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Abstract

Computational Approaches for

Exploring the Relationships in

High Dimensional Spaces of Multi-Omics

Data Utilizing Biological Prior Knowledge

Minsik Oh

Department of Computer Science & Engineering

College of Engineering

Seoul National University

Understanding how cells function or respond to external stimuli is one of the

most important questions in biology and medicine. Thanks to the advances

in instrumental technologies, scientists can routinely measure events within

cells in single biological experiments. Notable examples are multi-omics data:

sequencing of genomes, quantifications of gene expression, and identification

of epigenetic events that regulate expression of genes. In order to better under-

stand cellular mechanisms, it is essential to identify regulatory relationships

between multi-omics regulators and genes. However, regulatory relationships
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are very complex and it is infeasible to validate all condition-specific relation-

ships experimentally. Thus, there is an urgent need for an efficient computa-

tional method to extract relationships from different types of high-dimensional

omics data. One way to address these high-dimensional data is to incorporate

external biological knowledge such as relationships between omics and func-

tions of genes curated in various databases.

In my doctoral study, I developed three computational approaches to iden-

tify the regulatory relationships from multi-omics data utilizing biological prior

knowledge.

The first study proposes a method to predict one-to-m relationships be-

tween miRNA and genes. The computational challenge of miRNA target pre-

diction is that there are many miRNA target candidates, and the ratio of false

positives to false negatives needs to be adjusted. This challenge is addressed by

utilizing literature knowledge for determining the association between miRNA-

gene and a given context. In this study, I developed ContextMMIA to predict

miRNA-gene relationships from miRNA and gene expression data. ContextM-

MIA computes scores of miRNA-gene relationships based on statistical signif-

icance and literature relevance and prioritizes the relationships based on the

scores. In experiments on breast cancer data with different prognosis, Con-

textMMIA predicted differentially activated miRNA-gene relationships in in-

vasive breast cancer. The experimentally verified miRNA-gene relationships

were predicted with high priority and those genes are known to be involved in

breast cancer-related pathways.

The second study proposes a method to predict n-to-one relationships be-

tween regulators and gene on drug response. The computational challenge of

drug response prediction is how to integrate multi-omics data of 20,000 genes

for determining drug response mediator genes. This challenge is addressed by

utilizing low-dimensional embedding methods, literature knowledge of drug-
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gene associations, and gene-gene interaction knowledge. For this problem, I

developed DRIM to predict drug response relationships from the multi-omics

data and drug-induced time-series gene expression data. DRIM uses autoen-

coder, tensor decomposition, and drug-gene association to determine n-to-one

relationships from multi-omics data. Then, regulatory relationships of me-

diator genes are determined by gene-gene interaction knowledge and cross-

correlation of drug-induced time-series gene expression data. In experiments

on breast cancer cell line data, DRIM extracted mediator genes relevant to

drug response and regulatory relationships of genes involved in the PI3K-

Akt pathway targeted by lapatinib. In addition, DRIM revealed distinguished

patterns of relationships in breast cancer cell lines with different lapatinib

resistance.

The third study proposes a method to predict n-to-m relationships between

regulators and genes. In order to predict n-to-m relationships, this study for-

mulated an objective function that measures the deviation between observed

gene expression values and estimated gene expression values derived from gene

regulatory networks. The computational challenge of minimizing the objec-

tive function is to navigate the search space of relationships exponentially

increasing according to the number of regulators and genes. This challenge is

addressed by the iterative local optimization with regulator-gene interaction

knowledge. In this study, I developed a two-step iterative RL-based method

to predict n-to-m relationships from regulator and gene expression data. The

first step is to explore the n-to-one gene-oriented step that selects regulators

by reinforcement learning based heuristic to add edges to the network. The

second step is to explore the one-to-m regulator-oriented step that stochasti-

cally selects genes to remove edges from the network. In experiments on breast

cancer cell line data, the proposed method constructed breast cancer subtype-

specific networks from the regulator and gene expression profiles with a more
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accurate gene expression estimation than previous combinatorial optimization

methods. Moreover, regulatory relationships involved in the networks were

associated with breast cancer subtypes.

In summary, in this thesis, I proposed computational methods for predict-

ing one-to-m, n-to-one, and n-to-m relationships between multi-omics regula-

tors and genes utilizing external domain knowledge. The proposed methods are

expected to deepen our knowledge of cellular mechanisms by understanding

gene regulatory interactions by analyzing the ever-increasing molecular biology

data such as The Cancer Genome Atlas, Cancer Cell Line Encyclopedia.

Keywords: High dimensional data, Multi-omics, Gene expression, Machine

learning, Biological prior knowledge, Search space

Student Number: 2015-22904
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Chapter 1

Introduction

Cell state is characterized by the complex interactions of various genetic molecules

such as the genome, transcriptome, epigenome, proteome, metabolome, and

microbiome, called multi-omics. With recent sequencing technology develop-

ment, each genetic events can be measured, and the integration of multi-omics

data help interpretation of the cell state by identifying regulatory relation-

ships of genes. However, identifying multi-omics relationships demands effi-

cient computational approaches due to the complexity of relationships between

high-dimensional omics data. In this dissertation, I developed algorithms for

exploring multi-omics relationships to interpret cell states utilizing external

biological prior knowledge as guidance for high-dimensional space.

1.1 Biological background

1.1.1 Multi-omics analysis

The recent advance in high-throughput sequencing technologies provides op-

portunities to measure the state of the cell represented by multi-omics. De-
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pending on the type of omics data, various experimental protocols are used

for measuring genetic events such as genome sequencing (Bentley et al., 2008),

RNA sequencing (Nagalakshmi et al., 2008), chromatin immunoprecipitation

sequencing (ChIP-seq) (Kharchenko et al., 2008), bisulfite sequencing (Chat-

terjee et al., 2012), and mass spectrometry (Cox and Mann, 2011). Each omics

data represents unique characteristics and provides a particular view of bio-

logical systems at the molecular level. However, for the comprehensive under-

standing of biological systems, there is a need the integration of different types

of omics data since genetic molecules are activated by interactions with inter-

and intra-omics molecules. In order to understand the complex biological pro-

cess, various computational methods have been proposed for the integration

of multi-omics data (Subramanian et al., 2020; Oh et al., 2020b).

1.1.2 Multi-omics relationships indicating cell state

Cell state can be represented by gene expression that is the series of processes

DNA into a functional product in the cell (Crick, 1970). The expression pat-

terns of thousands of genes determine which functions are turned on or off in

specific cells and determine cellular phenotypes such as disease development.

As shown in Figure 1.1, various genetic molecules regulate the expression

levels of genes at different levels, such as interactions with other genes, mi-

croRNA (miRNA), DNA methylation, mutations, transcription factors (TFs),

which is represented by the n-to-m relationship between regulators and genes.

However, verifying the relationship between multi-omics regulators and gene

expression through biological experiments is infeasible because there are too

many relationship candidates. Therefore, a computational approach is neces-

sary to investigate multi-omics relationships from multi-omics data to char-

acterize condition-specific cellular states represented by complex relationships

between multiple regulators and genes.
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Figure 1.1: The example of n-to-m relationship between regulators and genes.

The cell state determined by n-to-m relationship between regulators and genes.

According to cell state, biological phenotype such as disease development is

determined.
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1.1.3 Biological prior knowledge

Biological prior knowledge provides information about biological functions of

genes or interactions between different genetic molecules provided as com-

putable structures. The prior knowledge can be acquired in various ways such

as biological experiments, combined databases, computational predictions, and

literature text mining (Figure 1.2). For instance, Gene ontology (GO) database

provides the function of genes as a comprehensive and computational repre-

sentation from molecules to the cellular level (Ashburner et al., 2000). Reg-

ulatory relationship databases provide gene regulatory relationships such as

TF-gene, miRNA-gene relation as a network structure (Liu et al., 2015; Lewis

et al., 2003; Matys et al., 2006). Biological pathway databases provide rela-

tionships of genes involved in biological pathways that lead to the product

of changes in cell state (Kanehisa and Goto, 2000). STRING network pro-

vides protein-protein interaction (PPI) that two proteins jointly contribute to

a specific biological function (Szklarczyk et al., 2015). The external knowledge

has been used for identifying multi-omics relationships by filtering disease-

specific molecules or interactions between omics (Steele et al., 2009; Ideker

et al., 2011).
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Figure 1.2: The example of biological prior knowledge
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1.2 Research problems for the multi-omics relation-

ship

The main purpose of my thesis is to develop computational approaches for

identifying multi-omics relationships to understand condition-specific cellular

states. In particular, the thesis focuses on the relationship between multi-omics

regulators and gene expressions in multi-omics data since gene expression is

one of the factors determining cellular states (Zare et al., 2014). The multi-

omics relationships can be represented as graph structure described in Figure

1.3. In a graph G = (V,E), V is the union of the set of genes and regulators,

each node in V has a weight that is quantitative measures of each omics such

as miRNA expression level, DNA methylation level, gene expression level. E

is a set of edges that represents regulatory relationships between regulators

and genes. The research problem is to determine condition-specific n-to-m

relationships between multi-omics regulators and genes represented by the

graph G for given multi-omics profiles.

1.3 Computational challenges and approaches in the

exploring multi-omics relationship

The main challenge of the problem is the high dimensionality of multi-omics

relationships. Each omics data is high-dimensional with thousands to billions

of dimensions depending on the omics type. Furthermore, relationships be-

tween multi-omics data have an exponential search space and the number of

data is relatively small. To handle the high dimensional low sample multi-

omics data, utilizing external biological prior knowledge is one way to explore

the search space by reducing candidate relationships.

My doctoral study proposes three methods for exploring relationships of

high dimensional multi-omics data incorporating biological prior knowledge
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Figure 1.3: Graph representation of multi-omics relationships.

to understand complex cellular regulatory mechanisms. The first problem is

miRNA target gene prediction that affects the difference in status between

groups. In this study, the scoring method was used to balance false positive

and false negative using expression value as well as literature knowledge.

The second problem is sample-specific drug response prediction combin-

ing multi-omics data and time-series gene expression data. In this study, drug

response mediator genes are selected to reduce candidates using tensor decom-

position, autoencoder, and literature knowledge. From the mediator genes with

the time domain, upstream relationships are determined with TF gene target

databases, and downstream relationships are determined with PPI networks

and biological pathways.

The third problem is finding a sample-specific network of n-to-m relation-

ships between regulators and genes. In this study, to find the optimal network

estimating gene expression close to the measured gene expression, an iterative

two-step search method was used for efficient network estimation in an n-to-
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Figure 1.4: Approaches of each study for exploring relationships between reg-

ulators and genes.

m global search space. The detailed problem description with challenges and

approaches are listed as follows (Figure 1.4).

• Literature prior knowledge guided approach for exploring miRNA-

gene relationships (ContextMMIA) (Oh et al., 2017):

Problem & Challenges: MiRNA can inhibit gene expression at the

post-transcriptional level. In order to represent the cell state from miRNA

expression data and gene expression data, it is necessary to predict the

target gene of miRNA. The problem of this study is identifying condition-

specific miRNA-gene relationships from miRNA expression and gene

expression data. Previous miRNA-gene target prediction methods can

be categorized into sequence-based prediction and expression-based pre-

diction. There are many false positives since sequence-based prediction

methods do not consider sample-specific information such as expression

profiles. Expression-based prediction methods take advantage of statis-

tical cutoffs, which have the false-negative problem of rejecting true-

positive targets due to stringent cutoffs.
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Approach: In this study, I focused on the one-to-m relationship be-

tween miRNA and genes. I proposed ContextMMIA, a data context-

specific miRNA target prediction algorithm that combines miRNA, gene

expression data, and biological prior knowledge. ContextMMIA utilizes

two prior knowledge. One is the miRNA target databases curated miRNA-

gene relationships from computational prediction and experimental val-

idation to reduce candidate relationships. The other is literature knowl-

edge that computes the association between miRNA-gene and a given

data context such as disease and treated drug. The input of ContextM-

MIA is two groups of miRNA, gene expression data and context of

data. ContextMMIA computes the statistical significance using expres-

sion data and literature relevance using literature knowledge. The miRNA-

gene pairs in the target database are prioritized by scores of miRNA-gene

relationships.

• Drug response prediction with implicit one-to-m relationships

by dimension reduction approach (DRIM) (Oh et al., 2020a):

Problem & Challenges: The individual variation of drug response

depends on the cell state determined by the multi-omics state. It is

essential to identify drug response relationships at the gene level to un-

derstand the variability of drug responses. The problem of this study

is determining condition-specific drug response regulatory relationships

from multi-omics data and drug-treated time-series gene expression data.

The challenge of drug response prediction is integrating high-dimensional

multi-omics data of 20,000 genes to determine drug response mediator

genes, and determining gene-gene interactions from time-series gene ex-

pression data.
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Approach: In this study, I focused on the n-to-one implicit relation-

ship between multiple regulators and gene. I proposed DRIM, a drug

response regulatory relationship prediction algorithm utilizing biological

pathways, TF-target database, PPI network, and literature knowledge.

DRIM takes multi-omics data and drug-treated time-series gene expres-

sion data as input. DRIM performs three steps for determining drug

response. 1) It selects drug response mediator genes by multi-omics anal-

ysis. 2) It constructs a network representing upstream and downstream

relationships of mediator genes using time-series gene expression data. 3)

It computes the most probable drug-response relationships in the net-

work using the influence-maximization algorithm. For the multi-omics

analysis, tensor decomposition and autoencoder were used to address

complex multi-omics relationships. The TF-target network was used to

determine the upstream relationship of mediator genes. The PPI net-

work and biological pathway were used to determine the downstream

relationship of mediator genes.

• Combinatorial modeling and optimization using iterative RL

search for inferring sample-specific regulatory network:

Problem & Challenges: In order to identify the explicit n-to-m re-

lationship between regulators and genes, I formulated the optimization

problem to estimate observed gene expression from the network con-

structed by the n-to-m relationship. For the given regulator capacity

and the amount of gene expression that changes due to the selected

edges, the problem is to find the optimal network providing an accurate

estimation of observed gene expression. The challenge of this problem is

the search space growing exponentially according to the number of genes

and regulators.
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Approach: In this study, I focused on n-to-m relationships between

multiple regulators and genes. Due to the size of the search space, it

is challenging to explore a global n-to-m relationship. Thus, I proposed

a search algorithm that iteratively explores n-to-one gene-oriented re-

lationships and one-to-m regulator-oriented relationships. In the gene-

oriented step (G-step), edges between regulators and a gene estimating

the gene expression are added to the network determined by the rein-

forcement learning heuristics. In the regulator-oriented step (R-step),

edges between regulator and genes violating the capacity constraint are

removed from the network determined by a stochastic process. The G-

step and R-step are iteratively computed until a terminate condition.

11



1.4 Outline of the thesis

Chapter 2, 3, and 4 introduce independent studies that are prior knowledge-

guided methods for determining multi-omics relationships. In Chapter 2, a

literature-based miRNA-gene target prediction method, ContextMMIA, is de-

scribed. Chapter 3 describes a drug response prediction method DRIM is de-

scribed. Chapter 4 proposes an iterative RL-based search method for deter-

mining the n-to-m relationship of regulators and genes.

Chapter 5 summarizes my contributions to the study of exploring the high

dimensional space of multi-omics relationships. The thesis is concluded by an

appendix of the bibliography of the cited references.
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Chapter 2

Literature-based
condition-specific miRNA-mRNA
target prediction

MiRNAs are small non-coding RNAs that regulate gene expression by bind-

ing to the 3′-UTR of genes. Many recent studies have reported that miRNAs

play important biological roles by regulating specific mRNAs or genes. Many

sequence-based target prediction algorithms have been developed to predict

miRNA targets. However, these methods are not designed for condition-specific

target predictions and produce many false positives; thus, expression-based

target prediction algorithms have been developed for condition-specific target

predictions. A typical strategy to utilize expression data is to leverage the neg-

ative control roles of miRNAs on genes. To control false positives, a stringent

cutoff value is typically set, but in this case, these methods tend to reject many

true target relationships, i.e., false negatives. To overcome these limitations,

additional information should be utilized. The literature is probably the best

resource that can be utilized. Recent literature mining systems compile mil-

lions of articles with experiments designed for specific biological questions, and
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the systems provide a function to search for specific information. To utilize the

literature information, I used a literature mining system, BEST, that auto-

matically extracts information from the literature in PubMed and that allows

the user to perform searches of the literature with any English words. By inte-

grating omics data analysis methods and BEST, I developed ContextMMIA, a

miRNA-mRNA target prediction method that combines expression data anal-

ysis results and the literature information extracted based on the user-specified

context. In the pathway enrichment analysis using genes included in the top

200 miRNA-targets, ContextMMIA outperformed the four existing target pre-

diction methods that I tested. In another test on whether prediction methods

can re-produce experimentally validated target relationships, ContextMMIA

outperformed the four existing target prediction methods. In summary, Con-

textMMIA allows the user to specify a context of the experimental data to

predict miRNA targets, and I believe that ContextMMIA is very useful for

predicting condition-specific miRNA targets.

2.1 Computational Problem & Evaluation criterion

This chapter describes the method for solving the miRNA-gene target predic-

tion problem. The input data is miRNA expression and gene expression data

of samples from two different groups. The computational problem is to pre-

dict the miRNA-gene relationships that change the cellular state. Challenges

of this problem are (1) there are too many miRNA-gene candidates, (2) false

positive and false negative rates according to the cutoff value. Comparative ex-

periments were performed to evaluate the proposed method in reproducibility

of experimentally validated relationships and enrichment analysis of disease-

related pathways with other methods.
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2.2 Related works

MicroRNAs (miRNAs) are small non-coding RNAs that are 19-24 nucleotides

in length. These RNAs regulate gene expression at the post-transcriptional

level by binding to the 3′-UTR of mRNAs (Ambros, 2004; Bartel, 2004); thus,

miRNAs are functionally important. There are numerous scientific findings on

the functional roles of miRNAs by regulating specific genes. For example, it is

reported that miR-15 and miR-16-1 bind to BCL2 (Cimmino et al., 2005) and

that apoptosis is induced. Another example is that miR-125b, miR-145, miR-

21 and miR-155 are dysregulated in breast cancer cells, and different expression

levels of these miRNAs have significant correlations with breast cancer pheno-

types, such as tumor stages and status of estrogen and progesterone receptors

(Iorio et al., 2005). Moreover, it is well known that miRNAs are related to

proliferation, differentiation, and cell death (Hwang and Mendell, 2006).

The functional roles of miRNAs differ in different contexts. In other words,

the relationship between miRNA and target genes is dynamic in different con-

ditions. Thus, it is very important to identify which genes are targeted by

miRNAs in a given context.

There are more than 1000 miRNAs, and approximately 60% of protein-

coding genes are regulated by miRNAs (Friedman et al., 2009). Since it is not

possible to perform biological experiments for such a large number of miR-

NAs and genes, computational prediction is very important, and numerous

computational methods have been developed for predicting targets of miR-

NAs. The first generation of computational tools leverage sequence comple-

mentary information and binding energy potentials. These prediction methods

include TargetScan (Lewis et al., 2005), PITA (Kertesz et al., 2007), mirSVR

(Betel et al., 2010), miRanda (John et al., 2004) and PicTar (Krek et al.,

2005). These tools generally come with corresponding databases that compile
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miRNA-target information. In addition to sequence complementary informa-

tion, there are different approaches used in each of these methods. miRanda

estimates the energy on sequence matching of miRNA and mRNA pairs to

predict targets (John et al., 2004). PicTar first finds candidate 3′-UTR sites

and uses a hidden Markov model (HMM) to filter out target sites (Krek et al.,

2005). TargetScan considers a conservation seed match and then considers re-

gions outside seed matches (Lewis et al., 2005). The mirSVR algorithm uses a

support vector regression method to compute scores on candidate target sites

that are identified by miRanda (Betel et al., 2010). PITA uses the accessibility

of target sites as a main feature to predict targets (Kertesz et al., 2007).

Target prediction methods based on the sequence similarity score rely on

the existence of target sites, and these methods are accompanied by target

databases. However, such target information is not condition specific with-

out considering which miRNAs and which genes are expressed; thus, there are

many false positives even if the target information is accurate, which is not the

case since many target databases do not agree on the miRNA-target relation-

ship. To make the target information condition specific, many expression-based

target prediction methods have been developed. These methods take miRNA-

mRNA expression data and several sequence-based target databases as in-

put data and filter out miRNA-mRNA targets using statistical significance or

computational algorithms. I briefly summarize the previous expression-based

algorithms. GenMiR++ used a Bayesian model and expectation maximization

algorithm to predict the posterior probability of a miRNA target for mRNA

(Huang et al., 2007). MMIA employs a two-step method, where the first step

is to select differentially expressed miRNA, and the second step is to select

negatively correlated differentially expressed mRNA (Nam et al., 2009) only

for the differentially expressed miRNAs. MMIA also supports sequence data

analysis on a cloud environment, which enables the user to utilize both mi-
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croarray data and NGS data (Chae et al., 2014). MAGIA2 is a web-based tool

that considers the correlation among miRNA and mRNA and transcription

factor (TF) regulation (Bisognin et al., 2012). CoSMic extracts the signifi-

cant target mRNA cluster for each miRNA (Ben-Moshe et al., 2012). CoSMic

employs methods similar to gene set enrichment analysis (GSEA) to identify

miRNA targets (Subramanian et al., 2005). miRNAmRNA is a target pre-

diction algorithm based on the global test of a linear regression model (van

Iterson et al., 2013). To extract condition-specific miRNA activity, identifying

causal relationships using intervention calculus when the DAG is absent was

proposed (Zhang et al., 2014). A recent tool, PlantMirnaT, was designed as a

plant-specific miRNA-mRNA sequencing data analysis algorithm (Rhee et al.,

2015). The unique feature of PlantMirnaT is using the expression quantity in-

formation from sequencing data and employing a split ratio model to identify

the relationship of target pairs.

2.3 Motivation

There are approximately 1,500 known miRNAs in the human genome. The

number of possible miRNA-gene pairs exceeds 30 million when more than

20,000 protein-coding genes are considered. Among these pairs, only a fraction

of the relationships are significant in terms of biological functions, e.g., pheno-

types or cancer subtypes. Computational methods for predicting the miRNA

target employ various techniques to identify phenotype-specific miRNA tar-

gets. Because this is a typical prediction problem, the challenges can be sum-

marized in terms of false positives and false negatives.

• Target databases have high false positive rates: Sequence-based

target prediction algorithms, such as TargetScan, mirSVR, and PITA,

and their corresponding databases generally produce high false positives.
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Figure 2.1: The number of published papers related to the keyword ‘cancer’

since 2010. More than 100,000 papers have been published every year.

There are two major reasons for these high false positives. First, these

databases contain all known targets; thus, the target information is not

condition specific. For this reason, when transcriptome data measured

in a specific condition are analyzed, many targets are false positives.

Second, sequence-based prediction methods do not consider the regu-

latory role of miRNA, which generally results in a negative correlation

between miRNA and the target gene. In addition, sequence-based pre-

diction methods do not consider sample-specific sequence information.

For example, sequence variations in the target regions can affect the tar-

get relationship, but the current algorithms do not consider minor but

subtle sequence variations.

• Expression-based methods may have false negative rates: Expression-

based methods utilize negative correlation information between miRNA

and targets or similar approaches. For these methods, there is always
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an issue of establishing a cutoff threshold value, e.g., for a negative cor-

relation. If the cutoff value is not stringent, then there are too many

miRNA-target relationships. Thus, in general, it is a common practice

to set a quite stringent cutoff value. In this case, many true miRNA-

target relationships can be rejected, i.e., the false negative issue.

Addressing the false positive and false negative issues is a very challenging

problem. Using sequence pairing information and gene expression information

is very useful because such methods have already produced many biologically

meaningful results. However, one important information source, the literature,

is not utilized in current methods. The scientific literature is currently grow-

ing exponentially. As shown in Fig 2.1, more than 100,000 papers related to

‘cancer’ are published every year. Thus, if I combine sequence pairing infor-

mation and gene expression information with the literature information, I can

certainly make a good improvement in predicting miRNA targets, reducing

both false positives and false negatives. In particular, as with the use of gene

expression information, the use of the literature information should be condi-

tion specific. The main issues are how to handle the vast amount of studies in

the literature, how to allow the user to specify the experimental conditions,

and finally, how to combine sequence pairing information, gene expression in-

formation and the literature information in a single computational framework.

Toward this goal, two research groups are working together to design and

implement a novel human-specific miRNA-target prediction method.

First, I compute the omics score by utilizing sequence pairing information

and gene expression information to produce candidate miRNA-target pairs.

Then, I compute the literature-based context score to evaluate each can-

didate miRNA-target pair using the Biomedical Entity Search Tool (BEST)

(Lee et al., 2016). Using BEST, the user can specify the experimental condi-
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tion using a set of any keywords, which will automatically be translated to

a set of genes and related miRNAs. Subsequently, the two scores, the omics

score and the context score, are combined into a single score in a conditional

probabilistic form.

The remainder of this study is organized as follow. In the Methods section,

I explain how to compute the omics score based on the expression data and

miRNA-gene relationship and the context score from the literature according

to user-provided keywords. In the Results section, I show how my proposed

method performs compared with four existing methods in experiments with

omics datasets in the public domain.

2.4 Methods

In this section, I explain how my method, ContextMMIA, predicts human

miRNA targets by combining the literature information and gene expression

data. ContextMMIA takes two-class (control vs. treated) human miRNA-

mRNA expression data as input. Then, with user-specified keywords as the

context of the experiment, it computes the probabilities of miRNA-gene pairs

relevant to the phenotype differences by combining gene/miRNA expression

data and the literature data. Fig 2.2 illustrates the workflow of ContextM-

MIA. First, differentially expressed miRNAs (DEmiRNAs) and differentially

expressed mRNAs or genes (DEmRNAs) are determined with a cutoff value

at the relaxed level such that most of the true positives can be retained in

this step. Note that I use negative correlation information and the literature

information to filter out and re-weight candidates for interaction pairs in the

following steps. In the second step of processing omics data, human miRNA-

mRNA pairs are predicted using miRNA target databases such as TargetScan,

mirSVR, and PITA. These miRNA-mRNA pairs are further screened by nega-

tive correlation information between miRNA and mRNA. In the third step, for
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Figure 2.2: Schematic workflow for ContextMMIA. The system accepts expres-

sion information of miRNA data, mRNA data, and keyword as inputs. DEmiR-

NAs and DEmRNAs are extracted based on their expression level difference, and

negative correlated target pair are extracted. Then, the system computes omics

and context scores based on user-provided keywords by utilizing the BEST sys-

tem. Finally, the system ranks context specific miRNA-mRNA pairs using the

confidence scores.
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each pair of miRNA and mRNA, ContextMMIA calculates the omics score

based on expression data and the context score based on the literature infor-

mation compiled based on the user-provided keywords. Finally, target pairs are

ranked by combining the omics score and context score. For each miRNA-

mRNA pair, ContextMMIA computes alignments of human miRNA and the

3′-UTR of mRNA and generates the visualization of the miRNA-mRNA align-

ment on the website.

2.4.1 Identifying genes and miRNAs based on the user-provided

context

ContextMMIA takes a set of keywords from the user to specify the con-

text of the experiment. Currently, the most widely used biomedical literature

database, PubMed, contains over 26 millions records. When I perform a search

with the keyword ‘cancer’, over 3 million records are retrieved. Thus, I believe

that this literature database contains enough articles to rank miRNA-gene

pairs in terms of the user-provided context. However, there are two major is-

sues in ranking miRNA-gene pairs: given the keywords, relevant papers should

be identified and relevant gene names and miRNA names should also be iden-

tified. Since not all papers contain the user-provided keywords, it is necessary

to infer the relevance of the words to extract genes and miRNAs in the rel-

evant articles. To address this issue, I use BEST to identify relevant words

and genes/miRNAs (Lee et al., 2016). BEST has predefined biomedical en-

tities for each category, such as drug, pathway, gene, and disease, and then

it identifies relevant entities extracted from PubMed articles from the user

query. For example, it returns entities such as ‘ERBB2’, ‘wnt signaling path-

way’, and ‘tamoxifen’ with the keyword ‘breast cancer’ as an input. BEST

has its own scoring system for entities, which is very useful in ranking gene-

miRNA pairs with respect to the user-provided keywords. For example, there
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are keywords ‘breast cancer’ and entities ‘cell cycle’, ‘mir-200c’, ‘BRCA1’, and

‘ESR’. At the beginning, BEST compiles PubMed articles containing ‘breast

cancer’ and the four entities in the abstract. Then, it measures the score and

the rank for each entity and lists entities ordered by score. After compiling

articles containing ‘BRCA1’ and ‘breast cancer’, BEST calculates a document

score for each article and sums the score to measure the entity score, which

is denoted as BEST (BreastCancer,BRCA1). In this study, I use BEST to

measure the relevance of each miRNA and mRNA for a given user query.

2.4.2 Omics Score

The omics score (OS) is the probability of a gene-miRNA contributing to

the class difference when expression data are analyzed. The OS is based on the

general principle that differentially expressed miRNA targets genes differen-

tially, resulting in negative correlations between genes and miRNA; then, dif-

ferentially expressed gene explains the phenotype differences. ContextMMIA

computes the omics score based on a strategy similar to MMIA. It measures

miRNA differential scores, mRNA differential scores, and then correlation

scores. The DEmiRNAs and DEmRNAs can be determined by MMIA. After

the DEmRNAs and DEmiRNAs are determined, the probability of miRNA-

mRNA contributing to the class difference is calculated. Let the p-values of

miRNA and mRNA be pmi and pgj , respectively. For miRNA mi, mi’s differ-

ential score diff (mi) is defined by Eq 2.1, and its normalization diffn(mi) is

defined by Eq 2.2.

diff (mi) = −log2(pmi) (2.1)

diffn(mi) =
diff (mi)−min (diff )

max (diff )−min (diff )
(2.2)

The calculation of diffn for mRNA is similar to that of miRNA. The range

of diffn is between 0 and 1 by Eq 2.2. If miRNA is significantly differentially
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expressed in a given condition, then the value of diffn will be close to 1.

Correlation score is defined by measuring the Pearson’s correlation coef-

ficient of the miRNA-mRNA pair’s logarithmic expression as in (Mukherji

et al., 2011). ContextMMIA considers only negatively correlated miRNA-

mRNA pairs; thus, a negative value of the coefficient is defined as the cor-

relation score as in Eq 2.3.

corr(mi, gj) = −pearson correlation(mi, gj) (2.3)

The omics score of miRNA-mRNA OS(mi, gj) is defined in Eq 2.4.

OS(mi, gj) = diffn(mi) ∗ corr(mi, gj) ∗ diffn(gj) (2.4)

By definition, OS(mi, gj) ∈ [0,1]; thus, a value of OS close to 1 means that the

miRNA and mRNA are both significantly differentially expressed and anticor-

related. Thus, I predict that the pair is related to the phenotype difference

with a high confidence in terms of expression data.

2.4.3 Context Score

I defined the context score (CS) to measure the probability of a miRNA-

mRNA pair contributing to the phenotype difference in terms of the literature

information. As described in the previous section, BEST estimates a score

between predefined entities and keywords. I denoted the user-input keyword

as k, which is context specified by the user (e.g., disease, gene, pathway, and

so forth). As shown in Eq 2.5, CS(mi, gj |k) measures the significance of the

mi-gj pair for k in terms of the literature information.

CS(mi, gj |k) = P (mi|k) ∗ P (gj |k) (2.5)

To compute P (mi|k), I used Bayes’ rule and transformed P (mi|k) into Eq 2.6

because BEST only measures the score for predefined entities and does not

24



support undefined keywords (e.g., broad keyword, new drug or pathway, and

so on) (Lee et al., 2016).

P (mi|k) =
Pn(k|mi) ∗ Pn(mi)
p∑

l=1

Pn(k|ml) ∗ Pn(ml)

(2.6)

By converting P (mi|k) using Bayes’ rule, my method provides the user with

a freeform keyword environment, which allows the user to easily utilize my

system even when the user is not familiar with biological terms.

P (k|mi) = log2(BEST (k,mi) + 1) (2.7)

The literature significance of miRNA (mi) for a given keyword k, P (k|mi), is

computed as shown in Eq 2.7. BEST (k,mi) is the score of mi for k computed

by BEST, and I converted the scale of the score by taking the logarithm of the

BEST score. For example, assume that the keyword ‘immune system’ and the

miRNA ‘miR-155’ are used in an analysis. If the relation between ‘miR-155’

and ‘immune system’ is well studied, then P ( immune system |miR155) and

BEST ( immune system , miR155) will have a high score.

P (mi) = log2(BEST (mi,mi) + 1) (2.8)

Eq 2.8 describes how to compute P (mi), which denotes how much literature

information exists for mi; the more that papers report mi, the higher the value

it will have. After computing P (mi) and P (k|mi), normalization terms Pn(mi)

and Pn(k|mi) are defined by the min-max normalization.

P (mi|k) is computed using Bayes’ rule and specifies the significance of

mi given the literature domain k, and the value of P (mi|k) has a correlation

with the amount of studies, i.e., the number of papers about mi in domain

k. For mRNA gj , P (gj |k) is computed in a similar way, and I measured the

significance of the mi-gj pair in k by computing CS(mi, gj |k) using P (mi|k)

and P (gj |k).
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2.4.4 Confidence Score

The confidence score of mi, gj and k is denoted as Score(mi, gj , k), which is a

confidence value of target prediction in terms of both expression and literature

data.

Score(mi, gj , k) = OS(mi, gj) ∗ CS(mi, gj | k) (2.9)

Eq 2.9 can be interpreted as a weighted omics score, where the weight is

determined by a probability of a mi, gj pair being true in terms of the user-

provided context given keywords k.

2.5 Results

To evaluate ContextMMIA, I performed three experiments in comparison with

four existing tools: MMIA, MAGIA2, CoSMic and GenMiR++. The three ex-

periments were pathway analysis, reproducibility of validated miRNA targets

in human, and sensitivity tests when different keywords were used for speci-

fying the experimental context. I used 2-class microarray datasets containing

miRNA and mRNA expression profiles in humans. GSE21411 (Cho et al.,

2011), GSE40059 (Luo et al., 2013), and GSE53482 (Norfo et al., 2014) from

human disease studies were used. Each study reports experimentally validated

miRNA and the correlated target mRNA pair, which was used to evaluate the

miRNA target prediction methods in this section. A detailed description of

each dataset is listed in Table 2.1.

Table 2.1 summarizes the validated target pair and the domain of the ex-

perimental design in each dataset. In the interstitial lung diseases (ILD) study,

it was reported that ZEB-1 affects the persistence of disease in ILD through

suppression of NEDD4L by miR-23a. In the GSE40059 breast cancer study,

the authors investigated differences between aggressive breast cancer cell lines

and less-aggressive cell lines and reported that CFL2 was up-regulated by miR-
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Table 2.1: Each GEO study comes with an experimentally validated miRNA-

mRNA target (the second column) to affect their disease domain (the third

column). Disease information was used to test performances when different con-

texts are specified.

Data Experimentally validated target Disease

GSE21411 hsa-miR-23a - NEDD4L Interstitial Lung Diseases

GSE40059 hsa-miR-200c - CFL2 Breast Cancer

GSE53482 hsa-miR-155 - JARID2 Primary Myelofibrosis

200c. The authors also reported that CFL2 expression was correlated with

tumor grade. In the primary myelofibrosis (PMF) study, the authors revealed

that overexpressed miR-155-5p regulates JARID2, and they suggested that

regulated JARID2 may be related to MK hyperplasia in PMF. Disease infor-

mation was used to test performances when different contexts are specified for

ContextMMIA. It is necessary to choose keywords to specify contexts. ‘Inter-

stitial lung disease’ and ‘primary myelofibrosis’ are too specific to use literature

data; thus, I used the more general words ‘lung disease’ and ‘myelofibrosis’ as

the keywords for ContextMMIA.

2.5.1 Pathway analysis

To evaluate the effectiveness of the approach used in ContextMMIA, I com-

pared it with four expression-based methods: MMIA, MAGIA2, GenMiR++,

and CoSMic. GenMiR++ computes probabilities for target pairs using an

EM algorithm. MMIA extracts DEmiRNA to reduce the search space by a

user-defined cutoff and finds negatively expressed target DEmRNAs. MAGIA2

provides several methods for the integrated analysis, and I chose Pearson’s cor-

relation method from among these methods. After measuring the correlation,
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MAGIA2 calculates the false discovery rate (FDR) for each target. CoSMic

extracts an mRNA cluster for each miRNA and computes the significance of a

cluster using permutation tests. Likewise, each algorithm uses a different strat-

egy to predict the miRNA target and to reduce the search space. I used these

four algorithms to compare performances in terms of the predictive power. The

methods compute confidence values for the predicted miRNA and mRNA tar-

gets, typically probability or p-value. I ranked the prediction results in terms

of the confidence values. In the experiments, I used a p-value cutoff of 0.1 for

ContextMMIA. For MMIA, a p-value of 0.05 was used for both DEmiRNA

and DEmRNA selection.

For the performance evaluation, I used the top 200 predicted miRNA-

mRNA pairs predicted by each method. Then, I mapped genes included in the

interacting pairs to human pathways using DAVID (Huang et al., 2009a,b) to

determine which pathways were significantly enriched. Among these pathways,

I carefully selected pathways that are most likely related to the disease through

the literature study as shown in Table 2.1. I set evaluation criteria as how these

literature-guided pathways were predicted by each method.

Table 2.2 shows the ratios of the number of genes that are mapped to

significantly enriched pathways to the number of genes included in the top 200

miRNA-target edges. The number of genes is less than 200 because the same

gene was multiply targeted, e.g., miR-200c-BRCA1 and miR-23a-BRCA1.

As shown in Table 2.2, the number of genes mapped to the significantly

enriched pathways is quite different for each method even though the number

of genes does not considerably differ for each method. In terms of the ratio

of mapped genes to predicted genes, ContextMMIA outperforms the existing

methods 2 to 4 times. A gene set in a pathway means that genes have similar

biological functions in terms of regulating molecular processes. Thus, the ratios

in Table 2.2 indicate that ContextMMIA produces more functionally coherent
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Table 2.2: The ratio of the mapped genes and the number of the genes in the

top 200 miRNA-target pairs. From each method, I extracted the top 200 target

pairs using each method and performed pathway analysis using DAVID. The

numerator is the number of genes mapped to the enriched pathways, and the

denominator is the genes in the top 200 edges. The ratio of ContextMMIA is

the largest for each dataset.

Methods GSE21411 GSE40059 GSE53482

ContextMMIA 37 / 79 45 / 157 42 / 127

MMIA 12 / 157 20 / 179 11 / 124

GenMiR++ 0 / 194 18 / 197 26 / 200

MAGIA2 18 / 182 12 / 191 19 / 193

CoSMic 24 / 196 9 / 195 X

gene sets.

Table 2.3 lists pathways related to ‘breast cancer’ and enriched pathways

predicted by each method for the GSE40059 dataset. The circles in Table 2.3

mean an enriched pathway when DAVID pathway analysis was performed by

using genes in the top 200 edges. For example, if the ECM-receptor interaction

is enriched in the ContextMMIA and GenMiR++ results, circles are marked

in the context column and the second column for the corresponding tools. As

shown in Table 2.3, more pathways related to ‘breast cancer’ were enriched in

the gene sets produced by ContextMMIA than in the gene sets produced by

the competing methods. In addition, several important pathways were enriched

only in ContextMMIA. For example, it is well known that approximately half

of breast tumors have stronger MAP kinase activity than the surrounding

benign tissues (Santen et al., 2002). Inflammation plays a pivotal role in tumor

initiation, promotion, angiogenesis and metastasis. Cytokines are important
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Table 2.3: Enriched pathway analysis on GSE40059 breast cancer data. Breast-

cancer-related pathways are selected by the literature search. A circle in a cell

means that the pathway is enriched by the gene set predicted by each method

(A: ContextMMIA, B: MMIA, C: GenMiR++, D: MAGIA2, and E: CoSMic).

More pathways are enriched by the gene set in the ContextMMIA result.

Breast-Cancer-Related Pathway A B C D E

Purine metabolism (Schramm et al., 2010) O

Pyrimidine metabolism (Sigoillot et al., 2004) O

ABC transporters (Fletcher et al., 2010) O

MAPK signaling pathway (Santen et al., 2002) O

Cytokine-cytokine receptor interaction (Esquivel-Velázquez et al., 2015) O

Neuroactive ligand-receptor interaction (Finak et al., 2008) O

p53 signaling pathway (Gasco et al., 2002) O O

Apoptosis (Lipponen, 1999) O

Notch signaling pathway (Reedijk, 2012) O

TGF-beta signaling pathway (Moses and Barcellos-Hoff, 2011) O

Axon guidance (Mehlen et al., 2011) O

Focal adhesion (McLean et al., 2005) O O O

ECM-receptor interaction (Lu et al., 2012) O

Cell adhesion molecules (CAMs) (Saadatmand et al., 2013) O O

Adherens junction (Haidari et al., 2013) O

Regulation of actin cytoskeleton (Flamini et al., 2009) O

Glioma (Piccirilli et al., 2005) O

Melanoma (Goggins et al., 2004) O
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in all the phenomena, and it has been reported that cytokines participate in

regulating both induction and protection in breast cancer (Esquivel-Velázquez

et al., 2015). In addition, many studies have reported that TGF-beta signaling

is critically important in the regulation of breast cancer (Moses and Barcellos-

Hoff, 2011). High focal adhesion kinase expression is known to be related

to aggressive breast cancer phenotypes (Lark et al., 2005). Furthermore, cell

adhesion molecules (CAMs) have a strong relationship with the process of

metastasis, which is an important feature in predicting breast cancer prognosis

(Saadatmand et al., 2013). Moreover, a study revealed that activated leukocyte

cell adhesion molecule (ALCAM) expression has a correlation with clinical

outcomes such as grade, TNM stage, and NPI (King et al., 2004).

2.5.2 Reproducibility of validated targets in humans

Table 2.4 shows the rankings of experimentally validated targets among the

targets predicted by each method. Because ContextMMIA computes the con-

text score using the literature data for given keywords, there is a possibility

that the original papers of the datasets can affect the context score. Thus, I

penalized the validated targets to compute P (k|mi) by excluding each paper

when the BEST tool measures a score BEST (k,mi).

As shown in Table 2.4, ContextMMIA outperformed the other expression-

based methods even though the penalized score is used. MMIA took the second

place in reproducing the validated targets, but it ranked validated targets much

lower than ContextMMIA. Although not rejecting the validated targets, Gen-

miR++ ranked validated targets very low. This result shows that GenmiR++

produced too many false positives for the three datasets. MAGIA2 failed to

identify the validated targets as positive target pairs in any datasets because

none of the validated target pairs satisfied the statistical cutoff. CoSMic also

failed to identify the validated target pairs for two datasets, GSE21411 and
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Table 2.4: This table contains the rankings of validated target pairs in three

datasets. The validated targets are listed in the second column of Table I. Con-

textMMIA outperformed existing tools in predicting the validated targets. MA-

GIA2 and CoSMic failed to reproduce the validated targets.

Methods GSE21411 GSE40059 GSE53482

Context-MMIA 481 338 21

MMIA 1411 387 1465

GenMiR++ 8625 1673 95492

MAGIA2 X X X

CoSMic X X X (Not Work)

GSE40059. In addition, CoSMic did not run successfully for dataset GSE53482

due to an input error issue. Many tools were not successful in reproducing val-

idated targets, which can be an indication of false negatives.

To further confirm the reproducibility of my algorithm, we investigated how

many experimentally verified targets in humans are detected in the top 200

miRNA-mRNA pairs by each of the methods. Experimentally validated hu-

man miRNA-mRNA pairs were extracted from miRTarBase (Hsu et al., 2011),

which curated experimentally validated miRNA-target interactions (MTI) by

reporter assay, western blot, microarray, and next-generation sequencing ex-

periments. I used human functional MTIs with strong evidence for function-

ality in humans as true interacting pairs. Table 2.5 summarizes the number

of validated targets in the top 200 miRNA-mRNA pairs predicted by each

method. As shown in table 2.5, ContextMMIA predicted two to five times

more validated targets compared to the existing methods. ContextMMIA pre-

dicted more than 10% of the experimentally validated MTIs in humans, with is

a considerably higher prediction accuracy than existing methods. It suggests

32



Table 2.5: This table contains the number of validated target pairs in three

datasets. The validated targets are extracted from miRTarBase target pairs fil-

tered by human functional miRNA target interaction (MTI).

Methods GSE21411 GSE40059 GSE53482

ContextMMIA 27 38 24

MMIA 5 4 12

GenMiR++ 3 4 3

MAGIA2 0 0 0

CoSMic 7 0 X (Not Work)

that ContextMMIA may provide good candidates for further experimental

validation.

2.5.3 Sensitivity tests when different keywords are used

The performance of ContextMMIA depends on how the keywords to specify

context are related to the goal of the experiment. In addition to disease-related

keywords, I performed experiments using less-relevant keywords such as insulin

resistance, influenzas, HIV and hepatocellular carcinoma. The results of Con-

textMMIA using less-relevant keywords are presented in Table 2.6.

The relevant keywords for the three datasets are listed in the third column

of Table 2.1. As shown in Table 2.6, the rankings of the validated pairs were

considerably higher when the keywords that reflect experimental designs were

used. This result indicates that my method is able to reflect the degree of

relevance to the experimental design and capture the different miRNA-mRNA

pairs when different keywords were used. In summary, the experiments with

irrelevant keywords showed that my method can capture the miRNA-mRNA

pairs, reflecting the user-specified biological context.
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Table 2.6: Sensitivity tests when different keywords are used. Rankings of vali-

dated targets are shown when different keywords are used. The validated targets

had high ranks when disease-related keywords were used.

Keyword GSE21411 GSE40059 GSE53482

Correct keyword 481 338 21

Insulin resistance 12479 2036 4250

Influenzas 6826 1169 1623

HIV 5865 4002 3238

Hepatocellular carcinoma 5278 3265 7180

2.6 Summary

I presented ContextMMIA, a human-specific miRNA-mRNA target pair pre-

diction system that utilizes both expression profiles and the literature informa-

tion from the user-specified experimental design goals. A major contribution

of my system is that I handled the false positives and false negatives, which

are an inherent issue in expression-based prediction tools, by incorporating

the user-specified context information from the literature. Analyses on three

independent human datasets showed that ContextMMIA can capture the true

positive miRNA-mRNA target pairs that are specific to a biological context.

ContextMMIA outperformed existing tools in a series of experiments, such

as pathway analysis, validated target ranking, and irrelevant keyword experi-

ments.

I emphasize that computational predictions of miRNA-mRNA target pairs

should be further validated in biological experiments and that my system is in-

tended to provide good candidates for experimental validation. ContextMMIA
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is available at http://biohealth.snu.ac.kr/software/contextMMIA
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Chapter 3

DRIM: A web-based system for
investigating drug response at the
molecular level by
condition-specific multi-omics
data integration

Pharmacogenomics is the study of how genes affect a person’s response to

drugs. Thus, understanding the effect of drug at the molecular level can be

helpful in both drug discovery and personalized medicine. Over the years, tran-

scriptome data upon drug treatment has been collected and several databases

compiled before drug treatment cancer cell multi-omics data with drug sen-

sitivity (IC50, AUC) or time-series transcriptomic data after drug treatment.

However, analyzing transcriptome data upon drug treatment is challenging

since more than 20,000 genes interact in complex ways. In addition, due to

the difficulty of both time-series analysis and multi-omics integration, cur-

rent methods can hardly perform analysis of databases with different data-

characteristics. One effective way is to interpret transcriptome data in terms
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of well-characterized biological pathways. Another way is to leverage state-of-

the-art methods for multi-omics data integration.

In this study, I developed Drug Response analysis Integrating Multi-omics

and time-series data (DRIM), an integrative multi-omics and time-series data

analysis framework that identifies perturbed sub-pathways and regulation mech-

anisms upon drug treatment. The system takes drug name and cell line identifi-

cation numbers or user’s drug control/treat time-series gene expression data as

input. Then, analysis of multi-omics data upon drug treatment is performed

in two perspectives. For the multi-omics perspective analysis, IC50-related

multi-omics potential mediator genes are determined by embedding multi-

omics data to gene-centric vector space using a tensor decomposition method

and an autoencoder deep learning model. Then, perturbed pathway analysis of

potential mediator genes is performed. For the time-series perspective analysis,

time-varying perturbed sub-pathways upon drug treatment are constructed.

Additionally, a network involving transcription factors (TFs), multi-omics po-

tential mediator genes, and perturbed sub-pathways is constructed and paths

to perturbed pathways from TFs are determined by an influence maximization

method.

To demonstrate the utility of my system, I provide analysis results of sub-

pathway regulatory mechanisms in breast cancer cell lines of different drug

sensitivity. DRIM is available at http://biohealth.snu.ac.kr/software/DRIM/.

3.1 Computational Problem & Evaluation criterion

This chapter describes the method for solving the drug response prediction

problem. The input data is gene-centric multi-omics data of samples including

mutation, gene expression, copy number variation, DNA methylation, and

drug-treated time-series gene expression data measured at different doses and

time points. The computational problem is to predict the gene interaction
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relationships representing cell line-specific drug response. Challenges of this

problem are (1) the multi-omics relationship of 20,000 genes representing drug

response states is too complex, (2) determining gene-gene interactions from

time-series data is complex. To evaluate the proposed method, I investigated

whether mediator genes are associated with drug response and whether distinct

drug response pathways exist for each cell line.

3.2 Related works

The variability in drug responses among cells is a major challenge in can-

cer drug therapy, thus personalized drug response research is much needed

(Sweeney, 1983). With the recent advances in instrument technologies, drug

response analysis at the molecular level has become possible, thus there is

an opportunity to investigate relationship between drug response phenotypes

and corresponding molecular data, e.g., multi-omics data upon drug treatment.

Large-scale drug-response genomics data help identify molecular markers re-

lated with therapeutic response (Garnett et al., 2012). Furthermore, more than

100 FDA-approved drugs have been developed from rapidly growing pharma-

cogenomics studies. This shows that pharmacogenomics data could be used for

drug development at various stages, from drug targets to patient therapeutics.

Moreover, genomics data of the patient can be regarded as a predictive factor

for drug response. It can be thought of as an early response signal before the

phenotypic change of cells by drug (Surendiran et al., 2008).

Current pharmacogenomics data analysis can be extended in two direc-

tions to broaden the understanding of drug response. The first direction is

to perform a pathway-level analysis. Analyzing drug responses at the indi-

vidual gene level is difficult to explain biological variability and also difficult

to interpret gene-drug associations (Wang et al., 2019). Thus, focus of phar-

macogenomics research is changing to investigate multiple gene products at
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the biological pathway level (Weinshilboum and Wang, 2004). A recent study

shows that analysis of transcriptome data can be effectively done at the path-

way level, which facilitates clear biological interpretation (Lim et al., 2020).

The second direction is to perform multi-omics level analysis. Recently, preci-

sion medicine studies have been conducted at the multi-omics level, which is

called “pharmaco-omics” beyond pharmacogenomics by integrating genomics,

proteomics, epigenomics, and metabolomics data (Adam and Aliferis, 2019;

Ginsburg et al., 2019). Many studies have shown that multi-omics integration

helps unravel complex biological mechanisms (Subramanian et al., 2020). Inte-

grative analysis of multi-omics data can help understand cell line-specific gene

regulation mechanisms for pathway activation (Kim et al., 2016; Oh et al.,

2020b) and it can be used as a signature for drug response sub-pathway iden-

tification (Xu et al., 2019). Single omics analysis can detect only a smaller sub-

set, but multi-omics analysis can detect more comprehensive pathways that

respond to chemical exposure (Canzler et al., 2020).

There are several pharmacogenomics databases such as Genomics of Drug

Sensitivity in Cancer (GDSC) (Iorio et al., 2016), Cancer Cell Line Ency-

clopedia (CCLE) (Barretina et al., 2012), Patient-Derived Xenograft (PDX)

mice models (Gao et al., 2015) and NCI-60 Human Tumor Cell Lines Screen

(Abaan et al., 2013). These databases can be used for cell line-specific drug

sensitivity analysis with multi-omics signature at the molecular level. In ad-

dition, data from after drug treatment time-series experiments can be used to

capture time-varying cell line-specific drug response as signature of cell death,

proliferation and drug resistance. The Library of Integrated Network-based

Cellular Signatures (LINCS) L-1000 (Subramanian et al., 2017) project mea-

sures cell viability upon genetic and chemical perturbations by 978 landmark

genes. Another database compiled time-series transcriptome data using the

NCI-60 cell line upon anti-cancer drug treatment. (Monks et al., 2018).
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There are several databases that enable computational pharmacogenomics

study. GDSC measured the response of 988 cell-lines to 518 drug-compounds

(Iorio et al., 2016). It provides mutation, copy number variation, DNA methy-

lation, and gene expression data of cell lines before drug treatment. CCLE

(Barretina et al., 2012) measured genomics profiles and response to 24 anti-

cancer drugs in 947 cell lines. A recent study (Ghandi et al., 2019) performed

RNA sequencing (RNA-seq), whole-exome sequencing (WES), whole-genome

sequencing (WGS), reverse-phase protein array (RPPA), reduced represen-

tation bisulfite sequencing (RRBS), microRNA expression profiling, histone

modification profiling, metabolites profiling (Li et al., 2019), and 1,448 drugs

response (Corsello et al., 2020) for CCLE cell lines. NCI-60 cell lines are the

most widely studied cell lines in human cancer research. CellMiner (Reinhold

et al., 2012) is a website that provides 20,503 chemical compounds response

of NCI-60 cells and also genomics data before drug treatment as mutation,

DNA methylation, microRNA expression, gene expression, and protein data.

The NCI Transcriptional Pharmacodynamics Workbench (NCI TPW) (Monks

et al., 2018) provides time-series pharmacogenomics data and a web page that

allows data exploration. They measured gene-expression changes the NCI-60

cell line after drug exposure 2h, 6h, and 24h to 15 anticancer drugs. NCI-

DREAM community (Bansal et al., 2014) measured gene-expression changes

the OCI-LY3 cell line after 14 anticancer drug treatment 6h, 12h, and 24h to

predict the activity of pairs of compounds.

By utilizing pharmacogenomics data in various databases, a number of

studies have been performed to analyze pharmacogenomics data in terms of

IC50 prediction, drug response gene/pathway identification. Table 3.1 summa-

rizes pharmacogenomics data analysis methods. Multi-Omics Late Integration

(MOLI) (Sharifi-Noghabi et al., 2019) is an end-to-end deep neural network-

based drug response prediction method. MOLI takes mutation, copy number,
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Table 3.1: Pharmacogenomics data analysis methods, their input, output, and

algorithms.

Method Input Output Algorithm

MOLI Multi-omics data Drug response (IC50) Deep learning

DSPLMF
Multi-omics data,

Chemical structures

Drug response (IC50)
Logistic Matrix

Factorization

CancerDAP Multi-omics data
Sub-pathway

signatures

Random forest,

Logistic regression

DryNetMC
Drug-treated time-series

gene expression data

Clinically

relevant genes

Differential

network analysis

and gene expression as input, and predicts drug response using each omics

type-specific encoder. Drug Sensitivity Prediction using a novel regularization

approach in Logistic Matrix Factorization (DSPLMF) (Emdadi and Eslahchi,

2020) is a drug response prediction method based on recommender systems.

DSPLMF takes cell line similarity matrix consisted of gene, copy number,

mutation, and IC50 and drug similarity matrix as input, and predict drug

response using matrix factorization and nearest neighbor algorithm. Cancer-

DAP (Xu et al., 2019) is a pipeline that integrates gene expression, copy

number variation, and DNA methylation to identify sub-pathway signature

of anticancer drug response. The user can browse drug active sub-pathway

using CancerDAP webpage. Differential regulatory Network-based Modeling

and Characterization (DryNetMC) (Zhang et al., 2019) is a network-based

algorithm to detect key cancer resistance genes based on time-series RNA-seq

data. DryNetMC uses time-series RNA-seq data after drug treatment as in-

put. From the data, it constructs drug-sensitive network and drug-resistant
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network utilizing ordinary differential equations and extracts differential net-

work. Using differential network, a node importance is measured by topology,

entropy, and gene expression changes to prioritize genes of clinical relevance.

Lv et al (Lv et al., 2018), performed an analysis of differentially expressed

genes on hepatocellular carcinoma (HCC) patients for drug discovery from

gene expression data. They divided HCC patients into two groups: high/low-

PKM2 to investigate the effect of pyruvate kinase isozymes M2 (PKM2) gene

expression on HCC patients in terms of metabolic changes and prognosis.

The study identified metabolic genes related to poor HCC patient survival

and screened drugs that target metabolic enzymes associated with poor sur-

vival. Some of the screened drugs have been used in antitumor clinical studies.

Another study proposed a tensor decomposition-based drug discovery method

for neurological disorder from gene expression data (Taguchi and Turki, 2019).

They selected genes through tensor decomposition-based feature extraction us-

ing mouse Alzheimer’s single-cell RNA-seq data. These genes are significantly

overlapped with the target genes of Alzheimer’s disease drugs. Recently, a

deep learning-based generative model (Méndez-Lucio et al., 2020) proposed to

design active-like molecules from gene expression signatures. The generative

model takes the desired gene expression profile induced by drug-treatment or

gene knock-out experiment as input. The study generates a molecular repre-

sentation that is likely to have caused a change in gene expression.

3.3 Motivation

To utilize rapidly accumulating drug response omics data, many computational

methods for drug response prediction have been developed. Machine learn-

ing methods are often used to process high-dimensional genomics data, such

as matrix-factorization models (Wang et al., 2017; Brouwer and Lió, 2017),

network-based models (Zhang et al., 2015, 2018) and deep learning models

42



Figure 3.1: Phenotypic change of cell over time by drug. DRIM makes it pos-

sible to interpret drug response at molecular level by investigating perturbed

sub-pathways.

(Sharifi-Noghabi et al., 2019; Baptista et al., 2020). Moreover, analysis meth-

ods for time series omics data have been developed (Jo et al., 2016; Ahn et al.,

2019; Kim et al., 2019; Kang et al., 2019). However, utilizing these tools for the

analysis of pharmacogenomics databases requires expert-level bioinformatics

skill.

Thus, a web-based system called Drug Response analysis Integrating Multi-

omics and time-series data (DRIM), was developed and presented in this study

by integrating condition-specific multi-omics data to investigate temporal drug

response at the molecular level. The condition of the sample can be defined as a

combination of three variables that are cell-line type, drug type, and drug dose.

DRIM aims to identify perturbed sub-pathways and regulatory mechanisms
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upon drug treatment using an integrative analysis framework on both multi-

omics and time-series data. By simply taking drug name and cell lines or user’s

drug control/treat time-series gene expression data as input, DRIM performs

the analysis in two perspectives. First, IC50-related multi-omics potential me-

diator genes are chosen by embedding multi-omics data into gene-centric vec-

tor space using either a tensor decomposition or an autoencoder deep learning

model. The tensor decomposition does not require pre-training to determine

relationship among different omics components. Feature space from tensor de-

composition is linear combination of input features, thus it is easy to interpret

how the feature space combines input features. On the other hand, the au-

toencoder can learn non-linear relationship of multi-omics data. Autoencoder

requires pre-training but it can generate a feature space dynamically for new

incoming multi-omics data. In terms of computation time, tensor decompo-

sition is faster that the autoencoder. Then, the potential mediator genes are

extended to the identification of perturbed pathways upon drug treatment

over time. This time-series analysis construct a network containing transcrip-

tion factors (TFs), multi-omics mediator genes, and perturbed sub-pathways

by an influence maximization based method.

To demonstrate the utility of my system, I provide analysis results of sub-

pathway regulatory mechanisms in breast cancer cell lines of different breast

cancer drug sensitivity.

3.4 Methods

The system workflow is illustrated in Figure 3.2. In Step 1, The user selects a

drug and cell lines to be analyzed for perturbed pathway analysis or uploads

their drug control/treat time-series gene expression data. In Step 2, through

time-series gene expression data analysis after drug treatment, perturbed sub-

pathways are identified. In Step 3, multi-omics potential mediator genes are
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selected by multi-omics integration methods. In Step 4, a time-bounded net-

work is constructed and the most regulatory path is identified by influence

maximization. In Step 5, the system visualizes networks involving TF, me-

diator genes, and perturbed sub-pathways that change over time upon drug

treatment. A detailed description of each step in the workflow is below.

3.4.1 Step 1: Input

The user selects a drug and cell lines to be analyzed for perturbed pathway

analysis or uploads their own drug control/treat time-series gene expression

data. The system uses two time-series gene expression after drug treatment

databases LINCS L-1000 and NCI-60. In both databases, there are control and

treated data for drugs per cell line. For each condition, the gene expression

was measured at each time point. These databases are available as GSE70138

and GSE116438 in GEO.

3.4.2 Step 2: Identifying perturbed sub-pathway with time-

series

Step 2 is for identifying perturbed sub-pathways of differentially expressed

genes that are defined using a time-series data analysis tool, TimeTP (Jo

et al., 2016). First, each pathway is represented as a directed graph from the

KEGG pathway database. For each node in the pathway, the system assigns a

time vector v⃗ of 1 (overexpressed) or -1 (underexpressed) and 0 (unchanged)

that are defined by comparing gene expression levels, treated vs. control. Limma

(Smyth, 2005; Ritchie et al., 2015) was used to define differentially expressed

genes (DEGs) at each time point with Robust Multiarray Average (RMA) nor-

malization (Kupfer et al., 2012). When there is no control sample, differential

expression genes are defined by comparing either to the expression level of the

previous time point or to the expression level of initial time point. Second, a
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Figure 3.2: The systematic workflow of DRIM. Step 1 is for drug and cell line

selection. Step 2 is for perturbed sub-pathway identification using expression

propagation. Step 3 is for selecting multi-omics potential mediator genes by

multi-omics embedding methods. Step 4 is for constructing time-bound network

and determining regulatory path by influence maximization. Step 5 is to visualize

the analysis result.
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perturbed sub-pathway is determined by choosing valid edges in the pathway

graph. Assume that there is an edge N1 → N2 between two genes, N1 and

N2, that have differential time vectors v⃗1 and v⃗2. To measure the direction

of propagation and the number of delayed time points between two vectors,

cross-correlation is defined as

(v⃗1 ⋆ v⃗2)(n) =
∞∑

t=−∞
v⃗1(t)v⃗2(t+ n) (3.1)

where v⃗(t) = 0 for t ≤ 0 or t > T (This happens at the preceding or trailing

entries of two vectors). Cross-correlation is maximized when the two vectors

overlap most with n delay.

d(v⃗1, v⃗2) =n (v⃗1 ⋆ v⃗2)(n) (3.2)

If d(v⃗1, v⃗2) is negative, it means that the propagation direction is opposite to

the given direction. The opposite edge is considered as invalid and excluded

from the perturbed sub-pathway. When delay n is larger than a threshold

value, the edge is filtered out. After choosing valid edges, a sub-graph that

has more than two valid edges is determined as a perturbed sub-pathway.

P-value of a perturbed sub-pathway is determined by permutation test. The

null distribution is generated by randomly re-assigning differential expression

vector for each gene in the sub-pathways. A sum of cross-correlations of edges

is used as a pathway-level statistics and p-value for a perturbed sub-pathway

is calculated from the null distribution.

3.4.3 Step 3: Embedding multi-omics for selecting potential

mediator genes

Step 3 determines potential mediator genes related to drug sensitivity from

the multi-omics regulation perspective. The system integrates four multi-omics

data such as gene-expression, copy number variation, DNA methylation, and
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Figure 3.3: Multi-omics potential mediator gene selection. (A) multi-omics in-

tegration by tensor decomposition. (B) multi-omics integration by autoencoder.

(C) IC50 related feature selection using Lasso regression with embedded feature

matrix. (D) gene selection of tensor decomposition from selected features. (E) is

gene selection of autoencoder from selected features.
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mutation from the CCLE database. Each omics data processed to a gene-

centric (cell line×gene) matrix to discover potential mediator genes from the

perspective of multi-omics regulation. The gene expression and copy number

variation values were normalized by min-max normalization. The mutation

data was binarized to 1 if mutations exist in the gene or 0 otherwise. To process

methylation data, methylation levels of probes located within the transcription

start site and 1KB upstream of promoter regions were averaged per gene. The

IC50 value measured for each cell line is used as the drug response phenotype.

The system uses two machine learning algorithms, a tensor decomposition

method and an autoencoder method, to embed high dimensional multi-omics

data to low dimensional feature space. The embedding of the multi-omics

data is to create a “gene-centric” feature space, which means that regulation

information, such as copy number variation, DNA methylation, and mutation,

is tied to a gene while embedding multi-omics data.

Figure 3.3.(A) and 3.3.(B) illustrate the process of embedding gene-centric

multi-omics data with two algorithms. For tensor decomposition, I used the

PARAFAC model that decomposes a tensor into three two-dimensional matri-

ces (Rabanser et al., 2017). As shown in Figure 3.3.(A), tensor T with elements

xijk composed of cell line×gene×omics matrix and is factorized three matrix

Cg,Cc and Co with gif , cjf and okf . Cg, Cc and Co are defined as gene, cell line

and omics components, respectively. f = 1, ...., R, R is the number of features.

xijk =

R∑
f=1

gifcjfokf + eijk (3.3)

I used Cc matrix that embeds cell line-specific multi-omics relationship.

Figure 3.3.(B) describes the process of autoencoder embedding that is

unsupervised artificial neural network to learn efficient encoded representa-

tion of data (Kramer, 1991). I constructed a late-integration autoencoder

that encodes gene-centric multi-omics data. An input vector is represented
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as x = (x1, ..., xn, xn+1, ..., x2n, x2n+1, ..., x3n, x3n+1, ..., x4n) that is a concate-

nation of four multi-omics values and n is the number of genes. An autoencoder

is to reconstruct x′ as output for an input vector x. For each layer l, I used

relu as activation function between input layer x and output layer y.

y = fl(x) = relu(Wlx+ bl) (3.4)

The autoencoder consists of four system components: an omics-specific en-

coder, an omics-integration encoder, an omics-integration decoder, and an

omics-specific decoder. In the omics-specific encoder, features are learned in-

dividually for each omics data. For each omics data of xi with i = (1, 2, 3, 4),

xi is encoded to hi.

hi = F k(x) = fk ◦ ... ◦ f1(x) (3.5)

Where k is the number of layer, fk ◦ fk−1(x) = fk(fk−1(x)) is the composi-

tion function of f . The omics-integration encoder learns relationship among

multi-omics data using concatenated omics features h = (h1, h2, h3, h4) and

encodes h to z in a similar way to Eq 3.5. z is an embedding vector that learns

the regulation of multi-omics relationship. The omics-integration decoder de-

codes z to h′. The omics-specific decoder decodes omics specific h′i to x′i and

reconstruct input x′ = (x′1, x
′
2, x

′
3, x

′
4) in the opposite way to the encoder. For

each encoder and decoder, I used 2 layers and 2048, 1024 hidden neurons in

the omics specific layers, 1024, 256 hidden neurons in the omics integration

layers. I used Mean Squared error (MSE) loss as a loss function with L2

regularization on the weight vector such as Eq 3.6.

Loss =
N∑
i=1

1

N
(xi − x′i)

2 + λ ∗
P∑
i=1

|wi| (3.6)

N is the number of data, P is the number of layer, wi is the weight of ith

layer. Figure 3.3.(C) illustrates the feature selection process, using Cc matrix

by tensor decomposition or z vector by autoencoder multi-omics embedding
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matrix. Least Absolute Shrinkage and Selection Operator (LASSO)-regression

model (Tibshirani, 1996) is constructed using IC50 as a target value. Features

with non-zero coefficients in regression are considered as features that are

significantly associated with the IC50 value.

Figure 3.3.(D) and 3.3.(E) depict the gene selection step related to asso-

ciated features from Figure 3.3.(C). In Figure 3.3.(D), tensor decomposition

method using Cg matrix is for gene selection. For each gene, the row-wise

argmax operation can be used to obtain the feature most related to the gene,

and if the feature is among the IC50 related features obtained in the previous

step (features whose coefficients are large in Lasso regression), the gene is se-

lected. The product of Cg(g, f) and coef(f) is defined as the omics score of

the gene, where coef(f) is the coefficient of f ′th feature in Lasso regression.

The autoencoder method uses decoder part for gene selection in Figure

3.3.(E). To evaluate features of a gene in terms of multi-omics, process selected

feature in the decoder is activated and propagated to the omics data layer.

Activation of the final layer is measured through the gene-wise summation and

the omics score is computed. The significant genes related with the features

are selected.

Selection of multi-omics potential mediator genes is done by combining

the two scores, a condition-specific omics score and a literature-based score

using BEST, a Biomedical Entity Search Tool (Lee et al., 2016). When a

drug name is submitted to the BEST system, genes that are known to be

related to the drug are selected in a ranked list in the order of relevance to

the drug. Combining the two scores is done by a method that was developed

for microRNA and target gene interaction (Oh et al., 2017).
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3.4.4 Step 4: Construct TF-regulatory time-bounded network

and identify regulatory path

Step 4 is for constructing TF-regulatory time-bounded network and determin-

ing regulatory paths. First, two networks are constructed to search upstream

regulators of perturbed sub-pathway. A Gene Regulatory Network (GRN) is

constructed from HTRIdb (Bovolenta et al., 2012) for interaction information

between TF and multi-omics potential mediator. A Protein-Interaction Net-

work (PIN) is instantiated from STRING (Szklarczyk et al., 2015) database

for gene-gene interaction. To combine GRN, PIN, and perturbed sub-pathways

as TF-regulatory time-bounded networks, I used the method described in Step

2.

Next, the most likely regulatory paths are identified by the influence max-

imization method that has been widely used to select marketing targets in

the social network to maximize the spread of influence (Kempe et al., 2003).

My system uses a labeled influence maximization algorithm (Li, 2011) to the

time bounded network to identify most influential regulatory path from TF to

perturbed sub-pathway (Jo et al., 2016).

3.4.5 Step 5: Analysis result on the web

The system provides analysis results on the web from two perspectives: multi-

omics data before drug treatment and time-series gene expression data after

drug treatment.

Multi-omics analysis result before drug treatment

In this part, system provides analysis results of multi-omics data before drug

treatment. As an example, in Figure 3.4.(A), there are tables representing cell

line IC50, multi-omics potential mediator genes related to IC50 value, and

perturbed pathways that are enriched by potential mediator genes. In Figure
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3.4.(B), when the user clicks on the pathway in the pathway table, a KEGG

pathway plot is created. Figure 3.4.(C) is GO enrichment analysis plot of

potential mediator genes to show the biological functions of the multi-omics

potential mediator gene set in relation to drug sensitivity.

Time-series gene expression analysis result after drug treatment

This part provides time-series gene expression data after drug treatment anal-

ysis results with perturbed sub-pathways. As an example, in Figure 3.5.(A),

user can select cell line and perturbed sub-pathway to explore. When the user

select a cell line, a perturbed sub-pathway table (Figure 3.5.(B)) is generated

with p-value. Figure 3.5.(C) is a TF-pathway network in time clock. When

user clicks the gene node, a popup window appears to display multi-omics

measurement of gene and expression plot of gene over time. Furthermore, the

user can search genes in the network. The user can control the network size by

choosing a cut-off value for DEGs to identify perturbed pathway. If the cutoff

is low, the number of nodes edges increases, which may cause false positive

problems. In the opposite case, there may be a false negative problem. In ei-

ther case, predicted perturbed pathways are computationally predicted, thus

the user may need to further investigate perturbed pathways.

3.5 Case study: Comparative analysis of breast can-

cer cell lines that have different sensitivity with

lapatinib

To demonstrate the usefulness of DRIM, I conducted an analysis on breast

cancer cell lines in response to lapatinib administration. The lapatinib is a

dual inhibitor on both targets epidermal growth factor receptor (EGFR) and

human epidermal growth factor receptor 2 (HER2) tyrosine kinases (Med-
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Table 3.2: Five breast cancer cell lines that are available multi-omics data before

drug treatment with lapatinib sensitivity and time-series gene expression data

after drug treatment.

Cell Line Molecular Sub-subtype IC50(µM)

BT-549 Basal B 2.02

T-47D Luminal 2.90

MCF7 Luminal 3.04

MDA-MB-468 Basal A 3.77

MDA-MB-231 Basal B 6.50

ina and Goodin, 2008). It was approved by US Food and Drug Administration

(FDA) in combination therapy for HER2-positive/overexpressed breast cancer

patients. I chose five representative breast cancer cell lines that have distinct

sensitivity/resistance on lapatinib (Table 3.2). These cell lines are all avail-

able on both multi-omics and time-series data to fully utilize the nature of

DRIM.

3.5.1 Multi-omics analysis result before drug treatment

For multi-omics analysis for before drug treatment cells, DRIM selected IC50-

related multi-omics potential mediator gene sets that are obtained by multi-

omics integration analysis as shown in Figure 3.4. I carefully examined the

set of candidate multi-omics potential mediator genes predictive of lapatinib

sensitivity.

The top 15 multi-omics potential mediator genes lapatinib are shown in

Table 3.3 sorted by their relevance score with respect to lapatinib. Among

the genes, ERBB3 (HER3) was previously known for its critical role in HER2-

amplified breast cancer cells (Lee-Hoeflich et al., 2008). It is strongly associated
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Table 3.3: Top 15 multi-omics potential mediator genes that related to

lapatinib sensitivity.

ERBB3 CDAN1 CASP8 CNTN4 NF2

VEGFA ABCG2 TP53 DCTN6 CBL

PGR ESR1 MAP2K7 CD274 E2F1

with lapatinib sensitivity in coexpression with neuregulin-1 (NRG1) (Wilson

et al., 2011). Genetic perturbations on other genes such as ABCG2, TP53, and

HSF1 were also well known for lapatinib resistance (Dai et al., 2008; Rahko

et al., 2003; Yallowitz et al., 2018).

3.5.2 Time-series gene expression analysis after drug treat-

ment

For the temporal pharmacogenomic analysis, I investigated cell line-specific

perturbed sub-pathways that may be related to different lapatinib response.

The lapatinib mainly targets PI3K signaling pathway, which plays a critical

role in cell growth, survival, and proliferation (Fruman et al., 2017). Conceiv-

ably, aberrant activation of PI3K signaling is known to confer resistance to

drugs targeting various receptor tyrosine kinases (Eichhorn et al., 2008; Wang

et al., 2011). As expected, I collectively observed a significant time-course

perturbation of PI3K signaling in each of the five cell lines in Table 3.4.

I further examined in detail if there are differential sub-pathway-level reg-

ulations among cell lines that mediate the response to the drug. Specifically,

I asked whether each cell line harbors a distinct time-course regulatory path

that governs the expression of a shared protein at the terminus of a pathway.

To systematically identify such examples, I seeked for the regulatory paths

with shared terminator protein for at least two cell lines using the “overview”

network generated by DRIM. To simplify the analysis, I defined the terminator
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Table 3.4: The p-value of PI3K-Akt signaling pathway in each cell line.

Cell Line P-value

BT-549 1.6e-05

T-47D 6.07e-03

MCF7 7.11e-04

MDA-MB-468 4.94e-05

MDA-MB-231 1.08e-03

proteins as the nodes without outgoing edges in the network. Moreover, for

biological interpretability, I only considered the paths starting from the tran-

scription factors, and also enforced the paths to contain at least one multi-

omics mediator. Different cell lines responded to lapatinib, accompanying

distinct molecular perturbations, and shared the same terminal protein at the

end of the paths (Figure 3.6).

Interestingly, I observed that many proteins involved in PI3K signaling

pathway were regulated by different signaling pathways in a cell line-specific

manner. For example, vascular endothelial growth factor A (VEGFA), a well-

known effector molecule induced by PI3K signaling pathway (Karar and Maity,

2011), was shown to be activated through different signaling cascades, as shown

in Figure 3.6.(A). In MDA-MB-468, VEGFA seemed to be induced by aryl

hydrocarbon receptor (AhR) and aryl hydrocarbon receptor nuclear translo-

cator (ARNT) signaling, presumably by the increased level of AhR/ARNT

heterodimer as shown in Figure 3.6.(A). In BT-549 and T-47D cell lines, acti-

vation of JNK and NF-κB signaling were shown to be associated with increased

level of VEGFA, respectively. Intriguingly, the time-bounded network allows

the interpretation of the temporal difference of VEGFA induction between

lapatinib-treated BT-549 and T-47D cell lines, as it can be deduced that the
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Figure 3.6: Differentially perturbed sub-pathway networks. (A) Regulatory

path sharing VEGFA in BT-549, T-47D, and MDA-MB-468. (B) Regulatory

path sharing CCND3, BCL2L1 in MDA-MB-231, T-47D. (C) Regulatory path

sharing SHC1 in MDA-MB-231, MCF7.

59



earlier response of T-47D was due to the more rapid induction of NF-κB than

that of FOS in BT-549.

Bcl-2-like protein 1 (BCL2L1) and cyclin D3 (CCND3), overexpressed in

human breast cancer, are anti-apoptotic proteins that delay cell death and

increases cell survival (Chi et al., 2015; Simonian et al., 1997). In Figure 3.6.(B)

T-47D and MDA-MB-231 cell line, BCL2L1 and CCND3 are downregulated

in response to lapatinib that leads to cell death. In T-47D, overexpression

of JUN throughout whole phases is a prominent characteristic. JUN is a well-

known transcription regulator that induces apoptotic cell death (Bossy-Wetzel

et al., 1997). It can be hypothesized that promoted cell death in response to

lapatinib is attributed to the increased c-Jun.

Another interesting characteristic is that expression of downstreammolecule

of JUN—transcription factor 7-like 2 (TCF7L2)—increases over time, while

T-47D cell line retained a high expression level of JUN. Since activity of c-Jun

is predominantly regulated through phosphorylation, expression of molecules

in regulatory relations should not be necessarily correlated. In MDA-MB-231,

downregulation of BCL2L1 and CCND3 is induced by signal transducer and

activator of transcription 2 (STAT2) (Furth, 2014), which involved in the JAK-

STAT signaling pathway that leads to oncogenesis (Thomas et al., 2015). Al-

though temporal relations between molecules are not clear, it still gives insight

into which pathways are involved in elevated cell death.

SHC-transforming protein 1 (SHC1), a core regulator of receptor tyro-

sine kinase signalling, is an essential gene for promoting immune suppres-

sion. Downstream effects of SHC1 perturbation lead to STAT3/STAT1-related

immune impairment. As previously mentioned, SHC1 can respond to EGF

stimulation using multiple paths of protein phosphorylations and interactions

(Zheng et al., 2013). There also exists PTPN12 as a turning point of SHC1

pTyr/Grb2 signaling that regulates cell invasion and morphogenesis. Reflect-
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ing the previous findings, my results on the perturbed sub-pathways can also

show multiple regulatory mechanisms that each of the breast cancer cell lines

can potentially utilize favorable/possible sub-paths on the temporal flow such

as in Figure 3.6.(C). This implies that upstream stimuli including EGF regu-

lation directs multiple paths of temporal information among breast cancer cell

lines (Zheng et al., 2013).

Even though all the five breast cancer cell lines were treated with the

same drug, lapatinib, targeting receptors at cell surface with extreme speci-

ficity, each cell line showed different sensitivity to the drug. This heterogeneity

may occur due to the complex crosstalk between various signaling pathways,

which makes the inactivation of single signaling pathway by drug treatment

not enough to cause systemic dysregulation of cellular machineries. Our sys-

tem allows us to dissect this phenomena by differentially characterizing the

fragments of regulatory cascades towards various effector molecules for each

individual cell line as shown in Figure 3.6. Furthermore, DRIM provides in-

tracellular mechanistic portraits of drug response for each of the cell lines,

it may allow us to devise novel combination therapeutic strategies targeting

additional molecules that cells depend on after the primary drug is applied.

3.6 Summary

For understanding the cell variability in drug response, personalized drug re-

sponse analysis is demanded. In spite of increasing drug response genomics

data, the interaction of high dimension multi-omics and time-series analy-

sis are challenges for pharmacogenomics analysis. Pathway level analysis and

multi-omics integration can be effective ways to interpret drug response data.

I developed an integrative multi-omics and time-series data analysis frame-

work DRIM that finds perturbed sub-pathways and regulatory mechanisms

in drug response. DRIM identifies the most likely regulatory path involving
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TF, multi-omics mediator gene, and perturbed sub-pathway for each cell line.

DRIM provides analysis results in two perspectives. As a demonstration, I con-

ducted an analysis of breast cancer cell lines that have different lapatinib

sensitivity. In the multi-omics perspective result, DRIM selected multi-omics

potential mediator genes that are related to lapatinib resistance in previ-

ous studies. In the temporal pharmacogenomic analysis result, I showed that

DRIM can be used to discover distinct temporal regulatory mechanisms gov-

erning the induction of several common downstream proteins across cell lines.

62



Chapter 4

Combinatorial modeling and
optimization using iterative RL
search for inferring
sample-specific regulatory
network

Understanding the cell state from the multi-omics data requires identifying

the global gene regulation network described by n-to-m relationships between

regulators and genes. In this study, I set the capacity of target genes for each

regulator and the edge weight that is the contribution value of the regulator

to the gene expression level from known regulator-gene interaction knowledge.

From the capacity and edge weight, I formulated an objective function to

measure the deviation between observed gene expression and estimated gene

expression from the network represented by the n-to-m relationship. This op-

timization problem is a combinatorial optimization problem of which search

space is 2n×m. For exploring the search space, I leveraged the reinforcement

learning (RL) framework to learn heuristics from data for complicated com-
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binatorial problems. However, current RL frameworks are hard to handle the

multi-omics relationship since the search space is too large. Thus, I proposed

the iterative search method computing gene step and regulator step. In the

gene-oriented step, the edges are added by selecting regulators using RL atten-

tion model. In the regulator-oriented step, the edges are removed by selecting

genes using stochastic selection.

4.1 Computational Problem & Evaluation criterion

This chapter describes the method for n-to-m relationships between regulators

and genes that estimate observed gene expression. The input data is miRNA,

TF, and gene expression data of a single sample with regulator capacity and

the value that edge changes the target gene expression level. The computa-

tional problem is to find the optimal network that estimates observed gene

expression from the network. Challenges of this problem are (1) it is necessary

to navigate a combinatorial search space of n-to-m relationships between the

regulators and genes, (2) local optimization of each gene cannot finds a reason-

able solution due to the constraint of regulator capacity. In order to evaluate

the proposed method, a quantitative comparison experiment was performed

on how accurately estimating gene expression and a qualitative comparison ex-

periment was performed whether the network detects biologically meaningful

relationships.

4.2 Related works

Biological processes, such as disease development and phenotype changes, are

associated with gene expression patterns determined by the complex relation-

ship between genetic molecules such as mutation, DNA methylation, miRNA,

and histone modification (Oh et al., 2020b). Recent technological developments
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have enabled scientists to measure different types of omics data representing

cell state and help understand the complex biological mechanisms (Subrama-

nian et al., 2020). In order to interpret cell state from the multi-omics data,

identification of global gene regulatory relationship helps to understand the

current state of the cell. However, constructing a condition-specific regulatory

network is to explore the search space of n-to-m relationships, which requires

solving a combinatorial optimization problem that is often NP-complete or

NP-hard. Traditional approaches rely on heuristics to solve combinatorial op-

timization problems using domain-specific expert knowledge that is inappro-

priate for other combinatorial problems.

With recent advances in deep neural networks, two approaches have been

proposed to handle combinatorial optimization problems. One is neural di-

rected acyclic graph (DAG) inference, (Zheng et al., 2018) convert combi-

natorial DAG inference problem to continuous optimization problem by us-

ing a continuous function that represents acyclicity constraint. Various neural

DAG inference methods were proposed and used on the different data domains

(Vowels et al., 2021). In addition, there is a study for constructing a gene reg-

ulation network from gene expression data using neural DAG inference. (Lee

et al., 2019). However, neural DAG inference methods are difficult to handle

prior knowledge such as TF target database and microRNA target database.

The other is reinforcement learning (RL) for learning heuristic, which can

be interpreted as policy, to solve combinatorial optimization problems (Bello

et al., 2016). Recent RL-based methods for combinatorial problems generate

reasonable solutions without handcrafted heuristics required expert domain

knowledge (Mazyavkina et al., 2020; Bengio et al., 2020).

In this study, I formulated a combinatorial optimization problem to model

a sample-specific regulator-gene network to determine the n-to-m relationship.

Finding an optimal subset of the prior target network is hard to solve because
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of the enormous search space. Thus I proposed an iterative search method

to determine the n-to-m relationship between regulators and genes that iter-

atively explores n-to-one gene-oriented relationship and one-to-m regulator-

oriented relationship.

4.3 Motivation

In order to determine the explicit n-to-m relationship between regulators and

genes, TF and miRNA were used as regulators that have been well studied its

regulatory mechanisms at the transcriptional level and the post-transcriptional

level (Chen and Rajewsky, 2007). I constructed a model of a regulator-gene

network by assuming that the sum of regulator influences determines the devi-

ation of gene expression. The regulator influence is determined by the deviation

of regulator expression and edge weight between a regulator and a gene. Each

regulator has the capacity of the number of target genes.

Figure 4.1 illustrates the example of modeling idea that G1 is targeted

by TF1,miR1, and miR2 and the sum of influences determines upper devi-

ation of G1 expression. In order to reduce the search space and determine

values for formulating an objective function, I utilized a regulator-gene reg-

ulatory network in the curated database that collects potential relationships

between regulators and target genes such as transcription factor binding sites

(TFBS) miRNA target database. I used RegNetwork (Liu et al., 2015) as a

prior network that collects 17 databases providing regulatory relationships be-

tween miRNA, TF and gene. Details of problem formulation and algorithm

are described in the method section.
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Figure 4.1: Illustration of modeling regulator-gene network. The red bar de-

notes an upper deviation of expression. The blue bar denotes a lower deviation

of expression. Influence I is computed by multiplying the deviation of the regu-

lator and δ that is the amount of expression change of gene per regulator. G1 is

targeted by TF1,miR1, and miR2 and its upper deviation is 11 that is sum of

three regulator influences.
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4.4 Methods

4.4.1 Formulating an objective function

In this section, an objective function is described to estimate gene regulatory

network and the frequently used notations in this section are represented in

Table 4.1.

I focused on constructing the regulator-gene network that estimates ob-

served gene expression deviation induced by the sum of regulator influences.

Let R is the set of regulators, XR is the deviation of regulator expression, G

is the set of genes, XG is the deviation of gene expression, I is the influence

matrix, and Gprior is the prior network. The deviation value is defined by the

difference between the expression value and the mean value of expression.

The influence matrix is estimated by multiplication of the deviation of

regulator expression the average rate of change between a regulator and a gene

from expression profiles. For given R, XR, G, XG, I, and Gprior, an objective

function F (G) is formulated based on Eq (4.1), Eq (4.2). A function f(G)

denotes an error term that is the sum of absolute error between observed gene

expression and estimated gene expression from G, and h(G) denotes a penalty

term that is the regulator capacity constraint calculated by KL-divergence of

regulator degree distribution between prior network and estimated network.

The objective function F (G) consists of the error term f(G) and the penalty

term h(G).

f(G) =
1

|G|
∑
g∈G

|xg −
∑

r∈N−(g)

Ir,g|)

h(G) =
∑
r∈R

Pprior(r) log
Pprior(r)

P(r)

P(r) =
|N+(r)|

|E|
,Pprior(r) =

|N+
prior(r)|
|Eprior|

(4.1)
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Table 4.1: Frequently used notations.

Symbol Description

G Set of genes {g1,g2, ...,g|G|}

R Set of regulators {r1,r2, ...,r|R|}

XG Set of deviation of gene expressions {xg1
, xg2

, ..., xg|G|}

XR Set of deviation of regulator expressions {xr1
, xr2

, ..., xr|R|}

∆ Amount of gene expression change of per regulator expression

I Amount of gene expression change by regulator

s A problem instance for RLRegSearchPerGene

θ Model parameters of RLRegSearchPerGene.

π Set of regulators generated by RLRegSearchPerGene.

L(π | s) Error of the regulator set π, given s.

p(π | s) A stochastic policy for selecting regulator set π, given s.

F (G) Fitness function value of graph G.

G = (V , E) An unweighted directed graph

N+(v) Set of out-neighborhood of a node v (departing in v)

N−(v) Set of in-neighborhood of a node v (arriving in v)

L(g | G) Error of gene g, given G
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min F (G)

F (G) = f(G) + λh(G) (λ > 0).
(4.2)

Finding an optimal solution of the objective function F (G) means finding a

edge set between regulators and gene, which is challenging since the search

space is combinatorial. In addition, gene-wise local minimization cannot find

a reasonable solution. Thus, I proposed an iterative search algorithm to find

a sample-specific regulatory network minimizing (4.2).

4.4.2 Overview of an iterative search method

In order to minimize the objective function F (G), it is necessary to explore the

search space of the n-to-m relationship between regulators and target genes.

However, since the search space of the problem is O(2|R|×|G|), an exhaustive

search cannot solve the problem. Thus, I proposed a two-step iterative edge

search framework to find an appropriate solution within an acceptable time.

Figure 4.2 and algorithm 1 shows the overview of the proposed search algo-

rithm.

The first step is the gene-oriented step (G-step) to explore n-to-one rela-

tionships between regulators and each target gene. In G-step, edges are added

to the network G using RL-based heuristics to reduce the value of f(G) that

is the absolute error between observed expression and estimated expression.

The second step is the regulator-oriented step (R-step) to explore one-to-m

relationships between each regulator and target genes. In R-step, edges are

removed from the network G using stochastic selection to reduce the value of

h(G) that is the penalty term of capacity constraint. A detailed explanation

of each step is described in the following section.
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Figure 4.2: The overview of proposed search method that iteratively compute

G-step and R-step. In G-step, exploring n-to-one relationship between regula-

tors and target gene is performed by RLRegSearchPerGene for g1, ..., g5.

In R-step, exploring one-to-m relationship between regulator and target genes is

performed. RemoveEdges samples TF2,g2 and TF4,g1 that excess the capac-

ity and removes. GeneInit initializes edges targeting g1,g2 to re-find regulators

in next G-step with masking TF2 − g2, TF4 − g1 edges that are not used for

next G-step.

71



Algorithm 1 Iterative search methods

1: Input: R, XR,G, XG, a pre-trained RL model parameter θ, a prior graph

Gprior.

2: Output: Regulatory network G

3: G = (V , E), V = G ∪ R, E = ∅

4: G-step : Explore n-to-one gene-oriented relationship.

5: for g ∈ G do

6: G = RLRegSearchPerGene(R, g, Gprior, θ, G)

7: end for

8:

9: while not stop condition do

10: Gcand = G

11: R-step : Explore one-to-m regulator-oriented relationship.

12: E− = RemoveEdges(Gprior, Gcand, R)

13: // Remove edges exceeding the degree constraint.

14: Ginit = GeneInit(E−,Gcand)

15: // Initialize edges targeting gene set in E−.

16: G-step : Explore n-to-one gene-oriented relationship.

17: for g ∈ Ginit do

18: Gcand = RLRegSearchPerGene(R, g, Gprior, θ, Gcand)

19: end for

20: //Re-compute G-step for Ginit without E
−.

21: if f(Gcand) < f(G) then

22: G = Gcand

23: end if

24: end while

25: return best network G
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4.4.3 G-step for exploring n-to-one gene-oriented relationship

Problem formulation of gene-oriented relationship

In this section, I describe G-step to explore the n-to-one relationship for min-

imizing f(G). Given a problem instance s determined by states of g, R, XR,

xg, and Gprior, the G-step finds regulator set π, which minimizes a cost func-

tion L(π | s) that measures the difference between the deviation of observed

expression of g and estimated expression determined by the sum of influences

of regulators targeting g. The L(π | s) is defined as Eq (4.3).

L(π | s) = |xg −
∑
r∈π

Ir,g| (4.3)

To minimize (4.3), I used RL model inspired by previous work (Kool

et al., 2018) that improved optimization performance of TSP using multi-head

attention-based model. I leveraged the model architecture of the previous work

(Kool et al., 2018) for learning an optimal stochastic policy determining the

optimal regulator set for the given problem instance s. The policy can be

factorized with parameters θ as Eq (4.4).

pθ(π | s) =
K∏
t=1

pθ(πt | s,π1:t−1) (4.4)

A encoder generates regulator embeddings from the influences of regu-

lators. A decoder generates the sequence of regulators π. The input of the

decoder is regulator embeddings and current state representation that is the

difference of observed gene expression and currently estimated gene expression

at each time step. Figure 4.3 describes the model architecture and details of

the model are described in the following section.

Encoder

A transformer-based encoder without positional encoding is used as an encoder

architecture (Vaswani et al., 2017). The encoder takes regulator influences as
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Figure 4.3: Attention-based encoder and decoder for regulator selection. The

encoder takes regulator influences Ii as input to generate regulator embeddings

h
(N)
i using N times multi-head attention and feed-forward network. The regu-

lator set embedding h
(N)
R is computed by the average of regulator embeddings

h
(N)
i . The decoder takes the context node embedding and regulator embedding

h
(N)
i to generate the selection probability of regulator among the possible regula-

tors for each step. The context node embedding is defined by concatenating h
(N)
R

and Ct that is the cost in current t step. In the example, from the initial step

C0 = xg, decoder randomly selects the first regulator with selection probability

and the cost change to C1. If the step t reaches to the K that is the maximum

number of selections (K=2 in this example), the regulator set π = {1, 3} is

determined. The cost value L(π | s) is the absolute value of C2.
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input, Iri,g = ∆ri,g * xri , that is the amount of expression changes of g when

regulator ri is selected. From the one-dimensional regulator influences vector,

the encoder computes regulator embeddings using N multi-head attention

(MHA) layers and feed-forward (FF) layers with skip-connection and batch

normalization (BN), which is a similar architecture to previous work (Kool

et al., 2018). Regulator embeddings hli generated by layer l ∈ {1, .., N}, hli is

computed as Eq (4.7) and definition of MHA layer is descirebed as Eq (4.5)

and Eq (4.6).

qi = WQhi, ki = WKhi, vi = W V hi

uij =
qT
i kj√
dk

, aij =
euij∑
j′ e

uij′
, h′

i =
∑
j

aijvj

(4.5)

Eq (4.5) represents the attention mechanism. With dimensions dk and dv,

the key ki ∈ Rd
k, value vi ∈ Rd

v, and query qi ∈ Rd
k are computed by the

projection of hi for each regulator.WQ,WK , andW V are learning parameters.

The compatibility uij ∈ R of the query qi of regulator i with the key kj of

regulator j is computed as dot-product. The attention weights aij ∈ {0, 1}

is computed by softmax of compatibilities. The h′
i can be computed by the

convex combination of value vj .

MHAi(h1, ...,hn) =

M∑
m=1

WO
mh′

im (4.6)

The multi-head attention value of regulator i is a function of regulator em-

beddings h1, . . . ,hn as Eq (4.6) using h′
im that is the output vectors of each

attention with M = 8 times attention with different parameters and dk =

dv = dh
M = 16. Let h′

im the output vectors of each attention.

hi = BNl(h
(l−1)
i +MHAl

i(h
(l−1)
1 , ...,h(l−1)

n ))

hl
i = BNl(hi + FFl(hi))

(4.7)
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The regulator embedding hl
i in l-th layer can be computed with previous layer

embedding hl−1
i , the MHA layer, the FF layer with dimension dff = 512, the

rectified linear unit (ReLU) layer, and the BN layer.

Decoder

A decoder sequentially generates a regulator πt at each time step t ∈ {1, ..,K}

based on regulator embeddings and the previous selected regulators πt′ at the

time step t′ < t. The decoder uses a context embedding vector hN
c represent-

ing a current state. The context embedding hN
c is defined by concatenating

regulator set embedding h̄
N

and difference between observed gene expression

xg and currently estimated gene expression x̂g;(t−1) at the time step t like

(4.8).

hN
c =


[h̄

N
, xg − x̂g;(t−1)] t > 1

[h̄
N
, xg] t = 1.

(4.8)

The decoder generates pθ(πt | s,π1:t−1) that is the selection probabilities of

regulator at the time step t form the context embedding hN
c and regulator

embeddings hN
i . The decoder uses a multi-head attention layer similar to en-

coder but only computes a single query qc from the context embedding like

Eq (4.9).

qc = WQhN
c , ki = WKhN

i , vi = W V hN
i (4.9)

The compatibility ucj of the query can be computed by Eq (4.10) with clipping

to make the result within [−C,C](C = 10) using tanh. If a regulator was

selected in previous time step, it is masked (ucj = −∞).

ucj =


C · tanh(q

T
c kj√
dk

) if j ̸= πt′ , ∀t′ < t

−∞ otherwise

(4.10)
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The compatibility ucj can be interpreted as unnormalized log-probabilities.

The output probability p can be computed by softmax as Eq (4.11).

pi = pθ(πt = i|s,π1:t−1) =
eucj∑
j e

ucj
. (4.11)

REINFORCE with baseline

In the previous section, the attention-based encoder-decoder model is pre-

sented, which generates a regulator set π for a given instance s. The policy

gradient method is used to learn model parameter set θ of regulator selection

policy pθ(π|s). A loss function is defined as L(θ | s) = Epθ(π|s)[L(π)] that is

the expectation of the cost function L(π). I optimized L using gradient de-

scent with REINFORCE algorithm with baseline b(s) as Eq (4.12) (Williams,

1992).

∇L(θ | s) = Epθ(π|s)[(L(π)− b(s))∇logpθ(π|s)]. (4.12)

A baseline b(s) is used to reduce the variance of gradient and increases

learning speed. In this study, a deterministic greedy rollout of the policy pθBL

that is the best model parameter on during training is used as a baseline

policy (Kool et al., 2018). At the end of every epoch, parameters of baseline

policy θBL are updated to parameters of training policy if there is a significant

improvement according to a paired t-test, on separate evaluation instances. I

trained my model similar to (Kool et al., 2018), but added a simple greedy

selection policy πG that selects a regulator minimizing the cost at each step

to provide reasonable baseline in the initial training step.

Adam optimizer (Kingma and Ba, 2014) was used for optimization. Algo-

rithm 2 is the description of REINFORCE with baseline for model training.

The algorithm 3 describes G-step for given pre-trained model parameter

θ and a gene g, which is called RLRegSearchPerGene that finds the best
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Algorithm 2 REINFORCE with Baseline

1: Input number of epochs E, steps per epoch T , batch size B, significance

α

2: for epoch = 1, . . . , E do

3: for step = 1, . . . , T do

4: si = MakeInstance(xgi) ∀i ∈ {1, . . . , B}

5: πi = SampleRollout(si, pθ) ∀i ∈ {1, . . . , B}

6: πBL
i = GreedyRollout(si, pθBL) ∀i ∈ {1, . . . , B}

7: πG
i = GreedySelection(si) ∀i ∈ {1, . . . , B}

8: ∇L =
∑B

i=1 (L(πi)−min(L(πBL
i ), L(πG

i )))∇θlogpθ(πi)

9: θ = Adam(θ,∇L)

10: end for

11: if OneSidedPairedTTest(pθ, pθBL) < α then

12: θBL = θ

13: end if

14: end for

Algorithm 3 RLRegSearchPerGene

1: Input: set of regulators R, a gene g to find regulators, a prior network

Gprior, a pre-trained RL model parameter θ, a current network G

2: Output: Gene-centric regulator search network G

3: s = EncodeStateRL(I :,g, XR, xg, Gprior) // Encode input for RL

4: πi = SampleSolution(pθ(. | s)); i ∈ {1 to 5120} // Sampling regulator sets

5: πmin = argmin(L(πi | s)) // Choose best solution

6: E = E ∪ {(r,g) | r ∈ πmin }

7: return G = (V , E)
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regulator set π among the sampling results and adds edges to current network

G.

4.4.4 R-step for exploring one-to-m regulator-oriented rela-

tionship

In this section, I describe R-step to explore the one-to-m relationship for

minimizing h(G) by re-distributing the degree of regulators. In the R-step,

edges of which regulator exceeds the capacity constraint are randomly removed

from the current network G with entropy-based probability, which consists of

two steps RemoveEdges and GeneInit.

Algorithm 4 RemoveEdges

1: Input: Gprior, a current network G, R

2: Output: Removed edges E− that exceeds the regulator degree constraint.

3: for r in R do

4: P(r) = |N+(r)|
|E| ,Pprior(r) =

|N+
prior(r)|
|Eprior| , p = rand(0,1)

5: //Fraction of out-degree and random prob p

6: if P(r) > Pprior(r) and p > entropy(P(r),Pprior(r)) then

7: //Entropy-based selection of regulators that exceed capacity

8: g = a sample with softmax(f)g, f = {f(g | G) | g ∈ N+(r)}

9: //A sample g according to error among the target genes of r

10: (r,g) append to E−

11: end if

12: end for

13: E = E \ E− // Remove edges exceeding degree constraint.

14: return E−

The RemoveEdges determines the edges E− to remove from the current

G by stochastic process as algorithm 4. For each regulator r with exceeding

degree constraint, r is randomly sampled by probability based on the entropy
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between prior regulator degree and current regulator degree. For each sampled

r, a target gene g of r is also randomly selected among the current network

G by softmax probability of target gene error f(g | G) that is the absolute

error of a gene g in current network G.

Algorithm 5 GeneInit

1: Input: Removed edges E−, a current graph G

2: Output: A gene set Ginit for next G-step.

3: for r, g in E− do

4: E = E \ {(r∗,g) | r∗ ∈ N−(g) }

5: //Initialize the edges targeting g

6: masking (r, g) edge

7: //The masked edges are not used in next G-step.

8: g append to Ginit

9: end for

10: return Ginit

The GeneInit removes selected edges E− from the current G that is de-

termined by RemoveEdges. Then, it revmoes edges including genes involved

in E− to re-determine of regulators of genes with masking E− to exclude edges

in the next G-step. Details of GeneInit is described in algorithm 5.

4.5 Results

4.5.1 Cancer cell line data

A multi-omics dataset of breast cancer cell lines was used for experiments from

the Cancer Cell Line Encyclopedia (CCLE) (Barretina et al., 2012). There are

47 breast cancer cell lines in the CCLE database with miRNA, TF, and gene

expression data. There are 895 regulators (miRNAs and TFs) and 15,141 genes

for each cell line. For training the RL model in G-step, I used 35 cell lines for
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training and 6 cell lines for baseline update, and 6 cell lines for validation.

Since there is a limitation in training time and GPU memory, it is not easy

to use all regulators as encoder input. Therefore, for each gene, regulators

targeting the gene determined by the prior network were used as input to the

encoder to improve training time and GPU memory efficiency.

4.5.2 Hyperparameters

In order to determine K the maximum number of regulators for each gene,

I trained the regulator selection model and measured the average error for

different K ∈ {5, 10, 15, 20}. Table 4.2 shows the average error of estimated

Table 4.2: The experiment result of G-step for different hyperparameter K

Model
Average

error

The largest

regulator number

Average

regulator number

RL model K=5 0.190 5 2.711

RL model K=10 0.193 10 3.044

RL model K=15 0.194 14 3.232

RL model K=20 0.195 18 3.226

gene expression, the maximum number of selected regulators, and the average

number of selected regulators for each gene. The error slightly increases as K

increases, but it does not seem to be a significant difference. However, it seems

that the average number of selected regulators increases as K increases until

K=15. Thus I chose K=15 as the maximum number of regulators since there

is no significant difference between K=15 and K=20.

A weight value λ is an important hyper-parameter for finding an optimal

network. There is a trade-off that h(G) decreases as λ increases, but f(G)

increases. Thus, it is crucial to determine the appropriate λ to find a reasonable
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Figure 4.4: The value of error and penalty function for different λ

solution. To determine the λ, I measured the value of f(G) and h(G) for 10,000

iteration with different λ ∈ {0.01, 0.05, 0.1, 0.25}. Figure 4.4 shows the value of

f(G) and h(G) for different λ. I determined λ = 0.05 is a reasonable trade-off

between f(G) and h(G).

4.5.3 Quantitative evaluation

For the quantitative evaluation, I compared the performance of the iterative

RL method with Gurobi (Gurobi Optimization, LLC, 2021) and Genetic Algo-

rithm (GA), which are widely used to solve combinatorial optimization prob-

lems. Gurobi is a state-of-the-art commercial optimization solver that can

handle integer programming (IP). Gurobi IP solver was used to optimize the

objective function F (G). GA is a population-based meta-heuristics widely used

to solve various optimization problems. GA can be used to minimize objec-

tive function F (G). I used the Python geneticalgorithm2 package with default
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parameters for evaluation. The miRNA, TF, and gene expression data of the

MDA-MB-231 cell line were used for evaluation. Table 4.3 shows the objective

function value of each method for various number of genes in MDA-MB-231

cell line data.

Table 4.3: The quantitative evaluation results for different problem size.

Number of

genes

Number of

edges

Iterative RL Gurobi GA

Obj. Time Obj. Time Obj. Time

100 917 0.187 0.5h 0.175 2h 0.656 1h

300 2755 0.267 0.5h 0.258 2h 0.748 2h

500 4587 0.225 0.5h 0.217 2h 0.717 3.5h

1000 9871 0.198 0.5h 0.190 3h 0.723 8h

2000 18987 0.193 1h 0.205 6h 0.701 16h

3000 28929 0.193 1h 0.554 12h 0.724 24h

4000 39307 0.184 2h 0.181 24h - -

5000 49925 0.180 2h 0.190 24h - -

6000 60060 0.183 2h 0.679 24h - -

Gurobi showed the best performance for problems with less than 1000

genes. However, as the complexity of the problem increases, the iterative RL

method provided a more accurate gene expression estimation than Gurobi

and GA. The iterative RL method provided a promising solution with a rea-

sonable running time. The quantitative evaluation suggests that the iterative

RL method is more suitable for exploring search spaces of gene regulatory

networks than previous Gurobi and GA.

4.5.4 Qualitative evaluation

To demonstrate the biological usefulness of iterative RL network search method,

I analyzed network consists of cancer hallmark genes in breast cancer cell line.
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Figure 4.5: Breast cancer subtype-specific sub-network estimated by iterative

RL method. The thickness of the network edges is proportional to the frequency

of edge occurrences in the subtype. The bolded edges in the network mean

that the regulatory relationships have been experimentally verified in previous

studies.

The two breast cancer subtype samples were used for evaluation luminal that

is less aggressive breast cancer subtype and basal-B that is more aggressive

breast cancer subtype. For each cell line, the network is estimated by iterative

RL method and aggregated by subtypes.

Figure 4.5 shows subtype-specific sub-networks estimated by the itera-

tive RL method. It seems that some edges in each subtype-specific network

represent subtype-specific patterns. Several regulatory relationships in esti-

mated networks have been experimentally verified in previous studies. For

instance, Androgen receptor (AR) directly upregulates expression of SAM

pointed domain-containing Ets transcription factor (SPDEF) that promotes
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Figure 4.6: Breast cancer subtype-specific sub-network estimated by iterative

RL method and Gurobi. The bolded edges in the network mean that the regu-

latory relationships have been experimentally verified in previous studies.
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the proliferation and invasion of breast cancer cell lines (Cao et al., 2018). Sup-

pression of Tumorigenicity 14 (ST14) is a target gene of miR-27b, which in-

creases cancer progression by decreasing ST14 expression (Wang et al., 2009).

Vimentin (VIM) is known to be over-expressed in basal breast cancer cell

lines. There is an experimental result that the expression of VIM increased

when MYB was knocked down in breast cancer cells (Hugo et al., 2013). Zinc

finger E-box-binding homeobox 1 (ZEB1) is known as a repressor of Epithe-

lial cell adhesion molecule (EPCAM) in breast cancer (Vannier et al., 2013).

Follistatin-related protein 1 (FSTL1) downregulated by miR-9 and miR-206

leads to cell migration (Nowek et al., 2018; Rosenberg et al., 2006).

Figure 4.6 shows the subtype-specific network estimated with iterative RL

and the network estimated with Gurobi. Some edges estimated by iterative

RL and Gurobi seem to be different, and Gurobi cannot detect some experi-

mentally validated edges.

4.6 Summary

In this study, I proposed combinatorial modeling for the n-to-m regulator-gene

relationship from the multi-omics data. In order to navigate the search space, I

suggested a two-step iterative search method. For G-step, the attention-based

encoder-decoder model was used to determine the regulator set to minimize

gene expression’s absolute error. For R-step, the random selection of regulator

with entropy-based probability and the random selection of its target gene

with error-based probability were proposed to minimize the degree constraint

of regulators. G-step and R-step are iteratively computed until a terminate

condition to find a reasonable solution. In the network analysis from breast

cancer cell line data, iterative RL reproduced the previously known regulatory

relationships relevant to breast cancer subtypes. In summary, my method can

determine the promising n-to-m relationship within a reasonable time, which
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may generate a hypothesis for experimental validation relationships related to

sample-specific biological functions.
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Chapter 5

Conclusions

The integration of multi-omics data provides an opportunity for understand-

ing the cellular state by identifying relationships between omics. However,

the multi-omics data analysis is challenging computational task due to the

complexity of relationships between high-dimensional omics data. This the-

sis proposes three computational methods for determining condition-specific

relationships from multi-omics data incorporating external knowledge about

multi-omics relationships.

1. a literature knowledge guided miRNA-gene relationship prediction method

that focuses on the one-to-m explicit relationship between miRNA and

genes.

2. a method to predict drug response regulatory relationship using the one-

to-m implicit relationship between multiple regulators and gene.

3. a method to predict sample-specific regulatory network by exploring the

n-to-m explicit relationship between multiple regulators and genes.
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In the first study, a literature-guided miRNA target prediction method,

ContextMMIA, was proposed for analyzing two groups of miRNA expression

and gene expression data. ContextMMIA used miRNA target databases and

literature text mining knowledge as biological prior knowledge. ContextMMIA

computes omics score from expression profiles using the statistical difference

and negative correlation of miRNA-gene pair in target databases and computes

context score for measuring literature relevance between miRNA-gene and

data context. ContextMMIA was able to reproduce experimentally validated

miRNA-gene relationships.

In the second study, a drug response prediction method, DRIM, was pro-

posed for analyzing multi-omics data with drug sensitivity and drug-induced

time-series gene expression data. DRIM used literature knowledge of drug-

gene association, PPI-network, TF target database, and biological pathway as

gene-gene interaction knowledge. DRIM determines drug response mediator

genes by multi-omics integration using low dimensional embedding methods:

tensor decomposition and autoencoder. The upstream and downstream re-

lationships of mediator genes are determined by time-series gene expression

analysis with gene-gene interaction knowledge. DRIM identified the distinct

regulatory paths of PI3K pathway genes in the breast cancer cell line with

different lapatinib responses.

In the final study, a sample-specific n-to-m relationship prediction method

was proposed for analyzing miRNA, TF, and gene expression data. This study

used the TF target database and miRNA target database as biological prior

knowledge. This study addressed a combinatorial optimization problem to find

n-to-m relationships estimating observed gene expression. In order to estimate

an optimal network, an iterative search method was proposed that iteratively

adds and removes edges using RL-based and stochastic-based heuristics. The

proposed method constructed breast cancer subtype-specific networks that are
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estimating a more accurate gene expression than other methods for combinato-

rial optimzation and involving biologically meaningful edges relevant to breast

cancer subtypes.

In conclusion, my doctoral study proposes three computational approaches

to identify relationships between regulators and genes from multi-omics data

for the comprehensive investigation of cell state. These methods are expected

to contribute to the analysis and interpretation of large-scale multi-omics data

from various databases such as TCGA and CCLE, which help expand our

knowledge of how biological organisms function and respond to external stim-

ulation such as diseases, drugs, and environmental factors.
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국문초록

세포가 어떻게 기능하고 외부 자극에 반응하는지 이해하는 것은 생물학, 의학에

서 가장 중요한 관심사 중 하나이다. 기술의 발전으로 과학자들은 단일 생물학적

실험으로 세포의 변화요인들을 쉽게 측정할 수 있게 되었다. 주목할만한 예시로

게놈시퀀싱,유전자발현량측정,유전자발현을조절하는후성유전체측정같은

다중 오믹스 데이터가 있다. 세포의 상태를 더 자세히 이해하기 위해서 다중 오

믹스 조절자와 유전자 사이의 조절 관계를 알아내는 것이 중요하다. 하지만 다중

오믹스 조절 관계는 매우 복잡하고 모든 세포 상태 특이적인 관계를 실험적으로

검증하는 것은 불가능하다. 따라서, 서로 다른 유형의 고차원 오믹스 데이터로부

터 관계를 예측하기 위한 효율적인 컴퓨터 공학적 접근방법이 요구된다. 이러한

고차원데이터를처리하는한가지방법은다양한데이터베이스에서선별된유전

자의 기능과 오믹스 간의 관계와 같은 외부 생물학적 지식을 통합하여 활용하는

것이다.

본 박사학위 논문은 생물학적 사전 지식을 활용하여 다중 오믹스 데이터로

부터 유전자의 발현을 조절하는 관계를 예측하기 위한 세 가지 컴퓨터 공학적인

접근법을 제안하였다.

첫 번째는 마이크로 알엔에이와 유전자의 일대다 관계를 예측하기 위한 기법

이다. 마이크로 알엔에이 표적 예측 문제는 가능한 표적 유전자의 개수가 너무

많으며거짓양성과거짓음성의비율을조절해야하는문제가있다.이러한문제

를 해결하기 위해 마이크로 알엔에이-유전자와 데이터의 맥락 사이의 연관성을

문헌지식을활용하여결정하고마이크로알엔에이-유전자관계를예측하기위한

ContextMMIA를개발하였다. ContextMMIA는통계적유의성과문헌관련성을

기반으로 마이크로 알엔에이-유전자 관계의 점수를 계산하여 관계의 우선순위를

결정한다. 예후가 다른 유방암 데이터에 대한 실험에서 ContextMMIA는 예후가

나쁜유방암에서활성화된마이크로알엔에이-유전자관계를예측하였고기존실
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험적으로 검증된 관계가 높은 우선순위로 예측되었으며 해당 유전자들이 유방암

관련 경로에 관여하는 것으로 알려졌다.

두 번째는 약물 반응을 일으키는 유전자의 다대일 조절 관계를 예측하기 위

한 기법이다. 약물 반응 예측을 위해서 약물 반응 매개 유전자를 결정해야 하며

이를 위해 20,000개 유전자의 다중 오믹스 데이터를 통합 분석하는 방법이 필요

하다. 이 문제를 해결하기 위해 저차원 임베딩 방법, 약물-유전자 연관성에 대한

문헌 지식 및 유전자-유전자 상호 작용 지식을 활용하여 약물 반응을 예측하기

위한 DRIM을 개발하였다. DRIM은 오토인코더, 텐서 분해, 약물-유전자 연관

성을 이용하여 다중 오믹스 데이터에서 다대일 관계를 결정한다. 결정된 매개

유전자의 조절 관계를 유전자-유전자 상호 작용 지식과 약물 반응 시계열 유전

자 발현 데이터의 상호 상관관계를 이용하여 결정한다. 유방암 세포주 데이터에

대한 실험에서 DRIM은 라파티닙이 표적으로 하는 PI3K-Akt 패스웨이에 관여

하는 유전자들의 약물 반응 조절 관계를 예측하였고 라파티닙 반응성과 관련된

매개 유전자를 예측하였다. 그리고 예측된 조절 관계가 세포주 특이적인 패턴을

보이는 것을 확인하였다.

세번째는세포의상태를설명하는조절자와유전자의다대다조절관계를예

측하기위한기법이다.다대다관계예측을위해관찰된유전자발현값과유전자

조절 네트워크로부터 추정된 유전자 발현 값 사이의 차이를 측정하는 목적 함

수를 만들었다. 목적 함수를 최소화하기 위하여 조절인자와 유전자의 수에 따라

기하급수적으로 증가하는 검색 공간을 탐색해야 한다. 이 문제를 해결하기 위해

조절자-유전자 상호 작용 지식을 활용하여 두 가지 연산을 반복하여 조절 관계를

찾는 최적화 기법을 개발하였다. 첫 번째 단계는 네트워크에 간선을 추가하기

위해 강화 학습 기반 휴리스틱을 통해 조절자를 선택하는 다대일 유전자 중심

관계를 탐색하는 단계이다. 두 번째 단계는 네트워크에서 간선을 제거하기 위해

유전자를 확률적으로 선택하는 일대다 조절자 중심 관계를 탐색하는 단계이다.

유방암 세포주 데이터에 대한 실험에서 제안된 방법은 이전의 최적화 방법보다

더 정확한 유전자 발현량 추정을 하였고 조절자 및 유전자 발현 데이터로 유방암

아형 특이적 네트워크를 구성하였다. 또한, 유방암 아형 관련 실험 검증된 조절
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관계를 예측하였다.

요약하면,본박사학위논문은다중오믹스조절자와유전자의사이의일대다,

다대일, 다대다 관계를 예측하기 위하여 생물학적 지식을 활용한 컴퓨터 공학적

접근법을 제안하였다. 제안된 방법은 증가하고 있는 분자 생물학 데이터를 분석

하여 유전자 조절 상호 작용을 이해함으로써 세포 기능에 대한 심층적인 이해를

도와줄 수 있을 것으로 기대된다.

주요어: 다중 오믹스, 고차원 데이터, 생물학적 사전지식, 유전자 발현량, 기계학

습, 탐색 공간

학번: 2015-22904
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