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Abstract 

High-resolution satellites are assigned to monitor land surface in detail. The reliable 

surface reflectance (SR) is the fundamental in terrestrial ecosystem modeling so the 

temporal and spatial validation is essential. Usually based on multiple ground 

control points (GCPs), field spectroscopy guarantees the temporal continuity. Due 

to limited sampling, however, it hardly illustrates the spatial pattern. As a map, the 

pixelwise spatial variability of SR products is not well-documented. In this study, we 

introduced drone-based hyperspectral image (HSI) as a reference and compared 

the map with Sentinel 2 and Landsat 8 SR products on a heterogeneous rice paddy 

landscape. First, HSI was validated by field spectroscopy and swath overlapping, 

which assured qualitative radiometric accuracy within the viewing geometry. 

Second, HSI was matched to the satellite SRs. It involves spectral and spatial 

aggregation, co-registration and nadir bidirectional reflectance distribution 

function (BRDF)-adjusted reflectance (NBAR) conversion. Then, we 1) quantified 

the spatial variability of the satellite SRs and the vegetation indices (VIs) including 

NDVI and NIRv by APU matrix, 2) qualified them pixelwise by theoretical error 

budget and 3) examined the improvement by BRDF normalization. 

Sentinel 2 SR exhibits overall good agreement with drone HSI while the two NIRs 

are biased up to 10%. Despite the bias in NIR, the NDVI shows a good match on 

vegetated areas and the NIRv only displays the discrepancy on built-in areas. 

Landsat 8 SR was biased over the VIS bands (-9 ~ -7.6%). BRDF normalization just 

contributed to a minor improvement. Our results demonstrate the potential of 

drone HSI to replace in-situ observation and evaluate SR or atmospheric correction 

algorithms over the flat terrain. Future researches should replicate the results over 

the complex terrain and canopy structure (i.e. forest). 
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Chapter 1. Introduction 

1.1 Background 

Satellite remote sensing is based on linking surface reflectance to surface 
information, such as LAI, chlorophyll etc. The reliable SR is essential from a simple 
spectral ratio to radiative transfer modeling. However, the spectral relationship is 
commonly non-linear. Only spectral relationship could make a misleading, 
depending on the observed scale. The mismatch in spatial scales is a challenge to 
relate field to satellites observations (Kamal et al., 2016; Wang et al., 2014). 

High resolution satellites enable spatial-explicit modeling of ecological properties. 
Directly relating plot level information to the SR on the according pixel, many 
studies monitored fine-scale dynamic, such as crown-scale phenology (Wu et al., 
2021; Dixon et al., 2021; Vrieling et al., 2018), LAI (Kimm et al., 2020; Kamal et al., 
2016), etc. Recent advances in CubeSat spurs the finer spatio-temporal monitoring 
of land surface (Houborg & McCabe, 2018; Houborg & McCabe, 2016b). Beyond the 
visual inspection, quantitative spatial analysis becomes more and more important. 

These spatial analyses are only guaranteed by the consistency between the field 
plot and the satellite pixel. However, the pixel is distorted during the map processing 
(Duveiller & Defourny, 2010; Tan et al., 2006; Teillet, 1997). As a map, satellite SR 
product involves resampling and reprojection. The former is usually carried out for 
the better radiometric quality and the latter for the utility. Both accompany spatial 
interpolation. For example, Landsat Multi Spectral Sensor and AVHRR over-samples 
their observations, which enhance the radiometric quality (Duveiller & Defourny, 
2010). In spite of the congruence between the native GSD and the pixel size, Landsat 
8 and Sentinel 2 are resampled to universal transverse Mercator (UTM) grid by cubic 
and spline convolution, respectively (Zanter, 2019; Drusch et al., 2012). Wherein 
the map processing focuses on the misregistration, it still remains uncertain 
whether the SR on the spatial pixel well-represent the corresponding surface 
(Drusch et al., 2012; Tan et al., 2006). 

For the application to quantitative spatial analysis, the evaluation should consider 
the spatial unit of the SR product. Traditionally, satellite SR products were evaluated 
in two aspect. The one is evaluating the sensor and the other one is evaluating the 
map. In the former aspect, SR is considered as a medium linking surface to satellite 
so it is rather referred to validate the sensor: the calibration, the degradation, the 
impact of spectral response function etc. (Lanconelli et al., 2020; Bruegge et al., 
2019; Kharbouche et al., 2017; Ke et al., 2015; Teillet et al., 2007). It requires to 
reduce the possible noises. Homogeneous sites are preferred with temporal 
observations in several GCPs. Focusing on the sensor itself, it has no interest in the 
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spatial unit. In the latter aspect, SR is regarded as a map which the satellite produces. 
The map is validated at the pixel level: the spatial pattern, the impact of the gridding 
etc. (Planet, 2021; Claverie et al., 2018; Claverie et al., 2015; Peng et al., 2015). It 
requires pixel to pixel comparison. The finer map is aggregated to the coarser SR 
map and then compared to each other (Claverie et al., 2015). In the case of high-
resolution SR map, however, the aggregation accompanies the enhancement in 
radiometric quality (Planet, 2021; Claverie et al., 2018; Claverie et al., 2015). The 
evaluation unit does not represent the original quality and loses the original spatial 
benefit. 

The evaluation requests subpixel information. One classical method is comparing 
field spectroscopy to the pixels on the satellite SR product (Kong et al., 2021). 
Subpixel information was constructed by averaging several field measurements 
within the corresponding pixels. Based on a few GCPs, however, field spectroscopy 
tends to be biased (Asner et al., 2017; Rocha et al., 2019; Rocha et al., 2018). The 
scarcity of the sampling could induce the misregistration between GCPs and the 
corresponding pixels, the geographic error of which sometimes exceeds a unit pixel 
(Yan et al., 2016; Planet, 2021). Even worse, the spatial autocorrelation blurs the 
error. In spite of a significant misregistration, it could make a plausible result (Rocha 
et al., 2019; Rocha et al., 2018). 

Recent advances in low altitude imaging spectroscopy, such as drone and 
airborne, enable collecting a vast amount of SR. As for figuring out the spatial 
pattern, it shows more reliable results than in-situ observations (Asner et al., 2017). 
Many studies proved its ability to replace field spectroscopy (Fawcett et al., 2020; 
Barreto et al., 2019; Cao et al., 2019; Hakala et al., 2018). However, most studies 
are limited to assess vegetation indices (Fawcett et al., 2020; Di Gennaro et al., 
2019). Little considerations were given to the SR product (Seidel et al., 2018). Seidel 
et al. (2018) referred to airborne hyperspectral and evaluated Landsat 8. They 
successfully assessed Landsat 8 by means of BRDF effect in a diverse landcover 
types and prove the potential of HSI to emulate satellite SR products. Referring to 
the only two lines (along-track and cross-track), however, the spatial pattern was 
not well-documented. As they pointed out, the pixel size of the airborne map was 
16 m so the slight scale mismatch makes it unclear to assess the impact of spatial 
convolution or geographical error. 

In this study, we introduced drone HSI as a reference and compared the map with 
Sentinel 2 and Landsat 8 SR products on a heterogeneous rice paddy landscape. 
First, we assessed drone HSI in terms of the radiometric accuracy and BRDF effect. 
Second, HSI was matched to satellite SRs in terms of spatial resolution, spectral 
response and coordinates. To make viewing geometry consistent, both HSI and 
satellite SRs were converted to nadir bidirectional reflectance distribution function 
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(BRDF)-adjusted reflectance (NBAR) by global mean BRDF parameters. At the NBAR 
level, we 1) quantified the spatial variability of the satellite SRs and the vegetation 
indices (VIs) including NDVI and NIRv by APU matrix, 2) qualified them pixelwise by 
theoretical error budget and 3) examined the improvement by BRDF normalization. 

 

Chapter 2. Method 

2.1 Study Site 

 

Figure 1 The top left map is a key map and the red area is our study site. The center 

image was acquired by drone. Dots on the image indicate the drone flight line. The 

color represents the relative time described as the frame number. 

Our site is a rice paddy landscape located in Cheorwon, Gangwon province, South 
Korea (38.2018 N, 127.2507 E). Field campaign was carried out during the harvest 
season. It shows highly heterogenous landscape, including rice paddies, rice straws, 
colored rooftop, roads and parking lots. Though harvested, there remained other 
plants, beans, on the boundaries among paddies. Belonged to Korea Flux Network 
Site, one of rice paddy was sparsely sampled. 
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2.2 Drone campaign 

Drone campaign was carried out in Oct 7th, equipping a hyperspectral imager to 
the hexacopter, DJI M600 Pro. We use Headwall Nano hyperspectral imager. It is a 
push-broom sensor, consisting of a 640 spatial pixel array and 273 spectral bands in 
a 21.1 deg of angular field of view. Namely, a frame consists of 640 spatial pixels 
and a pixel contains 273 bands. It could cover 400 ~ 1000 nm with 6 nm full width 
half maximum (FWHM) and around 2.2 nm sampling interval (Barreto et al., 2019; 
Table 1). Before flight, we collected 500 dark and white frames, the former with lens 
capped and the latter on the 99 % Spectralon, which is near Lambertian. Dark noise 
was quantified by averaging dark frames. White frames were also averaged and 
later used for sensor calibration (sensor calibration part). Integration time was set 
to 4 ms, where all the bands were not saturated on the 99 % Spectralon. Flight plan 
was designed by UgCS software. It includes 21 flight lines with 7 cm native GSD and 
50 % horizontal overlapping. On autopilot mode, the drone flew at a speed of 8 m/s 
from a height of 110 m above ground level (AGL). It took around 25 min to complete 
the plan and collected 291,695 frames in total. Frames from 95000 to 245999 
belonged to the site. The area is around 13.8 ha, which could cover 1186 pixels in 
Sentinel 2 image and 113 pixels in Landsat 8 image. To consider illumination changes, 
we measured irradiance before and after the flight. irradiance was interpolated to 
each image frame and gaussian convoluted to Headwall wavelength. 

Sensor Spectral region Bands FWHM AFOV (°) 

Headwall Nano 400 ~ 1000 nm 273 6 nm 21.1 
ASD FieldSpec4 350 ~ 2500 nm 2151 3 nm at 700nm 

10 nm at 1400 nm 
10 nm at 2100 nm 

25 

Table 1 Sensor overview 

 

2.3 Data processing 
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Figure 2 Data processing overview 

Element Peak wavelength (nm) 

Hb, Fe 486.13 
Mg, Fe 516.73 

Na 589.1 
Ha 656.3 

O2-B 686.85 
O2-A 760.41 
Ca II 854.25 

Water vapor 866.24 

Table 2 Reference Fraunhofer lines from (Busetto et al., 2011; Meroni et al., 2010). 

 

2.3.1 Sensor calibration 
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Figure 3 Wavelength calibration: the orange line represents the irradiance 

measured by ASD FieldSpec4 (ASD_Irradiance) and the blue line represents the 

averaged white frames by Headwall Nano (Nano_DN). The dotted lines indicate the 

Fraunhofer lines (Table 2) 

The calibration consisted of wavelength calibration and radiometric cross-
calibration. For the wavelength calibration, we referred to 8 Fraunhofer lines and 
matched them to corresponding peak bands from the white frame (Table 2) 
(Busetto et al., 2011; Meroni et al., 2010; headwall review paper). 1st order linear 
regression determined the wavelength of each band. For the radiometric calibration, 
we referred to the observed irradiance and determined the radiometric calibration 
matrix (Eq 1). 

Rij = 𝜋
(𝑊ℎ𝑖𝑡𝑒𝑖𝑗−𝐷𝑎𝑟𝑘𝑖𝑗)

𝐼𝑅𝑅
 (𝑖 = 1 ~ 640; 𝑗 = 1 ~ 273)   Eq 1 

The radiometric calibration was carried out pixel by pixel. The variable i and j 
indicate the pixel and band number. R, white, and Dark represent the radiometric 
calibration matrix of Headwall Nano, the averaged white frame and dark frame. 
They are made up of 640 by 273 matrix. For example, Rij indicates the radiometric 

calibration coefficient in the i th pixel and the j th band. IRR is the irradiance 
observed in parallel with white frames. In this case, we used observed irradiance 
instead of simulated one. 
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2.3.2 Bidirectional reflectance factor (BRF) calculation 

As a single spatial pixel has very narrow AFOV, the reflectance was assumed to 
BRF. it was computed from raw DN. At first, digital number (DN) was converted to 
radiance by the radiometric calibration factor (Eq 2). 

Radijk = 𝑅𝑖𝑗(𝐷𝑁𝑖𝑗𝑘 − 𝐷𝑎𝑟𝑘𝑖𝑗) (𝑖 = 1 ~ 640; 𝑗 = 1 ~ 273)  Eq 2 

The variable i, j and k indicate the pixel, band and frame number. The image frames 
from 95000 to 245999 belongs to the study site so k ranges from 95000 to 245999. 
Rad and DN represent radiance and digital number. R and Dark are the radiometric 
calibration matrix and the dark frame. The same values of R and Dark were applied 
to the whole image frames. Then, BRF was rescaled by irradiance (Eq 3). Later, the 
hyperspectral BRF is aggregated to multispectral by the spectral response function 
(Table 5). 

BRFijk = 𝜋
𝑅𝑎𝑑𝑖𝑗

𝐼𝑅𝑅𝑖𝑘
 (𝑖 = 1 ~ 640; 𝑗 = 1 ~ 273; 𝑘 = 95000 ~ 245999) Eq 3 

BRF, Rad and IRR represent BRF, radiance and the simulated irradiance, respectively. 
The same irradiance was applied to the corresponding frame. 

 

2.3.3 BRDF correction 

To unify sensor geometry between drone and satellites, drone HSI was 
normalized to nadir BRDF adjusted reflectance (NBAR) by the BRDF normalization 
technique (Claverie et al., 2015; Roy et al., 2017a; Roy et al., 2017b; Roy et al., 
2016a). It was originally designed for Landsat and Sentinel 2, BRDF of which cannot 
be retrieved internally. It refers to a BRDF model, Ross-Thick-Li-Sparse (RTLS) model. 
Assuming the global mean BRDF shape, 3 model parameters, isometric, volumetric 
and geometric scattering coefficient, are retrieved from the MODIS BRDF product 
(Table 3). In spite of limitations, the BRDF normalization method shows reliable 
results and widely used in Landsat 8 and Sentinel 2. To be consistent with satellites, 
the same method was applied to drone BRF map. 

Bands Isotropic Volumetric Geometric 

Blue 0.0774 0.0372 0.0079 
Green 0.1306 0.0580 0.0178 

Red 0.1690 0.0574 0.0227 
RedEdge1 0.3093 0.1535 0.0330 
RedEdge2 0.2316 0.1003 0.0273 
RedEdge3 0.2599 0.1197 0.0294 
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NIR 0.3093 0.1535 0.0330 

Table 3 MODIS global mean BRDF parameters from (Roy et al., 2017a; Roy et al., 

2017b) 

 

2.3.4 Orthorectification 

The orthorectification consists of 4 steps: the retrieval of pixel viewing geometry, 
the retrieval of height, reprojection and aggregation. Pixel viewing geometry is 
defined by a unit vector where a pixel is headed in the world coordinate. In the 
image coordinate, the pixel vector was retrieved from the sensor geometry. Then, 
it was converted to the world coordinate. Sensor geometry was acquired from 
global positioning system and inertia navigation system (GPS/INS), which is attached 
to Headwall Nano. They record latitude, longitude, altitude, roll, pitch, yaw and time 
with 5 ms interval. Due to the mismatch in sampling frequency between the 
GPS/INS and the imager, the GPS/INS samples were linearly interpolated to image 
frames. Pixel vectors were defined by (Eq 4) and then converted to the world 
coordinates by rotation matrix (Eq 5 and Eq 6) (Jia et al., 2020). 

[
𝑥
𝑦
𝑧

] =  [
cos(𝑡) 0 sin(𝑡)

0 1 0
− sin(𝑡) 0 cos(𝑡)

] [
0
0

−1
] , 𝑡 ∈  [−10.5, 10.5 𝑑𝑒𝑔]  Eq 4 

[
𝑥
𝑦
𝑧

]  and [
𝑋
𝑌
𝑍

]  represent a pixel vector in the image coordinate and the world 

coordinate. [
0
0

−1
]  indicates the nadir vector. As a push broom sensor, Headwall 

scans frames perpendicular to the along-track, which accords with the roll axis. 
Rotating the nadir vector within the 21.1 deg of AFOV, pixel vectors were defined. 

[
𝑋
𝑌
𝑍

] = 𝑅𝑜𝑡 [
𝑥
𝑦
𝑧

]       Eq 5 

𝑅𝑜𝑡 = [
cos(𝑤) − sin(𝑤) 0
sin(𝑤) cos(𝑤) 0

0 0 1

] [
cos(𝑟) 0 sin(𝑟)

0 1 0
− sin(𝑟) 0 cos(𝑟)

] [

1 0 0
0 cos(𝑝) − sin(𝑝)

0 sin(𝑝) cos(𝑝)
] 

         

        Eq 6 

p, r and w indicate the pitch, roll and yaw of a frame. Rot represents a rotation 
matrix. It is made up of successive rotations on the pitch, roll and yaw axis. By 
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multiplying the rotation matrix by the pixel vector in the image coordinate, it is 
converted to the world coordinate. To determine the exact geocoordinate from the 
vector, its elevation is required in prior (Eq 7). 

[
𝑋′
𝑌′
𝑍′

] = [
𝑋
𝑌
𝑍

] ∗
𝐴𝑙𝑡− 𝐻

𝑍
      Eq 7 

𝑀𝑒𝑟𝑖𝑡(ℎ) = ([

𝑋′1
𝑌′1
𝑍′1

] −  [

𝑋′2

𝑌′2

𝑍′2

])

2

 (ℎ ∈  [180, 220])   Eq 8 

[
𝑋′
𝑌′
𝑍′

] represents the pixel geocoordinate: UTM x, UTM y and altitude, respectively. 

Alt is the altitude recorded by GPS/INS and H is the estimated altitude. Lacking of a 
fine scale digital elevation model (DEM), we estimate the elevation from the 
overlapped scene between flight lines. From the scene, we matched pairs of 
identical points and determined the altitudes by minimizing a merit function. The 
pairs were extracted and matched by a computer vision algorithm, SURF (Speeded 
Up Robust Features) (Angel et al., 2020; Habib et al., 2016; Bay et al., 2008). The 

merit function is defined by the distance between a pair of geocoordinates:[

𝑋′1
𝑌′1
𝑍′1

] 

and [

𝑋′2

𝑌′2

𝑍′2

]. The two are computed by (Eq 7) at an altitude of h. Varying h from 180 

to 220 m, we estimate the altitude minimizing the merit function (Eq 8). Referring 
to the altitude on the matched points, we interpolated and extrapolated them to 
the whole pixels: bilinear interpolation and nearest neighbor extrapolation was 
applied. After DSM was estimated, pixel vectors were orthorectified (Eq 7). 

 

2.3.5 Spatial Aggregation 



１０ 

 

 

Figure 4 Spatial aggregation of drone HSI to satellite scale. The left images are 

satellite SR: Landsat 8 and Sentinel 2B. The red square indicates the region of 

interest. The right images are drone HSI. The white grid lines are identical to 

corresponding satellite grid cells. On Sentinel 2 image, our site is located on the 

backward scattering region. On Landsat 8 image, our site is located on the forward 

scattering region. 

Not to lose the spatial benefit, HSI was aggregated at 50 cm level. After co-aligned 
to the satellite HSI, it was aggregated to the satellite scale again. Referring to the 
satellite UTM grid, the BRF points were averaged within the corresponding squared 
pixel. 

 

2.3.6 Co-registration 

Sentinel 2 and Landsat 8 are reported to have the geographical displacement, 
which sometimes exceeds the unit pixel (Yan et al., 2016). To co-align images, we 
apply the automated scene co-registration technique (Houborg & McCabe, 2018). 
In doing so, NDVI images were used. Referring satellite NDVI image as a base image, 
it optimizes the pixel shifts on drone NDVI image by maximizing the spatial 
autocorrelation (S4 and S5). 

 

2.4 Satellite dataset 

Platform 
Acquisition time 

(UTC + 9:00) 
SAA VZA Cross-track 
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Landsat 8 2020-10-05 11:10 156° 3.0° 98.2° 
Drone 2020-10-07 10:42 147° -10 ~ 10° 30° 

Sentinel 2B 2020-10-09 11:16 159° -2.5° 98.62° 

Table 4 Sensor geometry. SAA and VZA indicates solar zenith angle and view zenith 

angle, where the satellites or drone observes our study area. 

 

Platform 
Channel 

(Band number) 

Pixel 
size 
(m) 

Central 
Wavelength 

(nm) 

Band width 
(nm) 

Sentinel 2B 

Blue (band 2) 10 490 65 

Green (band 3) 10 560 35 

Red (band 4) 10 665 30 

Red Edge1 (band 5) 20 705 15 

Red Edge2 (band 6) 20 740 15 

Red Edge3 (band 7) 20 783 20 

NIR (band 8) 10 842 115 

Narrow NIR (band 8A) 20 865 20 

Landsat 8 

Blue (band 2) 30 480 60 

Green (band 3) 30 560 60 

Red (band 4) 30 655 30 

NIR (band 5) 30 865 30 

Table 5 Band configuration in Sentinel 2B and Landsat 8 (Drusch et al., 2012; Roy et 

al., 2014). 

 

2.4.1 Sentinel 2B 

We introduce the Sentinel 2 SR products: 10 m and 20 m. Sentinel 2 observes 
land surface within an AFOV of 20.6° (Roy et al., 2017b). The 10 m product consists 
of 4 bands (Table 5): Blue, Green, Red and NIR. The spectral configuration of 3 visible 
bands approximates to the Landsat 8. The NIR represents typical broad NIR, which 
is close to that of Landsat 7. The 20 m product consists of 7 bands (Table 5): Blue, 
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Green, Red, Red Edges (RedEdge1, RedEdge2 and RedEdge3) and narrow NIR. The 3 
visible bands are resampled from the Level 1B product so identical to those in 10 m 
product. Narrow NIR differs in band width as well as spatial resolution from NIR. It 
represents narrower NIR, which is close to that of Landsat 8. After projected by B-
spline interpolation, Sentinel 2 level 2 products are atmospherically corrected by 
Sen2Cor. Sentinel 2 provides cloud mask at 20 m scale. However, it sometimes fails 
to distinguish clouds from bright land surface (Frantz et al., 2018). The cloud mask 
recognized a small rice paddy and a building roof top as clouds, which are clearly 
identifiable in visual inspection. Due to the unreasonable performance, we used 
Fmask instead (Claverie et al., 2018). All the pixels belonging to our site were 
marked as clear. The Sentinel 2B level 2 products were downloaded from 
Copernicus open access hub (https://scihub.copernicus.eu/). 
 

2.4.2 Landsat 8 

We introduce the Landsat 8 level 2 SR products. Landsat 8 observes land surface 

within an AFOV of 15° (Roy et al., 2014). We targeted the VNIR band: Blue, Green, 

Red and NIR (Table 5). They all have 30 m resolution. As mentioned in (Section 

2.4.1.), they are close to Blue, Green Red and narrow NIR in Sentinel 2, respectively. 

After projected by cubic interpolation, Landsat level 2 product is atmospherically 

corrected by LaSRC (Roy et al., 2014). Landsat 8 provides quality assessment band 

and all the pixels belonging to our site were marked as clear: 2720, 2724, 2728 and 

2732. The Landsat 8 level 2 SR product was downloaded from USGS 

(https://earthexplorer.usgs.gov/). 

 

Chapter 3. Result and Discussion 

3.1 Drone HSI quality assessment 

3.1.1 Radiometric accuracy 

To validate the radiometric accuracy of our drone HSI, we compared on-flight to 

ground level radiance on the same target. We set the 99% Spectralon as the 

reference due to the Lambertian characteristic and the higher reflectivity. The 

radiometric accuracy was assessed by means of spectral similarity and residual error. 

To verify the overall similarity in spectral shape, spectral angle (SA) and determinant 

of coefficient (R2) were calculated between each validation set (Tan et al, 2020). For 

residual error, normalized root mean squared error (NRMSE) was calculated by 

wavelength (Hakala et al., 2018). 
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SA (°) = arccos (
𝑥∙𝑦⃗⃗

‖𝑥‖‖𝑦⃗⃗‖
)      Eq 9 

NRMSE (%) =
E((𝑥⃗− 𝑦⃗⃗)2)

E(𝑦⃗⃗)
∗ 100     Eq 10 

where 𝑥⃗ and 𝑦⃗ indicate on-flight and ground radiance, respectively (Eq 9 and 10). 

18 Spectralon scenes were acquired in total. To be sure of the radiometric 

uniformity, coefficient of variation (CV) was calculated among 3 * 3 pixels on the 

Spectralon pixels and we discarded non-uniformed pixels (S2). To avoid adjacency 

effect, only the center pixel on the Spectralon is selected. We continuously 

measured irradiance from 9 am to 2 pm with 10-second interval. Due to the 

Lambertian characteristic, the ground level radiance is calculated by irradiance/π 

(Schaepman-Strub et al., 2006). We discarded the ground reference under unstable 

atmospheric condition. Finally, we paired 8 on-flight Spectralon pixels with the 

corresponding ground level radiance. 

  

Figure 5 the consistency between ground and on-flight radiance. 

For the 8 validation sets, on-flight radiance shows good agreement with ground 

references. Figure 5 illustrates scatter plots of on-flight radiance versus ground 

reference. The first three on the first column were measured around 9:00 am and 

the others were measured around 10:00 am. Due to difference illumination 

condition, the radiance value differed (S1). Most points are aligned with 1:1 line 

(dotted line), but on-flight observations slightly underestimated the higher radiance. 

Still, SA ranges from 1.95° to 2.741° and R2 is about 0.98. The statistics are also 
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comparable with (Tan et al., 2020), which reported 3° of SA and 0.98 of R2 on soils 

and vegetation plots. 

  

Figure 6 The accuracy of radiometric calibration by wavelength. 

Figure 6 illustrates NRMSE by wavelengths, integrating all the 8 validation sets. 

Due to atmospheric absorption (i.e. oxygen or water vapor) and low signal to noise 

ratio, the NRMSE was higher on the region below 420 nm, over 900 nm or O2A band 

(near 761 nm). Except these regions, the overall NRMSE was below 8 %. On the 

visible region, the NRMSE was slightly higher than expected. Although only the 

central pixel was extracted, the sensor point spread function (PSF) might cause 

adjacent effect. During the field campaign, the Spectralon was put on the sponge 

cover for possible damage. The cover has very low reflectivity on visible region so 

the adjacent effect appeared evidently (S3). It also resulted in the relatively higher 

CV (S1). Despite possible errors in the validation (i.e. PSF), the 8 % of NRMSE is 

comparable with (Hakala et al., 2018), which reported 7.6% of calibration error. 

Due to low altitude, atmospheric correction was not conducted in this study 

(Kwon et al., 2020; Hakala et al., 2018; Adão et al., 2017). Though, radiometric 

accuracy was reliable by means of spectral shape and residual error. The statistics 

are also comparable with other vicarious calibration studies (Tan et al., 2020; Hakala 

et al., 2018). We noticed a possible error source (the sensor PSF), but the spectral 

and spatial aggregation is supposed to alleviate it (2.3.2. and 2.3.5.). We concluded 

that atmospheric effects and sensor PSF are negligible and our drone HSI assures 

the qualitative radiometric accuracy. 
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3.1.2 BRDF effect 

Harvested cropland mainly covers our site and less BRDF effect is expected 

accordingly (Roy et al., 2016c; Franch et al., 2013; Vermote et al., 2009). Figure 7 

and 8 show BRDF effect on the study site before and after BRDF normalization, 

respectively. Following the method described in (Roy et al., 2016b), reflectance 

differences were calculated on overlapped swaths and scattered by view zenith 

angle (VZA). Overall BRDF effect was quantified by regression slope and B-F. B-F is 

the average difference between reflectance on backward and forward scattering 

region within the sensor geometry (Roy et al., 2016c). Regardless of BRDF 

normalization, the statistics were sustained with a tiny value: -0.0001 of slope and 

0.004 of B-F. Although this site shows less BRDF effect, we applied BRDF 

normalization to our drone HSI for two reasons. First, sensor viewing geometry also 

induces BRDF effect and our sensor has larger AFOV than the satellites. As Adão et 

al. (2017) noticed, it is not negligible in general. Second, map to map comparison is 

based on the accordance of viewing geometry between two maps (Claverie et al., 

2015). In doing so, BRDF normalization conceptually unifies the geometries. 

 

Figure 7 BRDF effect before BRDF normalization. Each subplot indicates spectrally 

aggregated bands: the first and second columns (S2B) by Sentinel 2B SRF and the 

last one (L8) by Landsat 8 SRF. Following (Roy et al., 2016b), reflectance differences 

were quantified and scattered by view zenith angle (VZA) of reference flight lines. 

Each point represents the reflectance pair where the one headed forward scattering 

region and the other one headed backward scattering region. 
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Figure 8 The same as Figure 7, but after BRDF normalization. 

 

3.2 Spatial variability in satellite surface reflectance 
product 

To evaluate satellite SR, we compared it to drone BRF map, pixel by pixel. The 
assessment was performed by ordinary linear regression and the statistical matrix, 
called APU matrix: x, y and N indicate NBAR in satellite, drone map and the number 
of samples, respectively (Eq 11, 12 and 13). Suggested by Vermote et al. (2008), APU 
matrix is commonly used in satellite SR evaluation studies (Vermote et al., 2016; 
Clavarie et al., 2015; Clavarie et al., Doxani et al., 2018). It consists of Accuracy (A), 
Precision (P) and Uncertainty (U). A, P and U quantify mean bias error, standard 
deviation of error and root mean squared deviation, respectively. The quality of 
satellite NBAR was analyzed by theoretical error budget. Theoretical error budget is 
the uncertainty in atmospheric correction. Simulating 6S, Vermote et al. (2008) 
quantified the uncertainty: 0.005 + 0.05*SR for SR and 0.02 + 0.02*VI for VI. If the 
absolute difference between a value and the reference value fell within the 
theoretical error budget, it is considered as good (Vermote et al., 2008). 

A =
∑(𝑥−𝑦)

𝑁
       Eq 11 

P2  =  
∑(𝑥−𝑦−𝐴)2

𝑁−1
       Eq 12 

U2 =  
∑(𝑥−𝑦)2

𝑁
       Eq 13 
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Within the study area, all the pixels in Sentinel 2B and Landsat 8 SR are marked 

as clear pixel: 1,178 pixels for the Sentinel 2B 10 m product, 271 pixels for the 

Sentinel 2B 20 m product and 111 pixels for the Landsat 8 product. The evaluation 

was carried out by comparing them to corresponding pixels on drone NBAR. 

3.2.1 Sentinel 2B (10m) 

 

Figure 9 Study site and spatial gridding. The left one is the Sentinel 2B RGB image 

and the right one is our drone RGB image. On the right image, white gridding lines 

indicate the corresponding pixels on the Sentinel 2B image. 
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Figure 10 Scatter plot of Sentinel 2B NBAR (10 m) versus drone NBAR. Each subplot 

represents bands or VIs. Blue line indicates the regression line. APU describes A, P 

and U value in percentages. 

Figure 10 shows the scatter plots of Sentinel 2B NBAR (10m) versus drone NBAR. 

Each subplot represents bands or vegetation indices. For VNIR, the regression 

slopes are all positive: 1.16 (Blue), 1.29 (Green), 1.19 (Red) and 1.14 (NIR). Darker 

pixels were overestimated while brighter pixels were underestimated on Sentinel 

2B NBAR (10m). It implies that the path radiance was under-corrected. As for VIS, 

the shorter wavelength bands are strongly affected by aerosols. Dispersing outgoing 

radiance, it makes brighter pixels darker and darker pixels brighter. On the study 

area, Sentinel 2 retrieved AOT by 0.1. Although Sen2Cor tends to overestimate AOT, 

the deviation was higher at the lower AOT (Li et al., 2018; Pflug et al., 2014). The 

positive slope indicates that the AOT was underestimated. 

Sentinel 2 NBAR (10m) tends to overestimate the SR by means of A: 5.6% (Blue), 

1.3% (Green), 2.9% (Red) and 10.1% (NIR). The VIS shows good agreement with 

drone NBAR. Due to the lower signal, aerosol contamination was evident on Blue, 

A of which is slightly higher than the absolute radiometric uncertainty of 5% 

(Gascon et al., 2017). On the contrary to VIS, NIR looks biased, A of which is almost 
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doubled than the Blue. It relates to the worse performance of Sen2Cor on infrared 

bands (Doxani et al., 2018). With a lower P and higher R2, the additional linear 

correction is recommended. 

 

Figure 11 Scatter plot and accuracy map of Sentinel 2B NBAR (10 m) versus drone 

NBAR. The left one is the same as Figure 10 but only for NDVI. The right one 

illustrates the spatial distribution of the accuracy. 

 

Figure 12 The same as Figure 11 but for NIRv. 

Due to the higher bias in NIR, NIR based VIs might be as well: 15.0% (NDVI) and 

20.0% (NIRv). The extreme bias, however, stems from the nature of the dividing 

equation. NDVI is a vegetation index normalized by (NIR + Red). The equation itself 

is extremely noisy to targets which of both NIR and Red value are low (S4), such as 

concretes. The biased pixels in VIs are concentrated to northern parking lot (Figure 

11 and 12). The A exceeds 100%. 
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Figure 13 The quality maps illustrate the spatial pattern of “good” pixels on Sentinel 

2 NBAR (10m). Each subplot represents the band. Yellow pixels are marked as “good” 

while purple pixels are biased. 

 

Figure 14 From left to right, they correspond to the sparsely vegetated area (center), 

narrow roads (south and west), built-in area (north) and eastern two rice paddies, 

respectively. Except the built-in area scene, the other scenes include the plants 

between rice paddies. 

Figure 13 shows the spatial distribution of good pixels and the proportion (Q) on 

Sentinel 2B NBAR (10m). The Q is much higher on VIS than on NIR: 60.44% (Blue), 

67.23% (Green), 58.40% (Red) and 31.75% (NIR). For VIS, biased pixels are 

distributed over 4 areas: the roads (south and west), sparsely vegetated area 

(center), built-in area (north), and the two eastern harvested area (Figure 14). The 

roads are narrower than a unit pixel and located between two rice paddies. Similarly, 
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the sparsely vegetated area shows the higher heterogeneity by soils and rice. The 

contrast in reflectance increases the heterogeneity in a pixel. On satellite images, a 

pixel is affected by the surrounding pixels and the influence can be described as a 

PSF. Sentinel 2 10m bands has the PSF which of FWHM is around 22m (Radoux et 

al., 2018). Due to the wider FWHM than a 10m pixel, Sentinel 2B NBAR (10m) fails 

to distinguish the finer mixture from the adjacent pixels. 

Only SR could not track fine scale dynamic in spite of the pixel size. Built-in area 

consists of cars and glossy rooftop. Cars are the similar case to the sparsely 

vegetated area. Glossy rooftop shows extreme BRDF effect: within the FOV, the 

reflectance varies by 0.2 NIR (S5). For the extreme target, the MODIS global 

parameter seems not working properly. The trickiest bias occurred on the two 

eastern harvested area: the purple and triangular area. The eastside edge is not 

perpendicular to the drone flight line so the bias should not relate to BRDF effect 

(Figure 1). It is not parallel to the drone flight line so the bias should not relate to 

the sensor calibration or irradiance changes. Rather the edge accords to the 

boundary between rice paddies. On the Figure 14, the rightmost scene shows 3 rice 

paddies: the right paddy was classified as good while the others were overestimated. 

On the right paddy, straws were collected and bailed for the silage (6 white dots). 

On the other 2 paddies, straws were remained. It seems the surface changed for 2 

days. On Oct 7th (drone campaign), straws were remained so the structure shaded 

the surface. After 2 days (Sentinel 2 overpassing), the baling was preceded so the 

shadow disappeared. The surface structure change could significantly affect 

reflectance. Except for that, the bias by the other possible surface change fell within 

the theoretical error budget, including vegetated areas: rice paddies (south west) 

and park (north) (Figure 1). Within a short period, the surface change seems not 

exceeding the atmospheric correction error. 

A few pixels were classified as good on NIR. Vegetated areas account for good 

quality pixels, but the spatial distribution is not clear. The higher A in NIR is expected 

to affect the quality map for VIs. The Q in the VIs differs: 20.63% (NDVI) and 73.09% 

(NIRv). Overall, the NDVI seems biased. However, the spatial pattern obviously 

represents a vegetated area. The sparsely vegetated area on the center and the 

plant between rice paddies are evidently identifiable. Despite the bias in NIR, the 

sensitivity of NDVI to absorbed photosynthetically activate radiation results in the 

good agreement on vegetated areas (Huete et al., 1997). Similarly, Radoux et al. 

(2016) demonstrated that NDVI could distinguish plants from mixed pixels, even 

though the plant occupies less than 10% of the pixel. Interestingly, the good quality 

in reflectance measurement does not guarantee the good quality in NDVI. The north 
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part was classified as good on both the Red and the NIR, but resulted in biased NDVI. 

As already noticed, it stems from the nature of the equation (S4). On the contrary 

to the NDVI, the NIRv looks better than the reflectance. Only the wide PSF blurs the 

narrow roads and built-in area. However, the NIRv does not captured the structural 

change (the eastern two harvested area; Figure 14). Multiplied by NIR to NDVI, NIRv 

seems regulated by NIR. Although NIR was biased, the lax criterion for VI makes 

specious result. To guarantee the consistency between in-situ to satellite 

observation, the current linear quality threshold (0.2 + 0.2*VI) fails to track the non-

linearity of VIs. Our result implies that VI should be comprehended by the equation 

itself as well as the physical meaning. 

Sentinel2 

(10m) 

Satellite SR vs Drone NBAR Satellite NBAR vs Drone NBAR 

A (%) P (%) U (%) Q (%) A (%) P (%) U (%) Q (%) 

Blue 7.2 14.2 16.0 57.47 5.6 14.4 15.4 60.44 

Green 3.0 11.0 11.4 66.04 1.3 11.1 11.2 67.23 

Red 4.4 11.6 12.4 55.94 2.9 11.7 12.0 58.40 

NIR 11.8 9.6 15.2 23.68 10.1 9.7 14.0 31.75 

NDVI 15.1 26.2 30.3 20.46 15.0 26.2 30.2 20.63 

NIRv 21.9 27.0 34.8 71.14 20.0 27.5 34.0 73.09 

Table 6 The summary of APU matrix and the Q on Sentinel 2 SR (10m) and NBAR 

(10m). A, P and U indicate accuracy, precision and uncertainty by percentage. The 

right 4 rows organize the statistics in Figure 10 and Figure 13. 

Table 6 summarizes APU matrix and Q of qualified pixels of Sentinel 2 SR before 

and after BRDF normalization. Sentinel 2 observed our study area with a VZA of -

2.5° and a RAA of 60° (Table 4). The VZA approximates to nadir and RAA is also close 

to orthogonal plane. Overall SR should be overestimated a little bit. Without 

exception, BRDF normalization improved the A by around 2 %. Q also increased by 

3 ~ 7%, but the spatial pattern of good pixels is almost sustained (Data not shown). 

For example, the biased band NIR shows a specious improvement in the A and Q. 

The spatial pattern of qualified pixels, however, is far from the other unbiased bands 

(Figure 13 and 14). Despite BRDF normalization, the NIR is misguided. Although 

some studies noted the BRDF effects on Sentinel 2, our result implies that the bias 

in atmospheric correction overwhelms BRDF effect (Roy et al., 2017a; Roy et al., 

2017b).  

 

3.2.2 Sentinel 2B (20m) 
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Figure 15 The same as Figure 10 but for Sentinel 2B NBAR (20m). 

Figure 15 and 16 illustrate the same as Figure 10 and 13, respectively, but for the 

20m bands. Except narrow NIR, Sentinel 2 20m bands show good agreement. VIS 

bands show similar results to the 10 m bands with the A and P improved. The A of 

Blue exceeds 5%, but the Q is comparable with the Green and the Red: 71.96% 

(Blue), 80.81% (Green) and 71.96% (Red). The slightly higher bias should stem from 

the land surface change (3.2.1.). Likewise, Red edge 1 and 3 bands seemed biased, 

but the spatial pattern of good pixels are similar to the VIS (Figure 16). Sen2Cor 

algorithm reported to be biased over infrared bands, the Q is lower than the VIS 

(Doxani et al., 2018): 59.04% (Red edge 1), 64.58% (Red edge 2) and 58.30% (Red 

edge 3). The narrow NIR, meanwhile, does not show any spatial pattern and the 

overall A indicates the biased reflectance, accordingly. 
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Figure 16 The same as Figure 13 but for Sentinel 2 NBAR (20m). 
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Figure 17 The same as Figure 10 but the 10m bands were aggregated to 20m scale. 

The VIS on 20m bands are consistent with the 10m bands but bilinearly 

resampled from the level 1B. Comparing to the 10m bands, the regression slopes 

get closer to unity: 1.13 (Blue), 1.27 (Green) and 1.17 (Red). The A was almost 

sustained: 5.5% (Blue), 1.2% (Green) and 2.8% (Red). It implies that the bias in AOT 

affects higher in brighter pixels. If the influence was the same, overall A should be 

increased to 5.8% (Blue), 1.4% (Green) and 3.0 % (Red) (Figure 17). Thus, the 

sustained A on 20m bands indicates that the underestimation in brighter pixels were 

more pronounced than the overestimation in darker pixels. On the overestimated 

AOT case, similar result was reported (Li et al., 2018). In our data, the AOT seems 

underestimated so 20m bands looks slightly improved or sustained. When the 

reverse case happens, however, bias would be increased. On the contrary to the A, 

the P was reduced a bit: 9.0% (Blue), 7.9% (Green) and 8.1% (Red). Sentinel 2 

measures AOT on board and provides AOT map at 60m scale. The improvement in 

P stems from the reduced uncertainty in AOT. It leads the reduced U and improved 

R2. During Sentinel 2 processing, atmospheric correction follows reprojection 

(Drusch et al., 2012). The bias in atmospheric correction induces the bias on the SR 

product. The influence varies by the brightness of the pixel. The brighter shows the 
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more evident bias. Our results show the bias in the atmospheric correction could 

cause a scale bias even on the SR product. 

Sentinel2 
(20m) 

Satellite SR vs Drone NBAR Satellite NBAR vs Drone NBAR 

A (%) P (%) U (%) Q (%) A (%) P (%) U (%) Q (%) 

Blue 7.0 8.9 11.4 67.90 5.5 9.0 10.6 71.96 
Green 2.9 7.9 8.4 76.38 1.2 7.9 8.0 80.81 
Red 4.4 8.0 9.1 67.53 2.8 8.1 8.5 71.96 
RedEdge1 8.3 7.5 11.2 50.55 6.6 7.6 10.1 59.04 
RedEdge2 6.1 7.9 10.0 57.93 4.5 8.0 9.2 64.58 
RedEdge3 7.4 8.6 11.3 48.71 5.8 8.7 10.4 58.30 
Narrow NIR 10.5 8.4 13.5 25.46 8.9 8.5 12.3 36.16 
NDVI 12.3 16.4 20.5 25.46 12.2 16.4 20.4 25.46 
NIRv 19.6 21.2 28.8 78.60 17.7 21.6 27.9 82.29 

Table 7 The same as Table 6 but for Sentinel2 SR and NBAR (20m). 

 

3.2.3 Landsat 8 

 

Figure 18 The same as Figure 10 but for Landsat 8 NBAR. 
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Figure 19 The same as Figure 13 but for Landsat 8 NBAR. 

Figure 18 and 19 illustrate the same as Figure 10 and 13, respectively, but for 

Landsat 8 NBAR. Comparing to Sentinel 2 (20m) NBAR, Landsat 8 NBAR was more 

biased over the VIS bands with the similar P. Wherein both Sentinel 2 (20m) and 

Landsat 8 retrieve the AOT for every 3*3 pixel, the P should be comparable with the 

Sentinel 2 (20m): 14.3% (Blue), 8.4% (Green) and 7.9% (Red). The higher bias could 

stem from the atmospheric correction algorithm or the atmospheric product: -7.6% 

(Blue), -9.0% (Green) and -8.9% (Red). Landsat 8 uses LaSRC algorithm for 

atmospheric correction, which is based on 6S algorithm. LaSRC shows negative bias 

over VNIR bands (Doxani et al., 2018). It is more biased on Blue and Green, but 

better performs on Red and NIR (Doxani et al., 2018; Roy et al., 2014). It might affect 

Blue and Green. However, the Red was also biased where LaSRC is supposed to 

better perform than Sen2Cor (Doxani et al., 2018). The A is comparable with the 

Blue and the Green. Thus, the higher bias over VIS bands is due to the failure in 

retrieving AOT. Lacking of climatology bands, Landsat 8 relies on the auxiliary MODIS 

dataset (Sayler & Zanter, 2020; Vermote et al., 2016). The AOT inversion and 

interpolation is based on the accordance of NDVImid (NDVI which uses shortwave 

infrared instead of NIR) between Landsat 8 and MODIS (Vermote et al., 2016). 

Wherein the shortwave infrared bands differ significantly, NDVImid-based 

interpolation could be problematic (Feng et al., 2012; Claverie et al., 2015). As a 

result, LaSRC fails to correct AOT at the original scale of 30m. LaSRC was evaluated 
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at the large scale, 9km * 9km, where the interpolation is not critical (Doxani et al., 

2018). Without fine scale AOT products, the better algorithm cannot work well. On 

the contrary to the VIS, the NIR is more accurate than the Sentinel 2 (20m): 6.2% 

(NIR). Although the auxiliary data is problematic at fine scale, the NIR band is quite 

insensitive to water vapor so the original performance was preserved on the NIR 

(Ke et al., 2015; Lee et al., 2015; Main-Knorn et al., 2017). 

Landsat8 
Satellite SR vs Drone NBAR Satellite NBAR vs Drone NBAR 

A (%) P (%) U (%) Q (%) A (%) P (%) U (%) Q (%) 

Blue -8.2 14.3 16.4 72.97 -7.6 14.3 16.1 75.68 

Green -9.7 8.4 12.8 39.64 -9 8.4 12.3 45.05 

Red -9.5 7.9 12.4 33.33 -8.9 7.9 11.8 36.94 

NIR 5.4 6.6 8.5 65.77 6.3 6.6 9.0 64.86 

NDVI 28.8 14.2 32.1 7.21 28.9 14.2 32.1 7.21 

NIRv 33.0 16.9 37.1 60.36 34.1 16.9 38.0 56.76 

Table 8 The same as Table 6 but for Landsat 8. 

Table 8 summarizes APU matrix and Q of qualified pixels of Landsat 8 SR before 

and after BRDF normalization. Landsat 8 observed our study area with a VZA of 3° 

and a RAA of 60° (Table 4). Our study area appeared on the forward scattering 

region. BRDF normalization adds positive bias on the SR so the NIR rather worsen. 

Similar to the Sentinel 2, BRDF effect was nominal. 

 

Chapter 4. Conclusion 

Although satellite remote sensing features the global coverage, high resolution 

satellites are also assigned to observe land surface in detail. Referring to HSI, we 

evaluated Landsat 8 and Sentinel 2 SR product at the original scale. By the 

traditional validation method, we proved the potential of drone HSI to replace in-

situ observations. Over a flat terrain, we compared drone HSI to the satellite SRs 

and the results to the atmospheric algorithm performances. Our study reveals that 

1) the bias in atmospheric parameters leads to the scale bias even on the SR and 2) 

better atmospheric correction algorithm cannot work properly without fine scale 

atmospheric products. We demonstrate that the SR product at the original scale 

could not be generalized from the global analysis. To monitor fine scale dynamics, 

SR products need to be evaluated at their original scale. This study was limited to 

the flat terrain which showed less BRDF effect. The influence of the land surface 

was minor. Over complex terrains with canopy stands (i.e. forest), however, the 
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surface anisotropy and multiple scattering are expected to affect both drone HSI 

and satellite SR a lot. More researches are needed to figure out the bias over 

complex terrains.  
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Supplemental Materials 

 

S 1 The comparison between in-situ and on-flight radiance. Orange represents in-

situ radiance calculated by ASD Fieldspec4 and Blue represents on-flight radiance 

measured by Headwall Nano. 

 

S 2 Each subplot illustrates coefficient of variation on the Spectralon pixels (3*3). 

The time difference between drone overpassing and ground sampling (Acquisition 

time difference) falls in 5 seconds. 
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S 3 Reflectance of the sponge cover. On the drone image, the sponge surrounded 

the Spectralon. 

 

S 4 Automated scene co-registration technique (Houborg & McCabe, 2018). 

Referring to the satellite NDVI image, drone NDVI map was aligned by increasing 

the spatial autocorrelation. The color represents correlation coefficient. The left 

shows the correlation coefficient between drone and Sentinel 2B NDVI by the 

geographical mismatch and the right shows that between drone and Landsat 8 NDVI. 
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Drone vs Sentinel2 NBAR Drone vs Landsat8 NBAR 

Displacement Displacement 
Horizontal Vertical Horizontal Vertical 

-0.3 px (-3 m) 0.9 px (9 m) 0.6 px (18 m) 0 px (0 m) 

S 5 The summary of S2. Geographical misregistration between drone and the 

satellite image 

 

S 6 Sensitivity of NDVI by NIR and Red. Color represents NDVI. 
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S 7 BRDF effect on glossy rooftop. Two rows represent the two adjacent flight line. 

The rooftop was observed twice: one on the backward scattering direction (left row) 

and the other on the forward scattering direction (right row). The first column 

illustrates NIR reflectance. The second column illustrates view zenith angle: negative 

values for backward scattering direction. The last column illustrates C factor. C factor 

is the scaling factor to normalize BRDF effect. 
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Abstract in Korean 

원격탐사에서 지표 반사도(SR)는 지표정보를 비파괴적이고 즉각적인 

방법으로 전달해주는 매개체 역할을 한다. 신뢰할 수 있는 SR은 육상 생

태계 모델링의 기본이고, 이에 따라 SR의 시공간적 검증이 요구된다. 일

반적으로 SR은 여러 지상 기준점(GCP)을 기반으로 하는 현장 분광법을 

통해서 시간적 연속성이 보장된다. 그러나 현장 분광법은 제한적인 샘플

링으로 공간 패턴을 거의 보여주지 않아, 위성 SR의 픽셀 별 공간 변동

성은 잘 분석되지 않았다. 본 연구에서는 드론 기반의 초분광 영상(HSI)

을 참고자료로 도입하여, 이를 이질적인 논 경관에서 Sentinel 2 및 

Landsat 8 SR과 비교하였다. 우선, 드론 HSI는 현장 분광법 및 경로 중첩

을 통해서 관측각도 범위 내에서 정성적인 방사 측정을 보장한다고 검증

되었다. 이후, 드론 HSI는 위성 SR의 분광반응특성, 공간해상도 및 좌표

계를 기준으로 맞춰졌고, 관측 기하를 통일하기 위해서 드론 HIS와 위성 

SR은 각각 양방향반사율분포함수 (BRDF) 정규화 반사도 (NBAR)로 변환

되었다. 마지막으로, 1) APU 행렬으로 위성 SR과 NDVI, NIRv를 포함하는 

식생지수(VI)의 공간변동성을 정량화 했고, 2) 대기보정의 이론적 오차를 

기준으로 SR과 VI를 픽셀별로 평가했고, 3) BRDF 정규화를 통한 개선 사

항을 검토했다. 

Sentinel 2 SR은 드론 HSI와 전반적으로 좋은 일치를 보이나, 두 NIR 

채널은 최대 10% 편향되었다. NIR의 편향은 식생지수에서 토지 피복에 

따라 다른 영향을 미쳤다. NDVI는 식생에서는 낮은 편향을 보여줬고, 

NIRv는 도시시설물 영역에서만 높은 편향을 보였다. Landsat 8 SR은 VIS 

채널에 대해 편향되었다 (-9 ~ -7.6%). BRDF 정규화는 위성 SR의 품질을 

개선했지만, 그 영향은 부수적이었다. 본 연구에서는 평탄한 지형에서 드

론 HSI가 현장 관측을 대체할 수 있고, 따라서 위성 SR이나 대기보정 알

고리즘을 평가하는데 활용될 수 있다는 것을 보였다. 향후 연구에서는 

산림으로 대상지를 확대하여, 지형과 캐노피 구조가 드론 HSI 및 위성 

SR에 미치는 영향을 분석할 필요가 있다. 
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