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Abstract

Chemical Space Embedding

for FDA Approved Drugs

Using Cascade Autoencoder

Jungwoo Kim

Department of Computer Science & Engineering

College of Engineering

Seoul National University

Drug discovery requires decade of expensive efforts to meet sufficient needs.

Computer-Aided drug discovery (CADD) is an emerging field of study that

aims to systematically reduce the time and cost of a new durg development

by adapting computer science to identify structural and physical properties

of chemical compounds used as drugs and derive new drug candidates with

similar characteristics. In particular, it is most important to identify the char-

acteristics of chemical compounds approved by the U.S. Food and Drug Ad-

ministration (FDA). FDA approved chemical compounds are validated drugs

in terms of toxicity, efficacy of drug and side effects. The question arises here
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how these chemical compounds are distributed in an embedding space. Tradi-

tionally, hand-crafted rule is the only way of constructing the chemical space.

Traditional chemical compound representations have made it difficult to clas-

sify FDA approved chemical compounds. With the advent of the era of big

data and artificial intelligence technology, deep learning is the leading technol-

ogy that drives to build an embedding space. However, there is few adaptive

methods to identify the embedding space of FDA approved chemical com-

pounds.

In this work, I propose a framework that encodes features of FDA approved

chemical compounds by constructing a discriminative embedding space. Var-

ious encoding methods were used to encode information from FDA approved

chemical compounds. The proposed framework consists of three stacked deep

autoencoder modules. The proposed framework effectively integrate the in-

formation of the chemical compounds by cascade modeling. Connected three

autoencoder modules in cascade is used to continuously use latent represen-

tation learned from previous modules. Whether FDA approved chemical com-

pounds have discriminative regions in the embedding space is well visualized

by the proposed framework. And perform machine learning classification tasks

to evaluate whether the latent representation effectively characterize the FDA

approval information. The proposed framework incorporates complex repre-

sentation information to understand the embedding of FDA drugs. Ultimately,

the framework proposed in this paper can be used as an embedding method

for determining whether or not new drug candidates will be approved.

Keywords: FDA Approved drug, Cascade Autoencoder, Chemical space em-

bedding

Student Number: 2019-24822
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Chapter 1

Introduction

1.1 Background

1.1.1 Chemical space

Chemical space refers to an embedding space of all possible chemical com-

pounds that satisfy a common boundary condition in terms of common struc-

tural and physical properties. Understanding chemical space is a key research

topic in AI based drug discovery. However, characterization of the chemical

space is a challenging problem that much has been veiled. By leveraging do-

main knowledge such as molecular weight or what functional group that chem-

ical compound has to effectively build a chemical space, I can characterize the

general properties of the chemical compounds bounded in the chemical space.

In order to calculate the decision boundaries that make up the chemical space,

it is important to convert chemical compounds to a computable format. Typ-

ically, A Simplified Molecular-Input Line-Entry System (SMILES) is used to

represent chemical compound. As depicted in Figure 1.1, SMILES uses element

symbols suca as C(carbon), O(oxygen) to represent structural connections of
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Figure 1.1: Chemical Compound to SMILES representation and ECFP

compounds as linear strings. Another method to represent chemical compound

is an Extended Connectivity Fingerprint (ECFP) based on a Morgan Finger-

print. These representations can input to deep learning models by converting

chemical compounds to computable format. are na computable form that is

directly fed into machine learning models.

In order to build chemical embedding space, deep autoencoder is intro-

duced as it enables manifold learning through non-linear dimensionality re-

duction. In this perspective, deep autoencoder can effectively extract latent

features of a chemical compound to characterize the decision boundary of a

chemical space I want.

1.1.2 FDA Approval of chemical drugs

When developing a new pharmaceuticals, new drug candidates must undergo

pre-clinical stage, clinical pharmacology, clinical investigation, clinical trials

and post marketing surveillance post marketing clinical trials in order to

evaluate whether the candidate is effective and safe enough for the purpose of

treatment. Based on the expensive investigations, pharmaceutical companies

apply to the FDA for approval. As such, the process of getting a new drug

2



Figure 1.2: Novel FDA Approvals since 1993

approved by FDA takes a long time. And traditionally, developing a new drug

takes 10.5 years on average from clinical trials to approval and finding new

drug candidates takes an average of 5 years. As shown in Figure 1.2 (Mullard,

2021), average number of novel FDA approvals annually is less than 60. Re-

cently, cheminformatics researchers try to find common properties of chemical

compounds that can be a new drug candidate. For example, Ligand-Based

Virtual Screening (LBVS) is a method of calculate similarity based on fin-

gerprint or molecular descriptor, based on the idea that chemical compounds

with similar properties have similar target-binding affinity(Xia et al., 2014).

From this perspective, I attempt to map compounds with similar properties to

similar locations in the embedding space. In particular, FDA-approved drugs

are drugs that have been tested for toxicity and side effects, etc., it is crucial

to understand what chemical properties in existing approved drugs have to

increase the likelihood of being approved.
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In this work, I try to characterize the chemical space by encoding properties

of chemical compound and analyze what decision boundaries FDA approved

drugs have in the chemical space. I apply deep learning technology to embed

the properties inherent in FDA approached drug discriminatively. From the

view of virtual screening, if I were able to represent a discriminative region

in the embedding space by drug characteristics, the cost of finding new drug

candidates could be reduced.

1.2 Current Method and Limitation

With the advent of the era of big data and artificial intelligence, Deep Learn-

ing technology combined with chemical compound data is applied to many

tasks, such as drug target interaction prediction, physical property predic-

tion and representation learning. Under the assumption that similar chemical

compounds have similar pharmacological effects, research is actively under-

way to identify and predict the structural properties and physical properties

of chemical compound. Understanding the sophisticated properties of chem-

ical compound structure will allow us to produce chemical compounds with

the properties we want.

In the representation learning task, in general, unsupervised deep learning

methods are used based on generative models to capture meaningful proper-

ties hidden in chemical compound. Most methods aim to create a represen-

tation that encodes the desired characteristics using 2-dimensional structure

of chemical compound. For example, a model applied Word2Vec technique

with the substructure of chemical compound as unique word(Jaeger et al.,

2018), a model for representation learning by decomposing the structure of

chemical compound into a junction tree(Jin et al., 2018), and some mod-

els encode how chemical compounds are distributed using variational autoen-

coder(Winter et al., 2019).
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However, prior methods only encode fragmented information, So I proposed

integrated framework to combine multiple information of chemical compound.

1.3 Problem Statement and Contributions

Considering diverse information in chemical compound, I aim to integrate dif-

ferent types of separately learned chemical compound representation to create

integrated representation from a sophisticated perspective and to find the de-

cision boundary that FDA approved drugs have in the embedding space. As

follow, there are my two main goals in this study.

• I estabilish a discriminative embedding space of FDA approved drugs

and discontinued drugs. In order to achieve this goal, I propose a frame-

work based on cascade autoencoder to construct a discriminative chem-

ical embedding space by extracting latent feature.

• I evaluate my framework through traditional machine learning classifi-

cation tasks on whether my model effectively learned feature.

INPUT The input of the proposed framework is an information vectors ex-

tracted from three pretrained models.

OUTPUT The output of the proposed framework is the latent feature vector

of chemical compound. In this work, I perform principal component analysis to

visualize latent feature vectors from the proposed framework. And I perform

machine learning classification tasks to verify that the proposed framework

effectively encodes information from the chemical compound.

CONTRIBUTION

• I proposed a novel cascade autoencoder model for characterizing chem-

ical embedding space using multiple information of chemical compound.
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• Based on my framework, I extracted latent representation of chemi-

cal compound that contributes to classify whether FDA approved. And

improved classification performance compared with traditional method.

• I visualized the created chemical embedding spaces. Even if I did not

characterize the chemical embedding space well, I attempted to increase

the possibility.
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Chapter 2

Related Works

In this Chapter, I introduce the state-of-the-art methods in cascade autoen-

coder and chemical space embedding.

2.1 Cascade Autoencoder

Cascade model is the movement of information in a top-down manner. Cascade

model leverages the representation from the previous stage in the next stage

to construct a better representation. Cascade modeling is commonly used in

the field of image processing and video detection. Diverse methods using cas-

cade autoencoder have been proposed. Cascade models of adversarial autoen-

coder and convolutional autoencoder were used to detect video anomalies(Li

et al., 2020). The first module proactively identifies abnormal video cuboids,

then the second module classifies specific abnormal patches in each abnormal

cuboid. And there is also a cascade autoencoder for multi-label classification

of scene data.(Law and Ghosh, 2019). In the field of image processing, cascade

marginalized denoising autoencoder and non-negative sparse autoencoder was

7



proposed to solve hyperspectral image unmixing problem(Guo et al., 2015).

In addition, cascade denoising autoencoders have also been used to solve noise

reduction in single-particle Cryo-EM images(Lei and Yang, 2020).

2.2 Chemical Space Embedding Methods

The research of chemical space has traditionally been addressed in the field

of combinatorial chemistry. Combinatorial chemistry consists of chemical syn-

thesis, which allows the preparation of numerous compounds in a single pro-

cess. These composite libraries can be made from mixtures, individual com-

pound sets, or chemical structures produced by computer software. Traditional

methods are mapping algorithms that rely on expert’s hand-crafted rule. A

typical example is ChemGPS, which performs principal component analysis

on a pre-defined molecular structure descriptor to create a druglike chemical

space.(Oprea and Gottfries, 2001). There are also ChemGPS-NPs that have

improved ChemGPS by adding natural product classes(Rosén et al., 2009).

Recently, not only has the popularity of deep learning methods but also

the increasing power of computation has led to more and more research on

deep learning methods applied in the field of cheminformatics. Unlike tradi-

tional hand-crafted methods, non-linear representation learning has become

possible, research is being conducted to interpret chemical spaces in diverse

ways. For examples, there are a model that uses autoencoder to character-

ize a hyperbolic space using chemical compound representation and drug hi-

erarchy together(Yu et al., 2020), a model to encode a molecular structure

to build chemical embedding space using hypergraph variational autoencoder

with metric learning(Koge et al., 2021). And even in the field of material dis-

covery, there is a model combined CNN with density function theory to embed

crystal site.(Choubisa et al., 2020).

8



Chapter 3

Methods and Materials

3.1 Notation and Problem Definition

Throughout this paper, I use uppercase characters to denote matrices and

lowercase characters denote vectors. Unless specifically specified, the notations

used in this paper are shown in the Table 3.1. And I define the set of definitions

required to understand the paper.

Definition 1.(Chemical compound, Drug Molecule) Chemical compound

is a chemical substance composed of two or more different chemically bonded

chemical elements. Molecules are the smallest unit particles with the chemical

properties of each substance. The definition of a molecule contains a chemical

compound as a larger concept. However, researchers in the field of chemin-

formatics generally use chemical compounds and drug molecules in the same

meaning, so in this paper I use chemical compounds and drug molecules in

the same meaning.

Definition 2.(Encoding, vector representation) The definition of encoding

is to encode/encrypt information. Encoding refers to the encoding methodol-

9



Table 3.1: Commonly Used Notations

Notations Descriptions

D the dimension of input.

d the dimension of latent feature.

xi ∈ [0,1]D i-th input vector.

x̃i ∈ [0,1]D i-th output vector.

zi ∈ [0,1]d i-th latent vector.

yi class label.

cyi i-th class center in d dimension.

λ loss ratio.

n the number of data points.

m mini-batch size.

|| concatenate function.

LC center loss.

Lrec reconstruction loss.

W, θ Learnable model parameters.

ogy, and vector presentation refers to the encoding output. In this paper, I

define methods for converting chemical compounds to vector presentation as

encoding.

3.2 Chemical Compound Encoding Process

In this work, I applied diverse encoding methods that used SMILES repre-

sentation of FDA approved and discontinued drugs. I combined traditional

representation encoding method such as Morgan Fingerprint and deep learn-

ing based representation encoding technology. The descriptions of the methods

used are described below.
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Figure 3.1: An Example of Generating Morgan Fingerprints

3.2.1 Morgan Fingerprints

Morgan Fingerprint is a method of encoding based on Morgan’s algorithm

in 1969(Morgan, 1965). All substructures under the k-nearest neighbor size

that the chemical compound has are stored as unique bit information in a

predefined manner(Rogers and Hahn, 2010). To encode unique bit information

into a vector of a certain length, map bit information to the vector using hash

function. In this case, too small vector size can lead to bit collision problems

where different substructures are mapped to the same column information

because they are generated using hash function. I use RDKit(Landrum et al.,

2006) library to convert the SMILES string of the chemical compound to mol

object, and use mol object to generate the Morgan Fingerprint. As shown

in Figure 3.1, unique bit information 2281984057 of the chemical compound

indicates the substructure of the 3-nearest neighbor from 6thatom, that is

mapped to the 57th component of the vector when converted to bit vector.

11



Figure 3.2: Mol2vec

3.2.2 Mol2vec

Mol2vec is a Word2Vec(Mikolov et al., 2013) based substructure encoding

method of chemical compound. Generating the aforementioned Morgan Fin-

gerprint in the presence of a given chemical compound provides unique bit

information. Considering this bit information as a word, the entire chemi-

cal compound described as a sentence of bit information. In other words,

many substructures are mapped in unique word to generate vector represen-

tation. In this work, I used a pre-trained model using ZINC version 15(Irwin

and Shoichet, 2005) and ChEMBL version 23(Gaulton et al., 2012) databases.

When creating corpus, each substructure up to 1-nearest neighbor was mapped

into unique word. As shown in Figure 3.2, I set output dimension to 300 to

convert one SMILES data into a vector representation of 300 dimension.

3.2.3 Junction Tree Variational Autoencoder

Another SMILES encoding method is the junction tree variational autoen-

coder. This method is molecular graph based chemical compound encoding

12



Figure 3.3: Juction Tree Variational Autoencoder

model. As shown in Figure 3.3, it consists of two modules: the Molecular Graph

Neural Network (GNN) and the Junction Tree encoding module. Molecular

GNN generates mol objects from SMILES presentation and then makes mol

objects a molular graph. Where node is atom, edge is bond, node attributes

encode the properties of each atom, edge attributes contain information such

as bond order, and so on. Using this generated graph, perform a message

passing GNN task. Similar to GNN module, Junction tree encoding mod-

ule makes tree information message passing network. To create a clique that

constitutes a Junction Tree, large chemical databases were used to perform

tree decomposition on chemical compounds. And applying tree decomposi-

tion, chemical compounds are broken down into ring-based substructures to

create cliques. Based on this clique, the chemical compound is made into a

junction tree. The generated junction tree can be obtained through the gated

recurrent unit based message passing network(Jin et al., 2018). In this work,

the model was trained using the ChEMBL database(Gaulton et al., 2012),

13



Moses database(Polykovskiy et al., 2020), FDA approved drug database, and

among the information extracted from the model, only tree vector of chemical

compound is used to my framework.

3.2.4 Continuous and Data-Driven Descriptors Variational Au-

toencoder

Finally, I use the Continuous and Data-Driven Descriptors(CDDD) Variational

Autoencoder model to encode information about the distribution of chemical

compounds. Variational Autoencoder is a method for learning parameters that

define the distribution of training data, that can be used to estimate the dis-

tribution of chemical compounds(Winter et al., 2019). In this work, I vectorize

the distribution information of chemical compound using the corresponding

method to use it as input feature.

3.3 Model Architecture

In this section, I introduce novel architecture that is mainly composed of deep

autoencoder module.The deep autoencoder is a deep learning architecture that

can efficiently perform dimension reduction, creating a reduced latent repre-

sentation from input data. I construct a cascade autoencoder to create a three-

step latent representation, and used diverse information from one chemical

compound sequentially with different inputs for each module. that is applied

with principal component analysis to create an embedded space.

3.3.1 Autoencoder Module

As show in Figure 3.4, I apply Multi Layer Perceptron (MLP) based stacked

autoencoder. Stacked Autoencoder has a Deep Belief Network structure and

trains greedy layer-wise.(Bengio et al., 2007). I designed both encoder and

decoder based on MLP with a two layers. For a one-layer MLP, the latent

14



Figure 3.4: Architecture of Autoencoder Module

representation matrix Z ∈ Rn×dz is computed as

Z = f(X) = σ(σ(XWe1 +Be1)We2 +Be2) (3.1)

where We1,We2 ∈ Rm×d are weight matrices, Be1, Be2 ∈ Rm×d are bias matri-

ces, m is the size of mini batch, dz is the size of the latent representation. σ

is an activation function. In decoder, the latent representation is transformed

to reconstructed input vector. Reconstructed input vector x̃i is computed as

X̃ = g(f(X)) = σ(σ(ZWd1 + bd1)Wd2 + bd2) (3.2)

We1,We2 ∈ Rm×d are weight matrices, Be1, Be2 ∈ Rm×d are bias matrices.

And I use autoencoder with tied weights model to avoid overfitting problem.

An autoencoder with tied weights has decoder weights that are the transpose

of the encoder weights. This is a form of parameter sharing, which reduces

the number of parameters of the model. Advantages of tying weights are that

increases training speed and reduces risk of overfitting. And it can yield com-

parable performance than without weight tying in many cases(Li and Nguyen,

2018). Therefore, tied weight relationship is expressed as follows.

Wd1 = W T
e2,Wd2 = W T

e1 (3.3)
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Figure 3.5: Model Architecture

3.3.2 Cascade Autoencoder

As show in Figure 3.5, Cascade autoencoder consists of three similar deep

stacked autoencoder with tied weights module. Following methods were used

to implement Cascade model. The latent representation of the previous module

was concatenated to the input representation of the next module. It consists

of three stages of modules, with late presentation operations at stage 2 and

stage 3 as follows.

Z(2) = f(X(2)||Z(1))) = σ((σ((X(2)||Z(1))W
(2)
e1 +B

(2)
e1 )W

(2)
e2 +B

(2)
e2 ))

Z(3) = f(X(3)||Z(2))) = σ((σ((X(3)||Z(2))W
(3)
e1 +B

(3)
e1 )W

(3)
e2 +B

(3)
e2 ))(3.4)

16



When designing architecture in this way, diverse inputs can be put into the

model, and the information loss can be reduced by concatenating compressed

information from the previous module. For better performance, I use batch

normalization and dropout techniques. Both methods also have the effect of

reducing risk of overfitting. And I use nn.Sigmoid() activation function for

matching scale of the latent vector and scale of the input data for the following

modules.

3.4 Loss function, Optimizer

When designing deep learning models, the most important thing is to define

objective functions, and diverse optimization schemes can be applied when

updating parameters to minimize them. To train my model properly, I use

anadequate loss functions and optimizers.

3.4.1 Reconstruction Loss

In general, autoencoder calculates the reconstruction loss. I have to decide

that loss function to use according to the input representation, and I used

mean square error because I encode input with a minmax scale from 0 to 1

continuous value. Mean Square Error (MSE) is the square of the error with

the prediction value for each input xi. MSE loss is computed as

MSE =
1

N

N∑
i=1

(xi − x̂i)
2 (3.5)

3.4.2 Metric Loss

Metric learning is a method of measuring distance between data points. I learn

metrics that make class label-specific for data that are not easily classified with

traditional features. To this end, I define a distance function in the embedding
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space, using a metric called center loss. Center loss is a classification metric

developed in the field of face recognition that trains data in an embedded

space in a discretionary manner(Wen et al., 2016). A class center is set for

each class in the Mini batch, and samples belonging to the class are placed

close to the class center. Center loss can be used as a clustering loss.

LC =
1

2

N∑
i=1

∥vi − cyi∥
2
2 (3.6)

3.4.3 Optimizer

In this work, I use different optimizers for reconstruction loss and metric loss.

First, I use a stochastic gradient description (SGD) to the metric loss(Kiefer

et al., 1952). SGD performs gradient descent in mini batches. In the case

of Center loss, SGD is a suitable optimizer because it trains the label away

from the mini-batch. Secondly, Adam optimizer was applied for reconstruction

loss. Adam optimizer is a method of updating parameters to different sizes by

applying moment and decaying average of gradients(Kingma and Ba, 2014).

It has the advantage of much faster convergence than SGD. And I apply L2

norm regularizer to optimizers as above for reducing overfitting problem.

3.5 Principal Component Analysis

Principal Component Analysis is a traditional machine learning technique for

dimension reduction. A high-dimensional vector is represented by a linear com-

bination of a low-dimensional vector. Typically, the number of principal com-

ponents is set to 2, 3 for representation in 2D or 3D space. In this work, I

used 3D PCA to draw embedding spaces in three-dimensional space, that is

the output of each encoder module in cascade autoencoder.
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3.6 Machine Learning Classifiers

I performed traditional machine learning classification tasks using 3rd latent

representationof my framework. I introduce the machine learning classifier

model used below.

3.6.1 Support Vector Machine

Support vector machine is one of machine learning model, a supervised learn-

ing model for pattern recognition, data analysis, and are mainly used for classi-

fication and regression(Cortes and Vapnik, 1995). Given a set of data belonging

to either category, the SVM algorithm builds a non-probabilistic binary linear

classification model that determines which category the new data belongs to

based on the given dataset. If the data are not classified by linear function,

I solve it by designing an SVM structure that defines the appropriate kernel

function. In this work, to avoid aforementioned problem, I use Radius Basis

Function (RBF) kernel.

3.6.2 Naive Bayes

In the field of machine learning, the Näıve Bayes Classification is a type of

probability classifier that applies the Bayes Theorem, which assumes indepen-

dence between features. The advantages of Naive Bayes are as follows. First,

in some probability models, the Naive Bayes classification can be trained very

efficiently in supervised learning environments. Second, the amount of training

data for estimating parameters required for classification is very small. Third,

despite its simple design and simple assumptions, the Naive Bayes classifica-

tion works well in many complex real-world situations.
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3.6.3 Random Forset

Random Forest is an algorithm for improving the shortcomings of decision

trees in a method first introduced by Leo Breiman in 2001, that combines

multiple decision trees into a single model . Random forest is a method of

adding randomness to the sample variable of each bootstrap in the bagging

model. This allows us to have more diverse hyperplanes than conventional

bagging models and maximize the advantages of ensembel models, improving

predictive classification and accuracy over conventional methods. In the case of

a decision tree, it is a very unstable model, that combines these trees to achieve

a final conclusion by voting the results of several decision trees. I used random

forest classifier to conduct model evaluation through classification accuracy

and so on.

3.6.4 Adaboost

Adaboost is a machine learning meta-algorithm developed by Yoav Freund and

Robert Schapire. Adaboost is ensemble method that it’s core concept is to train

different weak classifiers on the same dataset and combine weak classifiers to

form strong classifiers. The strong classifier, created by combining the weak

classifier, is computed as

f(x) =
T∑
i=1

αtht(x) (3.7)

where α is In this work, I use decision tree as a weak classifier.
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Chapter 4

Experiments

4.1 Datasets

4.1.1 Datasets for pre-trained model

In order to pretrain chemical compound encoding methods, I use several large

chemical compound database. The most commonly used databases in Chem-

informatics are the ZINC Clean Lead database(Irwin and Shoichet, 2005) and

the ChEMBL database(Gaulton et al., 2012). The original ZINC database has

4,591,276 molecules in total but I used MOSES dataset, that filtered ZINC

by several criteria(Polykovskiy et al., 2020). In ChEMBL database, I filtered

dataset by molecules with molecular weight less than 500. I use these two large

chemical databases to pre-train Mol2vec, Junction Tree Variational Autoen-

coder, and Variational Autoencoder. Following table 4.1 shows the summary

of these databases.
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Table 4.1: Statistic of Large Chemical Databases

Database # of unique chemical compound

ChEMBL 1,961,462

ZINC 4,591,276

Moses 1,936,962

Table 4.2: Statistic of FDA approval dataset

Dataset Status # of unique chemical compound

FDA Approved small molecules
Approved 1447

Discontinued 338

Filtered dataset
Approved 904

Discontinued 198

4.1.2 FDA Approved and Discontinued dataset

To create a chemical embedding space of FDA-approved drugs, I used FDA-

approved, discontinued data among diverse drug dataset(Douguet, 2018)(Sir-

amshetty et al., 2016). In the work, I filtered data by small molecule. The

dataset consists of SMILES and ATC code information for FDA approached,

discontinued small molecule, 1447 approached data and 338 discontinued data.

Before training my model, I constructed 904 FDA approached and 198 dis-

continued data by filtering only the drug with one ATC code. Table 4.2 shows

the summary of this dataset.

4.2 Model Training Hyper Parameter Settings

I describe model parameters and hyperparameter setting that I set to effec-

tively train my model.
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4.2.1 The dimension of input data

I generated input in 3 ways from the SMILES string of Chemical compound.

Each method is pre-trained using moses dataset and ChEMBL dataset. The

dimension of Morgan Fingerprint is set to 512, the dimension of Mol2vec is set

to 300, the dimension of tree vector from Junction tree VAE is set to 400, the

dimension of Continuous data driven VAE vector is set to 512. The input data

of 1st module is 812 dimension, concatenating Mol2vec vector and Morgan

Fingerprint. The input data of the 2nd module is 912 dimensions, concatenat-

ing tree vector and Morgan Fingerprint.The input data of the 3rd module is

1024 dimensions, concatenating distribution vector and Morgan Fingerprint.

4.2.2 Model Training

I design autoencoder module as tied autoencoder to equalize the weight of

the hidden layer of the encoder and the hidden layer of the decoder. To train

a model with optimal results, I set the hyper parameters as follows: The di-

mension of 1st hidden layer in Encoder is set to 256, the dimension of latent

layer is set to 8 and the dimension of 1st hidden layer in Decoder is set to

256. Dropout probability is set to 0.4 and batch size is set to 32. I use Adam

Optimizer for reconstruction loss and set initial learning rate and weight decay

to 10−5 and 10−6. I use Stochastic Gradient Descent optimizer for center loss

and set initial learning rate and weight decay to 10−5 and 10−6. And the ratio

of reconstruction loss to center loss, λ, is set to 0.01. The size rate of training

set, validation set and test set is split into 8:1:1.

4.2.3 Embedding and Evaluation method

I extract the latent presentation of chemical compound using a model trained

by the above method. When I use Principal Component Analysis to embed

chemical space, the number of principal components is set to 3. And for classi-
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fying latent representation, I use Support Vector machine, Naive Bayes, Ran-

dom Forest, Adaboost classifier. I use accuracy, balanced accuracy, average

precision-recall and f1 score to evaluate model.

4.2.4 Comparison Models

To evaluate the performance of my framework, I compare my framework’s per-

formance with other models. I compare my framework with traditional ma-

chine learning methods and with single autoencoder to show the effectiveness

of the cascade model.

• Traditional Machine Learning Method: I perform machine learn-

ing classification tasks using only the Morgan Fingerprint created by

SMILES string of chemical compound as input. Morgan Fingerprint of

512 dimension vectors and FDA approved/discontinued labels are used

to perform SVM, NB, RF, Adaboost classification task.

• Information vector: To evaluate whether pre-trained models I used

effectively encodes information, I perform a machine learning classifica-

tion tasks with only the information vectors extracted from pre-trained

models using SMILES string of chemical compound. I compare perfor-

mance when using only Mol2vec, tree vector, distribution vector and

concatenated vector.

• Single Autoencoder: I compare the results with when I use only single

autoencoder to show that Cascade modeling is useful. In this case, I per-

form machine learning classification tasks using a latent vector extracted

when each encoding vector used as input for the single autoencoder.
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Chapter 5

Results

In this chapter, I report the results of experiments. First, I visualize the chem-

ical embedding space obtained through my framework, and compare the per-

formance with the traditional method. And I report results one by one on the

benefits of my framework.

5.1 Visualization of Chemical Embedding Space

As shown in Figure 5.1, I visualize the chemical embedding space using latent

representation of each autoencoder module. I plot the chemical embedding

space with latent representation from each module using Principal Component

Analysis, (a), (c) and (e) are the results for the training data, (b), (d) and (f)

are the results for the test data. As shown in Figure 5.1(a), (e), the embedding

space is more discriminative in 3rd module than in 1st module. This is due

to multiple information I used sequentially as input to my framework. More

information is encoded into latent vectors in the third module. And I also

obtain more discriminative embedding space from 3rd module due to calculate
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Figure 5.1: Visualization of chemical embedding space. (a) Embedding space is

created by latent representation of training data of the first module. (b) use latent

representation of test data of the first module. (c) Use latent representation of

training data of the second module. (d) Use latent representation of test data

of the second module. (e) Use latent representation of training data of the third

module. (d) Use latent representation of test data of the third module.

metric loss repeatedly. When I use the test data, I find that there was an

overfitting issue. However, as shown in Figure 5.1(f), it is encouraging that I

identified a little discriminative regions.

5.2 Performance Comparisons with Traditional Ma-

chine Learning Method

I compare performance of my framework with the result of using traditional

method. The traditional method is the result of machine learning classifica-

tion tasks using Morgan Fingerprint representation vector as input. In my
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Figure 5.2: Performance Comparisons with Traditional Machine Learn-

ing Method. (a)Performance of my framework. (b)Performance of traditional

method. I use 512 dimensional Morgan Fingerprint as representation.

framework, machine learning classification tasks were performed using the la-

tent representation from the 3rd module. As shown in Figure 5.2, the results

obtained using my framework were outperformed in most machine learning

classifier models than traditional method.

5.3 Performance of using each input representation

To see how useful the information vectors I used in my framework are, I per-

form machine learning classification tasks using only each information vector

as input. As shown in Figure 5.3, I performed machine learning tasks using

each input vector individually 5.3 (a), (b), (c). Compared to the results using

Morgan Fingerprint, there was no significant improvement. It means that each

input representation can’t encode a common feature of FDA approved drugs.

This is because each encoding method encodes only certain information from

the chemical compound. So I integrated and combined the diverse information

of chemical compound.
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Figure 5.3: Performance using Input Representation only. Machine learning

classification tasks were performed by (a)only using Mol2vec, (b)only using tree

vector, (c)only using distribution vector, (d)only using concatenated vector

5.4 Effect of Cascade Modeling

I conduct additional experiment on performance when using only a single

autoencoder. I report experimental results and find benefits of designing my

framework as cascade model. As shown in Figure 5.4, I performed machine

learning tasks using latent vector from single autoencoder that used each in-

put representation individually. Compared to the result in section 5.3, single

autoencoder improved about 10% in terms of balanced accuracy. Classifica-

tion performance is improved by using only one autoencoder. Furthermore, as

shown in Figure 5.2 (a), cascade model shows a 20% improvement in perfor-

mance compared to using only a single autoencoder. I interpret these results

in terms of ensemble method of chemical representation.
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Figure 5.4: Performance using single autoencoder. Machine learning classifica-

tion tasks were performed by latent representation of single autoencoder that is

extracted from (a)only using Mol2vec, (b)only using tree vector, (c)only using

distribution vector, (d)only using concatenated vector
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Chapter 6

Conclusion

In this section, I will sum up the works in this paper and set future works for

further improvement.

1. I built a framework that integrates encoded chemical representation in

different ways. This effectively integrated diverse information of chemi-

cal compound. Compared to traditional method, my framework outper-

formed.

2. I visualize the chemical embedding space of FDA approved chemical

compound and discontinued chemical compound.

3. Although classification power is obtained by effectively learning the rep-

resentation of chemical compounds, I seek to solve the overfitting prob-

lem by using different encoding methods to improve discriminative power

in embedding spaces, or by using information-specific deep learning ar-

chitectures rather than MLP-based deep autoencoders.

4. To increase the size of the dataset, I would like to apply transfer learning
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techniques. I would also like to develop an embedding method that can

be applied to multi-label classification task.
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국문초록

신약개발시여러조건들을충족하는약물을발견하기위해수십년의노력이필요

하다.컴퓨터보조신약개발(CADD)은컴퓨터과학을적용시켜약물로사용되는

약물의 구조적 및 물리적 특성을 확인하고 유사한 특성을 가진 신약 후보를 도

출함으로써 신약 개발의 시간과 비용을 체계적으로 절감하는 것을 목표로 하는

신흥 연구 분야이다. 특히 미국 식품의약국(FDA)이 승인한 약물의 특성을 확

인하는 것이 가장 중요하다. FDA에서 승인한 약물들은 독성, 효능 및 부작용

측면에서 검증된 의약품이다. 이러한 약물들이 임베딩 공간 상에서 어떻게 분

포되어 있는지에 대한 의문점에서 시작한다. 전통적으로는 전문가의 수작업으로

만든규칙들로화합물의임베딩공간을구성했다.전통적인화합물표현만으로는

FDA 승인 약물들을 분류하는 것이 어렵다. 빅데이터와 인공지능 기술의 발전으

로 딥러닝을 이용해 임베딩 공간을 구축한다. 그러나 기존 연구들에선 FDA 승인

약물들의 임베딩 공간을 식별할 수 있는 적절한 방법이 없다.

본 연구에서는 FDA 승인 약물들의 특징을 인코딩하는 프레임워크를 사용해 차

별적인 임베딩 공간을 구축하는 방법을 제안한다. 제안된 프레임워크는 3개의

순차적 딥 오토인코더 모듈로 구성된다. 제안된 프레임워크는 순차적 모델링을

통해 약물의 정보를 효과적으로 통합한다. 순차적으로 연결된 3개의 오토인코더

모듈을 사용하여 이전 모듈에서 학습한 잠재 표현을 지속적으로 사용한다. FDA

승인 화학 화합물이 임베딩 공간상에서 차별적인 영역을 가지고 있는지 여부는

제안된 프레임워크에 의해 시각화된다. 또한 잠재된 표현이 FDA 승인 정보를

효과적으로 특성화하는지 여부를 평가하기 위해 기계 학습 분류 작업을 수행한

다. 궁극적으로, 본 논문에서 제안하는 프레임워크는 신약 후보자의 승인 여부를

결정하기 위한 임베딩 방법으로 사용될 수 있다.

주요어: FDA 승인 약물, 순차적 오토인코더, 화합물 공간 임베딩

학번: 2019-24822
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