechanism, as it does

not require the stopping, restarting, and rescheduling of tasks.

The downside of transient operators is that when a Lambda instance is not

used during the stable load, it can be reclaimed by cloud vendors even though

Sponge periodically invokes them. As a result, the transient tasks scheduled in

the reclaimed Lambda instance can be lost. However, as transient operators do

not process any data and have no states during the stable load, and they are

dummy operators during stable load, Sponge can quickly re-schedule them and

warm-up Lambda instances again immediately.

56

DAG reshaper
B’

R
O

B

R3state

migration

B’p
R
O

Bp

state merging

M
O

(1) data path

b’p1

b’p2

VM

ro1 bp1 mo1

ro1 bp2 mo2

Sponge runtime

(2) redirection

signal

Policy
(3) redirection

VM

ro1 bp1 mo1

ro1 bp2 mo2

b’p1

b’p2
(4) state

merging

(5) progress

Figure 4.5: The example of applying the R3 reshaping rule and how the exe-

cution layer supports the merging operators to minimize state migration over-

heads.

4.4.3 R3: Inserting State Merger Operators

Although scheduling transient operators and redirecting data reduces the task

migration overheads, Sponge should synchronize and migrate the states of op-

erators to Lambda for correctness before redirecting data.

To reduce the overheads of state migration, the final reshaping rule is to

insert state merger operators (MOs), by being aware of stateful operator’s se-

mantics. When a stream operator (osorigin) is a stateful operator with commu-

tative and associative operation properties, Sponge prevents the migration of a

task state from osorigin to ostrans by merging their states in the MO operator.

Figure 4.5 shows the example of applying the R3 and how the execution

layer supports the MO. To add an MO in the DAG reshaper, first, Sponge finds

stateful operators with commutative and associative properties from the input

DAG (B andB′ in Figure 4.5). Second, Sponge converts the stateful operators to

partial aggregate operators (Bp and B′p in Figure 4.5), and inserts an MO that

57

performs final aggregation. Third, Sponge connects the partial operators with

the MO, and the MO with the downstream operators of the original stateful

operators.

When the load is stable, the router tasks do not redirect data to B′p, which

means that the MO does not perform merging as it receives data only from Bp

(Figure 4.5(1)) with complete states. Therefore, the overhead of MO during the

stable load is negligible. Once bursty loads happen, Sponge sends the redirec-

tion signal to the router tasks (Figure 4.5(2)). Without synchronizing the state

between Bp and B′p tasks, the router redirects the data from Bp to B′p tasks

to quickly redistribute the load (Figure 4.5(3)). The tasks of B′p then receive

data without states, build up partial states from scratch by processing input

data, and emit output data computed from the partial states to the MO (Fig-

ure 4.5(4)). Meanwhile, the tasks of Bp also emit corresponding output results

to the MO at the same time. The MO then receives the outputs from B′p and

Bp tasks and combines the outputs to finalize the result with complete states.

For Bp to emit the corresponding output with B′p, Sponge injects the

progress information (watermarks) of B′p to Bp (Figure 4.5(5)). For instance,

if B′p receives data until time t1 and emits outputs, the router sends this infor-

mation to Bp, in order for Bp to emit outputs until time t1. By doing so, the

MO can merge outputs at t1. We will illustrate the details in the next section.

The limitation of the state merger is that it cannot be applied to non-

associative operations. In this case, Sponge also performs state migration. How-

ever, according to the recent research [92], most aggregation queries use the com-

mutative and associative aggregate operations (e.g., sum, min, max). Therefore,

we believe that the R3 reshaping rule is applicable for a large number of stateful

stream operations.

58

4.5 Scaling Protocol

A stream query should generate the same result after scaling, and Sponge should

guarantee the correctness result. In stream analytics, out-of-order processing is

allowed for data parallel operation: e1 event can arrive before e2 event where

e1 event timestamp is after e2 event timestamp: e1.timestamp > e2.timestamp.

To indicate the progress of out-of-ordered events, stream queries use water-

marks [1]. When a query receives watermark w1, the query assumes that all of

the events generated before w1 are already received and processed.

To guarantee this semantic, Sponge builds new scaling protocols by injecting

control messages into the data plane like Chi [60]. In this section, we illustrate

how Sponge routes data from VMs to Lambda (Section 4.5.1) and merges states

with merger operators (Section 4.5.2) while guaranteeing correct results.

In addition, Sponge also supports the existing task migration mechanism,

in order for distributing the load of tasks to VMs as well as to Lambda (Sec-

tion 4.5.3). With the task migration, the policy developers of Sponge can design

a scaling policy optimized for their workloads that scale out queries on both

VMs and Lambda with policy primitives (Section 4.6), and Sponge offers the

playground for building various policies that harness the benefit of both VMs

and Lambda.

4.5.1 Redirection Protocol

Figure 4.6(a) illustrates the redirection protocol. Once an RO task receives a

signal for redirecting data from VM to Lambda (1), it injects a control message,

cm, to the data channel of its downstream VM task T (2). The cm represents

a checkpoint before which T processes all of the events E<cm emitted from

the RO task: E<cm={e|e is emitted before cm in the RO}). The RO task then

59

RO
queue

T

T’

E<cmcmE>cm

(1) signal (2)

(3)

(4)

(5)

(6)

(7)
(a)

: control message : event/watermark

RO P

P’

E<w1

(1) signal (4)

(2)

(b)

w2 w1 E<w1 RO

queue

(5)

w2 w1<E<w2 w2 w1<E<w2

(3)

(6)

Figure 4.6: The illustration of redirection (a) and merging (b) protocols of

Sponge.

buffers events arriving after cm, E>cm, in its buffer queue.

Once T receives cm, it sends cm to its downstream tasks DTs (3) and waits

for the acks from DTs (4). When T receives all of the acks, it indicates that

there are no pending and inflight E<cm between R→ T and T → DTs. As all

of the events before cm are processed by T , when T has non-mergeable state,

Sponge can safely migrate the state of T to its transient task T ′ (5). T sends

the ack to the RO task after the state migration is finished (6). The RO task

then emits the buffered events and redirects data to T ′ (7).

This protocol guarantees that T consumes all of the E<cm with its state, and

T ′ restores the state and processes event E>cm after state migration. Therefore,

the event processing order is preserved between T and T ′, and Sponge guaran-

tees correctness results.

4.5.2 Merging Protocol

Figure 4.6(b) illustrates the merging protocol. Sponge does not synchronize

states between tasks when merging is possible because the partial states are

merged in the MO. Therefore, once an RO receives a signal for redirection from

VM to Lambda (1), it immediately redirects data to the Lambda task P ′ (2). As

a result, the progress of event processing can be out-of-ordered between P and

60

P ′. For instance, P ′ can consume events generated after w1 and emits partial

states with w2 (w2 > w1) (3), whereas P consumes events generated before

w1 (4) and emits partial states w1 (5). To prevent out-of-order processing, the

MO reorders the partial states of P and P ′ based on the watermark (6). For

example, the MO waits for P ’s output to merge the partial states of P and P ′

at w2. The RO sends watermarks both P and P ′, in order for P to emit its

partial state according to the watermark and for the MO to enable merging in

the MO based on the watermark.

4.5.3 Migration Protocol

For migration, Sponge sends a stop signal to T . T then sends control messages to

its upstream and downstream tasks and waits for acks from them to guarantee

that there are no pending and inflight events between upstream and downstream

channels (like (3) and (4) in Figure 4.6(a)). Once all of the acks is received in T ,

Sponge checkpoints the state of T , removes T from the VM, and reschedules T to

a Lambda instance. Within the Lambda instance, T is restarted by instantiating

its operator function, restoring its state, and reconnecting and initializing data

channels between its upstream and downstream tasks. These procedures are

skipped in redirection as explained in Section 4.5.1, because Sponge redirects

data to the pre-scheduled transient task where the data channel is already

established, so the redirection protocol is more lightweight than the migration

protocol.

4.6 Implementation

We have implemented Sponge with Java 1.8, AWS Lambda, and various open-

source projects, such as Apache Beam [11] for frontend and Nemo [101] for

61

DAG reshaping, and boto3 [14] for managing and deploying Lambda workers.

Frontend: To receive a stream query as a DAG, we use Apache Beam [11],

which is widely used frontend for various systems (e.g., Spark, Flink, Cloud-

Dataflow). In addition, as Beam provides APIs for developers to build associa-

tive and commutative operations (e.g., combiner), Sponge extracts this infor-

mation to identify which stateful operations are associative and commutative

and to apply the R3 rule.

Compiler: To reshape the DAG, we use Apache Nemo [101] because Nemo pro-

vides IR (intermediate representation) optimization passes, by which the DAG

can be converted to an optimized one. We implement three IR optimization

passes for R1, R2, and R3 rules on top of Nemo and reshape the DAG received

from Beam.

Runtime: We modify Nemo runtime (Java) for fast scaling on Lambda to

support the migration of tasks and redirection of data from VMs to Lambda.

Sponge executes a worker process on a VM and Lambda instance. Each worker

manages a thread pool that contains a fixed number of threads and assigns the

tasks to the threads. VM workers communicate with other VM and Lambda

workers, but Lambda workers communicate only with VM workers due to the

Lambda’s data communication constraint. For deploying the worker code to

AWS Lambda, we use AWS SDK boto3 [14].

Policy Primitives. Sponge offers the following policy primitives for policy

developers who have their workload-specific knowledges to write customized

policies:

• redirection(op, ratio): redirect ratio percent of op tasks (load) to Lambda

or to VM. If op is running on a VM, Sponge redirects its data to the

corresponding transient operator. We adjust the amount of load to be

distributed from VM to Lambda by changing the ratio in our evaluation.

62

• migration(op, ratio, VM/Lambda worker): migrate ratio percent of op

tasks (load) to a VM/Lambda worker. This primitive enables policy de-

velopers to migrate tasks across VMs or Lambda instances. We use this

for evaluating the existing task migration approach in our evaluation.

Source Throttling: Traditional backpressure mechanism [31] is slow in pre-

venting systems from being overloaded when sudden bursty loads happen, as

it sends backpressure signal from the sink of queries to the sources, but the

bursty events flow from the source to the sink. To prevent Sponge from being

overloaded, Sponge preemptively throttles the source of queries by measuring

the input rate. When the input rate exceeds the processing rate of the cluster,

Sponge throttles the source until scaling decisions are triggered and the scaling

mechanism is finished. Once the scaling is done and the load of tasks is dis-

tributed, Sponge smoothly increases the emission rate of sources to warm up

newly allocated resources for event processing.

4.7 Evaluation

We answer the following questions in our evaluation:

i) How does Sponge quickly mitigate bursty loads compared to other systems

(Section 4.7.2)?

ii) Which factors contribute to the performance of Sponge (Section 4.7.3)?

iii) What is the latency-cost($) trade-off of using Sponge (Section 4.7.4)?

4.7.1 Methodology

Environment. We use AWS EC2 r5.xlarge instances (32GB of memory and

4 vcores) for VM workers and AWS Lambda instances for Lambda workers

63

MSrc F

: one-to-one

Q1 Q4, Q5

M1Src F M2
GB
K1

M3… …

: shuffle

GB
K2

M4… GB
K3

M4…

: round robin

M1Src F M2
GB
K1

M3… … GB
K2

M4…

Q6

M1Src F M2
GB
K1

M3… … GB
K2

M4…

Q7

Q8

M1Src F M2
GB
K

… M3…

: running on VM : running on Lambda during bursty loads

SI M5…

Figure 4.7: The simplified original DAG of queries used in our evaluation

(Origin-L). M is a map operator, F is a filter operator, GBK is a group-

by-key window operator, SI is a operator that handles side inputs. We migrate

operators in gray box to Lambda when bursty loads happen to prevent the

bottleneck in VMs. All of the GBKs are commutative and associative stateful

operators, and SI is a non-mergeable stateful operator.

(1, 769MB of Lambda as AWS Lambda offers one vCPU at 1, 769MB). We

set up VPC for data communication between VMs and Lambda instances. To

prevent bottlenecks in data stream generation and data forwarding, we use two

additional instances, one (c5.16xlarge) for generating data and the other one

(c5.12xlarge) for running Kafka [52] that forwards data streams to the stream

processing systems.

Workloads. NEXMark benchmark [70] is a widely used streaming benck-

mark [48, 56] that contains diverse stream queries with complex dataflow graphs

and stateful operations. Among 8 (Q1-8) NEXMark queries, we choose 6 queries

because they represent distinctive data communication patterns, stateless and

stateful operations: Q1, Q4, Q5, Q6, Q7, and Q8.

NEXMark emulates data streams of auctions and bids, and the queries

analyze the auction and bid data in real time. We omitted Q2-3 because Q2 is

a stateless query similar to Q1, and Q3 is a non-associative stateful query like

64

Query Stateful State

Size

of Tasks

(per Op.)

Stable input

rate

Q1 X - 120 550 K/s

Q4 O ∼90 MB 60 190 K/s

Q5 O ∼2.4 GB 70 19 K/s

Q6 O ∼73 MB 70 230 K/s

Q7 O (not merge-

able)

∼1.5 GB 90 15 K/s

Q8 O ∼7 GB 60 60 K/s

Table 4.2: The characteristics of the NEXMark queries used in our evaluation.

Q7.

Table 4.2 summaries the characteristics of the original DAG of each query,

and Figure 4.7 illustrates the simplified DAG of queries. Q1 simply converts

concurrency of bids, and it represents a simple query containing map operations

without N-to-N data communication and stateful operations. Q4 analyzes the

average price for a category of bid items on a window, and Q5 selects hot

auction items in a window. Q6 computes average selling price by seller on a a

global window, and emits output whenever a winning bid event is created. Q7

selects the bid with the highest bid price in a window. Q7 in Apache Beam uses

a side input operation [12], and Apache Nemo processes the side input with non

associative and commutative operations. We use this query as a representative

one of non-associative stateful query to illustrate the limitation of R3 reshaping

rule. Q8 monitors new users who created auctions in a window and performs

join operations. As the join operation appends data, the size of states of the

join is large.

To measure the latency of query outputs every one second for windowed

65

operations, we set the window interval size to 1 second, and the window size

of queries to 60 seconds for Q4-5 and Q7 in our evaluation. For Q8 that uses

a tumbling window, we modify Q8 to aggregate data in sliding windows with

window size 60 seconds and interval 1 second.

Baseline. We compare Sponge with the following baselines:

• NoScaling does not scaling out stream queries when bursty loads happen.

• Origin-VM dynamically creates VMs and migrates tasks for scaling of

queries without dataflow reshaping.

• Origin-L dynamically creates Lambda instances and migrates tasks for

scaling of queries without dataflow reshaping.

For Origin-VM, we created VMs and stopped them before the evaluation.

When bursty loads happen, we start the stopped VMs, launch workers on the

VMs, and move tasks to the newly launched VMs from the existing VMs.

For scaling on Lambda (both Origin-L and Sponge), we launch the workers

on Lambda instances and warm-up the runtime by processing several events at

the start time of the evaluation. Due to the JIT compilation, JVM is cold if

it does not process any events, and the event processing throughput is too low

at the start time. To minimize such JIT compilation effects and focus on the

effectiveness of the reshaping rules, we warm up JVM to trigger JIT compilation

before bursty loads happen on Lambda instances in each baseline.

Bursty Traffic and On-Demand Allocation. We emulate bursty traffic

where the input rate significantly increases in a short period of time to analyze

how the lightweight and fast scaling mechanism of Sponge can reduce latency

during the bursty loads. Figure 4.8 shows an example of the pattern of bursty

traffic used in our evaluation. In this traffic pattern, we first generate stable

66

Figure 4.8: An example of the bursty input pattern used in our evaluation. At

time t = 380, the input rate suddenly increases during 60 seconds.

input streams where the input rate is stable and does not fluctuate. At some

point (t = 380 in this evaluation), we increase the input rate for a configured

time (60 seconds) to emulate a sudden bursty load, and then decrease the rate

back to the stable input rate. In our evaluation, we increase the input rate

from 3 to 6 times of the stable input rate. By default, we set the burstiness

(bursty input rate
stable input rate) to 5.

Basically, we run 5 VM workers when the load is stable and does not fluc-

tuate. For the stable input, we generate events (per second) until all of the

VM cluster CPU utilization (5 VM workers) is between 0.6 and 0.8 to prevent

clusters from being under-loaded and over-loaded resources. As queries have

different computational complexity, the stable input rate is configured differ-

ently for each query (see Table 4.2). The required computation of Q5, Q7, and

Q8 is larger than that of Q1, Q4, and Q6, which is why the stable input rate

of Q5, Q7, and Q8 is lower than that of Q1, Q4, and Q6. Once bursty loads

occur, we dynamically invoke from 100 to 200 Lambda instances for Sponge and

Origin-L, and dynamically allocate from 25 and 35 VM instances for Origin-VM

depending on the query load to prevent resource bottlenecks in both VMs and

67

Lambdas when bursty loads happen.

Parallelism (number of tasks). We empirically set the number of tasks for

each operator. Setting the number of tasks too small leads to the bottleneck

in processing a task when bursty loads happen because a task will handle a

large portion of bursty data. In contrast, setting the number of tasks too large

increases task migration and runtime overheads of Origin-L. We therefore set

the number of tasks as small as possible, while processing a task does not cause

a CPU bottleneck in both VM and Lambda of all baselines when bursty loads

happen. Table 4.2 includes the number of tasks of each operator in the evaluated

NEXMark queries. We will show how to set the number of tasks in Section 4.7.3.

Policy Configuration. As the goal of our evaluation is to show the effec-

tiveness of Sponge’s reshaping rules for fast scaling mechanism, we manually

configure the best scaling policy for each baseline to eliminate the effect of scal-

ing policy. For instance, all systems make scaling decisions at the same time.

In addition, we vary the amount of load to be redistributed and the amount of

tasks to be migrated (or redirected) when bursty loads happen for each base-

line, in order not to make resource bottlenecks in VMs and Lambda as much as

possible. We then select the best configuration that quickly mitigates latency

increase for each baseline. By default, we create one Lambda instance to run a

task and assign one Lambda vCPU to a task to prevent the CPU bottleneck in

Lambda.

4.7.2 Performance Analysis

Figure 4.9 illustrates the latency plot of all systems when bursty loads happen

at t = 380s and scaling is triggered at t = 381s. Overall, Sponge significantly

reduces latencies compared to Origin-VM and compared to Origin-L (except

for Q1). The latency of NoScaling continuously increases as the existing VM

68

Figure 4.9: The latency graph in various baselines. The bursty load happens at

t = 380s. We configure all of the systems to detect the bursty load and make a

scaling decision at t = 381s.

resources become the bottleneck in handling the bursty loads.

Origin-VM. When we scale out queries by dynamically allocating VMs (Origin-

VM), latency increases up to 44 due to the slow start-up time of VMs. Specif-

ically, we have observed that the time to start VMs takes around 25 ∼ 30

seconds, the time to start JVM worker processes on the newly started VMs

takes around 5 seconds. Moreover, as the JVM processes are cold at the start

69

time and JIT compilation is not triggered, the processing throughput is low

at the start time of VMs, which leads to latency increase up to 44 seconds.

After new VMs are instantiated, tasks are migrated to new VMs, and the JVM

processes are warmed up, the latency of Origin-VM decreases as shown in Fig-

ure 4.9 because the processing throughput becomes larger than the input rate.

Origin-L. The slow start-up time of Origin-VM can be mitigated by using

Lambda, and Origin-L illustrates how the latency is improved. In scaling out Q1

(a simple stateless query), Origin-L significantly reduces the latency compared

to Origin-VM owing to the fast-startup time of Lambda, where the start-up time

of Lambda takes less than one second in our evaluation. This result represents

that only using Lambda instead of VMs can significantly improve the latency

for scaling out a simple stateless query, as shown in MArk [105].

However, for scaling out other complex queries with N-to-N data commu-

nication and stateful operations, the performance gain of Origin-L compared

to Origin-VM lessens, which indicates that naively scaling queries on Lambda

without DAG reshaping has limitations. In Q4, Q6, latency increases up to 12

seconds due to the overheads of operators running on VMs. In Q5, Q7, and

Q8, there are latency spikes due to task and state migration overheads. Com-

pared to Origin-L, the latency of Sponge does not significantly increase thanks

to the Sponge’s DAG reshaping. In the following sections, we provide the de-

tailed analysis and the effectiveness of the Sponge’s reshaping rules, and why

the Origin-L has limitations in scaling various queries on Lambda.

4.7.3 Performance Breakdown

To analyze the performance gain of Sponge, we also evaluate the following two

baselines:

70

Figure 4.10: The latency graphs of Origin-L, SpongeR1, SpongeR2, and Sponge

to analyze and breakdown the performance of Sponge.

• SpongeR1 dynamically creates Lambda instances for scaling of queries

with R1 reshaping.

• SpongeR2 dynamically creates Lambda instances for scaling of queries

with R1 and R2 reshaping.

Figure 4.10 illustrates the latencies of Origin-L, SpongeR1, SpongeR2, and

this section breaks down the performance of Sponge with Figure 4.10.

71

Figure 4.11: The latency during bursty period with various burstiness in scaling

Q4 and Q6.

Router Operator Effect

Comparing SpongeR1 with Origin-L shows the router effect. As Q1 has no N-

to-N data communication, there is no difference between the DAG of SpongeR1

and Origin-L, which is why their latencies are almost the same. In contrast, the

latency of Origin-L is higher than that of SpongeR1 in Q4 and Q6 because VMs

become the bottleneck in processing the events of M operators running on VMs

(only 3% of input events are filtered out before M2). Usually, the amount of

computation of M is smaller than that of GBK, as GBK requires additional

aggregation. This is why we keep M2, M3, and M4 in Q4 and M2 and M3

in Q5 on VMs when bursty loads happen to minimize the CPU bottleneck on

VMs as shown in Figure 4.7. However, although we migrate other operators to

Lambda, the input rate of M operator is higher than the maximum throughput

on VMs during bursty period in Q4 and Q6, so the events of M operators are

piled up, and latency still increases.

To show the overhead ofM operators, we vary the burstiness (bursty input rate
stable input rate

from 3 to 6 and show the latency during bursty period (Figure 4.11) in Q4 and

Q6. When the burstiness is 3 and 4, VMs can process all of the input events

72

of M operators, so the latency of Origin-L does not increase and is similar

to SpongeR1. However, when the burstness increases to 6, VMs become the

bottleneck in processing the input events of M in Origin-L, which is why the

latency increases. Different from Origin-L, SpongeR1 adds an RO between M

and GBK, and migrates bothM and GBK to Lambda while keeping the RO on

VMs. As RO does not (de)serialize events and does not perform computation,

the amount of computation of RO is always smaller than that of M . As a result,

SpongeR1 mitigates the bottleneck on VMs and reduces latencies compared to

Origin-L down to 70%.

In Q5, Q7, and Q8, the latency of Origin-L is similar to SpongeR1 as the

overhead of running M operators on VMs is low. The main bottlenecks in Q5,

Q7, and Q8 are GBK operators, which require huge aggregate computations.

The input rate of M operators in Q5, Q7, and Q8 is smaller than that of Q4

and Q6 (less than 10% of the Q4 and Q6 input rate), so keeping them on VMs

does not cause the VM bottleneck. This result indicates that R1 is effective

when the input rate and the overhead of operators running on VMs is high.

Transient Operator Effect

Sponge further reduces latencies when scaling out queries by inserting transient

operators and redirecting data, instead of stopping, rescheduling, and restarting

tasks. Comparing SpongeR1 and SpongeR2 shows the effectiveness of transient

operators.

The effectiveness of R2 increases as the number of tasks to be migrated (or

redirected) increases. In Q1, the number of tasks to be migrated or redirected is

100 in both SpongeR1 and SpongeR2, and the time to migration and redirection

is 836 ms and 517 ms, respectively, which has little difference between the

latency of SpongeR1 and SpongeR2.

73

Figure 4.12: The latency graph with various parallelism (number of tasks per

operator) in SpongeR1 (a) and SpongeR2 (b) for scaling Q4. As the parallelism

increases, the number of tasks to be migrated or redirected also increases.

Among the evaluated queries, Q4 requires a large number of tasks to be

migrated (or redirected). For Q4, we migrate and redirect 85% of total tasks

to Lambda to mitigate the bottleneck in the VMs in SpongeR1 and SpongeR2.

When migrating the tasks, SpongeR1 takes around 2, 828 ms for migration.

In contrast, for redirection, SpongeR2 takes around 1, 358 ms. Due to the fast

redirection mechanism, SpongeR2 reduces latency down to 28% compared to

SpongeR1. Similarly, in Q7, SpongeR2 also reduces the latency compared to

SpongeR1.

When the number of parallelism increases, the amount of tasks to be mi-

grated or redirected also increases. To show the benefit of transient operators

in this situation, Figure 4.12 illustrates the latency plot in various parallelisms

of Q4 operators. When we set the parallelism to 50 for each operator, the task

migration/redirection overhead is small, but the latency increases after the mi-

gration and redirection in both SpongeR1 (a) and SpongeR2 (b), because one

74

Lambda vCPU is overloaded in processing the events of a single task. With 70

parallelism, latency decreases after the migration and redirection, but the task

migration overhead increases in SpongeR1 (a). As a result, the peak latency

increases up to 8 seconds. In contrast, due to the lightweight redirection, the

peak latency of SpongeR2 is around 3.5 seconds with 70 parallelism, which is

56% smaller than SpongeR1.

Creating a large number of tasks is inevitable when handling high bursty

loads, in order to prevent processing a task from being overloaded in a Lambda

vCPU. Even though the number of tasks increases for bursty loads, Sponge can

handle high bursty loads with small redirection overheads.

Merger Operator Effect

Although R1 and R2 rules are applied, SpongeR2 still suffers from high latencies

in Q5, Q7, and Q8 due to the state encoding/decoding overheads. Q4 and

Q6 have small states (less than 100 MB), so the state migration overhead is

negligible.

The state migration overhead increases to the state size. The time to en-

code/decode the state of Q5, Q7 and Q8 takes around 13s (for ∼ 2.4 GB state),

6s (for ∼ 1.5 GB state), and 35s (for ∼ 7 GB state), respectively. As a result,

the latency of SpongeR2 increases up to 15, 7, and 38 seconds in Q5, Q7, and

Q8. In contrast, Sponge significantly reduces the latencies in Q5 down to 4 sec-

onds and in Q8 down to 6 seconds, preventing the state migration with merger

operators. In Q7, the latency of SpongeR2 and Sponge is similar, which means

that Sponge also suffers from the state encoding/decoding overheads because

Q7 is non-mergeable stateful query. When queries have non-mergeable stateful

operations, it is inevitable to over-provision resources in order to minimize the

latency spikes in Q7 or to replicate states across VMs like Rhino [22].

75

Figure 4.13: (a) The latency during bursty period. (b) The back-of-the-envelope

calculation of cost according to the bursty duration in a day.

4.7.4 Latency-Cost($) Trade-Off

The cost ($) of Sponge increases to the duration of using Lambda, and the cost

may be higher than over-provisioning VMs when the burst duration is too long.

To investigate the latency-cost trade-off, we compare the following two VM-

overprovisioning approaches with Sponge in terms of latency and cost. One

is 20-VMs (static), where 20 VMs are statically allocated without dynamic

scaling, and the other one is 25-VMs (static), where 25 VMs are statically al-

located without dynamic scaling. As the default number of VMs used in Sponge

is 5, the 20-VMs and 25-VMs allocate 4× and 5× of VMs compared to Sponge,

respectively.

Figure 4.13(a) illustrates the latency of 20-VMs, 25-VMs, and Sponge during

bursty period. The latency of Sponge is in the middle of 20-VMs and 25-VMs,

which means that Sponge outperforms over-provisioning 20 VMs. Compared to

25-VMs, which has enough resources to handle bursty loads (5× burstiness),

Sponge has inherent scaling overheads due to the redirection and migration

protocols. This is why the latency of Sponge is slightly higher than that of

76

25-VMs.

In terms of cost, Figure 4.13(b) shows the back-of-the-envelope calculation

of cost according to the bursty duration in a day. For instance, 1% of bursty

duration represents that bursty loads happen during 24hr ∗ 0.01 in a day. Ba-

sically, the cost of Sponge is smaller than others when bursty loads happen

infrequently (when the duration of bursty load is less than 15%). When the

bursty load frequently happens (more than 25% in Figure 4.13(b)), the cost of

Sponge is higher than that of 25-VMs due to the high cost of Lambda instances.

In this case, it is more beneficial to statically over-provision VM resources in

terms of latency and cost.

4.8 Discussion

Fault Tolerance. The traditional approach for fault tolerance is to check-

point and replay events using the DAG information [15, 18]. They periodically

checkpoint operator state and buffer the input events in their upstream oper-

ators (or in reliable sources like Kafka [52]). Once downstream operators fail,

they restore the checkpoint states and replay the buffered events from the up-

stream to downstream operators for state recovery. The benefit of Sponge’s

DAG reshaping is that the converted DAG still keeps the data dependency be-

tween operators. Therefore, even though Sponge’s utility operators (RO, TO,

and MO) are failed in VM or Lambda, Sponge can also use the traditional oper-

ator checkpoint and replay approach by periodically checkpointing their states

and buffering input events in their upstream operators using the DAG.

Automatic Policy. Sponge provides the playground for building scaling poli-

cies that harness both VMs and Lambda instances. As we configured policies in

the evaluation based on the query workload and characteristics, policy develop-

77

ers who have workload-specific knowledge can build their optimized policies. For

example, developers dynamically pre-allocate VMs for predictable workloads,

while using Lambda for unpredictable workloads. Designing an automatic policy

for various workloads is an interesting future work, and we believe that Sponge

will bring interesting research for automatic and optimized scaling decisions on

VMs and Lambda for various queries and diverse traffic workloads.

Applicability. The R1 and R2 reshaping rules of Sponge are specific to

Lambda instances, as R1 is designed for enabling data communication across

Lambda instances, and R2 harnesses the warm-container property of Lambda

instances. However, the R3 reshaping rule, which minimizes state migration

overheads, is not specific to Lambda instances. Therefore, we can apply the

rule on not only Lambda instances, but also VM instances, and we can take

advantage of R3 as shown in Section 4.7.3 in different resource environments.

4.9 Related Work

Sponge integrates various techniques (routing, redirection, and merging) with a

principled approach: reshaping streaming dataflows. In this section, we compare

the techniques used in Sponge’s reshaping rules with existing work.

Enabling Data Communication across Lambdas. Researchers have ex-

ploited the fast-to-start Lambda for various workloads such as interactive data

analytics [74, 46], video analytics [3, 34], and daily applications [33]. These ap-

plications are also represented as DAGs, and shuffle operations are required be-

tween Lambda instances. Their solutions to enable data communication across

Lambdas are to use additional VM relay servers [34], use HDFS in VMs [46],

build an ephemeral storage service [51], and use a NAT-traversal technique [33].

78

The key difference between the existing work and Sponge is that Sponge

focuses on streaming workloads, whereas the existing systems target batch

workloads. Different from batch intermediate data that are created and con-

sumed as chunks or objects [51], stream systems continuously process events

with low latency. Therefore, using HDFS [46] or object-store [51] is not ap-

propriate for low-latency stream event processing. Using additional VM re-

lay servers requires additional VM resource provisioning, and NAT-traversal

workaround can be prohibited [32] by cloud vendors at any time. Our DAG

reshaping technique enables data communication across Lambdas preserving

event-based stream processing with low latency, without requiring additional

VM resources or NAT-traversal technique.

Data Redirection. Eddy [59] has proposed data routing to dynamically sup-

port multiple stream queries or adaptive queries where streaming dataflows

change at runtime. Multiple stream queries and their DAGs can be merged at

runtime, which requires adaptive event routing for changing data communica-

tions across operators. Elasticutor [94] has proposed rerouting data from a local

to remote executor when migrating tasks between them for fast load rebalanc-

ing. Different from Eddy and Elasticutor’s data rerouting, the data redirection

of Sponge is not for adaptivity and task migration, but for fast scaling mecha-

nism on Lambda. Sponge adds router operators to decouple shuffle dependencies

and quickly redirects data from VM to transient operators running on Lambdas

without task migration.

Reducing State Migration Overhead. Rhino [22] and ChronoStream [98]

replicate states across machines to minimize state migration overheads. How-

ever, replicating and holding states requires long-running resources (like VMs).

79

In addition, holding states on Lambda will cause additional state recovery and

cost when Lambda is reclaimed by cloud vendors. Megaphone [40] proposes fluid

migration that smoothly migrates states from source to destination resources

to mitigate latency spikes. However, when the bursty load is high, Megaphone

still causes a large amount of state migration, which can delay the load redis-

tribution and increase processing latencies. In contrast, Sponge prevents state

migration by adding merger operators and merging states by being aware of

query semantics (commutative and associative operations).

4.10 Summary

Sponge is the first work that harnesses Lambda for handling streaming bursty

loads. Sponge addresses the constraint of Lambda’s data communication and

minimizes task migration overheads by reshaping streaming dataflows and in-

serting new stream operators: router operators, transient operators, and merger

operators. Our evaluations on AWS EC2 and Lambda show that the reshap-

ing of streaming dataflow is effective in significantly reducing tail latencies on

Lambda compared to scaling out stream queries on VM and Lambda without

reshaping when bursty loads happen.

80

Chapter 5

Conclusion

In this dissertation, we have presented two end-to-end optimization solutions

that improve the performance of stream systems for small IoT stream and big

IoT stream workloads. Specifically, Pluto optimizes both the query submis-

sion and execution layer, to minimize query submission overhead and efficiently

share system resources across small IoT queries. Sponge optimizes both the

query compilation, execution layer, and resource acquisition layer, to quickly

handle sudden bursty loads of big stream queries and enable fast scaling on

Lambda. Evaluations show that these end-to-end optimizations are effective in

handling small and big IoT stream workloads and significantly improves system

throughput and latencies. We believe that these optimizations techniques can

be applied not only on the cloud backend servers and Lambda, but also on edge

devices and VMs for optimizing various stream workloads.

81

Bibliography

[1] T. Akidau, A. Balikov, K. Bekiroğlu, S. Chernyak, J. Haberman, R. Lax,

S. McVeety, D. Mills, P. Nordstrom, and S. Whittle. Millwheel: fault-

tolerant stream processing at internet scale. VLDB Journal, 6(11):1033–

1044, 2013.

[2] Angelsense gps wearables. https://www.angelsense.com/

gps-wearables/.

[3] L. Ao, L. Izhikevich, G. M. Voelker, and G. Porter. Sprocket: A serverless

video processing framework. In SocC, pages 263–274, 2018.

[4] Apple health. https://www.apple.com//ios/health/.

[5] Iot cloud platform — samsung artik cloud services. https://artik.

cloud/.

[6] Aws lambda. https://aws.amazon.com/lambda.

[7] Aws internet of things. https://aws.amazon.com/iot/?nc1=h_ls.

[8] Azure function. https://docs.microsoft.com/en-us/azure/

azure-functions/.

82

https://www.angelsense.com/gps-wearables/
https://www.angelsense.com/gps-wearables/
https://artik.cloud/
https://artik.cloud/
https://aws.amazon.com/lambda
https://aws.amazon.com/iot/?nc1=h_ls
https://docs.microsoft.com/en-us/azure/azure-functions/
https://docs.microsoft.com/en-us/azure/azure-functions/

[9] Azure iot suite. https://www.microsoft.com/en-us/cloud-platform/

internet-of-things-azure-iot-suite.

[10] I. Bastys, M. Balliu, and A. Sabelfeld. If this then what? controlling flows

in iot apps. In ACM SIGSAC, pages 1102–1119, 2018.

[11] Apache beam. https://beam.apache.org/.

[12] Beam side input pattern. https://beam.apache.org/documentation/

patterns/side-inputs/.

[13] J. Bergeron, M. Debbabi, J. Desharnais, M. M. Erhioui, Y. Lavoie,

N. Tawbi, et al. Static detection of malicious code in executable pro-

grams. Int. J. of Req. Eng, 2001(184-189):79, 2001.

[14] Aws sdk for python (boto3). https://boto3.amazonaws.com/v1/

documentation/api/latest/index.html.

[15] P. Carbone, S. Ewen, G. Fóra, S. Haridi, S. Richter, and K. Tzoumas.

State management in apache flink®: Consistent stateful distributed

stream processing. Proc. VLDB Endow., 10(12):1718–1729, 2017.

[16] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and

K. Tzoumas. Apache flink™: Stream and batch processing in a single

engine. IEEE Data Eng. Bull., 38(4):28–38, 2015.

[17] V. Cardellini, M. Colajanni, and P. S. Yu. Dynamic load balancing on

web-server systems. IEEE Internet Computing, 3(3):28–39, 1999.

[18] R. Castro Fernandez, M. Migliavacca, E. Kalyvianaki, and P. Pietzuch.

Integrating scale out and fault tolerance in stream processing using oper-

ator state management. In ACM SIGMOD, 2013.

83

https://www.microsoft.com/en-us/cloud-platform/internet-of-things-azure-iot-suite
https://www.microsoft.com/en-us/cloud-platform/internet-of-things-azure-iot-suite
https://beam.apache.org/
https://beam.apache.org/documentation/patterns/side-inputs/
https://beam.apache.org/documentation/patterns/side-inputs/
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html

[19] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M.

Hellerstein, W. Hong, S. Krishnamurthy, S. R. Madden, F. Reiss, and

M. A. Shah. Telegraphcq: continuous dataflow processing. In ACM SIG-

MOD, pages 668–668, 2003.

[20] M. Christodorescu and S. Jha. Static analysis of executables to detect ma-

licious patterns. Technical report, WISCONSIN UNIV-MADISON DEPT

OF COMPUTER SCIENCES, 2006.

[21] Stream processing with iot data: Challenges, best prac-

tices, and techniques. https://www.confluent.io/blog/

stream-processing-iot-data-best-practices-and-techniques/.

[22] B. Del Monte, S. Zeuch, T. Rabl, and V. Markl. Rhino: Efficient man-

agement of very large distributed state for stream processing engines. In

ACM SIGMOD, page 2471–2486, 2020.

[23] A. Demers, J. Gehrke, M. Hong, M. Riedewald, and W. White. Towards

expressive publish/subscribe systems. In EDBT, pages 627–644, 2006.

[24] R. G. Dimitri Bertsekas. Data Networks. Prentice Hall, 2nd edition, 1992.

[25] A. Dobra, M. Garofalakis, J. Gehrke, and R. Rastogi. Multi-query op-

timization for sketch-based estimation. Information Systems, 34(2):209–

230, 2009.

[26] Emq: The massively scalable mqtt broker for iot and mobile applications.

http://www.emqtt.io/.

[27] Aws case study: Ems. https://https://aws.amazon.com/solutions/

case-studies/ems/.

84

https://www.confluent.io/blog/stream-processing-iot-data-best-practices-and-techniques/
https://www.confluent.io/blog/stream-processing-iot-data-best-practices-and-techniques/
http://www.emqtt.io/
https://https://aws.amazon.com/solutions/case-studies/ems/
https://https://aws.amazon.com/solutions/case-studies/ems/

[28] H. Fernandez, G. Pierre, and T. Kielmann. Autoscaling web applications

in heterogeneous cloud infrastructures. In IEEE ICCE, pages 195–204,

2014.

[29] H. Fernandez, G. Pierre, and T. Kielmann. Autoscaling web applica-

tions in heterogeneous cloud infrastructures. In 2014 IEEE International

Conference on Cloud Engineering, pages 195–204, 2014.

[30] Fitbit. https://www.fitbit.com/.

[31] A. Floratou, A. Agrawal, B. Graham, S. Rao, and K. Ramasamy. Dhalion:

self-regulating stream processing in heron. Proceedings of the VLDB En-

dowment, 10(12):1825–1836, 2017.

[32] B. Ford, P. Srisuresh, and D. Kegel. Peer-to-peer communication across

network address translators. In ATC, pages 179–192, 2005.

[33] S. Fouladi, F. Romero, D. Iter, Q. Li, S. Chatterjee, C. Kozyrakis, M. Za-

haria, and K. Winstein. From laptop to lambda: Outsourcing everyday

jobs to thousands of transient functional containers. In ATC, pages 475–

488, 2019.

[34] S. Fouladi, R. S. Wahby, B. Shacklett, K. V. Balasubramaniam, W. Zeng,

R. Bhalerao, A. Sivaraman, G. Porter, and K. Winstein. Encoding, fast

and slow: Low-latency video processing using thousands of tiny threads.

In NSDI, pages 363–376, 2017.

[35] X. Fu, T. Ghaffar, J. C. Davis, and D. Lee. Edgewise: A better stream

processing engine for the edge. In ATC, pages 929–946, 2019.

[36] Garmin - heart rate monitor. https://buy.garmin.com/en-US/US/p/

10996.

85

https://www.fitbit.com/
https://buy.garmin.com/en-US/US/p/10996
https://buy.garmin.com/en-US/US/p/10996

[37] Gartner says 5.8 billion enterprise and automo-

tive iot endpoints will be in use in 2020. https:

//www.gartner.com/en/newsroom/press-releases/

2019-08-29-gartner-says-5-8-billion-enterprise-and-automotive-io.

[38] Google cloud function. https://cloud.google.com/functions/docs/.

[39] V. Gulisano, R. Jimenez-Peris, M. Patino-Martinez, C. Soriente, and

P. Valduriez. Streamcloud: An elastic and scalable data streaming system.

IEEE Transactions on Parallel and Distributed Systems, 23(12), 2012.

[40] M. Hoffmann, A. Lattuada, and F. McSherry. Megaphone: latency-

conscious state migration for distributed streaming dataflows. Proceedings

of the VLDB Endowment, 12(9):1002–1015, 2019.

[41] M. Hong, A. J. Demers, J. E. Gehrke, C. Koch, M. Riedewald, and W. M.

White. Massively multi-query join processing in publish/subscribe sys-

tems. In ACM SIGMOD, pages 761–772, 2007.

[42] Ibm cloud functions. https://console.bluemix.net/openwhisk/.

[43] Ifttt. https://ifttt.com/.

[44] S. Islam, S. Venugopal, and A. Liu. Evaluating the impact of fine-scale

burstiness on cloud elasticity. In SoCC, pages 250–261, 2015.

[45] S. Islam, S. Venugopal, and A. Liu. Evaluating the impact of fine-scale

burstiness on cloud elasticity. In ACM SoCC, page 250–261, 2015.

[46] A. Jain, A. F. Baarzi, G. Kesidis, B. Urgaonkar, N. Alfares, and M. Kan-

demir. Splitserve: Efficiently splitting apache spark jobs across faas and

iaas. In Middleware, page 236–250, 2020.

86

https://www.gartner.com/en/newsroom/press-releases/2019-08-29-gartner-says-5-8-billion-enterprise-and-automotive-io
https://www.gartner.com/en/newsroom/press-releases/2019-08-29-gartner-says-5-8-billion-enterprise-and-automotive-io
https://www.gartner.com/en/newsroom/press-releases/2019-08-29-gartner-says-5-8-billion-enterprise-and-automotive-io
https://cloud.google.com/functions/docs/
https://console.bluemix.net/openwhisk/
https://ifttt.com/

[47] H. S. Jang, H. Jin, B. C. Jung, and T. Q. S. Quek. Resource-optimized

recursive access class barring for bursty traffic in cellular iot networks.

IEEE Internet of Things Journal, pages 1–1, 2021.

[48] V. Kalavri, J. Liagouris, M. Hoffmann, D. Dimitrova, M. Forshaw, and

T. Roscoe. Three steps is all you need: fast, accurate, automatic scaling

decisions for distributed streaming dataflows. In OSDI, pages 783–798,

2018.

[49] J. Karimov, T. Rabl, A. Katsifodimos, R. Samarev, H. Heiskanen, and

V. Markl. Benchmarking distributed stream data processing systems. In

ICDE, pages 1507–1518, 2018.

[50] Aws case study: Kemppi. https://aws.amazon.com/solutions/

case-studies/kemppi/.

[51] A. Klimovic, Y. Wang, P. Stuedi, A. Trivedi, J. Pfefferle, and

C. Kozyrakis. Pocket: Elastic ephemeral storage for serverless analytics.

In OSDI, pages 427–444, 2018.

[52] J. Kreps, N. Narkhede, and J. Rao. Kafka: A distributed messaging sys-

tem for log processing. In NetDB, 2011.

[53] S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, C. Kellogg, S. Mittal, J. M.

Patel, K. Ramasamy, and S. Taneja. Twitter heron: Stream processing

at scale. In ACM SIGMOD, pages 239–250, 2015.

[54] Aws lambda limits. https://docs.aws.amazon.com/lambda/latest/

dg/limits.html.

87

https://aws.amazon.com/solutions/case-studies/kemppi/
https://aws.amazon.com/solutions/case-studies/kemppi/
https://docs.aws.amazon.com/lambda/latest/dg/limits.html
https://docs.aws.amazon.com/lambda/latest/dg/limits.html

[55] J. R. Larus and M. Parkes. Using cohort scheduling to enhance server per-

formance. In Proceedings of the ACM SIGPLAN workshop on Languages,

compilers and tools for embedded systems, pages 182–187, 2001.

[56] S. Li, P. Gerver, J. MacMillan, D. Debrunner, W. Marshall, and K.-L. Wu.

Challenges and experiences in building an efficient apache beam runner

for ibm streams. Proceedings of the VLDB Endowment, 11(12):1742–1754,

2018.

[57] S. Luo, X. Chen, and Z. Zhou. F3c: Fog-enabled joint computation,

communication and caching resource sharing for energy-efficient iot data

stream processing. In ICDCS, pages 1019–1028, 2019.

[58] S. Luo, B. Kao, G. Li, J. Hu, R. Cheng, and Y. Zheng. Toain: a throughput

optimizing adaptive index for answering dynamic k nn queries on road

networks. Proceedings of the VLDB Endowment, 11(5):594–606, 2018.

[59] S. Madden, M. Shah, J. M. Hellerstein, and V. Raman. Continuously

adaptive continuous queries over streams. In ACM SIGMOD, pages 49–

60, 2002.

[60] L. Mai, K. Zeng, R. Potharaju, L. Xu, S. Suh, S. Venkataraman, P. Costa,

T. Kim, S. Muthukrishnan, V. Kuppa, S. Dhulipalla, and S. Rao. Chi:

A scalable and programmable control plane for distributed stream pro-

cessing systems. Proceedings of the VLDB Endowment, pages 1303–1316,

2018.

[61] F. Metzger, T. Hossfeld, A. Bauer, S. Kounev, and P. Heegaard. Modeling

of aggregated iot traffic and its application to an iot cloud. Proceedings

of the IEEE, 107:679 – 694, 2019.

88

[62] N. Mi, G. Casale, L. Cherkasova, and E. Smirni. Injecting realistic bursti-

ness to a traditional client-server benchmark. In ICAC, pages 149–158,

2009.

[63] H. Miao, H. Park, M. Jeon, G. Pekhimenko, K. S. McKinley, and F. X.

Lin. Streambox: Modern stream processing on a multicore machine. In

USENIX ATC, pages 617–629, 2017.

[64] M. Mitzenmacher. The power of two choices in randomized load balanc-

ing. IEEE Transactions on Parallel and Distributed Systems, 12(10):1094–

1104, 2001.

[65] M. MOGHADDAM, A. SILVA, D. CLEWLEY, R. AKBAR, S. HUS-

SAINI, J. Whitcomb, R. DEVARAKONDA, R. Shrestha, R. COOK,

G. PRAKASH, S. SANTHANA VANNAN, and A. BOYER. Soil mois-

ture profiles and temperature data from soilscape sites, usa. https:

//daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1339, 2016.

[66] L. Moreira-Matias, J. Gama, M. Ferreira, J. Mendes-Moreira, and

L. Damas. Predicting taxi–passenger demand using streaming data.

IEEE Transactions on Intelligent Transportation Systems, 14(3):1393–

1402, 2013.

[67] Mqtt.org. http://mqtt.org/.

[68] I. Müller, R. Marroqúın, and G. Alonso. Lambada: Interactive data an-

alytics on cold data using serverless cloud infrastructure. In ACM SIG-

MOD, pages 115–130, 2020.

[69] Nest app. https://nest.com/app/.

89

https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1339
https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1339
http://mqtt.org/
https://nest.com/app/

[70] Nexmark benchmark suite. https://beam.apache.org/

documentation/sdks/java/testing/nexmark/.

[71] Pipelinedb–the streaming sql database. https://www.pipelinedb.com/.

[72] Postgresql. https://www.postgresql.org/.

[73] Household power consumption dataset. https://data.world/

databeats/household-power-consumption.

[74] Q. Pu, S. Venkataraman, and I. Stoica. Shuffling, fast and slow: Scalable

analytics on serverless infrastructure. In NSDI, pages 193–206, 2019.

[75] Z. Qian, Y. He, C. Su, Z. Wu, H. Zhu, T. Zhang, L. Zhou, Y. Yu, and

Z. Zhang. Timestream: Reliable stream computation in the cloud. In

EuroSys, pages 1–14, 2013.

[76] Aws case study: Rachio. https://aws.amazon.com/solutions/

case-studies/rachio/.

[77] S. H. Rastegar, A. Abbasfar, and V. Shah-Mansouri. Rule caching in sdn-

enabled base stations supporting massive iot devices with bursty traffic.

IEEE Internet of Things Journal, 7(9):8917–8931, 2020.

[78] REFIT Smart Home dataset. https://figshare.com/articles/REFIT_

Smart_Home_dataset/2070091.

[79] A. Reiss and D. Stricker. Creating and benchmarking a new dataset for

physical activity monitoring. In ACM PETRA, pages 40:1–40:8, 2012.

[80] Rfc-7228: Terminology for constrainted-node networks. https://

datatracker.ietf.org/doc/html/rfc7228.

90

https://beam.apache.org/documentation/sdks/java/testing/nexmark/
https://beam.apache.org/documentation/sdks/java/testing/nexmark/
https://www.pipelinedb.com/
https://www.postgresql.org/
https://data.world/databeats/household-power-consumption
https://data.world/databeats/household-power-consumption
https://aws.amazon.com/solutions/case-studies/rachio/
https://aws.amazon.com/solutions/case-studies/rachio/
https://figshare.com/articles/REFIT_Smart_Home_dataset/2070091
https://figshare.com/articles/REFIT_Smart_Home_dataset/2070091
https://datatracker.ietf.org/doc/html/rfc7228
https://datatracker.ietf.org/doc/html/rfc7228

[81] B. Robinson, R. Power, and M. Cameron. A sensitive twitter earthquake

detector. In WWW Companion, pages 999–1002, 2013.

[82] Samsung smartthings: Smart home app for home automation. https:

//www.samsung.com/us/explore/smartthings/.

[83] Scriptr: Agile iot application platform. https://www.scriptr.io/.

[84] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes. Cloudscale: elastic resource

scaling for multi-tenant cloud systems. In SoCC, page 5, 2011.

[85] Tang. https://reef.apache.org/tang.html.

[86] Temboo: Tools for digital transformation. https://temboo.com/.

[87] J. Thomas, P. Hanrahan, and M. Zaharia. Fleet: A framework for mas-

sively parallel streaming on fpgas. In ASPLOS, page 639–651, 2020.

[88] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel, S. Kulka-

rni, J. Jackson, K. Gade, M. Fu, J. Donham, et al. Storm@ twitter. In

ACM SIGMOD, pages 147–156, 2014.

[89] B. Trushkowsky, P. Bod́ık, A. Fox, M. J. Franklin, M. I. Jordan, and D. A.

Patterson. The scads director: Scaling a distributed storage system under

stringent performance requirements. In FAST, pages 163–176, 2011.

[90] Uber. https://www.uber.com.

[91] L. van Bommel and C. N. Johnson. Where do livestock guardian dogs

go? movement patterns of free-ranging maremma sheepdogs. PLOS ONE,

9(10):1–12, 2014.

91

https://www.samsung.com/us/explore/smartthings/
https://www.samsung.com/us/explore/smartthings/
https://www.scriptr.io/
https://reef.apache.org/tang.html
https://temboo.com/
https://www.uber.com

[92] S. Venkataraman, A. Panda, K. Ousterhout, M. Armbrust, A. Ghodsi,

M. J. Franklin, B. Recht, and I. Stoica. Drizzle: Fast and adaptable

stream processing at scale. In SOSP, pages 374–389, 2017.

[93] A. Wang, J. Zhang, X. Ma, A. Anwar, L. Rupprecht, D. Skourtis,

V. Tarasov, F. Yan, and Y. Cheng. Infinicache: Exploiting ephemeral

serverless functions to build a cost-effective memory cache. In 18th

{USENIX} Conference on File and Storage Technologies ({FAST} 20),

pages 267–281, 2020.

[94] L. Wang, T. Z. J. Fu, R. T. B. Ma, M. Winslett, and Z. Zhang. Elasti-

cutor: Rapid elasticity for realtime stateful stream processing. In ACM

SIGMOD, page 573–588, 2019.

[95] M. Welsh, D. Culler, and E. Brewer. Seda: an architecture for well-

conditioned, scalable internet services. In SOSP, pages 230–243, 2001.

[96] Z. Wen, D. L. Quoc, P. Bhatotia, R. Chen, and M. Lee. Approxiot:

Approximate analytics for edge computing. In ICDCS, pages 411–421,

2018.

[97] E. Wu, Y. Diao, and S. Rizvi. High-performance complex event processing

over streams. In ACM SIGMOD, pages 407–418, 2006.

[98] Y. Wu and K. Tan. Chronostream: Elastic stateful stream computation

in the cloud. In ICDE, pages 723–734, 2015.

[99] W. Xie, F. Zhu, J. Jiang, E. Lim, and K. Wang. Topicsketch: Real-time

bursty topic detection from twitter. IEEE Transactions on Knowledge

and Data Engineering, 28(8):2216–2229, 2016.

92

[100] D. Xu, X. Liu, and A. V. Vasilakos. Traffic-aware resource provisioning

for distributed clouds. IEEE Cloud Computing, 2(1):30–39, 2015.

[101] Y. Yang, J. Eo, G.-W. Kim, J. Y. Kim, S. Lee, J. Seo, W. W. Song, and

B.-G. Chun. Apache nemo: A framework for building distributed dataflow

optimization policies. In ATC, pages 177–190, 2019.

[102] N. Yoshimura, T. Maekawa, D. Amagata, and T. Hara. Upsampling in-

ertial sensor data from wearable smart devices using neural networks. In

ICDCS, pages 1983–1993, 2019.

[103] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,

M. Franklin, S. Shenker, and I. Stoica. Resilient distributed datasets:

A fault-tolerant abstraction for in-memory cluster computing. In NSDI,

2012.

[104] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica. Dis-

cretized streams: Fault-tolerant streaming computation at scale. In SOSP,

pages 423–438, 2013.

[105] C. Zhang, M. Yu, W. Wang, and F. Yan. Mark: Exploiting cloud services

for cost-effective, slo-aware machine learning inference serving. In ATC,

pages 1049–1062, 2019.

[106] F. Zhang, L. Yang, S. Zhang, B. He, W. Lu, and X. Du. Finestream:

Fine-grained window-based stream processing on cpu-gpu integrated ar-

chitectures. In ATC, pages 633–647, 2020.

[107] S. Zhang, H. T. Vo, D. Dahlmeier, and B. He. Multi-query optimization

for complex event processing in sap esp. In ICDE, pages 1213–1224, 2017.

93

[108] Y. Zhang, R. Chen, and H. Chen. Sub-millisecond stateful stream query-

ing over fast-evolving linked data. In SOSP, pages 614–630, 2017.

[109] Y. Zheng, X. Xie, and W.-Y. Ma. Geolife: A collaborative social network-

ing service among user, location and trajectory. IEEE Data Eng. Bull.,

33(2):32–39, 2010.

94

초록

다양한 IoT 디바이스로부터 많은 양의 데이터 스트림들이 생성되면서, 크게 두

가지 타입의 스트림 쿼리가 클라우드에서 수행된다. 첫째로는 작은-IoT 스트림

쿼리이며, 하나의 스트림 쿼리가 적은 양의 IoT 데이터 스트림을 처리하고 많은

수의 작은 스트림 쿼리들이 존재한다. 두번째로는 큰-IoT 스트림 쿼리이며, 하나

의 스트림 쿼리가 많은 양의, 급격히 증가하는 IoT 데이터 스트림들을 처리한다.

하지만, 기존 연구와 스트림 시스템에서는 쿼리 수행, 제출, 컴파일러, 및 리소스

확보 레이어가 이러한 워크로드에 최적화되어 있지 않아서 작은-IoT 및 큰-IoT

스트림 쿼리를 효율적으로 처리하지 못한다.

이 논문에서는 작은-IoT 및 큰-IoT 스트림 쿼리 워크로드를 최적화하기 위한

엔드-투-엔드 최적화 기법을 소개한다. 첫번째로, 많은 수의 작은-IoT 스트림 쿼

리를 처리하기 위해, 쿼리 제출과 수행 레이어를 최적화 하는 기법인 IoT 특성

기반 최적화를 수행한다. 쿼리 제출과 코드 등록을 분리하고, 이를 위한 새로운

API를 제공함으로써, 쿼리 제출에서의 오버헤드를 줄이고 쿼리 수행에서 IoT 특

성 기반으로 리소스를 공유함으로써 오버헤드를 줄인다. 두번째로, 큰-IoT 스트림

쿼리에서 급격히 증가하는 로드를 빠르게 처리하기 위해, 쿼리 컴파일러, 수행, 및

리소스 확보 레이어 최적화를 수행한다. 새로운 클라우드 컴퓨팅 리소스인 람다를

활용하여 빠르게 리소스를 확보하고, 람다의 제한된 리소스에서 스케일-아웃 오

버헤드를 줄이기 위해 스트림 데이터플로우를 바꿈으로써 큰-IoT 스트림 쿼리의

작업량을 빠르게 람다로 옮긴다.

최적화 기법의 효과를 보여주기 위해, 이 논문에서는 두가지 시스템-Pluto 와

Sponge-을개발하였다.실험을통해서,각최적화기법을적용한결과기존시스템

대비 처리량을 크게 향상시켰으며, 지연시간을 최소화하는 것을 확인하였다.

주요어: 스트림 처리, 분산 데이터 처리, IoT, 클라우드, 람다, 서버리스

95

학번: 2014-22686

96

	Chapter 1 Introduction
	1.1 IoT Stream Workloads
	1.1.1 Small IoT Stream Query
	1.1.2 Big IoT Stream Query

	1.2 Proposed Solution
	1.2.1 IoT-Aware Three-Phase Query Execution
	1.2.2 Streaming Dataflow Reshaping on Lambda

	1.3 Contribution
	1.4 Dissertation Structure

	Chapter 2 Background
	2.1 Stream Query Model
	2.2 Workload Characteristics
	2.2.1 Small IoT Stream Query
	2.2.2 Big IoT Stream Query

	Chapter 3 IoT-Aware Three-Phase Query Execution
	3.1 Pluto Design Overview
	3.2 Decoupling of Code and Query Submission
	3.2.1 Code Registration
	3.2.2 Query Submission API

	3.3 IoT-Aware Execution Model
	3.3.1 Q-Group Creation and Query Grouping
	3.3.2 Q-Group Assignment
	3.3.3 Q-Group Scheduling and Processing
	3.3.4 Load Rebalancing: Q-Group Split and Merging

	3.4 Implementation
	3.5 Evaluation
	3.5.1 Methodology
	3.5.2 Performance Comparison
	3.5.3 Performance Breakdown
	3.5.4 Load Rebalancing: Q-Group Split and Merging
	3.5.5 Tradeoff

	3.6 Discussion
	3.7 Related Work
	3.8 Summary

	Chapter 4 Streaming Dataflow Reshaping for Fast Scaling Mechanism on Lambda
	4.1 Motivation
	4.2 Challenges
	4.3 Design Overview
	4.4 Reshaping Rules
	4.4.1 R1:Inserting Router Operators
	4.4.2 R2:Inserting Transient Operators
	4.4.3 R3:Inserting State Merger Operators

	4.5 Scaling Protocol
	4.5.1 Redirection Protocol
	4.5.2 Merging Protocol
	4.5.3 Migration Protocol

	4.6 Implementation
	4.7 Evaluation
	4.7.1 Methodology
	4.7.2 Performance Analysis
	4.7.3 Performance Breakdown
	4.7.4 Latency-Cost($) Trade-Off

	4.8 Discussion
	4.9 Related Work
	4.10 Summary

	Chapter 5 Conclusion

<startpage>14
Chapter 1 Introduction 1
 1.1 IoT Stream Workloads 1
 1.1.1 Small IoT Stream Query 2
 1.1.2 Big IoT Stream Query 4
 1.2 Proposed Solution 5
 1.2.1 IoT-Aware Three-Phase Query Execution 6
 1.2.2 Streaming Dataflow Reshaping on Lambda 7
 1.3 Contribution 8
 1.4 Dissertation Structure 9
Chapter 2 Background 10
 2.1 Stream Query Model 10
 2.2 Workload Characteristics 12
 2.2.1 Small IoT Stream Query 12
 2.2.2 Big IoT Stream Query 13
Chapter 3 IoT-Aware Three-Phase Query Execution 15
 3.1 Pluto Design Overview 16
 3.2 Decoupling of Code and Query Submission 19
 3.2.1 Code Registration 19
 3.2.2 Query Submission API 20
 3.3 IoT-Aware Execution Model 21
 3.3.1 Q-Group Creation and Query Grouping 24
 3.3.2 Q-Group Assignment 24
 3.3.3 Q-Group Scheduling and Processing 25
 3.3.4 Load Rebalancing: Q-Group Split and Merging 28
 3.4 Implementation 29
 3.5 Evaluation 30
 3.5.1 Methodology 30
 3.5.2 Performance Comparison 34
 3.5.3 Performance Breakdown 36
 3.5.4 Load Rebalancing: Q-Group Split and Merging 38
 3.5.5 Tradeoff 40
 3.6 Discussion 41
 3.7 Related Work 43
 3.8 Summary 44
Chapter 4 Streaming Dataflow Reshaping for Fast Scaling Mechanism on Lambda 46
 4.1 Motivation 46
 4.2 Challenges 47
 4.3 Design Overview 50
 4.4 Reshaping Rules 51
 4.4.1 R1:Inserting Router Operators 52
 4.4.2 R2:Inserting Transient Operators 54
 4.4.3 R3:Inserting State Merger Operators 57
 4.5 Scaling Protocol 59
 4.5.1 Redirection Protocol 59
 4.5.2 Merging Protocol 60
 4.5.3 Migration Protocol 61
 4.6 Implementation 61
 4.7 Evaluation 63
 4.7.1 Methodology 63
 4.7.2 Performance Analysis 68
 4.7.3 Performance Breakdown 70
 4.7.4 Latency-Cost($) Trade-Off 76
 4.8 Discussion 77
 4.9 Related Work 78
 4.10 Summary 80
Chapter 5 Conclusion 81
</body>

