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Abstract

A Diagnosis Framework for the Robotic Arm Joint
with Strain Wave Gearing

based on Ordinal Pattern Analysis

Dongkyu Lee
Department of Mechanical Engineering
The Graduate School

Seoul National University

With the fourth industrial revolution, a smart manufacturing system has been
adopted in many enterprises and the demand for health assessment of industrial
robots has skyrocketed in various industrial sectors. In this context, the conventional
study has focused on diagnosing robots based on the physical dynamic model and
vibration signal. However, 1) the approximate model had intrinsic modeling
uncertainty, 2) the vibration signal could be disturbed by external noise, and 3) the
motion preprocessing and physical reasoning of health assessment have not been
well organized. In addition, Strain wave gear (SWG) has not been considered of
health assessment although it has been used for many years as a speed reducer due
to its high performance. Its elastic flexspline has been susceptible to fatigue failure
causing gear backlash.

In this study, therefore, we measure the motor input current of a robotic arm joint
to make it less susceptible to external noise. Also, we propose a diagnosis framework
of robots with SWG gearing based on ordinal pattern analysis with optimal

parameter selection considering physical interpretation. The framework is composed



of the following steps: 1) Motion Segmentation based on Time-Frequency
Representation (TFR), 2) Ordinal Pattern Analysis of Motor Current (OPAMC), and
3) Distribution-based fault detection.

At first, in the motion segmentation process, the motor current signal is frequency-
demodulated using Temporal Fine Structure (TFS) since the robot’s joint speed has
a linear relationship with the current signal’s frequency component. Also, the TFS is
analyzed in the time-frequency domain to formulate a normalized motion signal
which is used to decompose the current signal into multiple segments. Then, the
segments are identified into different types of motions based on the similarity with
reference motions. Also, the total number of cycles and motion types are calculated
in this process. Secondly, in OPAMC, the segments are time-synchronized with
reference motion and Hilbert-transformed to get an envelope for ordinal pattern
extraction. Using a fundamental frequency of the current signal, the optimal
parameter is calculated, and the ordinal patterns are extracted in the form of
probability mass function (PMF). Then, the PMF of an observed state is
quantitatively compared with a normal state through Jensen-Shannon divergence
(JSD). Finally, each JSD distribution among different joints is represented on 3-
dimensional feature space through point estimate of mean and variance and
Kolmogorov-Smirnov statistics whose dimension is then reduced to 1 dimension
scalar through linear discriminant analysis.

For validation, it is tested on two cases of control condition, increasing velocity
20, 50, 100% and payload 0,1,2 kg. Also, the optimal parameter for extracting ordinal
patterns is compared with actual values to demonstrate its feasibility. On velocity
control, the JSD shows to be higher on the faulty reducer, and its distribution shows
a distinct difference between normal and faulty joint on all speed conditions.
However, on the payload control condition, the JSD is only higher with no payload

mounted than the payload on the fault SWG. The payload caused less modulation on

-l -.-
11 Ml ==



torque and motor current, and thus fewer backlash characteristics appeared on
ordinal patterns.

In this research, a diagnosis framework is proposed with the motion segmentation
and optimal parameter in ordinal pattern extraction. Since it is subjective to diagnose
the robot with a simple threshold, the comparative analysis among different joints
shows to be more efficient in terms of rational health assessment. Also, the
framework is validated on various operating conditions such as velocity and payload

condition yielding high reliability on the study.
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Strain wave gear
Diagnosis framework
Ordinal pattern analysis
Motion segmentation

Distribution-based fault detection
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Chapter 1. Introduction

1.1. Motivation

Since the industry 4.0 accelerated the spread of smart factories, the industrial
robots have been adopted in various industrial sectors. The automated production
line transformed to be more complicated and dependent each other, and downtime
could cause enormous economic loss to the company. Therefore, diagnosis and
health management of manufacturing system such as industrial robot has become a
major issue [1].

A conventional method for diagnosing robot’s health condition has been model-
based approach where robot’s behavior approximate into dynamic model. However,
such method had intrinsic modelling uncertainty that the model could not fully
describe the actual behavior of robot’s motion [2]. Another approach has utilized the
vibration signal measured on gearbox of RV speed reducer, but it had disadvantages
that only constant speed condition was considered, and non-stationary signal was
difficult to diagnose. Also, the external noise could hinder health assessment of robot
joint [3]. The other approach to deal with noise issue was measuring motor current
on robot joint with RV reducer and analyzing with wavelet decomposition method
[4]. Envelope and Time-Frequency Representation (TFR) of motor current was also
implemented to diagnose the robot’s health status in an unsupervised manner [5].
The motor current was less susceptible to external noise rather than vibration signal

and could represent the robot’s health condition under non-stationary condition.



However, these approaches could hardly render physical meaning in parameter
selection and lacked in establishment of preprocessing method such as motion
segmentation. Also, the Strain Wave Gear (SWQG), one of the commonly used speed

reducers in industry, has not been considered in previous studies.

1.2. Scope of research

This research takes advantage of noise robustness in motor current and suggests
diagnosis framework of robotic arm joint with SWG. In first step, the motor current
is frequency-demodulated using Temporal Fine Structure (TFS) since the robot’s
joint speed has a linear relationship with the frequency component. Then, the TFS of
motor current is analyzed in TFR to get a normalized motion signal. Also, the raw
signal is decomposed into basic segments and identified into different motion types
through cosine similarity, providing total cycles of motion and number of motion
types.

Secondly, Ordinal Pattern Analysis of Motor Current (OPAMC) is conducted
where the identified signal in motion segmentation is synchronized with reference
motion and Hilbert-transformed to get envelope for extracting ordinal patterns. The
window parameter used in pattern extraction is based on physical interpretation since
it is related to the robot’s speed profile. Also, the probability distributions of ordinal
patterns are compared between normal state and observed state through Jensen-
Shannon Divergence (JSD).

Finally, in fault detection, the total JSD distributions are cross-validated among

different joints and displayed on 3-dimensional feature space which is then reduced



to 1-dimension by Linear Discriminant Analysis (LDA).
For validation, the series of framework is tested on various operating conditions

such as different velocity and payload to provide reliability on the study.

1.3. Thesis Layout

The thesis consists of following chapters: Chapter 2 reviews essential knowledge
on fault characteristics of robot control system, signal processing and several types
of statistical distance measure. Chapter 3 and 4 proposes robot diagnosis framework
where Chapter 3 presents motion segmentation method based on Time-Frequency
Representation (TFR) and Chapter 4 proposes Ordinal Pattern Analysis of Motor
Current (OPAMC) for robot health assessment. Chapter 5 validates the proposed
method with robot motion tests on different operating conditions. Finally, Chapter 6

summarizes contributions of the study and suggests future research scope.



7 xapu|

YajesH i

A

(L) s>eds jusie

'y

7 sisAjeue jueul

wusslp Jeaur 7

(Qg) soeds aunjes4

(‘A9p piepuels

sonsiels sy 1g

ueaw) siolewysy

A

souElSIp |EDIISIElS

A

@ousbianp uo

uueys-uasuar _

soels (4Wd) uonngt
jeuLiop

13SIp sulened

uo|312333p }neq (g

7 (4Wd) uonnguisip susaled

A

7 sisAleue wisned [eulpiQ

7 ouelIeA Jo ALE|WIS SUIsOD)

A

A

7 uollda|es Jalsweled

7 uoleyuawbas 7

A

|eubis uono H

7 uoletixa adojaaug

(1mD)
wiojsuel| 39|9ABAA SNONUIIUOD

sjuswbas paziuciyouks

uol}e|a1103-5501D)

uone|npowsap Axuanbaiy H

7 (S41) ®4n3na3s auil4 [esodws |

uvorjows

iy syuawBas paynuap|

JINVdO (2

i |

\O:m.,wum,c (aseyd 1) uoijout
fejuawepund sjeubis juasind sualsjey

uopyejuawbas uopoly (L

Diagnosis framework of robot’s health

Figure 1-1.

assessment



Chapter 2. Literature Review

2.1. Robot system and malfunction

The main parts of robot system are sensor, controller, and manipulator. Compared
to human system, sensor corresponds to the sensory nerves since it helps robot
conscious to its surroundings, controller to brain since it is responsible for instructing
the robot to act based on what it recognizes, and manipulator to body since it
represents the actual motion.

Robot’s manipulator is usually transmission-based actuation system, mainly
consist of servo motor, speed reducer and timing belt in between. The servo motor
has encoder that generates a train of pulses which can be used to determine position
and speed of joints, and sometimes torque sensors. The different types of sensors in
manipulator help controller measure the current behavior and transmit control signal
to synchronize with desired behavior. When the manipulator has uncontrollable
behavior such as backlash on speed reducer, the repeatability and accuracy of the
robot’s end-effector diminish [6] causing distortion in the control signal and the

motor’s input current.
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Figure 2-1. Performance test of robot system

(a) Repeatability and Accuracy (b)Vertically articulated robot

2.1.1 Closed loop control

To control robot’s motion, user inputs desired behavior through a software, which
is usually referred to as teaching. To carry out the teaching motion, the controller
sends a control signal to the amplifier and the signal enters the motor in the form of
an amplified current signal. The power of the motor is transmitted to the end-effector
through robot’s transmission system such as speed reducer and timing belt. Then, the
robot's motion is adjusted through a closed loop control that feeds to the controller
the error value between the desired behavior and the current robot behavior which is

measured at the sensor unit [7].
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Figure 2-2. Diagram of closed-loop control [7]

2.1.2 Backlash of Strain Wave Gear

Typically referred to as Harmonic Drive, Strain Wave Gear (SWG) is a
transmission system that reduces speed of motor by specific gear ratio and it is an
essential component of robotic arm joint developed by W.Musser in 1955 [8]. The
SWG is either cup style or pancake style, and consists of wave generator, flexspline
and circular spline in common. Wave generator is a type of ball bearing with an
electrical cam connected to the input shaft and rotates the flexspline, a flexible ring
with gear teeth. The flexspline’s gear is in conjunction with circular spline which
has rigid ring gear forming a gear train [9].

The SWG is mainly used due to its characteristics such as high precision and gear
ratio compared to cycloidal gear or planetary gear. However, cyclic loading and
deformation of flexspline make it susceptible to the fatigue failure [10]. Also, failures
such as gear tooth error increase tooth clearance between flexpline and circular
spline resulting in backlash of the SWG and reduce the accuracy or repeatability of

robot motion behavior [11].



Figure 2-3. Flexspline and its failure

2.2 Continuous Wavelet Transform

Wavelet transform was first proposed by Norman Ricker (1940) for seismic wave
analysis [12]. The wavelet transform could analyze almost all types of stationary and
non-stationary signals compared to Fourier transform [13].

At first, Fourier Transform (FT) has been mainly used to analyze signal in
frequency domain as it decomposes the entire signal into a frequency component.
However, since it could only extract global frequency features using sinusoid
function, local features of signal could not be extracted, and the analysis under
varying speed conditions in which frequency characteristics changes over time had
limitations.

In this context, Short Time Fourier Transform (STFT) was introduced by Gabor
(1946) [14], in which time window was used to decompose the entire signal into

segments and proceed the Fourier transform of segments to extract local features.

8 5 428t



However, the same window length over all frequency components caused time-
frequency resolution’s compensation issue, and the local features on different
frequency band could not be effectively extracted.

Continuous Wavelet Transform (CWT) presented by Grossman and Morlet (1980)
is a Time-Frequency Representation (TFR) method which has overcome the
limitations of STFT [15]. The STFT and CWT are similar in mechanism, however,
as in Figure 2-4, the window length of CWT becomes narrower as the bandwidth of
the frequency component increases and the adaptive time-frequency resolution

facilitates analysis of non-stationary signal.

AAAAR
NI

Frequency
Frequency

STET Time CWT Time

Figure 2-4. Comparison of time-frequency resolution between STFT and CWT



A CWT of a real signal x(t) is defined as a set of convolutions with analyzing

wavelet function y(t) [16]:

CWTY (a,b) = W(a,b) = x(t) - w b) dt (2-1)

7=
where the signal x(t) is decomposed into complex conjugates of the wavelet
function *(t) which is shifted and scaled in time [15]. Also, the wavelet basis
function Y (t) is a window function or called as kernel wavelet. The a is a scale
parameter and b is a time shift parameter or transition. W(a,b) is wavelet
coefficient corresponding to each a and b which is an inner product of signal
x(t) and kernel wavelet ¥ (t) scaled by energy normalization coefficient 1/+/a.
To reproduce wavelet coefficient W (a, b), the time t of kernel wavelet Y (t) is
scaledby 1/a andtime-shifted by b.As akernel wavelet Y (t), Morse wavelet has
been widely used since it is Gaussian-windowed sine wave and thereby scale

parameter can be easily transformed into a frequency in CWT.

scale = 1 ‘L I ‘
scale = 2 .| | —| 'IJ - e N
scale = 3 % ' ‘ |

Figure 2-5. Continuous Wavelet Transform of input current

(a) Morse wavelet of scale 1,2,3  (b) CWT of 1cycle motion (4 segments)

10 , _H *_ 1_'.]'| '-@1[



CWT has been an effective tool since its adaptive feature facilitates extracting
localized information regardless time and frequency resolution, and therefore, it has
been implemented for signal processing method in system diagnostics. As an
application in industry, wavelet-based features of mechanical and electrical faults
have been implemented to diagnose induction motors at varying operating conditions

[17].

2.3 Envelope and Temporal Fine Structure

Hilbert transform (HT) was first introduced to deal with a special case of integral

equations in mathematical physics (Korpel, 1982) [18,19].

HT of the signal x(t) is defined as (Hahn ,1996) [20]:

HT[x(t)] = f Tx@ g
—ol—T (2-2)
The physical meaning of the equation is equivalent to a linear filter, where the
amplitudes is fixed while the phase is shifted by m/2 [19]. HT can provide useful
information about an amplitude, instantaneous phase, and frequency of vibrations
and thereby it is an effective representation to describe the amplitude and frequency

modulation of a time-series [20].

3 i 211
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x(®) >z () = x(t) } Analytic signal
Hilbert 2z(t) = HT[x(1)] z(t) = z,(t) + jz;i(t)

Transform

Figure 2-6. Analytic signal via Hilbert transform

1) Envelope a(t) = |z(t)| = /zrz(t)+zi2(t) (2-3)

2) Instantaneous phase @(t) = 2z(t) = arctan [?E?)] (2-4)

3) Temporal Fine Structure TFS = cos®(t) (2-5)

Through HT, signal x(t) is phase-shifted by n/2 and composes the real and
imaginary part of analytic signal, respectively. Then, the amplitude of analytic signal
offers the instantaneous amplitude, envelope, which is an effective signal processing
method for an amplitude-modulated nature of the time-series. In addition, the phase
of analytic signal, instantaneous phase, can describe time-varying frequency features
in a way that the carrier signal from instantaneous phase, called Temporal Fine
Structure (TFS), can be used as a frequency demodulation method. Since the
amplitude of TFS composed by sinusoidal functions fluctuates between -1 and 1, the

TFS can be implemented as normalized phase representation.

b i 211
12 A1 = TH
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Figure 2-7. Envelope and Temporal fine structure

The envelope detector and TFS via HT can be as simple as lowpass filter, but it is
highly precise and not sensitive to the carrier signal. The demodulation of signal
amplitude and the extraction of instantaneous frequency can be applied in any
oscillation signal, and thus, in any vibration unless it is highly impulse-modulated
signal where the output of the demodulation is highly complicated to analyze [19].

In practice, the HT demodulation has been widely used in mechanical fault
detection such as bearing and motor diagnostics. The envelope analysis has been the
benchmark method for bearing diagnostics. Through envelope analysis, a signal is
bandpass filtered in a high frequency band in which the structural resonance
enhances the impulsive fault characteristics [21]. In addition, as to a motor diagnosis,
Hilbert transform of stator-sampled current on motor current signature analysis
(MCSA) has been proposed by R. Puche-Panadero and achieved detecting broken

rotor bars at low slip or under no load [22].
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2.4 Ordinal patterns

Ordinal pattern is the non-linear time series analysis which represents order
relations of time series data. Through ordinal pattern analysis, the time series data
can be decomposed and transformed into ordinal domain features, and this non-linear
process can quantify the complexity of a system [23].

Considering a one-dimensional time series of length N, Y = {y,y2, ..., Vn}>
vectors of a dimension are embedded by time lag 7 , V: =
{Vt) Ye+or -+» Ye+(a—1)7)> and the number of embedding vectors that can be formed
with X is N — (a — 1)7.

An ordinal pattern of order a attime t with 7 (also called permutation),

g (t) = (ry, 1y, ..., 7y) of (1,2,..,a) satisfies:

Ye+rt < Ye+r,T < < Vetrgt (2'6)

where each vector’s elements are sorted by increasing order. For order a, the
number of ordinal patterns that can be formed is a!. Also, when the element values
are the same as Yyr, 1 = Ye4r,o » the pattern orders are set to be r,_; <1 for
uniqueness [24].
For example, given a time series of:

Y = {141, 0.85,-0.11,-1.35, 1.77, 0.92,-1.92,0.23,1.77,—1.26,—0.79,1.33,0.14},
the permutation 7Z(3) is calculated from embedding vector observed to be
{v3,¥5 ., ¥11} = {—0.11,1.77,-1.92,1.77,-0.79}. Since y; < y1; < y3 <

ys = yo , the pattern order permutation is mZ(3) = (r1,72,73,74,75) =
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(3,5,1,2,4). Also, the total number of embedding vectorsis 11 — (5—-1)*2 =3

and the pattern types extracted are 5! = 120.

Vs
HON Y

-192 < -0.79 < -0.11 < 1.77 = 1.77

V7 <Y11<Y3<Y¥Y5= Yo

(1, 12,13, 14, 15) = (3,5,1,2,4)

Y7
Figure 2-8. Extraction of ordinal patterns

Since the ordinal relations of signal rather than the values are compared, the
ordinal patterns show robustness to impulse noise. Also, the distribution of ordinal

patterns can represent the modulation of the signal as seen on Figure 2-9.

Signal White noise Signal White noise
4 4 02 02
2 2 015 0.15
3 8 z £
E] 2 5 s
£ £ o °
< < a 5
2 2 005 005
4 - 2 0 R
0 100 200 300 400 0 100 200 300 400 0 50 100 0 50 100
Data index Data index pattem pattem
Impulse noise Modulation Impulse noise Modulation
4 02 02
2 2 015 0.15
8 g 2 z
2 2 o o
S0 S0 = 01 T 01
£ £ e 2
< < & =4
-2 -2 0.05
- - 0 - = A
0 100 200 300 400 0 100 200 300 400 0 50 100 0 50 100
Data index Dala index pattem ‘pattem

Figure 2-9. Time series and its ordinal pattern distribution with N = 400, a =5,
T=2

(a) sinusoidal signal (upper left) (b) white noise (upper right)
(c) impulse noise (lower left) (d) amplitude-modulated (lower right)
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2.5 Measures of statistic distance

2.5.1 Jensen-Shannon divergence

Jensen-Shannon divergence (JSD) is one of method measuring the statistical
distance between different probability distributions [25]. It came from Kullback-
Leibler divergence (KLD) which measures the difference between distributions
through information loss. However, since KLD is not symmetric, JSD takes

advantage of mixture distribution to make it symmetric as shown below:

1 1
JS ) =5KL(p I ) +5KL(q I ) (2-7)
1
x() =5 (p(x) +q(x)) (2-8)
B q(x)
KL(p Il q) = —Zp(x)log (m) (2-9)

The major feature in JSD is that the probability can be weighted at different values
according to their importance so that it can provide a lot of advantages in decision
problems. In addition, it is bounded to the Bayes probability of error and can be used

as a true metric measure [26].
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2.5.2 Kolmogorov-Smirnov statistics

Kolmogorov-Smirnov (KS) statistics is commonly used for goodness-of-fit test

and defined as:

D, = sup|E,(x) — F,ps(x)| (2-10)

where F,(x) is the empirical cumulative distribution function of n-length reference
data, and F,p¢(x) is that of observed data. The KS statistics means maximum value
of the difference between two different empirical cumulative distribution functions.
It is a measure of statistical distance where the value ranges between 0 and 1. The
smaller the value of KS statistics, the greater the intersection of two different
probability distribution functions (PDF). Thus, the separability of PDFs can be
measured by analyzing KS statistics where the higher value means better separability.
Figure 2-10,11 shows KS statistics between two different probability distributions.
Assuming gaussian distribution and variance being the same, as the means get closer
the KS statistics becomes smaller since the CDF distance of the two different
distributions converges (Figure 2-10). In the same context, assuming the means
being the same, the KS statistics becomes smaller when the difference of variance
decreases (Figure 2-11). Also, the maximum value of KS statistics is 1 since

probability and CDF range between 0 and 1.
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Figure 2-10. KS statistics compared with different means
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Figure 2-11. KS statistics compared with different variances

2.6. Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) is a popular technique for dimension
reduction and data classification. In LDA, through a linear transformation P =

R™¢€, a r-dimensional x; is mapped to a lower c(<r)-dimensional &; through

18 ,* A—E —:?_T- EH aF iTU
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Ei = PTxi [27]
The LDA maximizes the ratio of between-class scatter matrix to within-class
scatter matrix of data set in a way that the class separability is maximized [28].

In LDA, the between-class, within-class, and total-class scatter matrices are

defined as [29]:

K
Sp = z _ Ny (my, — m) (my —m)" (2-11)

K
Sw = Zk=1leenk(xi —my) (x; —my)" (2-12)
Se = Zizl(xi —my) (x; — my)" (2-13)

1 . .
where m;, = n—leEnk x; 1isthe class mean or class centroid of the k-th class, m =
k

%Z?ﬂxi is the global mean or global centroid or total n points, and S; = S, +
Sw -
According to the definition, the between-class S, is maximized and S,, is

minimized in the projected lower dimensional space, and thereby the objective

function [29] in LDA optimization is as follows:

PTS,P
PTs, ) (2-14)

argmax | = tr(
P
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Chapter 3. Motion segmentation based on Time-

Frequency Representation (TFR)

3.1 Fundamental frequency of motor current

When robot operates, the rotational speed fluctuates since the speed accelerates
before it reaches the desired speed and slows down afterward as in Figure 3-1. The
maximum rotational speed is reached within a short period of time, and the transient
state overwhelms the steady state of robot motion. Therefore, it is necessary to

analyze motor current assuming the robot behaves under varying speed condition.

Motor torque
RPM

2.5 3 3.5
time(sec)
Figure 3-1. Control signal of motor torque and RPM aligned with motor input

current

On transient state, modulation occurs in the amplitude and frequency of the current
signal which can be observed through CWT. The CWT is a Time-Frequency
Representation (TFR) method which helps to observe the accelerated motion in

current signal and infer the robot joint’s speed profile. Also, through the fundamental
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frequency under varying speed condition, the maximum frequency observed in
motor current is proportional to the maximum rotational velocity of robot motion. In
Figure 3-2, a time-series robot motion signal is shown, and its CWT represents the

fundamental frequency and provides robot’s motion speed profile.

Motor current
0. 1 T T T T T T

0.05 b

Amplitude (mA)
o
1

-0.1 I 1 I 1 I 1 I I 1
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

CWT

B (o2} o]

o o o

o o o
T T T

1 1 1

Frequency (Hz)

N

o

o
T

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Time (secs)

Figure 3-2. CWT and contour of fundamental frequency

3.2 Motion segmentation

Since robot works under varying speed conditions where speed increases and
decreases near the desired value. The frequency modulation occurs with phase of

current signal and it changes from low frequency to high frequency on the transient
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state. Herein, Temporal Fine Structure (TFS) can be derived from instantaneous
phase and used to demodulate the frequency components. The TFS is a carrier signal
of instantaneous phase which ranges from -1 to 1 and extracts the frequency variation
by means of normalized signal. In addition, the CWT of TFS (CTFS) is a time-
frequency representation of TFS ranging from 0 to 1, and thereby can render
normalized robot motion signal as in (3-1). When the robot’s motion exists, the

motion signal increases up to 1 which can be used for motion segmentation process.

S(t) = max(|CTFS(t,s)]) , 0 <S(t) <1 (3-1)
(a) (b)
C‘ument‘ sig:n?l . ‘ i , . ‘ CWT ?f TF?‘;

Amplitude (mA)

Frequency (Hz)

IS

1 12 14 2

4
A A A

Motion signal

3

Al 7 7N 7N
o In [ \ /

Normalized
o @
Normalized
o
&

N
=t

18 2 22 24 26 28 3 1 1.2 14 16 18 2 22

Time (secs) Time (secs)

Figure3-3. Transformation of Temporal Fine Structure (TFS) to Motion signal

(a) Frequency demodulation (b) Motion signal through CTFES
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3.3 Identification

Once segments of the signal are obtained, the identification process is necessary
where the target segments are classified to which motion type it is corresponding to
reference motion segments. Reference motion is a series of motion with at least 1
cycle, and the target motion is segmented the same number as the reference motion
segments and identified. As sliding windows over target motion one segment by step
with reference motion segments, motion similarity between target and reference
segments is calculated. At this point, the reference and target segments are
represented as the feature vector whose elements are the variance of each segments.

The cosine similarity is calculated as follows:

‘7 " Vtk
vk

sim® = where V[s] = —Z L —x5) (3-2)

Llﬁ

where V. is a variance vector of reference motion, and V/¥ is a variance vector of

—

target motion in k-th step of sliding window. Also, by shifting reference vector V.
across target vector Vtk, cosine similarity of k-th step, sim® is calculated resulting
in repetition of cycle within robot motions as shown in Figure 3-4. Through this
process, the total number of cycles and motion types in target motion can be known

and help motion identified with the reference.
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Chapter 4. Ordinal Pattern Analysis of Motor
Current (OPAMC)

4.1 Preprocessing

4.1.1 Time synchronization

The identified segments need to be synchronized with reference in time since
ordinal pattern analysis extracts relations in time domain. For this reason, cross-
correlation is introduced for synchronization between reference and target motion
segments.

Correlation is one of the commonly used method for similarity measure in
matching process [30]. It is used for aligning two time series where one of the signals
is delayed against the other. At the lag when the signal is best correlated, the cross
correlation occurs highest and the signals line up [31].

In synchronization process, cross correlation between reference and target

segments is defined as:

N-1

R(k) = 2 % () x¢ (i — k) (4-1)

i=0

where x, and x; are the segmented signal in reference and target motion

respectively, and N is the smaller length in either reference or target signal.
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In Figure 4-1, the time synchronization result shows that the target signal of normal

and fault condition exactly correspond to reference motion signal.

Reference
0.02}
\ﬁ. “\ 'ﬂ. .\ ,
NN “” iy WH‘“ !ﬁ"'”/ww
OHHWV \m Wy I AW "/'“\“ vy \“\/ i f\ ”\r’\‘\‘“
|| V
002 ! . . . i . . |
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
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: %W\/WWWV\A
g
£ o MWJ\WWW\WW
=]
&
g -002 . . . . . . . I I .
< 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Fault
0.02F
0_
-0.02

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Data index

Figure4-1. Synchronization of target segments with reference.

4.1.2 Envelope extraction

The envelope of current signal corresponds to torque in motor current analysis,
and thereby it can be a good indicator for its health assessment [22]. When backlash
occurs in Strain Wave Gear (SWG), it reduces the robot performance of repeatability
and accuracy leading to torque ripples in motor current [11]. Also, since the

amplitude of motor input current represents the torque, the fault characteristics of
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backlash can be demonstrated through its amplitude modulation which can be
analyzed effectively through envelope analysis [22]. Therefore, in previous study,
the motor current was once used for ball screw diagnosis in industrial robots
(QiboYang and Xiang Li ,2020) [32], and the envelope of current signal was used to
extract fault related features for unsupervised fault detection. (Fangzhou Cheng and
Ajay Raghavan ,2019) [33].

In fact, the envelope obtained by Hilbert transform of motor current produces
distinct differences in pattern among normal and fault joints as observed on Figure
4-2. In fault state, the envelope signal shows to be modulated in amplitude and

frequency compared to normal state.

gt

0 1 1 - 1 ]
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Amplitude (mA)

! | | 1 | ! J

0 1 L !
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Data index

Figure4-2. Comparison of envelope between normal and fault axis.
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4.2 Ordinal pattern distribution

The ordinal pattern can quantify the complexity of the dynamic system and extract
the characteristic structure from the system [34] with strong advantage of noise
robustness since it is not susceptible to impulse noise. Also, measuring current signal
is physically less influenced by external noises than the vibration signal. As the
rotational velocity increases, the transient state dominates the robot motion, and the
non-linear analysis method of ordinal pattern performs better than Fourier transform
which is a linear spectrum analysis method with constraints on constant speed
condition. Furthermore, when fault occurs on robot joint, the dynamic instability and
the reduction in repeatability make the ordinal pattern of envelope deviate from the

normal state as the system dynamics property changes as in Figure 4-3.

Fault Normal

Before
After

ok . . n L AN
1000 1100 1200 00 1700 1800

Before
After

L s
1100 1150

Pattern a’ Pattern

Figure4-3. Deviation of ordinal pattern distribution from normal to fault state.

(a) ordinal patterns in time series (b) Probability Mass Function (PMF)
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4.2.1 parameter selection based on TFR

In ordinal pattern, setting the appropriate time delay parameter is critical since it
decides spectral window applied in pattern extraction. The different time delay
values can determine different pattern types to be extracted from the signal. In
general, too low time delay is not able to capture the feasible fault characteristics
from the signal. When the sampling frequency increases, the time delay parameter
must set high in proportion for extracting the same ordinal patterns as previous low
sampling frequency.

As seen in Figure 4-4, when the time delay parameter is set at low value as 1, the
ordinal pattern distribution cannot effectively represent the differences in amplitude
modulation. However, as the parameter increases from 1 to 3 in Figure 4-4b, the
window is set long enough to extract modulation from the signal, and the following
changes in ordinal pattern distribution can be observed. However, when the sampling
frequency doubles in Figure 4-5, the same time delay value as in Figure 4-4 shows
little divergence in ordinal pattern distribution of modulation signal. Therefore, the
time delay parameter should increase from 3 to 6 in proportion to the change rate of
sampling frequency to extract the same ordinal patterns as in previous low sampling

frequency.
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Therefore, the optimal time delay parameter can be calculated through sampling
frequency and fundamental frequency when extracting ordinal patterns that best
represent the system.

The optimal time delay parameter 7., is:

fs
Topt = Tound( fd,max =D ) 4-2)

where f; is the sampling frequency, f;mqx 15 the maximum fundamental
frequency in analyzing segments, and y is the scale factor. The 7,,, increases
in proportional to sampling frequency f; , and decreases in proportional to pattern
order @ and maximum fundamental frequency f;mqy. Also, scale factor y is a
control parameter for adequate 7,,; values when either robot’s maximum speed
(fa,max) or sampling rate (f;) is too high or low.

In Figure 4-6, a single motion segment on time domain and its CWT are shown
where the time window for extracting patterns is explained with fundamental
frequency. The window is set to extract the smallest unit of modulation on maximum

desired speed.
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Figure4-6. Time window for extracting ordinal pattern

(a) Time series of segment (b) Fundamental frequency of desired speed

4.3 Fault detection

4.3.1 Jensen-Shannon divergence

Jensen-Shannon Divergence (JSD) can quantitatively measure the statistical
distance between Probability Mass Functions (PMFs) since it is a symmetric metric.
Also, the ordinal pattern distribution can be normalized into PMF, and the change of
PMF can indicate health transition from normal to fault condition.

When a faulty reducer is mounted on robot joint, distinct difference in pattern
distribution can be observed compared to the normal states. Since the distribution
changes, the JSD of faulty-reducer distribution is observed to be higher than the

normal one as in Figure 4-7.
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Figure4-7. Ordinal pattern distribution and its JSD before and after faulty SWG
assembly (a) Before assembly on faulty axis (upper left) (b) After assembly on
faulty axis (upper right) (c) Before assembly on normal axis (lower left)

(d) After assembly on normal axis (lower right)

4.3.2 Distribution-based diagnosis

The histogram in Figure 4-8 represents JSD feature distribution compared
between normal and faulty joint. JSD distribution assumed to be gaussian, sample
mean and variance can be calculated through point estimation method. The change
of these estimate can indicate how far the distribution of faulty state diverges from
the normal state. In addition, Kolmogorov-Smirnov (KS) statistics can also measure

separability in JSD distribution. In Table 4-1, the difference in parameter estimates
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and KS statistics is represented where the fault axis experiences the increasing

difference in mean and variance with increasing KS statistics as well. This suggests

that the distribution shifts in position, and the shared area between normal and fault

distributions lessens.
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Figure4-8. Comparison of JSD distribution between normal and fault
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Table4-1. Statistical distance of normal and fault JSD distribution

Au Ac? KS statistics
Normal 14.7* ¢-03 3.23 * e-04 0.583
Fault 122%* ¢-03 7.0 * e-04 1

The estimate difference and KS statistics between normal and fault axis are
described on 3-dimensional feature space in Figure 4-9a. Through 3-dimensional
space, the diverging characteristics of the features on fault axis can be observed. Also,
by linear discriminant analysis, the 3D feature dimension can be reduced to 1

dimensional space to classify the robot’s health states as in Figure 4-9b.

* Fault
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Figure4-9. Robot’s health state on feature space

(a) 3D space of statistical feature  (b) Projected 1D space through LDA
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Chapter 5. Experiment and Validation

5.1 Experimental setup

In this experiment, we conducted motion tests on vertically articulated robot
which consists of six axes as manipulator. For comparison between normal and fault
axis, the robot was set to move one axis each per test. Then, the motor's three-phase
input currents of all six axes were measured. The type of transmission used as a speed
reducer was Strain Wage Gear (SWG) or commonly named, Harmonic Drive. For
measuring current on six axes, the 18 channels of hall-effect current sensors were

installed, and the sampling rate was set to be 2048Hz.

Hall effect sensor
( 1~18 channel)

TCP/IP

DAQ

Figure5-1. Robot testbed for current measurement
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As to failure in speed reducer, the SWG’s flexspline was grinded a quarter of a
perimeter and mounted on robot joint where the highest torque was created. In fact,
the failure on reducer could demonstrate the backlash of robot and was difficult to
perceive with human sense through vibration. Then, the normal joint was compared

with faulty one.

Figure5-2. Assembly of faulty Strain Wave Gear

(a) speed reducer on 3rd axis (b) Grinded teeth on flexspline

The experiment was conducted in two cases of control condition, varying joint’s
rotational speed or payload mounted on end-effector. The speed conditions were set
at 20%, 50%, and 100% with no payload, and the payload conditions were changed
to 0 kg, 1 kg, and 2 kg under the speed set at 100%. Also, in each case, the health
condition of four motion cycles was analyzed before and after the assembly of faulty
speed reducer. The JSD distributions of normal and faulty joint were analyzed with
its estimate and KS statistics on 3- dimensional feature space, and processed

dimension reduction through Linear Discriminant Analysis (LDA).
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5.2 Experimental result

5.2.1 Case 1: Velocity 20, 50, 100%

The fundamental frequencies according to speed were observed to be 68 Hz, 157
Hz, and 314 Hz at speeds of 20%, 50%, and 100%, respectively. The same
fundamental frequency was observed in different axis, and the frequency increased

by approximately 31.4 Hz per 10% of speed.

20% 50% 100%

Magnitude Scalogram Magnitude Scalogram Magnitude Scalogram

2 B 8 ® 8 8
Wagniude

15T\me [SEE)ZS : : ‘75 jwr\s [SEEE)15 ‘ e Time (secs)
Figure5-3.CWT of 1 cycle motion and maximum rotational frequency of

Velocity 20%, 50%, 100%

Table5-1. Fundamental frequency on different speed conditions

Velocity Maximum frequency
20% 64Hz
50% 157Hz
100% 314Hz

(Payload: Okg)
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In OPAMC, window for ordinal pattern was set with different time delay
parameter in each speed condition. Figure 5-4,5,6 shows JSD distributions of normal
and fault axis with 7 increasing from 1 to 25. The average values of each
distribution were linked on black line over all 7 values.

As a result, the JSD distribution shows distinct difference between normal and
fault axis in all speed condition. The 7,,; value of which the distribution is
separated at most decreases as the velocity increases. As the speed condition
increases 20, 50, 100%, the t,,; value decreases 15, 5 ,3. In other words, the
desired speed through teaching increases and the maximum fundamental frequency
increases, and therefore the modulation occurs at narrower window of signal and the

Tope for extracting ordinal pattern decreases.
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Figure5-4. Jensen-Shannon Divergence with different t values

on 20% speed condition (a) Normal (b) Fault
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The result could be validated by applying same 7 and comparing each other in
all speed condition. Figure 5-7,8,9,10 represents PMF of ordinal patterns applying
the same 7 on speed condition of 20%, 100%. When t is 3, only speed condition
of 100% showed better distinction in PMF as JSD is 0.5955 after faulty SWG
assembly compared to 0.1884 on normal condition. On the other hand, when 7 is
15, only speed condition of 20% showed better distinction in PMF as JSD is 0.5770
after faulty SWG assembly compared to 0.1333 on normal condition. The 7y,
varies on different speed conditions, and too short or long window hardly extracts
feasible ordinal patterns and catch modulation in signal.

Therefore, the 7,,; is dependent on robot’s operating speed and can be calculated
through its physical relation. The scale factor can be obtained as the actual 7,,,
values are 15, 5, 3 on 20%, 50%, 100% respectively. The scale factor was 2, and the

following 7,,; values on each speed condition were 14, 6, 4.

Ny=1

Velocity  20% 50% 100%

Tragmit 7 3 1

| Velocity 20%  50%  100% !

Table 5-2. Different scale factor and its 7, in each case
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On all speed condition with the each 7,,; values, the JSD is observed to be

greater after the assembly of faulty SWG rather than the normal speed reducer

mounted in Figure 5-11. Also, the JSD distribution of all motion segments is

represented as histogram, and the distribution of the fault axis changes significantly

after the assembly of faulty SWG in Figure 5-12.
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Figure5-11. JSD (scatter plot) on different speed conditions
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Figure5-12. JSD (histogram) on different speed conditions
(a) velocity 20% (b) velocity 50% (c) velocity 100%

In Figure 5-13,14, the order parameter ¢ of 4 and 5 in OPAMC are compared
and the distributions are displayed on 3-dimensional feature space through estimates
of mean and variance assuming gaussian distributions, and KS statistics quantifying
the separability between two different distributions in Table 5-2,3. Then, the 3-
dimensional feature space is reduced to 1-dimensional latent space with LDA. As a
result of the order increasing from 4 to 5, and the gap between normal and fault axis
on the latent space became more distinct. This result appears to be the effect of
increasing pattern complexity extracted with OPAMC as order of the ordinal pattern

increases from 4 to 5.
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Table5-3. Statistical distance and dimension reduction of OPAMC

with a = 4

Velocity Au A o? KS statistics LDA
Normal 5.2* e-03 0.1* e-04 0.800 -2.377

20%
Fault 98.9* e-03 82* e-04 1 1.797
Normal 10.1* e-03 0.6* e-04 0.777 -2.414

50%
Fault 177* e-03 114* e-04 1 4.085
Normal 14.7* e-03 3.2% e-04 0.583 -3.820

100%
Fault 122* e-03 7.0* e-04 1 2.730

Table5-4. Statistical distance and dimension reduction of OPAMC

with a =5

Velocity Apu A o? KS statistics LDA
Normal 24* e-03 0.2* e-04 0.950 -3.620

20%
Fault 154* e-03 160* e-04 0.938 2.917
Normal 32* e-03 0.5* e-04 0.740 -3.843

50%
Fault 266* e-03 130* e-04 1 5.420
Normal 35* e-03 1*e-04 0.642 -3.937

100%
Fault 258* e-03 20* e-04 1 3.062

47 "':I\_E _'-I-.:_



* Fault
+  Nermal * Fault

1o x Normal

20%
; o 61
100% 20% 100%
. .
50% 20% 50%
-6 -4 -2 0 2 4 6
LDA
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5.2.2 Case 2: Payload 0,1,2kg

The payload being changed to 0,1 and 2 kg under the velocity set at 100%, the
fundamental frequency was observed to be the same as 314 Hz in all payload
conditions in Figure 5-15. The frequency was same in different joints since the
operating velocity was set at same value. Also, the time delay parameter T was set

at 14 in all condition as the velocity was 100%.

Okg 1kg 2kg

Magnitude Scalogram

Magnitude Scalogram

Magnitude Scalogram

Frequency (H;
Frequency (H;

Figure5-15. CWT of 1 cycle motion and maximum rotational frequency of

payload Okg, lkg, 2kg

Table5-5. Fundamental frequency on different payload condition

Payload Maximum frequency
Okg 313Hz
1kg 314Hz
2kg 314Hz

(Velocity: 100%)
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In Figure 5-16, the JSD of ordinal pattern distribution showed better distinction
on fault axis and when there was no load on the joint. When increasing the order of
the ordinal pattern, the similar result appeared as the velocity control condition, in
which the backlash of the SWG is characterized more clearly when there was no load

than load existing on end-effector.

(a) (b) (@
0.1 0.1 0.1
[ Before ["IBsfore ["Before
[ After [ After [ Avter
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0.08 é 0.08 0.08
0
008 8 006 006
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o © Q
) 0 .
Q B
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Figure5-16. JSD (scatter plot) on different payload conditions
(a) payload Okg (b) payload 1kg (c) payload 2kg
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Figure5-17. JSD (histogram) on different payload conditions
(a) payload Okg (b) payload 1kg (c) payload 2kg

In the same context as velocity control, the difference between before and after
the assembly of faulty SWG could be seen more clearly when the JSD’s distribution
was represented as a histogram in Figure 5-17. It was better distinguished in faulty
axis through the estimates and the KS statistics which represents the distribution
divergence. In addition, through dimension reduction to one-dimensional latent
space via LDA in Figure 5-18 and 19, the classification performance increased when
the order a of ordinal pattern increased from 4 to 5. Similarly to velocity controls,
the larger the order of the ordinal pattern is, the more capacity it is to represent the
complexity of the pattern and make the distinction between normal and fault joints

more pronounced as in Table 5-5,6.
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Table5-6. Statistical distance between normal and fault after OPAMC

with a=4
Payload Au N KS statistics LDA
Normal 8.6 * e-03 0.5*e-04 0.692 -2.417
Okg
Fault 121 *e-03 14.7 * e-04 1 3.506
Normal 4.8 *e-03 0.2*e-04 0.547 -4.834
H Fault 22 *e-03 0.8 *e-04 0.957 3.003
Normal 5.3*e-03 0.2*e-04 0.680 -2.432
% Fault 33 *e-03 2.2*e-04 1 3.173

Table5-7. Statistical distance between normal and fault after OPAMC

with a=5
Payload Au N KS statistics LDA
Normal 29 * e-03 0.1*e-04 0.792 -6.230
Okg
Fault 160 * e-03 7.3*e-04 1 7.799
Normal 20 * e-03 0.4 *e-04 0.759 -8.453
1kg
Fault 50 * e-03 1.6 *e-04 1 6.961
Normal 22 *e-03 0.9 *e-04 0.920 -8.338
2kg
Fault 53 * e-03 2.9*e-04 0.957 8.261
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Chapter 6. Conclusion

In this research, the robot diagnosis framework was proposed through several
steps such as motion segmentation, OPAMC and distribution-based fault detection.
Robot’s motor input current was measured and segmented by a time-frequency
technique which could represent the physical properties of the robot joint. Then, the
ordinal pattern of the current’s envelope signal was extracted, and the fundamental
frequency was introduced for determining the time delay parameter 7,,.. Also,
Jensen-Shannon Divergence (JSD) was suggested as a quantitative measure of health
status with respect to the baseline of normal state. The JSD distribution was
presented on 3-dimensional feature space with point estimates of gaussian model and
KS statistics, and then the 3-dimensional feature space was reduced to 1-dimensional
latent space via Linear Discriminant Analysis (LDA).

The series of diagnosis framework were validated on 2 cases of control
condition, increasing rotational velocity and payload on the end-effector. The
experimental result showed that the JSD distribution in faulty joint after OPAMC
was distinctively different and separated from normal axis. Also, the payload on end-
effector influenced the diagnosis performance as condition without payload showed

better distinction in JSD distribution than the condition with payload.
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6.1 Contribution and Future work

Overall, this study contributes to the health assessment of robotic arm joint in
3 aspects: 1) TFR-based approach of robot motion’s segmentation and 2) parameter
selection based on physical interpretation, and 3) the validation of framework on
different operating conditions such as speed and payload. Also, 4) The distribution-
based approach through comparative analysis gives a novel perspective compared to
conventional method which has focused on concrete threshold that could be too
subjective and dependent on personal experiences.

However, the limitation of this study is that only joints known to be susceptible
have been tested and the order parameter in OPAMC has not been considered of
other different values. In future study, experiments and verification with other joints
and different types of robot are necessary as well as increasing order values of ordinal

pattern with respect to its capability for extracting fault features.
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