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Abstract 

 
Purpose: In dentistry, deep neural network models have been applied 

in areas such as implant classification or lesion detection in 

radiographs. However, few studies have applied the recently 

developed keypoint detection model or panoptic segmentation model 

to medical or dental images. The purpose of this study is to train two 

neural network models to be used as aids in clinical practice and 

evaluate them: a model to determine the extent of implant bone loss 

using keypoint detection in periapical radiographs and a model that 

segments various structures on panoramic radiographs using 

panoptic segmentation. 

 

Methods: Mask-RCNN, a widely studied convolutional neural 

network for object detection and instance segmentation, was 

constructed in a form that is capable of keypoint detection, and 

trained to detect six points of an implant in a periapical radiograph: 

left and right of the top, apex, and bone level. Next, a test dataset 

was used to evaluate the inference results. Object keypoint similarity 

(OKS), a metric to evaluate the keypoint detection task, and average 

precision (AP), based on the OKS values, were calculated. 

Furthermore, the results of the model and those arrived at by a 

dentist were compared using the mean OKS. Based on the detected 

keypoint, the peri-implant bone loss ratio was obtained from the 

radiograph. 

For panoptic segmentation, Panoptic DeepLab, a neural network 

model ranked high in the previous benchmark, was trained to segment 

key structures in panoramic radiographs: maxillary sinus, maxilla, 

mandibular canal, mandible, natural tooth, treated tooth, and dental 

implant. Then, each evaluation metric of panoptic, semantic, and 
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instance segmentation was applied to the inference results of the test 

dataset. Finally, the confusion matrix for the ground truth class of 

pixels and the class inferred by the model was obtained. 

 

Results: The AP of keypoint detection for the average of all OKS 

thresholds was 0.761 for the upper implants and 0.786 for the lower 

implants. The mean OKS was 0.8885 for the model and 0.9012 for 

the dentist; thus, the difference was not statistically significant (p = 

0.41). The mean OKS of the model was in the top 66.92% of the 

normal distribution of human keypoint annotations. 

In panoramic radiograph segmentation, the average panoptic quality 

(PQ) of all classes was 80.47. The treated teeth showed the lowest 

PQ of 57.13, and the mandibular canal showed the second lowest PQ 

of 65.97. The Intersection over Union (IoU) was 0.795 on average 

for all classes, where the mandibular canal showed the lowest IoU of 

0.639, and the treated tooth showed the second lowest IoU of 0.656. 

In the confusion matrix, the proportion of correctly inferred pixels 

among the ground truth pixels was the lowest in the mandibular canal 

at 0.802. The AP, averaged for all IoU thresholds, was 0.316 for the 

treated tooth, 0.414 for the dental implant, and 0.520 for the normal 

tooth. 

 

Conclusion: Using the keypoint detection neural network model, it 

was possible to detect major landmarks around dental implants in 

periapical radiographs to a degree similar to that of human experts. 

In addition, it was possible to automate the calculation of the peri-
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implant bone loss ratio on periapical radiographs based on the 

detected keypoints, and this value could be used to classify the 

degree of peri-implantitis. In panoramic radiographs, the major 

structures including the maxillary sinus and the mandibular canal 

could be segmented using a neural network model capable of panoptic 

segmentation. Thus, if deep neural networks suitable for each task 

are trained using suitable datasets, the proposed approach can be 

used to assist dental clinicians. 

 

Keyword : keypoint detection; panoptic segmentation; machine 

learning; deep learning; medical image analysis 

Student Number : 2017-33206 
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1. Introduction 
 

As computing power has increased with the development of 

hardware such as GPUs, it has become possible to train deep neural 

networks composed of a large number of parameters. Accordingly, in 

recent years, the field of machine learning has seen rapid advances. 

In particular, after AlexNet1 won the ImageNet Large Scale Visual 

Recognition Challenge2 in 2012, deep learning achieved considerable 

success in the field of computer vision. As deep neural networks, 

especially CNN, can successfully classify general images, numerous 

CNNs have been developed and applied to medical images. Several 

studies have focused on using CNNs for the binary classification of 

radiographic images, such as pulmonary tuberculosis3, osteoporosis4, 

or periodontal bone loss5 to aid clinicians in diagnosis.  

In recent years, neural networks have been developed not only 

for classifying images but also for recognizing various objects or 

regions within an image. Object detection involves localizing each 

object, while instance segmentation involves detection and 

segmentation of the object. Some CNNs were developed for object 

detection: a series of neural networks based on the region-based 

CNN (R-CNN)6-8, You Only Look Once (YOLO)9, and Single Shot 

MultiBox Detector (SSD)10 can detect objects by predicting the 

bounding boxes around each object and predict the class of the object 

simultaneously. Furthermore, Mask R-CNN, which uses a modified 

architecture of R-CNN6, can predict segmentation masks or 

keypoints within the bounding boxes.11  

Studies on neural network models for semantic segmentation, 

which involves classifying each pixel of an image into various classes, 

have also been conducted. Fully convolutional networks12 or u-

shaped networks13 have been developed. 
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Several studies have sought to apply these methods on medical 

images: the application of semantic segmentation has been attempted 

in some studies14-16 where each pixel in the image is classified, while 

object detection17, 18 or instance segmentation19 have been tried in 

others. However, little research has been conducted on detecting 

specific points in medical and dental images. To the best of our 

knowledge, the detection of individual dental implants and location of 

important landmarks, such as the implant marginal bone level, using 

fully end-to-end deep learning methods has not yet been attempted. 

In general, the identification of the peri-implant marginal bone level 

in conventional radiographs is difficult because it involves 

comprehending the three-dimensional bone shape based on a two-

dimensional image20, 21. Often, the boundaries of the bones around the 

implant are obscure or the heights of the buccal and lingual bone 

levels are different. 

Therefore, the first aim of the present study is to address this 

lacuna in research. We employed a deep learning model, namely, the 

Mask R-CNN, for localizing the implants and finding keypoints within 

the detected implant site on periapical radiographs. Based on the 

results, the marginal bone loss ratio was calculated and the 

corresponding classification was performed. Such a classification 

may assist dentists in the analyses of periapical radiographs. 

Several studies on applying CNNs to radiographs have dealt with 

panoramic radiographs.22 Semantic segmentation23, object 

detection24-26, and instance segmentation27 have been applied to 

dental panoramic radiographs. 

Panoramic radiographs are commonly used during conventional 

dental treatment. It would be useful to automatically detect and 

segment various structures belonging to multiple categories on dental 

panoramic radiographs for the diagnosis and treatment planning of 

various diseases. To the best of our knowledge, the use of a machine 
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learning method, including deep neural networks, for this kind of task 

has not been studied in the dental field. 

Detecting and segmenting various kinds of structures in 

panoramic radiographs is a complex task because structures of 

various sizes and shapes overlap each other. In some cases, a ghost 

or double image interferes with the identification of a specific 

structure. 

Furthermore, the boundaries of some important structures, such 

as the mandibular canal or maxillary sinus, are difficult to distinguish 

in a panoramic radiograph. For a successful dental implant surgery, 

it is important to identify the boundaries of the maxillary sinus and 

mandibular canal to determine the surgical method and the type of 

implant that are most suitable. Nonetheless, no previous studies have 

attempted to automatically segment these structures on a panoramic 

radiograph. 

Therefore, the second aim of this study is to automatically 

segment various types of structures, including the maxillary sinus 

and mandibular canal, in an orthopantomogram. The following classes 

were detected and segmented: maxillary sinus, maxilla, mandibular 

canal, mandible, normal tooth, treated tooth, and dental implants. 

To do this, a new concept called “panoptic segmentation,” 

which was recently proposed for integrating multiple tasks in 

computer vision, was applied.28 Panoptic segmentation combines 

semantic segmentation and instance segmentation and involves 

predicting not only the semantic label but also the instance id for each 

pixel. Regions that are not countable, such as grass or road, must be 

segmented using semantic label classification on each pixel as in 

semantic segmentation. By contrast, countable objects, such as a 

person or car, must be segmented using both semantic label and 

instance id classification on each pixel, which produces results 

similar to those of instance segmentation. 
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Panoptic segmentation is one of the most challenging tasks in the 

field of computer vision; hence, a recently developed and verified 

deep convolutional neural network model designed for panoptic 

segmentation was adopted29. The proposed deep learning-based 

automatic method might assist dental practitioners in diagnosing 

various oral and maxillofacial diseases and developing appropriate 

treatment plans. 
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2. Materials and methods 
 

2.1 Ethics Statement 

This study was conducted in accordance with the deliberation 

results by the Institutional Review Board of Seoul National University 

Dental Hospital, Dental Life Science Research Institute (IRB No. 

ERI20024, Notification of deliberation exemption in August 2020). 

Ethical review, approval, and patient consent were waived for this 

study owing to the following reasons: this study is not a human 

subjects’ research project as specified in the Bioethics and Safety 

Act; it is practically impossible to obtain the consent of the research 

subjects in this study; and the risk to the subjects is extremely low 

because of the retrospective nature of the study. 

 

2.2 Keypoint detection on periapical radiographs 

2.2.1 Datasets 

In order to create datasets, 1000 periapical radiographic images 

were obtained between December 2018 and June 2020 from the 

Picture Archiving and Communication System (PACS) in Seoul 

National University Dental Hospital. Among these, radiographs that 

were not properly captured in parallel or those that were out of focus 

were excluded. Furthermore, if the graft material hindered the 

correct observation of the alveolar bone in a radiograph, it was 

excluded. Ultimately, 292 periapical radiographs were excluded. The 

remaining 708 images were separated into upper and lower periapical 

radiographs. For each of the datasets, the images were further 

divided into training, validation, and test datasets. The overview of 

the datasets is shown in Figure 1. 
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(a) 

 

   

   

(b) 

 

Figure 1. (a) Overview of the datasets. After the exclusion criteria were 

used to remove certain data, the remaining data were separated into training, 

validation, and test datasets. The training dataset was used for training the 

model, while the validation dataset was used for assessing overfitting. The 

test dataset was used for evaluation. The numbers given are the number of 

periapical radiographs. The numbers of upper and lower periapical 

radiographs are specified separately. (b) Visualized examples of the data 

augmentation process including random horizontal flip, rotation, contrast and 

brightness shift. 
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Training data were enriched by randomly generated data 

augmentation, leveraged with a horizontal flip, rotation, contrast, and 

brightness shift. The size of the augmented dataset is not fixed, as 

the data augmentation process used in this study could potentially 

generate an infinite number of modified input images. However, based 

on an analysis of the evaluation result of the validation dataset, the 

training was stopped after 128,000 iterations to avoid overfitting, 

with the learning rates ranging between 0.0005–0.00005. Implant 

bounding boxes and keypoint annotations for ground truth were 

performed by a dental practitioner (the author). An oral and 

maxillofacial radiologist reviewed and confirmed the annotation 

results. 

 

2.2.2 Neural Network Model Architecture 

For better results in the prediction of the landmarks around the 

implants, we prepared three separate neural networks and connected 

them. The first is for identifying whether the image shows the upper 

or lower jaw. After the radiographic image was classified, it was fed 

into one of the other two networks, which are responsible for either 

the upper or lower implants. These two parallel networks apply the 

core logic, detect implants using bounding box regression, and predict 

landmarks. They each have the same architecture but were 

separately trained for upper and lower implants. 

 

2.2.2.1 Upper and Lower Implant Classifier 

Based on a 152-layer ResNet30, a classification model was 

created for sorting upper and lower periapical radiographs. Weights 

pretrained on ImageNet31 were used, but the last fully connected 

layer was switched so that there were two final output nodes, i.e. one 

for each of the classes (upper and lower implants). 
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2.2.2.2 Mask R-CNN with Keypoint Head 

After the 152-layer model classified whether the given 

periapical radiograph contained an image of the upper or lower jaw, 

the radiograph image was fed into another model that was trained 

specifically for upper or lower implants. 

At this stage, individual implants are detected using bounding 

boxes. Based on the detected region, the six keypoints, including 

mesial and distal marginal bone level, were predicted. 

For this procedure, a modified R-CNN architecture, Mask R-

CNN, was used. Mask R-CNN, the latest descendant of the R-CNN 

model, comprised a “backbone” and “heads”.11 The backbone 

network is a CNN that outputs feature maps from the original input 

image. Among various options, the FPN32 based on ResNet,30 known 

for robust results when used for Mask R-CNN, was adopted in this 

study. 

Using the feature maps from the backbone network, the box head 

performed object classification and bounding box regression and the 

mask head performed object segmentation. By attaching a keypoint 

detection head and properly training the network, the model can 

predict specific keypoints on the objects that were detected by the 

box head. As demonstrated in a previous study, this method with a 

keypoint head can be used for human pose estimation, wherein the 

model picks some keypoints of the human body, such as eyes, elbows, 

and knees.11 In the present study, we adopted this architecture, i.e., 

the Mask R-CNN based on ResNet-FPN backbone with a keypoint 

detection head. The scheme of the model excluding the upper and 

lower jaw classification is shown in Figure 2. 
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Figure 2. Architecture of the model used in this study. The FPN was constructed with the ResNet as a backbone 

CNN. The RPN takes feature maps from the FPN and proposes RoI. The box head further refines the proposals 

and predicts final bounding boxes (red arrows). In addition, the keypoint head localizes the keypoints (yellow dots 

in the middle of the radiographs on the right) based on the predicted bounding boxes. C2-5 and P2-6 denotes 

the output feature maps of the ResNet and FPN, respectively. Implant (①), Abutment (②) and Superstructure (③) 

are shown in the left radiograph. 
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The model was trained and tested for detecting implants and 

locating the six positions of the detected implant on dental periapical 

radiographs. The six keypoints were the right and left sides of the 

peri-implant bone level, the implant apex, and the implant top. To 

cover various types of implants, the most coronal thread was 

annotated as the top of the implant. We refer to these six positions 

as “keypoints” because it is a widely used term in point-detecting 

tasks, such as human pose estimation33, 34 or facial keypoint 

detection35. 

 

2.2.2.3 Bone Loss Ratio and Classification 

Some studies on classification systems for peri-implantitis use 

radiographic bone loss along with clinical indicators, such as 

bleeding/suppuration on probing or probing depth.36-38 They also use 

the ratio of the radiographic bone loss over the total implant length 

to classify the peri-implantitis. Based on their suggested criteria, we 

calculate and classify the bone loss ratio so that dental practitioners 

can easily refer to it. 

Using the coordinates of the six keypoints obtained from the 

prediction, the total length of the implant and the implant length that 

is not surrounded by sound bone can be calculated. The total length 

is measured from the center of the apex to the center of the implant 

top, and the length corresponding to the radiographic bone loss is 

measured from the center of the implant top to the center of the two 

marginal bone level keypoints. From these values, the percentage of 

the implant length in the bone defect site over the total length is 

calculated. 

Based on this percentage, the severity of the bone loss around 

the implant is classified into one of four groups: normal, if the 

percentage is ≤10%, early, if the percentage is >10% and ≤25%, 

moderate, if the percentage is >25% and ≤50%, and severe, if the 
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percentage is >50%. 

 

2.2.3 Evaluation Methods 

As the prediction process comprises two phases, i.e., implant 

bounding box regression and implant keypoint localization, two 

different metrics are used for evaluating each task. 

 

2.2.3.1 Intersection over Union (IoU) 

For evaluating the model’s performance of detecting implants, 

a metric that can measure how close the model’s bounding box is to 

the ground truth bounding box is needed. IoU, also known as the 

Jaccard index, is used as the requisite metric. IoU is calculated by 

dividing the overlapping area of the ground truth box (A) and the 

model-predicted box (B) by the total area of the coverage of the two 

boxes. 

 

 
(1) 

 

At various values of the IoU thresholds, the model’s AP and AR 

can be obtained. 

 

2.2.3.2 Object Keypoint Similarity (OKS) 

To evaluate the model’s keypoint detection performance, OKS39 

is used as an analogous option to IoU. OKS is calculated for each 

object, and it ranges from 0 to 1. The value tends closer to 1 as the 

model’s prediction approaches the ground truth. This metric can be 

used in a manner similar to IoU, which is generally used for evaluating 

object detection tasks. The OKS for each implant is defined as follows. 
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(2) 

 

In equation (2), j represents each individual implant and i 

corresponds to each keypoint type. In the present study, the i 

represents the Lt. bone level, Rt. bone level, Lt. apex, Rt. apex, Lt. 

implant top, and Rt. implant top. Furthermore, v denotes the visibility 

flags (v = 0: not labeled, v = 1: labeled but not visible, and v = 2: 

labeled and visible) of the ground truth. For each implant, the ground 

truth and predicted keypoints have the form [x1, y1, v1, …, x6, y6, 

v6], where x and y are the keypoint locations and v is a visibility flag. 

Consider a vector  that starts from a ground truth keypoint 

and ends at the detected keypoint. Variable  represents the 

distance between the ground truth keypoint and the detected 

keypoint. Furthermore,  is the scale of the implant j and is defined 

as the square root of the ground truth segmented area of the implant. 

 can be regarded the per-keypoint standard deviation but 

multiplied by some constant, which is 2 here . To obtain 

the per-keypoint standard deviation , standardized to implant scale 

s, redundantly annotated images in the validation dataset were used 

to calculate . Here,  represents an average over 

j. As the mean of  over j becomes a zero vector, the per-keypoint 

standard deviation  can be obtained by calculating the mean of 

 over j. 

OKS can be used as a threshold when determining precision and 

recall based on keypoint detection. Among the keypoint-detected 

implants, only those whose OKS values are higher than the OKS 

threshold are considered true positives. Using different settings of 



 

 13 

the OKS thresholds, the corresponding precision-recall curves as 

well as AP and AR can be obtained. 

 

2.2.3.3 Mean OKS 

To compare the prediction result of the model with results of 

humans, all the OKS values of detected implants were averaged to 

calculate the mean OKS. While the precision-recall graphs reflect 

the model’s prediction confidence scores, the mean OKS does not 

include the information of various confidence scores. When 

comparing with a human, confidence scores cannot be used unless 

the human who performs the detection task provides specific 

confidence scores in a similar way to the model. Instead, only one 

threshold value of 0.7 was used for implant detection, and only the 

detections that had a confidence score above it were regarded valid 

when calculating the mean OKS. To verify the validity of the model, 

this metric was used to compare its performance to that of a dentist. 

 

2.2.4 Keypoint Heatmap Visualization 

The keypoint detection output of the deep learning model used in 

this study comprises six points. These points are determined by 

selecting the highest logit of the neural network’s output. By 

converting the logit values to colored keypoint heat maps, each 

pixel’s likelihood of being a keypoint can be visualized. Hence, the 

pixels that were given high scores by the model become easier to 

find. The keypoint logits were converted to values between 0.0 and 

1.0, which were consequently assigned to a specific color. Examples 

of the keypoint heat maps are shown in Figure 3. 
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Figure 3. Examples of the keypoint heat maps. Each pixel’s likelihood of 

being a keypoint is mapped into the heat map. Heat maps that combine all 

keypoints are superimposed on the original radiograph. Individual heat maps 

for each corresponding keypoint are shown. 

 

2.2.5 Statistical Analysis 

Varying the threshold for the model’s confidence scores on 

bounding box regression with different IoU thresholds, the AP and 

AR on implant detection were obtained (IoU threshold 0.50–0.95, 

increased by 0.05). In addition, using different thresholds for the 

model’s confidence scores on keypoint detection with different OKS 

thresholds, the corresponding precision–recall curves and the AP and 

AR were obtained (OKS threshold of 0.50–0.95, and increased by 

0.05). An independent t-test was used to compare the mean OKS 

values between a dentist and our model with the total, upper jaw, and 

lower jaw dataset. p-value<0.05 was considered to be statistically 

significant. The calculations of the AP, AR, precision–recall curves, 

and the independent t-test results were performed using Python 

(Python 3.6.9, Python Software Foundation). The software code used 

for the evaluation was modified from an open-source project created 

during previous research.40 
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2.3 Panoptic segmentation on panoramic radiographs 

2.3.1 Datasets 

Ninety dental panoramic radiographs were obtained from the 

PACS in the Seoul National University Dental Hospital. In some 

instances, all the regions could not be annotated accurately; for 

example, the boundary of the medial wall of the maxillary sinus might 

be unclear, the border of the mandibular canal might not be visible, 

or the patient might not be properly positioned inside the focal trough. 

Such panoramic radiographs were excluded from the study. Similarly, 

radiographs of patients who had undergone unusual treatments, such 

as mandibular reconstruction, or those containing radiopaque 

materials that hindered the discrimination of the jaw structures, were 

excluded. 

Finally, 51 panoramic radiographs were separated into three 

groups: training (n = 30), validation (n = 11), and test (n = 10) 

datasets. The ground truths were annotated by a dental practitioner 

(the author), while an oral and maxillofacial radiologist reviewed, 

corrected, and confirmed the annotations. Visualized examples of the 

annotations are shown in Figure 4. 

For panoptic segmentation, the classes that are subjected to 

semantic segmentation are referred to as “stuff,” whereas those 

subjected to instance segmentation are referred to as “thing”.28 

The eight classes (five stuff and three things) included in the current 

study were as follows: maxilla, maxillary sinus, mandible, mandibular 

canal, normal tooth, treated tooth, dental implant, and unlabeled. 

Among these, normal tooth, treated tooth, and dental implant were 

assigned as things, so all objects in these classes were segmented 

individually.  

Some classes were categorized to help understand the results 

easily: the maxilla and mandible were categorized as “bone,” 
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whereas the normal tooth, treated tooth, and dental implant were 

categorized as “tooth.” The maxillary sinus and mandibular canal 

were not categorized because their morphology is not similar to the 

other classes. 

 

 

 

Figure 4. Visualized examples of the annotation results. Eight classes, 

including a background class, were used. Semantic segmentation was applied 

to four classes: maxillary sinus, maxilla, mandibular canal, and mandible. 

Instance segmentation was applied to three classes: normal tooth, treated 

tooth, and dental implant. 

 

2.3.2 Neural Network Model Architecture 

Panoptic segmentation is challenging and has not been applied to 

panoramic radiographs; therefore, it is important to use a high-

performance artificial neural network model. The results of the 

Cityscapes dataset benchmark41 were investigated to select the 

appropriate state-of-the-art deep neural network. Based on the 

evaluation results of various models, a high-performance model, 

Panoptic DeepLab29, was selected. It comprises a semantic 

segmentation branch and an instance segmentation branch, both of 

which share the same encoder as the backbone. The instance 

segmentation branch predicts the center of the mass for each 

instance and the offset vector, which starts from each foreground 

pixel and points to the corresponding center of mass. 

Based on the center and the offset vector, the instance id of each 
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foreground pixel can be determined. Each pixel is relocated by its 

offset vector and the distance between the predicted instance center 

and the relocated pixel is calculated. Next, the index of the closest 

instance center is allocated to the pixel as its instance id, which yields 

the result of the instance segmentation branch. Merging the 

prediction result of the semantic segmentation branch with that of the 

instance segmentation branch gives the final panoptic segmentation 

result. An overview of the model is shown in Figure 5. 
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Figure 5. Overview of the model used in this study. The semantic and instance segmentation branches use the 

same feature map and share the encoder. Each branch has its multi-scale context module and decoder, both of 

which use ASPP. The instance segmentation branch predicts the center of mass for each instance and the offset 

vector between the center and each pixel. With the predicted center and the offset, the instance id of each pixel 

can be determined, thereby resulting in class-agnostic instance segmentation. The final panoptic segmentation is 

obtained by fusing the results of the semantic segmentation and class-agnostic instance segmentation. 
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2.3.3 Evaluation Methods 

Panoptic segmentation encompasses semantic and instance 

segmentation; thus, the inference results of the model in this study 

can be evaluated from diverse perspectives. The metrics designed 

for panoptic segmentation as well as those for semantic and instance 

segmentation were selected by considering all these perspectives. 

First, the PQ, SQ, and RQ were obtained, as proposed in a 

previous study28. These metrics consider the semantic and instance 

perspectives in a comprehensive manner and are widely used for the 

evaluation of the results from panoptic segmentation41, 42. 

PQ is defined as 

 

(3) 

where p, g, and IoU represent the predicted segment, ground 

truth segment, and IoU, respectively. TP, FP, and FN represent the 

true positives, false positives, and false negatives, respectively, at 

the instance level. Specifically, TP, FP, and FN are matched segment 

pairs, unmatched predicted segments, and unmatched ground truth 

segments, respectively, found by segment matching after calculating 

the IoU. PQ is calculated for each class and can be averaged over 

classes, as shown in the result section. 

In equation (3), IoU, which is also known as the Jaccard index, 

is defined as 

 
(4) 

where p and g represent the predicted segment and ground truth 

segment, respectively. Only segment pairs with IoUs higher than 0.5 

were considered to be matched pairs. 

PQ can be expressed as a product of SQ and RQ: 
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 (5) 

where SQ is defined as 

 
(6) 

and RQ as 

 

(7) 

In equation (6), SQ is the averaged IoU of all the matched 

segment pairs. Furthermore, in equation (7), RQ is the same as the 

F1 score, the harmonic mean of precision and recall. Thus, 

decomposing PQ into these two terms helps in interpreting the PQ. 

The IoU and iIoU43 were calculated to evaluate the model’s 

inference results from the perspective of the pixel-level semantic 

segmentation. Unlike the IoU in equation (3), where each IoU was 

calculated for each segment pair, the IoU, in this case, was calculated 

for each class, globally across all the panoramic radiographs in the 

test dataset: 

 

 
(8) 

 

The essential concept of IoU is the same in equations (4) and 

(8), but we used another notation to emphasize the difference 

described above. Unlike in equations (3), (6), and (7), TP, FP, and 

FN in equation (8) represent the number of pixels of true positive, 

false positive, and false negative, calculated for one class summed 

over all the panoramic radiographs. 

However, the IoU in equation (8) has some bias toward large 

objects. To address this, iIoU uses values that are adjusted as per 

the scale of each object: 
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(9) 

 

where  and  are respectively TP and FN weighted by the 

ratio of the average instance area of the class to the area of each 

ground truth instance: 

 
(10) 

 
(11) 

 

In equations (10) and (11),  and  represent the number 

of pixels of true positive and false negative, respectively, that belong 

only to the corresponding ground truth instance i. 

As this metric assumes that the model’s output does not include 

any information about distinguishing among the individual instances, 

the pixels that correspond to FP do not belong to a specific instance. 

Thus, FP is not weighted. Furthermore, the IoU and iIoU were 

calculated for each class and each category. 

Finally, to evaluate the model’s inference results from the 

perspective of the instance segmentation, the AP for each “thing” 

was calculated and averaged across 10 different IoU threshold values 

ranging from 0.5 to 0.95 in steps of 0.05, as it is a widely used method 

for avoiding bias toward a specific threshold34. 

 

2.3.4 Neural Network Training Specifications 

The training data were enriched using randomly generated data 

augmentation, which included horizontal flipping and randomized 

cropping. The hyperparameters of the model, such as base learning 

rate and the number of total iterations, were chosen based on the 
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evaluation results of the validation dataset. Consequently, the base 

learning rate was set to 0.001, warmed up for 1000 iterations, and 

gradually decreased as the iteration progressed. The total number of 

iterations was 65,000. The Adam method44 was used for neural 

network optimization. The neural network model was trained on a 

cloud machine (Colaboratory, Google Research) with a 16 GB GPU 

accelerator (Tesla V100, Nvidia). 

The software codes for preprocessing the data, training and 

running the model for inference results, and computing the evaluation 

metrics were mostly written using Python (Python 3.7.10, Python 

Software Foundation). To facilitate the model training and inferencing, 

an open-source project45 was modified and used as a library, based 

on a machine learning library with GPU support (PyTorch 1.8.1, 

Facebook AI Research). An annotation tool46 was used to prepare the 

datasets, whose results were preprocessed to proper formats in 

order to be fed into the model. The model used in this study was 

adopted from a previous study29. Evaluation metrics from previous 

studies28, 43 and the related open-source codes47, 48 with some 

modifications were used. 

 

 

 

 

 

 

 

 

 

 



 

 23 

3. Results 
 

3.1 Keypoint detection on periapical radiographs 

3.1.1 Implant Detection Evaluation  

For evaluation of implant detection (bounding boxes around 

implants), AP and AR at various IoU thresholds were calculated. The 

AP and AR for upper implant detection averaged for all IoU 

thresholds, increased in steps of 0.05 from 0.5 to 0.95, are 0.627 and 

0.684, respectively. The AP and AR for lower implant detection 

averaged for all IoU thresholds are 0.657 and 0.728, respectively. 

The results are presented in Table 1. 

 

Table 1. AP and AR on various IoU and OKS thresholds. 

  AP (all) AP (50) AP (75) AR (all) 

bounding box upper 0.627 1.000 0.746 0.684 

 lower 0.657 1.000 0.714 0.728 

keypoints upper 0.761 1.000 0.832 0.810 

 lower 0.786 1.000 0.907 0.845 

AP (all): AP averaged over all IoU/OKS (0.50–0.95). AP(50): AP at 

IoU/OKS 0.50. AP(75): AP at IoU/OKS 0.75. AR (all). AR averaged over all 

IoU/OKS (0.50–0.95). 

 

3.1.2 Keypoint Detection Evaluation 

To obtain the OKS value in Equation (2), the standard deviations 

 for each keypoint type i around the implant were calculated by 

annotating the test dataset twice. The calculated  for this study 

were as follows:  = [0.0895, 0.0816, 0.0193, 0.0196, 0.0209, and 

0.0273] for Lt. bone level, Rt. bone level, Lt. apex, Rt. apex, Lt. 

implant top, and Rt. implant top, respectively. Based on these 

standard deviations, the OKS values for each ground truth and 

prediction pair were calculated. Similar to IoU, the OKS value can be 
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interpreted as how close the model’s prediction is to the ground 

truth keypoints. 

Using these results, AP and AR at various OKS thresholds were 

calculated for the evaluation of keypoint detection around the 

detected implant. The results are summarized in Table 1. In addition, 

precision–recall curves were crafted by varying the OKS threshold 

from 0.50 to 0.95 in increments of 0.05. The graphs are shown in 

Figure 6. 

 

 

 
Figure 6. Precision–recall graph for various OKS thresholds. Each colored 

graph represents each OKS threshold, and each point in the graph 

corresponds to a specific confidence score threshold of the model. Top: 

result of the upper images. Bottom: result of the lower images. 
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3.1.3 Mean OKS 

For the test dataset, the mean OKS values of the model used in 

this study were 0.8748, 0.9029, and 0.8885 for upper, lower, and 

total test datasets, respectively, while the mean OKS of a dentist for 

the total test dataset was 0.9012. From Equation (2), the individual 

keypoint similarity is  and . Thus, given the 

mean OKS, where the prediction belongs within the normal 

distribution of human annotated keypoints can be estimated. The 

mean OKS of 0.8885 for the total test dataset corresponds to   

, on average, and this indicates that approximately 66.92% of 

human keypoint annotations are better than those of the model used 

herein. To compare the mean OKS values between a dentist and our 

model, an independent t-test was performed. All pairs showed no 

statistically significant difference. The results are summarized in 

Table 2. 

 

Table 2. Mean OKS values of a dentist and the model. 

 Mean OKS  p-value 

Dentist 0.9012 Dentist–Model (total) 0.4095 

Model (total) 0.8885 Dentist–Model (upper) 0.1441 

Model (upper) 0.8748 Dentist–Model (lower) 0.9125 

Model (lower) 0.9029 Model (upper)–Model (lower) 0.1543 
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Figure 7. Examples of the predicted results. Each implant is detected using 

a bounding box and predicted keypoints are shown within the box. 

Radiographic bone loss ratio is calculated based on the keypoint locations. 

Confidence scores of the implant and keypoint detection are also shown. 

 



 

 27 

3.2 Panoptic segmentation on panoramic radiographs 

3.2.1 Visualization of the Inference Results 

In order to visually examine the inference results, the output 

values of the model were visualized and superimposed on the original 

inputs of the panoramic radiographs (Figure 8). 

 

  

  

 

 
 

 

Figure 8. Visualization of the inference results. Some structures, including 

the mandibular canal and the medial wall of the maxillary sinus, are difficult 

to distinguish on the original panoramic radiographs but are fairly well 

segmented. Note that the normal tooth, treated tooth, and dental implant 

classes are individually segmented for each object; this is not possible with 

conventional semantic segmentation. Left: original input panoramic 

Input panoramic radiographs Inference results 
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radiographs. Right: visualized results of the model’s inference. 

 

3.2.2 Evaluation with Panoptic Segmentation Metrics 

The metrics for panoptic segmentation, PQ, SQ, and RQ, were 

computed for each class and averaged over three categories: all 

classes, things, and stuff. The PQ, SQ, and RQ values averaged over 

all classes were 74.9, 83.2, and 90.0, respectively. The evaluation 

results are presented in Table 3. 

 

Table 3. PQ, SQ, and RQ. 

 PQ SQ RQ N 

Unlabeled 95.77 95.77 100.00 - 

Mandible 89.73 89.73 100.00 - 

Maxilla 82.77 82.77 100.00 - 

Sinus 90.74 90.74 100.00 - 

Canal 65.97 65.97 100.00 - 

Stuff 85.00 85.00 100.00 5 

Normal tooth 84.28 87.29 96.55 - 

Treated tooth 57.13 85.69 66.67 - 

Dental implant 77.34 87.89 88.00 - 

Things 72.92 86.96 83.74 3 

All 80.47 85.73 93.90 8 

N: the number of classes. 

 

3.2.3 Evaluation with Semantic Segmentation Metrics 

The metrics for pixel-level semantic segmentation, IoU, and iIoU, 

were computed for each class and category. The iIoU was computed 

only for “things” and the corresponding category. A confusion 

matrix is presented to simplify the evaluation results (Figure 9). In 

the confusion matrix, rows represent the ground truth classes, 

whereas columns represent the classes predicted by the model. Each 

value in a cell represents a ratio of the number of pixels predicted by 

the model (as a class of the column among the pixels of the ground 

truth class) to the number of pixels of the ground truth class. A prior 
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was computed for each row in the matrix, which represented a ratio 

of the number of pixels of the corresponding ground truth class to 

the total number of pixels. The confusion matrix for each class is 

shown in Figure 9. The IoU and iIoU for each class and each category 

are shown in Table 4 and Table 5, respectively. 

 

 
 

Figure 9. Confusion matrix. Each row and column represent the ground truth 

class and the predicted class, respectively. Each cell represents the ratio of 

the number of predicted pixels (column class) among the ground truth pixels 

(row class) to the number of ground truth pixels. Priors were computed for 

each row to represent the ratio of the number of pixels in the corresponding 

ground truth class to the total number of pixels. UL, unlabeled class; Man, 

mandible; Max, maxilla; Tn, normal tooth; Ttx, treated tooth; Impl, dental 

implant. 
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Table 4. IoU and iIoU for each class. 

 IoU iIoU 

Unlabeled 0.954 - 

Mandible 0.898 - 

Maxilla 0.812 - 

Sinus 0.898 - 

Canal 0.639 - 

Normal tooth 0.727 0.744 

Treated tooth 0.656 0.611 

Dental implant 0.775 0.827 

Average 0.795 0.727 

 

Table 5. IoU and iIoU for each category. 

 IoU iIoU 

Unlabeled 0.954 - 

Bone 0.886 - 

Sinus 0.898 - 

Canal 0.639 - 

Tooth 0.895 0.890 

Average 0.854 0.890 

Bone: a category including maxilla and mandible. Tooth: a category including 

normal tooth, treated tooth, and dental implant. 

 

3.2.4 Evaluation with Instance Segmentation Metrics 

The metrics for instance segmentation, AP, were computed for 

each thing. The AP values averaged over all the IoU thresholds for 

the normal tooth, treated tooth, and dental implant were 0.520, 0.316, 

and 0.414, respectively (Table 6). In addition, the AP value at the 

IoU threshold of 0.5, which is widely used for evaluation in the object 

detection task, has been presented for ease of reference. 
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Table 6. AP for all the “thing” classes. 

 AP (50) AP (all) 

Normal tooth 0.772 0.520 

Treated tooth 0.490 0.316 

Dental implant 0.714 0.414 

Average 0.658 0.417 

AP (50): AP at IoU threshold 0.5. AP (all): AP averaged across all IoU 

thresholds. 
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4. Discussion 
 

4.1 Keypoint detection on periapical radiographs 

A dental clinician needs to locate appropriate landmarks to 

analyze radiographs and diagnose peri-implantitis. Furthermore, as 

suggested by previous studies, the severity of peri-implantitis can 

be categorized based on the percentage of the radiographic bone 

loss.36-38 For these tasks, the proposed automated system can be 

used for assisting dental researchers or practitioners. 

AP and AR are popular evaluation metrics in the field of object 

detection and instance segmentation. However, these metrics are 

intended for model evaluation and not human evaluation because AP 

and AR are calculated using scores, indicating the model’s 

confidence. Thus, the application of these metrics for evaluating 

humans is difficult. For a long time, the prediction results of machines 

did not match those of humans with regard to object detection or 

instance segmentation.2 Therefore, the metrics comparing AI and 

human experts in these fields have not been extensively studied. 

In segmenting biological images, such as in cell segmentation, the 

average IoU49-51, or the mean Dice coefficient52, 53 are frequently 

used. These metrics can also be applied to humans because they do 

not require a confidence score. As OKS was designed analogous to 

IoU, OKS can be averaged and interpreted in a manner similar to the 

average IoU. Here, to compare the prediction results of the model 

with those of a human expert, the mean OKS was calculated over 

entire implants that were detected in the test dataset. The result of 

the independent t-test showed no statistically significant difference 

between the results given by a dentist and those given by the model. 

Given the p-values, this deep learning model was considered to be 

helpful in detecting peri-implantitis under clinical situations. 
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To measure the amount of bone loss, a reference position that 

can be considered as a threshold for a sound bone level should be 

present. According to the 7th and 8th European Workshop on 

Periodontology54, 55, the use of a baseline radiograph is recommended 

after physiologic remodeling, which is usually captured at the time of 

prosthesis installation unless immediate loading is performed, to 

assess the changes in the level of the crestal bone. However, in many 

clinical situations, a baseline radiograph is unavailable. Such cases 

were discussed in previous studies. The 8th European Workshop on 

Periodontology reached a consensus that a vertical distance of 2 mm 

from the expected marginal bone level is recommended as a threshold 

when no prior radiograph is present54. In the 2017 World Workshop 

on the Classification of Periodontal and Peri-Implant Diseases and 

Conditions, the threshold was set to 3-mm apical of the most coronal 

portion of the intra-osseous part of the implant in the absence of a 

prior radiograph56. Other studies suggested a threshold from a fixed 

reference point, such as 2 mm apically from the implant platform for 

bone-level implants or 2 mm apically from the apical termination of 

the polished collar for tissue-level implants36, 57. 

As we did not use baseline radiographs, as is the usual case in 

many clinical situations, setting a reference point that can be used as 

a bone loss threshold is important. Owing to the fact that finding the 

expected marginal bone level can be subjective and the 2-mm 

distance in the radiographs may vary owing to distortion or 

magnification, a clear landmark is required that can be identified on 

radiographs. 

Our dataset included a wide variety of implants, which have 

diverse shapes and implant-abutment junctions. If the implant is a 

bone-level implant and adopted platform switching, the most coronal 

position of the implant can be clearly observed. However, some types 

of implants, such as tissue-level implants, have shapes for which 
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identifying the most coronal point of the rough surface on periapical 

radiographs is difficult. 

To cover all the implants in the dataset and those used widely in 

clinical practice, the most coronal thread of the implant was adopted 

as a threshold position. In other words, the most coronal thread was 

considered as a reference point that is supposed to be a sound bone 

level if bone resorption was not more than 0.2 mm annually after the 

physiologic remodeling, which occurs mostly during the first year 

after implant placement. This can help avoid radiographic distortion 

or magnification that will make it difficult to determine a 2-mm 

distance in the radiographs. Furthermore, this approach can be 

applied to various types of implants. However, this method has a 

limitation in that some types of implants have the most coronal thread 

at a more apical position than others. For instance, the reference 

point of the implant top for tissue-level implants should be around 2 

mm below the apical termination of the polished collar but, often, the 

most coronal thread is located below that. Nevertheless, identifying 

the point that is the end of the rough surface area or the apical 

termination of the polished collar on periapical radiographs is difficult 

even for a human expert. Further research is necessary to overcome 

this challenge. 

Numerous previous studies have stated certain diagnosis criteria 

for peri-implantitis36, 54-57. Most of them use radiographic marginal 

bone loss and bleeding on probing and/or suppuration as the criteria. 

As the diagnosis of peri-implantitis requires radiographic as well as 

clinical information, diagnosing the disease only with periapical 

radiographs is not practical. This is a limitation of the suggested 

system, and further research needs to be conducted using more 

general information, such as clinical information, to assist peri-

implantitis diagnosis. In addition, some information such as the length 

of the implant is needed to obtain the absolute depth of the bone 
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defect site. Using the ratio calculated by the automated system 

suggested in this study, the absolute bone loss length can be obtained 

by multiplying it with the real length of the implant. 

It is also important to note that two-dimensional images are not 

the only tool to evaluate the marginal bone loss of the dental implant. 

Cone-beam computed tomography (CBCT) is helpful when assessing 

the peri-implant bone loss because it can provide a three-

dimensional relationship between a dental implant and the 

surrounding alveolar bone. Some previous studies have sought to 

identify bone conditions around implants using periapical radiographs 

and CBCT images together58, 59, and other studies have reported that 

CBCT is highly accurate for detecting peri-implant bone defects60, 61. 

Thus, it will be more meaningful if a machine learning system can 

utilize the information from the CBCT as well as two-dimensional 

radiographs when evaluating the peri-implant bone conditions. This 

should be further studied in the future. Still, measuring the amount of 

the bone defect on conventional radiographic methods is important 

because two-dimensional radiographic images are widely used in the 

field and dental clinicians often encounter situations in which CBCT 

cannot be used owing to patients’ financial constraints or the 

circumstances of dental clinics. 

Although the mean OKS between the model and a human expert 

are comparable, the proposed approach has certain limitations. First, 

a threshold for the model still needs to be set, over which the model 

will output the bounding box results. Hence, object detection results 

and the mean OKS value can vary with the threshold. In addition, as 

the information of the model’s confidence score above the threshold 

is not used, the comparison is limited between two models whose 

confidence scores are different. 

Second, the standard deviations 𝜎𝑖  for each keypoint type i 

around the implant were calculated based on human (i.e., dentist) 
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annotations. However, even for a dentist, bone level detection is a 

challenge, as seen from the following values: 𝜎 = [0.0895, 0.0816, 

0.0193, 0.0196, 0.0209, 0.0273]. The first two figures show the 

standard deviations of the left and right bone level annotations, which 

are the highest among the six values. 

Thus, if the model precisely locates the bone level and locates 

other keypoints far from the ground truth, the OKS value decreases 

even though the model was successful at more challenging tasks. As 

the standard deviations 𝜎𝑖 of human annotations are larger for bone 

level keypoints, the distances of the detected bone level keypoints 

from the ground truth contribute to a relatively lower degree. As 

localizing the bone level is considered the most important task, this 

evaluation metric should be modified in further research. 

Unlike the common objects in a context evaluation method39 

where the object detection score of the model is used for applying a 

threshold when plotting the precision–recall curves, the keypoint 

localizing score was used here. For tasks where the difficulty of 

detecting objects is proportional to that of localizing keypoints, using 

the object detection score for the precision–recall curve makes sense. 

However, in our task, detecting the implant is easier than detecting 

the keypoint position and the confidence score of implant detection 

was quite high for many cases. This implies that the confidence score 

of implant detection does not indicate the confidence rate of keypoint 

detection. The plotted results of the precision–recall curves using the 

two different confidence scores were different in our task. When 

using the implant detection score, even when the recall value 

decreased, the precision did not approach 1.0 when the OKS 

threshold was high (>0.70). After changing the confidence score to 

represent the keypoint score instead of the implant detection score, 

the precision reached 1.0 at all OKS thresholds as the confidence 

score threshold increased. However, the results may vary because 
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of the randomness of the data augmentation process during training. 

In this study, the keypoint annotation that was compared with the 

inference result of the neural network model was performed by the 

same dentist who performed the ground truth annotation of the test 

dataset for the comparison between the neural network and the 

dentist. Given that the same person performed the annotation, the 

works were done at a certain time interval, as in the previous study 

comparing artificial intelligence and humans. Nevertheless, the OKS 

values of the dentist could be high because of this reason. The 

comparison will be more reliable if multiple dentists participate. 

However, as in this study, if the same person performs the ground 

truth annotation of the test dataset and the annotation representing 

the dentist, the OKS of the dentist will be higher. Thus, in this study, 

the comparison was more unfavorable to the neural network model. 

If the results of several dentists are used in the future, the inference 

results of the neural network model may become higher than in the 

present study in the OKS distribution. 

The extent of bone loss around the implant varies depending on 

the type of implant-abutment junction or platform switching. If such 

clinical information is also added and used for the training of neural 

networks, more reliable inference results can be obtained. This 

should be addressed in future research. 

Although studies have shown that periapical radiographs are 

more reliable than panoramic radiographs for determining bone level 

around implants, periapical radiographs have more variation in actual 

clinical practice than panoramic radiographs in which the patient's 

posture and angle are relatively more easily standardized during 

imaging. In this study, 708 periapical radiographs that met the 

inclusion criteria out of 1,000 were used, but there were several 

cases that were not taken in parallel, and there were many issues 

such as not showing the apex of the implant even if they were parallel. 
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Thus, if more strict exclusion criteria are applied, the proportion of 

radiographs passing the criteria will be extremely low. In future 

studies, with more stringent exclusion criteria and radiographs taken 

parallel to clearly visible implant threads, the inference accuracy of 

the deep learning model will be further improved. 

 

4.2 Panoptic segmentation on panoramic radiographs 

Dental panoramic radiographs are used to detect and diagnose 

diseases of the oral and maxillofacial area and to create various 

treatment plans in the dental clinic. Therefore, accurately reading a 

panoramic radiograph is important in the field of dentistry. 

Several studies on artificial intelligence models targeting dental 

panoramic radiographs have been published in the past. Some of them 

aimed to binary-classify the presence of specific diseases62 or 

classify the types of diseases using panoramic images63; however, 

the deep neural network models used in these studies could classify 

images but not locate the disease within the panoramic radiographs. 

Furthermore, most of these models must be trained with cropped 

images, which needed be done manually so that the RoI was located 

in the center of the cropped image. 

Certain studies attempted to perform object detection, which 

predicts the location of the disease and classifies it, using panoramic 

radiographs24-26. Furthermore, instance segmentation, which not only 

locates the object or lesion but also segments its outline, was applied 

on panoramic radiographs27. However, most instance segmentation 

models were not designed to segment extremely wide or long objects, 

such as the jaw or mandibular canal shown in panoramic radiographs. 

For example, one of the most widely studied and used CNNs for 

instance segmentation, the Mask R-CNN11, uses anchors of various 

sizes and aspect ratios to predict the RoI before further regression. 
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Although it is possible to adjust the size, aspect ratio, and angle of 

the anchor to fit the jaws or mandibular canal in the panoramic 

radiograph, the model was not designed to detect such unusual 

objects. Some researchers applied semantic segmentation23, which 

classifies each pixel but does not distinguish between individual teeth 

in the panoramic radiograph. 

Each of these approaches has its advantages and disadvantages. 

Panoptic segmentation was recently proposed to combine the 

different types of tasks28, and deep learning models that can achieve 

this are currently being evaluated29, 64. However, to the best of our 

knowledge, panoptic segmentation has not been applied in the fields 

of medicine and dentistry. 

In the current study, a state-of-the-art deep learning model 

capable of panoptic segmentation was applied to dental panoramic 

radiographs. Good results were obtained, as observed from the 

evaluation and visualization results. It is difficult to distinguish the 

various structures and the double as well as ghost images visible on 

the panoramic radiograph. The outlines of the maxillary sinus and 

mandibular canal are often difficult to find, even for an experienced 

dentist. However, it is important to identify the boundaries of these 

structures, especially during treatment planning. Therefore, unlike 

many previous studies that mainly focused only on teeth 

segmentation23, 27, the present study examined whether the maxillary 

sinus and mandibular canal can be identified on dental panoramic 

radiographs using a deep neural network model. 

The segmentation of the mandibular canal showed the lowest PQ 

and SQ among the “stuff” classes, which was consistent with the 

results of the IoU. However, as shown in Figure 3, most of the 

original input panoramic radiographs tested were faint, making it 

difficult to read and identify the mandibular canal. Furthermore, as 

the confusion matrix indicates, the prior value of the mandibular canal 
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was the lowest among all classes, which showed that the area 

covered by the mandibular canals was less than 2% of all the pixels. 

Nevertheless, our model accurately detected almost 80% of the 

ground truth pixels of the mandibular canal. A previous study, which 

proposed the concept of panoptic segmentation, tried to compare the 

artificial neural networks to human annotators and showed that 

human annotators outperformed the machines28. Given that artificial 

intelligence has not surpassed humans in this task so far, the 

recognition of the mandibular canal in the current study might be 

considered a noteworthy achievement. 

Among the stuff classes, the maxilla showed the second lowest 

evaluation score after the mandibular canal, as can be seen from the 

PQ and IoU results. The reason for this is presumed to be the unclear 

boundary between the maxillary sinus and maxilla; in addition, some 

structures such as the hard palate and zygomatic arch often interfere 

with the readings. There are cases where the central part of the 

maxilla is unclear because of the overlap of a ghost image caused by 

the cervical spine. In addition, the number of pixels in the area 

covered by the maxilla was the second smallest (<5%) after the 

number of pixels covered by the mandibular canal, among the stuff 

classes. Nonetheless, the model detected almost 90% of the ground 

truth pixels of the maxilla correctly, as can be seen in the confusion 

matrix. Surprisingly, the results for the maxillary sinus were even 

better (96% of the total ground truth pixels were accurately detected) 

considering the fact that the medial wall and the floor of the maxillary 

sinus are difficult to identify and often interfere with other structures, 

such as the innominate line and nasal floor. It is very important to 

determine the location and shape of the maxillary sinus and 

mandibular canal during dental implant surgery; therefore, these 

results suggest that artificial intelligence offers considerable 

potential to be of assistance in dental clinics in the future. 
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In the case of the thing classes, the treated tooth class showed 

the second lowest IoU after the mandibular canal. This is presumed 

to be because of the disadvantage in training because the number of 

treated teeth was relatively smaller than the number of normal teeth. 

A similar trend was observed with the iIoU and AP values. 

Furthermore, the treated tooth showed the lowest PQ among all 

classes because of the low RQ. A key reason for this is that many of 

the treated teeth and dental implants are bridges; thus, the model 

may find it difficult to distinguish between an individual tooth and an 

implant. In the case of a bridge without a pontic, or a single crown 

adjacent to a bridge or another single crown, it is sometimes difficult 

to ascertain whether they are simply adjacent or connected to each 

other. 

In addition, in the case of a bridge that connects a natural tooth 

to a dental implant, a lower evaluation score is inevitable because the 

boundary between the treated tooth class and the implant class 

cannot be distinguished. The presence of a pontic in a bridge that 

connects the same type of abutment teeth, i.e., only natural teeth or 

only dental implants, ensures that the abutments are one connected 

instance. However, when the types of abutments are diverse, i.e., 

when a natural tooth is connected to an implant, it is not possible to 

identify the boundary between the treated tooth class and the dental 

implant class, in spite of the presence of a pontic. 

Note that the incorrect detection of even a very small segment 

can negatively affect the RQ value to the same extent as a very large 

segment can. This is because the segment area itself does not affect 

the RQ. Unlike normal teeth and dental implants, the treated tooth 

class covers various treatments, such as fixed dental prostheses, 

diverse types of restorations, and root canal treatment. Owing to this 

characteristic of the treated tooth class, there are several cases 

where the segments predicted by the model are split and fragmented, 
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thereby reducing the RQ. 

These issues seem to affect the AP in a similar manner, as can 

be seen from the low AP values in the treated tooth class. However, 

these issues do not decrease the IoU, which is calculated 

independently of the individual instances being distinguished from 

each other. 

The IoU in equation (6) is a widely used metric in semantic 

segmentation; however, it does not reflect whether each object is 

detected, and is biased toward large objects. To alleviate this 

shortcoming, the iIoU, which normalizes the IoU using the area of 

each instance, was used in the current study. Nevertheless, the 

ranking of the thing classes according to the evaluation score was the 

same for IoU as well as iIoU, in this study. This might be attributed 

to the small differences in the areas between the objects belonging 

to the thing classes, on the panoramic radiographs. If there was a 

large difference in area between individual instances, the iIoU value 

could have been very different from the IoU value. 

The thing classes showed lower PQ values than the stuff classes 

did, mainly owing to the difference in RQ; in addition, the treated tooth 

class played a major role, as described earlier. Some degree of loss 

of RQ was observed even in the normal tooth class, where there was 

no need to distinguish between the bridge and the adjacent single 

crowns. The nature of the dental panoramic radiograph is probably a 

key reason for this, i.e., multiple teeth of similar shape and size being 

located close to each other. In many computer vision tasks, if a large 

number of objects belonging to a particular class are clustered in one 

location, they are separated into another class because it is difficult 

to distinguish between each object. Taking this into account, it is 

quite natural to have a low RQ value for the thing classes, because 

crowded teeth are frequently observed in dental panoramic 

radiographs. 
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Unlike the instance segmentation task, where each segment can 

overlap other segments, each pixel has only one value in the panoptic 

segmentation class. This is not a major concern in typical images 

because if a specific object covers the object behind it, the covered 

part of the object is not visible. However, in radiographs, even if the 

object in the front covers the object behind, the object behind may 

be visible, so a situation arises in which a specific pixel must have 

multiple values. This situation occurs frequently in normal tooth 

classes because the crowns are very often overlapped and the hidden 

parts are visible. Thus, annotating the ground truth for the normal 

tooth class requires some compromise. When two crowns overlap 

each other, the midpoint of the overlapped portion is assumed as the 

boundary between the two crowns because a pixel can have only one 

instance id. Alternatively, all the teeth can be treated as a single 

instance if the crowns overlap. However, this method was not used 

because, in some cases, it was not clear whether the crowns were 

overlapped. The evaluation index results differ considerably 

depending on whether the teeth are viewed as one instance or 

separate instances. This issue could adversely affect not only the RQ 

but also the SQ of the normal tooth class because SQ can be 

interpreted as the averaged IoU over all matched segment pairs. 

It is worth noting that satisfactory results were obtained in the 

current study, despite a significantly smaller number of datasets 

being used than those used for general machine learning and deep 

learning training projects. This might be attributed to the transfer 

learning, data augmentation, and standardized imaging methods used 

for dental panoramic radiographs. Unlike general computer vision 

tasks, in the case of panoramic radiographs, the radiograph is taken 

in a consistent manner with the patient positioned at a certain location 

and angle. Furthermore, the structures in the image are arranged in 

a specific pattern. Therefore, considering the number of radiographs 
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used in this study, we believe that better results can be obtained if a 

larger amount of data is used. 

Another factor that must be mentioned is that in this study, the 

panoramic radiographs were captured using a specific machine in a 

single hospital. The brand and company of the machine used to take 

orthopantomograms affect the quality and characteristics of the 

radiographs considerably. A previous study demonstrated that the 

performance of the model can be improved when panoramic 

radiographs from multiple hospitals are mixed (cross-center 

training)65. Therefore, it is possible to develop a more generalized 

deep neural network by using radiographs captured by various types 

of panoramic radiograph machines. Further research is needed to 

improve generalization and avoid overfitting of neural networks.  

Several pieces of radiographic equipment that take better-

quality panoramic radiographs have been developed in recent years, 

and many of them are being introduced in dental clinics. Given that 

panoramic radiographs used in this study have inferior quality 

compared to those taken using recently developed machines, the 

inference results will be further improved if the model is trained and 

tested using higher-quality images. Thus, as radiographic equipment 

continue to improve, artificial intelligence might be of assistance for 

the reading of panoramic radiographs in the future. 

Although the machine learning method described in this study can 

segment many important structures in panoramic radiographs, there 

remain many other structures that have not been considered. Once 

the above-mentioned improvements are applied, the proposed 

method can be the foundation for future studies in detecting a diverse 

range of structures in dental panoramic radiographs. 
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5. Conclusions 
 

A keypoint detection model, after being fine-tuned with a 

machine learning method based on transfer learning, demonstrated 

the ability to determine the extent of bone loss on radiographs for 

diagnosing peri-implantitis almost as accurately as human experts. 

In addition, a deep neural network model designed for panoptic 

segmentation could detect and segment various structures in dental 

panoramic radiographs. It could even segment the maxillary sinus and 

mandibular canal, which are often difficult to distinguish on a 

radiograph.  

Thus, after fine-tuning with a suitable dataset, these machine 

learning methods can potentially assist dental practitioners while 

diagnosing and categorizing peri-implantitis, as well as setting up 

treatment plans and diagnosing oral and maxillofacial diseases. 
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-국문초록- 

심층신경망을 이용한 

자동화된 치과 의료영상 분석 
 

서울대학교 치의학대학원 치의과학과 치과보철학 전공 

(지도교수 한 중 석) 

차 준 영 
 

목 적: 치과 영역에서도 심층신경망(Deep Neural Network) 모델을 이

용한 방사선사진에서의 임플란트 분류, 병소 위치 탐지 등의 연구들이 

진행되었으나, 최근 개발된 키포인트 탐지(keypoint detection) 모델 또

는 전체적 구획화(panoptic segmentation) 모델을 의료분야에 적용한 

연구는 아직 미비하다. 본 연구의 목적은 치근단 방사선사진에서 키포인

트 탐지를 이용해 임플란트 골 소실 정도를 파악하는 모델과 panoptic 

segmentation을 파노라마영상에 적용하여 다양한 구조물들을 구획화하

는 모델을 학습시켜 진료에 보조적으로 활용되도록 만들어보고, 이 모델

들의 추론결과를 평가해보는 것이다. 

 

방 법: 객체 탐지 및 구획화에 있어 널리 연구된 합성곱 신경망 모델인 

Mask-RCNN을 키포인트 탐지가 가능한 형태로 준비하여 치근단 방사

선사진에서 임플란트의 top, apex, 그리고 bone level 지점을 좌우로 총 

6지점 탐지하게끔 학습시킨 뒤, 학습에 사용되지 않은 시험 데이터셋을 

대상으로 탐지시킨다. 키포인트 탐지 평가용 지표인 object keypoint 

similarity (OKS) 및 이를 이용한 average precision (AP) 값을 계산하

고, 평균 OKS값을 통해 모델 및 치과의사의 결과를 비교한다. 또한, 탐
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지된 키포인트를 바탕으로 방사선사진상에서의 골 소실 정도를 수치화한

다.  

Panoptic segmentation을 위해서는 기존의 벤치마크에서 우수한 성

적을 거둔 신경망 모델인 Panoptic DeepLab을 파노라마영상에서 주요 

구조물(상악동, 상악골, 하악관, 하악골, 자연치, 치료된 치아, 임플란트)

을 구획화하도록 학습시킨 뒤, 시험 데이터셋에서의 구획화 결과에 

panoptic / semantic / instance segmentation 각각의 평가지표들을 적

용하고, 픽셀들의 정답(ground truth) 클래스와 모델이 추론한 클래스에 

대한 confusion matrix를 계산한다. 

 

결 과: OKS값을 기반으로 계산한 키포인트 탐지 AP는, 모든 OKS 

threshold에 대한 평균의 경우, 상악 임플란트에서는 0.761, 하악 임플

란트에서는 0.786이었다. 평균 OKS는 모델이 0.8885, 치과의사가 

0.9012로, 통계적으로 유의미한 차이가 없었다 (p = 0.41). 모델의 평

균 OKS 값은 사람의 키포인트 어노테이션 정규분포상에서 상위 66.92% 

수준이었다. 

파노라마영상 구조물 구획화에서는, panoptic segmentation 평가지

표인 panoptic quality 값의 경우 모든 클래스의 평균은 80.47이었으며, 

치료된 치아가 57.13으로 가장 낮았고 하악관이 65.97로 두번째로 낮

은 값을 보였다. Semantic segmentation 평가지표인 global한 

Intersection over Union (IoU) 값은 모든 클래스 평균 0.795였으며, 하

악관이 0.639로 가장 낮았고 치료된 치아가 0.656으로 두번째로 낮은 

값을 보였다. Confusion matrix 계산 결과, ground truth 픽셀들 중 올바

르게 추론된 픽셀들의 비율은 하악관이 0.802로 가장 낮았다. 개별 객

체에 대한 IoU를 기반으로 계산한 Instance segmentation 평가지표인 

AP값은, 모든 IoU threshold에 대한 평균의 경우, 치료된 치아가 0.316, 
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임플란트가 0.414, 자연치가 0.520이었다. 

 

결 론: 키포인트 탐지 신경망 모델을 이용하여, 치근단 방사선사진에서 

임플란트의 주요 지점을 사람과 다소 유사한 수준으로 탐지할 수 있었다. 

또한, 탐지된 지점들을 기반으로 방사선사진상에서의 임플란트 주위 골 

소실 비율 계산을 자동화할 수 있고, 이 값은 임플란트 주위염의 심도 

분류에 사용될 수 있다. 파노라마 영상에서는 panoptic segmentation이 

가능한 신경망 모델을 이용하여 상악동과 하악관을 포함한 주요 구조물

들을 구획화할 수 있었다. 따라서, 이와 같이 각 작업에 맞는 심층신경

망을 적절한 데이터로 학습시킨다면 진료 보조 수단으로 활용될 수 있다.  

 

 

 

주요어 : 의료 인공지능; keypoint detection; panoptic segmentation; 

머신러닝; 딥러닝 
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