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Abstract 
 

A Diagnosis Framework for the Robotic Arm Joint  

with Strain Wave Gearing  

based on Ordinal Pattern Analysis 

 
Dongkyu Lee 

Department of Mechanical Engineering 

The Graduate School  

Seoul National University 

 

 

With the fourth industrial revolution, a smart manufacturing system has been 

adopted in many enterprises and the demand for health assessment of industrial 

robots has skyrocketed in various industrial sectors. In this context, the conventional 

study has focused on diagnosing robots based on the physical dynamic model and 

vibration signal. However, 1) the approximate model had intrinsic modeling 

uncertainty, 2) the vibration signal could be disturbed by external noise, and 3) the 

motion preprocessing and physical reasoning of health assessment have not been 

well organized. In addition, Strain wave gear (SWG) has not been considered of 

health assessment although it has been used for many years as a speed reducer due 

to its high performance. Its elastic flexspline has been susceptible to fatigue failure 

causing gear backlash. 

In this study, therefore, we measure the motor input current of a robotic arm joint 

to make it less susceptible to external noise. Also, we propose a diagnosis framework 

of robots with SWG gearing based on ordinal pattern analysis with optimal 

parameter selection considering physical interpretation. The framework is composed 
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of the following steps: 1) Motion Segmentation based on Time-Frequency 

Representation (TFR), 2) Ordinal Pattern Analysis of Motor Current (OPAMC), and 

3) Distribution-based fault detection.  

At first, in the motion segmentation process, the motor current signal is frequency-

demodulated using Temporal Fine Structure (TFS) since the robot’s joint speed has 

a linear relationship with the current signal’s frequency component. Also, the TFS is 

analyzed in the time-frequency domain to formulate a normalized motion signal 

which is used to decompose the current signal into multiple segments. Then, the 

segments are identified into different types of motions based on the similarity with 

reference motions. Also, the total number of cycles and motion types are calculated 

in this process. Secondly, in OPAMC, the segments are time-synchronized with 

reference motion and Hilbert-transformed to get an envelope for ordinal pattern 

extraction. Using a fundamental frequency of the current signal, the optimal 

parameter is calculated, and the ordinal patterns are extracted in the form of 

probability mass function (PMF). Then, the PMF of an observed state is 

quantitatively compared with a normal state through Jensen-Shannon divergence 

(JSD). Finally, each JSD distribution among different joints is represented on 3-

dimensional feature space through point estimate of mean and variance and 

Kolmogorov-Smirnov statistics whose dimension is then reduced to 1 dimension 

scalar through linear discriminant analysis. 

For validation, it is tested on two cases of control condition, increasing velocity 

20, 50, 100% and payload 0,1,2 kg. Also, the optimal parameter for extracting ordinal 

patterns is compared with actual values to demonstrate its feasibility. On velocity 

control, the JSD shows to be higher on the faulty reducer, and its distribution shows 

a distinct difference between normal and faulty joint on all speed conditions. 

However, on the payload control condition, the JSD is only higher with no payload 

mounted than the payload on the fault SWG. The payload caused less modulation on 
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torque and motor current, and thus fewer backlash characteristics appeared on 

ordinal patterns. 

In this research, a diagnosis framework is proposed with the motion segmentation 

and optimal parameter in ordinal pattern extraction. Since it is subjective to diagnose 

the robot with a simple threshold, the comparative analysis among different joints 

shows to be more efficient in terms of rational health assessment. Also, the 

framework is validated on various operating conditions such as velocity and payload 

condition yielding high reliability on the study.   

 

Keyword:   Industrial robot 

Strain wave gear 

Diagnosis framework 

Ordinal pattern analysis 

Motion segmentation 

Distribution-based fault detection 
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Chapter 1. Introduction 

 

 

1.1. Motivation 

Since the industry 4.0 accelerated the spread of smart factories, the industrial 

robots have been adopted in various industrial sectors. The automated production 

line transformed to be more complicated and dependent each other, and downtime 

could cause enormous economic loss to the company. Therefore, diagnosis and 

health management of manufacturing system such as industrial robot has become a 

major issue [1].  

A conventional method for diagnosing robot’s health condition has been model-

based approach where robot’s behavior approximate into dynamic model. However, 

such method had intrinsic modelling uncertainty that the model could not fully 

describe the actual behavior of robot’s motion [2]. Another approach has utilized the 

vibration signal measured on gearbox of RV speed reducer, but it had disadvantages 

that only constant speed condition was considered, and non-stationary signal was 

difficult to diagnose. Also, the external noise could hinder health assessment of robot 

joint [3]. The other approach to deal with noise issue was measuring motor current 

on robot joint with RV reducer and analyzing with wavelet decomposition method 

[4]. Envelope and Time-Frequency Representation (TFR) of motor current was also 

implemented to diagnose the robot’s health status in an unsupervised manner [5]. 

The motor current was less susceptible to external noise rather than vibration signal 

and could represent the robot’s health condition under non-stationary condition. 
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However, these approaches could hardly render physical meaning in parameter 

selection and lacked in establishment of preprocessing method such as motion 

segmentation. Also, the Strain Wave Gear (SWG), one of the commonly used speed 

reducers in industry, has not been considered in previous studies. 

 

 

1.2. Scope of research 

This research takes advantage of noise robustness in motor current and suggests 

diagnosis framework of robotic arm joint with SWG. In first step, the motor current 

is frequency-demodulated using Temporal Fine Structure (TFS) since the robot’s 

joint speed has a linear relationship with the frequency component. Then, the TFS of 

motor current is analyzed in TFR to get a normalized motion signal. Also, the raw 

signal is decomposed into basic segments and identified into different motion types 

through cosine similarity, providing total cycles of motion and number of motion 

types.  

Secondly, Ordinal Pattern Analysis of Motor Current (OPAMC) is conducted 

where the identified signal in motion segmentation is synchronized with reference 

motion and Hilbert-transformed to get envelope for extracting ordinal patterns. The 

window parameter used in pattern extraction is based on physical interpretation since 

it is related to the robot’s speed profile. Also, the probability distributions of ordinal 

patterns are compared between normal state and observed state through Jensen-

Shannon Divergence (JSD). 

Finally, in fault detection, the total JSD distributions are cross-validated among 

different joints and displayed on 3-dimensional feature space which is then reduced 
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to 1-dimension by Linear Discriminant Analysis (LDA).  

For validation, the series of framework is tested on various operating conditions 

such as different velocity and payload to provide reliability on the study.                           

 

 

1.3. Thesis Layout 

The thesis consists of following chapters: Chapter 2 reviews essential knowledge 

on fault characteristics of robot control system, signal processing and several types 

of statistical distance measure. Chapter 3 and 4 proposes robot diagnosis framework 

where Chapter 3 presents motion segmentation method based on Time-Frequency 

Representation (TFR) and Chapter 4 proposes Ordinal Pattern Analysis of Motor 

Current (OPAMC) for robot health assessment. Chapter 5 validates the proposed 

method with robot motion tests on different operating conditions. Finally, Chapter 6 

summarizes contributions of the study and suggests future research scope.  
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Figure 1-1.  Diagnosis framework of robot’s health 

assessment 
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Chapter 2. Literature Review 

 

 

2.1. Robot system and malfunction 

The main parts of robot system are sensor, controller, and manipulator. Compared 

to human system, sensor corresponds to the sensory nerves since it helps robot 

conscious to its surroundings, controller to brain since it is responsible for instructing 

the robot to act based on what it recognizes, and manipulator to body since it 

represents the actual motion. 

Robot’s manipulator is usually transmission-based actuation system, mainly 

consist of servo motor, speed reducer and timing belt in between. The servo motor 

has encoder that generates a train of pulses which can be used to determine position 

and speed of joints, and sometimes torque sensors. The different types of sensors in 

manipulator help controller measure the current behavior and transmit control signal 

to synchronize with desired behavior. When the manipulator has uncontrollable 

behavior such as backlash on speed reducer, the repeatability and accuracy of the 

robot’s end-effector diminish [6] causing distortion in the control signal and the 

motor’s input current.  
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Figure 2-1. Performance test of robot system 

(a) Repeatability and Accuracy  (b)Vertically articulated robot 

 

 

2.1.1 Closed loop control 

To control robot’s motion, user inputs desired behavior through a software, which 

is usually referred to as teaching. To carry out the teaching motion, the controller 

sends a control signal to the amplifier and the signal enters the motor in the form of 

an amplified current signal. The power of the motor is transmitted to the end-effector 

through robot’s transmission system such as speed reducer and timing belt. Then, the 

robot's motion is adjusted through a closed loop control that feeds to the controller 

the error value between the desired behavior and the current robot behavior which is 

measured at the sensor unit [7].  
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Figure 2-2. Diagram of closed-loop control [7] 

 

2.1.2 Backlash of Strain Wave Gear 

   Typically referred to as Harmonic Drive, Strain Wave Gear (SWG) is a 

transmission system that reduces speed of motor by specific gear ratio and it is an 

essential component of robotic arm joint developed by W.Musser in 1955 [8]. The 

SWG is either cup style or pancake style, and consists of wave generator, flexspline 

and circular spline in common. Wave generator is a type of ball bearing with an 

electrical cam connected to the input shaft and rotates the flexspline, a flexible ring 

with gear teeth. The flexspline’s gear is in conjunction with circular spline which 

has rigid ring gear forming a gear train [9].  

The SWG is mainly used due to its characteristics such as high precision and gear 

ratio compared to cycloidal gear or planetary gear. However, cyclic loading and 

deformation of flexspline make it susceptible to the fatigue failure [10]. Also, failures 

such as gear tooth error increase tooth clearance between flexpline and circular 

spline resulting in backlash of the SWG and reduce the accuracy or repeatability of 

robot motion behavior [11].  
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Figure 2-3. Flexspline and its failure 

 

 

2.2 Continuous Wavelet Transform 

   Wavelet transform was first proposed by Norman Ricker (1940) for seismic wave 

analysis [12]. The wavelet transform could analyze almost all types of stationary and 

non-stationary signals compared to Fourier transform [13].  

At first, Fourier Transform (FT) has been mainly used to analyze signal in 

frequency domain as it decomposes the entire signal into a frequency component. 

However, since it could only extract global frequency features using sinusoid 

function, local features of signal could not be extracted, and the analysis under 

varying speed conditions in which frequency characteristics changes over time had 

limitations.  

In this context, Short Time Fourier Transform (STFT) was introduced by Gabor 

(1946) [14], in which time window was used to decompose the entire signal into 

segments and proceed the Fourier transform of segments to extract local features. 
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However, the same window length over all frequency components caused time-

frequency resolution’s compensation issue, and the local features on different 

frequency band could not be effectively extracted.  

Continuous Wavelet Transform (CWT) presented by Grossman and Morlet (1980) 

is a Time-Frequency Representation (TFR) method which has overcome the 

limitations of STFT [15]. The STFT and CWT are similar in mechanism, however, 

as in Figure 2-4, the window length of CWT becomes narrower as the bandwidth of 

the frequency component increases and the adaptive time-frequency resolution 

facilitates analysis of non-stationary signal. 

 

 

 

Figure 2-4. Comparison of time-frequency resolution between STFT and CWT 
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A CWT of a real signal 𝑥(𝑡)  is defined as a set of convolutions with analyzing 

wavelet function 𝜓(𝑡) [16]:  

 

 𝐶𝑊𝑇𝑥
𝜓(𝑎, 𝑏) = 𝑊(𝑎, 𝑏) =  

1

√|𝑎|
∫𝑥(𝑡) ∙ 𝜓∗ (

𝑡 − 𝑏

𝑎
)𝑑𝑡 (2-1) 

 

where the signal 𝑥(𝑡)  is decomposed into complex conjugates of the wavelet 

function 𝜓∗(𝑡)  which is shifted and scaled in time [15]. Also, the wavelet basis 

function 𝜓(𝑡) is a window function or called as kernel wavelet. The 𝑎 is a scale 

parameter and 𝑏  is a time shift parameter or transition. 𝑊(𝑎, 𝑏)  is wavelet 

coefficient corresponding to each 𝑎  and 𝑏  which is an inner product of signal 

𝑥(𝑡) and kernel wavelet 𝜓(𝑡) scaled by energy normalization coefficient 1/√𝑎. 

To reproduce wavelet coefficient 𝑊(𝑎, 𝑏), the time 𝑡 of kernel wavelet 𝜓(𝑡) is 

scaled by 1/𝑎 and time-shifted by 𝑏. As a kernel wavelet 𝜓(𝑡), Morse wavelet has 

been widely used since it is Gaussian-windowed sine wave and thereby scale 

parameter can be easily transformed into a frequency in CWT.  

 

 
Figure 2-5. Continuous Wavelet Transform of input current  

(a) Morse wavelet of scale 1,2,3  (b) CWT of 1cycle motion (4 segments) 
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CWT has been an effective tool since its adaptive feature facilitates extracting 

localized information regardless time and frequency resolution, and therefore, it has 

been implemented for signal processing method in system diagnostics. As an 

application in industry, wavelet-based features of mechanical and electrical faults 

have been implemented to diagnose induction motors at varying operating conditions 

[17].  

 

 

2.3 Envelope and Temporal Fine Structure 

Hilbert transform (HT) was first introduced to deal with a special case of integral 

equations in mathematical physics (Korpel, 1982) [18,19].  

 

HT of the signal 𝑥(𝑡) is defined as (Hahn ,1996) [20]:  

 

 
𝐻𝑇[𝑥(𝑡)] = 𝜋−1 ∫

𝑥(𝜏)

𝑡 − 𝜏
𝑑𝜏

∞

−∞

 

 

(2-2) 

The physical meaning of the equation is equivalent to a linear filter, where the 

amplitudes is fixed while the phase is shifted by 𝜋/2 [19]. HT can provide useful 

information about an amplitude, instantaneous phase, and frequency of vibrations 

and thereby it is an effective representation to describe the amplitude and frequency 

modulation of a time-series [20]. 
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Figure 2-6. Analytic signal via Hilbert transform 

1) Envelope 𝑎(𝑡) = |𝑧(𝑡)| = √𝑧𝑟
2(𝑡) + 𝑧𝑖

2(𝑡) (2-3) 

2) Instantaneous phase ∅(𝑡) = ∠𝑧(𝑡) = 𝑎𝑟𝑐𝑡𝑎𝑛 [
𝑧𝑖(𝑡)

𝑧𝑟(𝑡)
] (2-4) 

3) Temporal Fine Structure 𝑇𝐹𝑆 = 𝑐𝑜𝑠∅(𝑡) (2-5) 

 

 

Through HT, signal  𝑥(𝑡)  is phase-shifted by π/2 and composes the real and 

imaginary part of analytic signal, respectively. Then, the amplitude of analytic signal 

offers the instantaneous amplitude, envelope, which is an effective signal processing 

method for an amplitude-modulated nature of the time-series. In addition, the phase 

of analytic signal, instantaneous phase, can describe time-varying frequency features 

in a way that the carrier signal from instantaneous phase, called Temporal Fine 

Structure (TFS), can be used as a frequency demodulation method. Since the 

amplitude of TFS composed by sinusoidal functions fluctuates between -1 and 1, the 

TFS can be implemented as normalized phase representation.  
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Figure 2-7. Envelope and Temporal fine structure 

 

The envelope detector and TFS via HT can be as simple as lowpass filter, but it is 

highly precise and not sensitive to the carrier signal. The demodulation of signal 

amplitude and the extraction of instantaneous frequency can be applied in any 

oscillation signal, and thus, in any vibration unless it is highly impulse-modulated 

signal where the output of the demodulation is highly complicated to analyze [19].  

In practice, the HT demodulation has been widely used in mechanical fault 

detection such as bearing and motor diagnostics. The envelope analysis has been the 

benchmark method for bearing diagnostics. Through envelope analysis, a signal is 

bandpass filtered in a high frequency band in which the structural resonance 

enhances the impulsive fault characteristics [21]. In addition, as to a motor diagnosis, 

Hilbert transform of stator-sampled current on motor current signature analysis 

(MCSA) has been proposed by R. Puche-Panadero and achieved detecting broken 

rotor bars at low slip or under no load [22].  
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2.4 Ordinal patterns 

Ordinal pattern is the non-linear time series analysis which represents order 

relations of time series data. Through ordinal pattern analysis, the time series data 

can be decomposed and transformed into ordinal domain features, and this non-linear 

process can quantify the complexity of a system [23].  

Considering a one-dimensional time series of length 𝑁 , 𝑌 = {𝑦1, 𝑦2, … , 𝑦𝑁} , 

vectors of 𝛼  dimension are embedded by time lag 𝜏 ,  𝑉𝑡 =

{𝑦𝑡 ,  𝑦𝑡+𝜏, … ,  𝑦𝑡+(𝛼−1)𝜏}, and the number of embedding vectors that can be formed 

with 𝑋 is 𝑁 − (𝛼 − 1)𝜏.  

An ordinal pattern of order 𝛼 at time 𝑡 with 𝜏 (also called permutation),  

𝜋𝛼
𝜏 (𝑡) = (𝑟1, 𝑟2, … , 𝑟𝛼) of (1,2, … , 𝛼) satisfies:  

 

 𝑦𝑡+𝑟1𝜏 ≤  𝑦𝑡+𝑟2𝜏 ≤ ⋯ ≤  𝑦𝑡+𝑟𝛼𝜏 (2-6) 

 

where each vector’s elements are sorted by increasing order. For order 𝛼 , the 

number of ordinal patterns that can be formed is 𝛼!. Also, when the element values 

are the same as 𝑦𝑡+𝑟𝑙−1𝜏 = 𝑦𝑡+𝑟𝑙𝜏 , the pattern orders are set to be 𝑟𝑙−1 < 𝑟𝑙 for 

uniqueness [24].  

For example, given a time series of: 

𝑌 =  {1.41,  0.85, −0.11, −1.35,  1.77,  0.92, −1.92, 0.23, 1.77, −1.26, −0.79, 1.33, 0.14},  

the permutation 𝜋5
2(3)  is calculated from embedding vector observed to be 

{𝑦3, 𝑦5 … , 𝑦11}  =  {−0.11, 1.77,−1.92, 1.77,−0.79} .  Since 𝑦7 <  𝑦11 <  𝑦3 <

 𝑦5 =  𝑦9 , the pattern order permutation is 𝜋5
2(3) = (𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝑟5) =
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(3,5,1,2,4). Also, the total number of embedding vectors is 11 − (5 − 1) ∗ 2 = 3 

and the pattern types extracted are 5! = 120. 

 
Figure 2-8. Extraction of ordinal patterns 

 

Since the ordinal relations of signal rather than the values are compared, the 

ordinal patterns show robustness to impulse noise. Also, the distribution of ordinal 

patterns can represent the modulation of the signal as seen on Figure 2-9.  

 

 

Figure 2-9. Time series and its ordinal pattern distribution with 𝑁 = 400, 𝛼 = 5, 

𝜏 = 2   

(a) sinusoidal signal (upper left)  (b) white noise (upper right)  

(c) impulse noise (lower left)   (d) amplitude-modulated (lower right) 
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2.5 Measures of statistic distance 

2.5.1 Jensen-Shannon divergence 

   Jensen-Shannon divergence (JSD) is one of method measuring the statistical 

distance between different probability distributions [25]. It came from Kullback-

Leibler divergence (KLD) which measures the difference between distributions 

through information loss. However, since KLD is not symmetric, JSD takes 

advantage of mixture distribution to make it symmetric as shown below:  

 

 

 𝐽𝑆(𝑝 ∥ 𝑞) =
1

2
𝐾𝐿(𝑝 ∥ 𝜒) +

1

2
𝐾𝐿(𝑞 ∥ 𝜒) (2-7) 

 𝜒(𝑥) =
1

2
(𝑝(𝑥) + 𝑞(𝑥)) (2-8) 

 
𝐾𝐿(𝑝 ∥ 𝑞) = −∑𝑝(𝑥)𝑙𝑜𝑔 (

𝑞(𝑥)

𝑝(𝑥)
)

𝑥

 
(2-9) 

 

The major feature in JSD is that the probability can be weighted at different values 

according to their importance so that it can provide a lot of advantages in decision 

problems. In addition, it is bounded to the Bayes probability of error and can be used 

as a true metric measure [26].  
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2.5.2 Kolmogorov-Smirnov statistics  

Kolmogorov-Smirnov (KS) statistics is commonly used for goodness-of-fit test 

and defined as: 

 

 

 
𝐷𝑛 = sup

𝑥
|𝐹𝑛(𝑥) − 𝐹𝑜𝑏𝑠(𝑥)| 

(2-10) 

 

where 𝐹𝑛(𝑥) is the empirical cumulative distribution function of n-length reference 

data, and 𝐹𝑜𝑏𝑠(𝑥) is that of observed data. The KS statistics means maximum value 

of the difference between two different empirical cumulative distribution functions. 

It is a measure of statistical distance where the value ranges between 0 and 1. The 

smaller the value of KS statistics, the greater the intersection of two different 

probability distribution functions (PDF). Thus, the separability of PDFs can be 

measured by analyzing KS statistics where the higher value means better separability. 

Figure 2-10,11 shows KS statistics between two different probability distributions. 

Assuming gaussian distribution and variance being the same, as the means get closer 

the KS statistics becomes smaller since the CDF distance of the two different 

distributions converges (Figure 2-10). In the same context, assuming the means 

being the same, the KS statistics becomes smaller when the difference of variance 

decreases (Figure 2-11). Also, the maximum value of KS statistics is 1 since 

probability and CDF range between 0 and 1.  
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Figure 2-10. KS statistics compared with different means 

 

Figure 2-11. KS statistics compared with different variances 

 

 

2.6. Linear Discriminant Analysis 

Linear Discriminant Analysis (LDA) is a popular technique for dimension 

reduction and data classification. In LDA, through a linear transformation 𝑃 =

ℝ𝑟×𝑐,  a 𝑟-dimensional 𝑥𝑖 is mapped to a lower 𝑐(<𝑟)-dimensional 𝜉𝑖 through 
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𝜉𝑖 = 𝑃𝑇𝑥𝑖 [27].  

The LDA maximizes the ratio of between-class scatter matrix to within-class 

scatter matrix of data set in a way that the class separability is maximized [28].  

In LDA, the between-class, within-class, and total-class scatter matrices are 

defined as [29]:  

 

 𝑆𝑏 = ∑ 𝑛𝑘(𝑚𝑘 − 𝑚)(𝑚𝑘 − 𝑚)𝑇
𝐾

𝑘=1
 (2-11) 

 𝑆𝑤 = ∑ ∑ (𝑥𝑖 − 𝑚𝑘)(𝑥𝑖 − 𝑚𝑘)
𝑇

𝑥𝑙∈𝜋𝑘

𝐾

𝑘=1
 (2-12) 

 𝑆𝑡 = ∑ (𝑥𝑖 − 𝑚𝑘)(𝑥𝑖 − 𝑚𝑘)
𝑇

𝑛

𝑖=1
 (2-13) 

 

where 𝑚𝑘 =
1

𝑛𝑘
∑ 𝑥𝑖𝑥𝑙∈𝜋𝑘

 is the class mean or class centroid of the 𝑘-th class, 𝑚 =

 
1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1  is the global mean or global centroid or total 𝑛 points, and 𝑆𝑡 = 𝑆𝑏 +

𝑆𝑤 . 

According to the definition, the between-class 𝑆𝑏  is maximized and 𝑆𝑤  is 

minimized in the projected lower dimensional space, and thereby the objective 

function [29] in LDA optimization is as follows: 

 

 argmax
𝑃

𝐽 = 𝑡𝑟(
𝑃𝑇𝑆𝑏𝑃

𝑃𝑇𝑆𝑤𝑃
) (2-14) 
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Chapter 3. Motion segmentation based on Time-

Frequency Representation (TFR) 

 

 

3.1 Fundamental frequency of motor current  

   When robot operates, the rotational speed fluctuates since the speed accelerates 

before it reaches the desired speed and slows down afterward as in Figure 3-1. The 

maximum rotational speed is reached within a short period of time, and the transient 

state overwhelms the steady state of robot motion. Therefore, it is necessary to 

analyze motor current assuming the robot behaves under varying speed condition.  

 

 

Figure 3-1. Control signal of motor torque and RPM aligned with motor input 

current 

On transient state, modulation occurs in the amplitude and frequency of the current 

signal which can be observed through CWT. The CWT is a Time-Frequency 

Representation (TFR) method which helps to observe the accelerated motion in 

current signal and infer the robot joint’s speed profile. Also, through the fundamental 
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frequency under varying speed condition, the maximum frequency observed in 

motor current is proportional to the maximum rotational velocity of robot motion. In 

Figure 3-2, a time-series robot motion signal is shown, and its CWT represents the 

fundamental frequency and provides robot’s motion speed profile. 

 

 

Figure 3-2. CWT and contour of fundamental frequency 

 

 

3.2 Motion segmentation 

   Since robot works under varying speed conditions where speed increases and 

decreases near the desired value. The frequency modulation occurs with phase of 

current signal and it changes from low frequency to high frequency on the transient 
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state. Herein, Temporal Fine Structure (TFS) can be derived from instantaneous 

phase and used to demodulate the frequency components. The TFS is a carrier signal 

of instantaneous phase which ranges from -1 to 1 and extracts the frequency variation 

by means of normalized signal. In addition, the CWT of TFS (CTFS) is a time-

frequency representation of TFS ranging from 0 to 1, and thereby can render 

normalized robot motion signal as in (3-1). When the robot’s motion exists, the 

motion signal increases up to 1 which can be used for motion segmentation process. 

 

 𝑆(𝑡) = 𝑚𝑎𝑥(|𝐶𝑇𝐹𝑆(𝑡, 𝑠)|) ,  0 ≤ 𝑆(𝑡) ≤ 1 (3-1) 

 

 

 

Figure3-3. Transformation of Temporal Fine Structure (TFS) to Motion signal 

(a) Frequency demodulation  (b) Motion signal through CTFS 
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3.3 Identification 

   Once segments of the signal are obtained, the identification process is necessary 

where the target segments are classified to which motion type it is corresponding to 

reference motion segments. Reference motion is a series of motion with at least 1 

cycle, and the target motion is segmented the same number as the reference motion 

segments and identified. As sliding windows over target motion one segment by step 

with reference motion segments, motion similarity between target and reference 

segments is calculated. At this point, the reference and target segments are 

represented as the feature vector whose elements are the variance of each segments. 

The cosine similarity is calculated as follows:  

 

 

 𝑠𝑖𝑚(𝑘) =
𝑉⃗⃗ 𝑟∙𝑉⃗⃗ 𝑡

𝑘

|𝑉⃗⃗ 𝑟||𝑉⃗⃗ 𝑡
𝑘|

   where 𝑉⃗ [𝑠] =  
1

𝑁𝑠
∑ (𝑥𝑖 − 𝑥𝑠̅)

𝑁𝑠
𝑖=1  (3-2) 

 

 

where 𝑉⃗ 𝑟 is a variance vector of reference motion, and 𝑉⃗ 𝑡
𝑘 is a variance vector of 

target motion in k-th step of sliding window. Also, by shifting reference vector 𝑉⃗ 𝑟 

across target vector 𝑉⃗ 𝑡
𝑘, cosine similarity of k-th step, 𝑠𝑖𝑚(𝑘) is calculated resulting 

in repetition of cycle within robot motions as shown in Figure 3-4. Through this 

process, the total number of cycles and motion types in target motion can be known 

and help motion identified with the reference. 
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Figure3-4. Motion identification based on cosine similarity between reference and 

target segments 
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Chapter 4. Ordinal Pattern Analysis of Motor 

Current (OPAMC) 

 

 

4.1 Preprocessing 

4.1.1 Time synchronization 

   The identified segments need to be synchronized with reference in time since 

ordinal pattern analysis extracts relations in time domain. For this reason, cross-

correlation is introduced for synchronization between reference and target motion 

segments. 

Correlation is one of the commonly used method for similarity measure in 

matching process [30]. It is used for aligning two time series where one of the signals 

is delayed against the other. At the lag when the signal is best correlated, the cross 

correlation occurs highest and the signals line up [31].  

In synchronization process, cross correlation between reference and target 

segments is defined as: 

 

 𝑅(𝑘) =  ∑ 𝑥𝑟(𝑖)

𝑁−1

𝑖=0

𝑥𝑡(𝑖 − 𝑘) (4-1) 

 

where 𝑥𝑟  and 𝑥𝑡  are the segmented signal in reference and target motion 

respectively, and 𝑁 is the smaller length in either reference or target signal.  
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In Figure 4-1, the time synchronization result shows that the target signal of normal 

and fault condition exactly correspond to reference motion signal.   

 

 

Figure4-1. Synchronization of target segments with reference. 

 

 

4.1.2 Envelope extraction 

The envelope of current signal corresponds to torque in motor current analysis, 

and thereby it can be a good indicator for its health assessment [22]. When backlash 

occurs in Strain Wave Gear (SWG), it reduces the robot performance of repeatability 

and accuracy leading to torque ripples in motor current [11]. Also, since the 

amplitude of motor input current represents the torque, the fault characteristics of 
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backlash can be demonstrated through its amplitude modulation which can be 

analyzed effectively through envelope analysis [22]. Therefore, in previous study, 

the motor current was once used for ball screw diagnosis in industrial robots 

(QiboYang and Xiang Li ,2020) [32], and the envelope of current signal was used to 

extract fault related features for unsupervised fault detection. (Fangzhou Cheng and 

Ajay Raghavan ,2019) [33].  

In fact, the envelope obtained by Hilbert transform of motor current produces 

distinct differences in pattern among normal and fault joints as observed on Figure 

4-2. In fault state, the envelope signal shows to be modulated in amplitude and 

frequency compared to normal state.  

 

 

Figure4-2. Comparison of envelope between normal and fault axis. 
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4.2 Ordinal pattern distribution 

The ordinal pattern can quantify the complexity of the dynamic system and extract 

the characteristic structure from the system [34] with strong advantage of noise 

robustness since it is not susceptible to impulse noise. Also, measuring current signal 

is physically less influenced by external noises than the vibration signal. As the 

rotational velocity increases, the transient state dominates the robot motion, and the 

non-linear analysis method of ordinal pattern performs better than Fourier transform 

which is a linear spectrum analysis method with constraints on constant speed 

condition. Furthermore, when fault occurs on robot joint, the dynamic instability and 

the reduction in repeatability make the ordinal pattern of envelope deviate from the 

normal state as the system dynamics property changes as in Figure 4-3. 

 

    

Figure4-3. Deviation of ordinal pattern distribution from normal to fault state. 

(a) ordinal patterns in time series  (b) Probability Mass Function (PMF) 
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4.2.1 parameter selection based on TFR 

   In ordinal pattern, setting the appropriate time delay parameter is critical since it 

decides spectral window applied in pattern extraction. The different time delay 

values can determine different pattern types to be extracted from the signal. In 

general, too low time delay is not able to capture the feasible fault characteristics 

from the signal. When the sampling frequency increases, the time delay parameter 

must set high in proportion for extracting the same ordinal patterns as previous low 

sampling frequency. 

As seen in Figure 4-4, when the time delay parameter is set at low value as 1, the 

ordinal pattern distribution cannot effectively represent the differences in amplitude 

modulation. However, as the parameter increases from 1 to 3 in Figure 4-4b, the 

window is set long enough to extract modulation from the signal, and the following 

changes in ordinal pattern distribution can be observed. However, when the sampling 

frequency doubles in Figure 4-5, the same time delay value as in Figure 4-4 shows 

little divergence in ordinal pattern distribution of modulation signal. Therefore, the 

time delay parameter should increase from 3 to 6 in proportion to the change rate of 

sampling frequency to extract the same ordinal patterns as in previous low sampling 

frequency. 
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Figure4-4. Comparison of waveform and its amplitude modulation at sampling 

frequency 𝐹𝑠 with respect to time delay  (a) Sinusoidal  (b) Modulation  

 

 



 ３１ 

 

 

 

 

Figure4-5. Comparison of waveform and its amplitude modulation at sampling 

frequency 2𝐹𝑠 with respect to time delay  (a) Sinusoidal  (b) Modulation 
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Therefore, the optimal time delay parameter can be calculated through sampling 

frequency and fundamental frequency when extracting ordinal patterns that best 

represent the system.  

The optimal time delay parameter 𝜏𝑜𝑝𝑡 is:  

 

 

 
𝜏𝑜𝑝𝑡 = 𝑟𝑜𝑢𝑛𝑑(

𝑓
𝑠

𝑓
𝑑,𝑚𝑎𝑥

∙ (𝛼 − 1)
∙ 𝛾) 

(4-2) 

 

 

where 𝑓𝑠  is the sampling frequency, 𝑓𝑑,𝑚𝑎𝑥  is the maximum fundamental 

frequency in analyzing segments, and 𝛾 is the scale factor. The 𝜏𝑜𝑝𝑡 increases 

in proportional to sampling frequency 𝑓𝑠 , and decreases in proportional to pattern 

order 𝛼  and maximum fundamental frequency 𝑓𝑑,𝑚𝑎𝑥 . Also, scale factor 𝛾  is a 

control parameter for adequate 𝜏𝑜𝑝𝑡  values when either robot’s maximum speed 

(𝑓𝑑,𝑚𝑎𝑥) or sampling rate (𝑓𝑠) is too high or low. 

 In Figure 4-6, a single motion segment on time domain and its CWT are shown 

where the time window for extracting patterns is explained with fundamental 

frequency. The window is set to extract the smallest unit of modulation on maximum 

desired speed. 
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Figure4-6. Time window for extracting ordinal pattern  

(a) Time series of segment (b) Fundamental frequency of desired speed 

 

 

4.3 Fault detection 

4.3.1 Jensen-Shannon divergence 

Jensen-Shannon Divergence (JSD) can quantitatively measure the statistical 

distance between Probability Mass Functions (PMFs) since it is a symmetric metric. 

Also, the ordinal pattern distribution can be normalized into PMF, and the change of 

PMF can indicate health transition from normal to fault condition.  

When a faulty reducer is mounted on robot joint, distinct difference in pattern 

distribution can be observed compared to the normal states. Since the distribution 

changes, the JSD of faulty-reducer distribution is observed to be higher than the 

normal one as in Figure 4-7.   
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Figure4-7. Ordinal pattern distribution and its JSD before and after faulty SWG 

assembly  (a) Before assembly on faulty axis (upper left)  (b) After assembly on 

faulty axis (upper right)  (c) Before assembly on normal axis (lower left)     

(d) After assembly on normal axis (lower right) 

 

 

4.3.2 Distribution-based diagnosis 

The histogram in Figure 4-8 represents JSD feature distribution compared 

between normal and faulty joint. JSD distribution assumed to be gaussian, sample 

mean and variance can be calculated through point estimation method. The change 

of these estimate can indicate how far the distribution of faulty state diverges from 

the normal state. In addition, Kolmogorov-Smirnov (KS) statistics can also measure 

separability in JSD distribution. In Table 4-1, the difference in parameter estimates 
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and KS statistics is represented where the fault axis experiences the increasing 

difference in mean and variance with increasing KS statistics as well. This suggests 

that the distribution shifts in position, and the shared area between normal and fault 

distributions lessens.  

 

 

 

 

Figure4-8. Comparison of JSD distribution between normal and fault 

(a) scatter plot  (b) histogram 
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Table4-1. Statistical distance of normal and fault JSD distribution 

 

 ∆𝝁 ∆𝝈𝟐 KS statistics 

Normal 14.7* e-03 3.23 * e-04 0.583 

Fault 122* e-03 7.0 * e-04 1 

 

 

The estimate difference and KS statistics between normal and fault axis are 

described on 3-dimensional feature space in Figure 4-9a. Through 3-dimensional 

space, the diverging characteristics of the features on fault axis can be observed. Also, 

by linear discriminant analysis, the 3D feature dimension can be reduced to 1 

dimensional space to classify the robot’s health states as in Figure 4-9b.  

 

 

 

Figure4-9. Robot’s health state on feature space 

(a) 3D space of statistical feature  (b) Projected 1D space through LDA 
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Chapter 5. Experiment and Validation 

 

 

5.1 Experimental setup 

   In this experiment, we conducted motion tests on vertically articulated robot 

which consists of six axes as manipulator. For comparison between normal and fault 

axis, the robot was set to move one axis each per test. Then, the motor's three-phase 

input currents of all six axes were measured. The type of transmission used as a speed 

reducer was Strain Wage Gear (SWG) or commonly named, Harmonic Drive. For 

measuring current on six axes, the 18 channels of hall-effect current sensors were 

installed, and the sampling rate was set to be 2048Hz.  

 

 

 

Figure5-1. Robot testbed for current measurement 
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As to failure in speed reducer, the SWG’s flexspline was grinded a quarter of a 

perimeter and mounted on robot joint where the highest torque was created. In fact, 

the failure on reducer could demonstrate the backlash of robot and was difficult to 

perceive with human sense through vibration. Then, the normal joint was compared 

with faulty one. 

 

 

Figure5-2. Assembly of faulty Strain Wave Gear 

(a) speed reducer on 3rd axis  (b) Grinded teeth on flexspline 

 

The experiment was conducted in two cases of control condition, varying joint’s 

rotational speed or payload mounted on end-effector. The speed conditions were set 

at 20%, 50%, and 100% with no payload, and the payload conditions were changed 

to 0 kg, 1 kg, and 2 kg under the speed set at 100%. Also, in each case, the health 

condition of four motion cycles was analyzed before and after the assembly of faulty 

speed reducer. The JSD distributions of normal and faulty joint were analyzed with 

its estimate and KS statistics on 3- dimensional feature space, and processed 

dimension reduction through Linear Discriminant Analysis (LDA). 
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5.2 Experimental result 

5.2.1 Case 1: Velocity 20, 50, 100% 

   The fundamental frequencies according to speed were observed to be 68 Hz, 157 

Hz, and 314 Hz at speeds of 20%, 50%, and 100%, respectively. The same 

fundamental frequency was observed in different axis, and the frequency increased 

by approximately 31.4 Hz per 10% of speed. 

 

 

Figure5-3.CWT of 1 cycle motion and maximum rotational frequency of  

Velocity 20%, 50%, 100% 

 

 

 

Table5-1. Fundamental frequency on different speed conditions  

 

Velocity Maximum frequency 

20% 64Hz 

50% 157Hz 

100% 314Hz 

 (Payload: 0kg) 



 ４０ 

In OPAMC, window for ordinal pattern was set with different time delay 

parameter in each speed condition. Figure 5-4,5,6 shows JSD distributions of normal 

and fault axis with 𝜏  increasing from 1 to 25. The average values of each 

distribution were linked on black line over all 𝜏 values. 

As a result, the JSD distribution shows distinct difference between normal and 

fault axis in all speed condition. The 𝜏𝑜𝑝𝑡  value of which the distribution is 

separated at most decreases as the velocity increases. As the speed condition 

increases 20, 50, 100%, the 𝜏𝑜𝑝𝑡  value decreases 15, 5 ,3. In other words, the 

desired speed through teaching increases and the maximum fundamental frequency 

increases, and therefore the modulation occurs at narrower window of signal and the 

𝜏𝑜𝑝𝑡 for extracting ordinal pattern decreases. 

 

 

 

Figure5-4. Jensen-Shannon Divergence with different 𝜏 values  

on 20% speed condition (a) Normal (b) Fault 
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Figure5-5. Jensen-Shannon Divergence with different 𝜏 values  

on 50% speed condition (a) Normal (b) Fault 

 

 

 

 

Figure5-6. Jensen-Shannon Divergence with different 𝜏 values  

on 100% speed condition (a) Normal (b) Fault 
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The result could be validated by applying same 𝜏 and comparing each other in 

all speed condition. Figure 5-7,8,9,10 represents PMF of ordinal patterns applying 

the same 𝜏 on speed condition of 20%, 100%. When 𝜏 is 3, only speed condition 

of 100% showed better distinction in PMF as JSD is 0.5955 after faulty SWG 

assembly compared to 0.1884 on normal condition. On the other hand, when 𝜏 is 

15, only speed condition of 20% showed better distinction in PMF as JSD is 0.5770 

after faulty SWG assembly compared to 0.1333 on normal condition. The 𝜏𝑜𝑝𝑡 

varies on different speed conditions, and too short or long window hardly extracts 

feasible ordinal patterns and catch modulation in signal.  

Therefore, the 𝜏𝑜𝑝𝑡 is dependent on robot’s operating speed and can be calculated 

through its physical relation. The scale factor can be obtained as the actual 𝜏𝑜𝑝𝑡 

values are 15, 5, 3 on 20%, 50%, 100% respectively. The scale factor was 2, and the 

following 𝜏𝑜𝑝𝑡 values on each speed condition were 14, 6, 4. 

 

 

Table 5-2. Different scale factor and its 𝜏𝑜𝑝𝑡 in each case  
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Figure5-7. Ordinal pattern distribution and its JSD with 𝜏 = 3 on 20% speed 

condition  

(a) Normal  (b) Fault 

 

 

Figure5-8. Ordinal pattern distribution and its JSD with 𝜏 = 3 on 100% speed 

condition  

(a) Normal  (b) Fault 
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Figure5-9. Ordinal pattern distribution and its JSD with 𝜏 = 15 on 20% speed 

condition  

(a) Normal  (b) Fault 

 

 

Figure5-10. Ordinal pattern distribution and its JSD with 𝜏 = 15 on 100% speed 

condition  

(a) Normal  (b) Fault 
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On all speed condition with the each 𝜏𝑜𝑝𝑡  values, the JSD is observed to be 

greater after the assembly of faulty SWG rather than the normal speed reducer 

mounted in Figure 5-11. Also, the JSD distribution of all motion segments is 

represented as histogram, and the distribution of the fault axis changes significantly 

after the assembly of faulty SWG in Figure 5-12.  

 

 

 

Figure5-11. JSD (scatter plot) on different speed conditions  

(a) velocity 20%  (b) velocity 50%  (c) velocity 100% 
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Figure5-12. JSD (histogram) on different speed conditions 

(a) velocity 20%  (b) velocity 50%  (c) velocity 100% 

 

 

 

In Figure 5-13,14, the order parameter 𝛼 of 4 and 5 in OPAMC are compared 

and the distributions are displayed on 3-dimensional feature space through estimates 

of mean and variance assuming gaussian distributions, and KS statistics quantifying 

the separability between two different distributions in Table 5-2,3. Then, the 3-

dimensional feature space is reduced to 1-dimensional latent space with LDA. As a 

result of the order increasing from 4 to 5, and the gap between normal and fault axis 

on the latent space became more distinct. This result appears to be the effect of 

increasing pattern complexity extracted with OPAMC as order of the ordinal pattern 

increases from 4 to 5. 

 



 ４７ 

 

Table5-3. Statistical distance and dimension reduction of OPAMC  

with 𝛼 = 4 

 

Velocity △ 𝜇 △ 𝜎2 KS statistics LDA 

20% 

Normal 5.2* e-03 0.1* e-04 0.800 -2.377 

Fault 98.9* e-03 82* e-04 1 1.797 

50% 
Normal 10.1* e-03 0.6* e-04 0.777 -2.414 

Fault 177* e-03 114* e-04 1 4.085 

100% 
Normal 14.7* e-03 3.2* e-04 0.583 -3.820 

Fault 122* e-03 7.0* e-04 1 2.730 

     

 

Table5-4. Statistical distance and dimension reduction of OPAMC  

with 𝛼 = 5 

 

Velocity △ 𝜇 △ 𝜎2 KS statistics LDA 

20% 
Normal 24* e-03 0.2* e-04 0.950 -3.620 

Fault 154* e-03 160* e-04 0.938 2.917 

50% 
Normal 32* e-03 0.5* e-04 0.740 -3.843 

Fault 266* e-03 130* e-04 1 5.420 

100% 
Normal 35* e-03 1* e-04 0.642 -3.937 

Fault 258* e-03 20* e-04 1 3.062 
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Figure5-13. Dimension reduction through LDA (𝛼 = 4) 

(a) Feature space (3D)   (b) Latent space (1D) 

 

 

 

 

 

 

Figure5-14. Dimension reduction through LDA (𝛼 = 5) 

(a) Feature space (3D)  (b) Latent space (1D) 
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5.2.2 Case 2: Payload 0,1,2kg 

 The payload being changed to 0,1 and 2 kg under the velocity set at 100%, the 

fundamental frequency was observed to be the same as 314 Hz in all payload 

conditions in Figure 5-15. The frequency was same in different joints since the 

operating velocity was set at same value. Also, the time delay parameter 𝜏 was set 

at 14 in all condition as the velocity was 100%.  

 

 

 

Figure5-15. CWT of 1 cycle motion and maximum rotational frequency of  

payload 0kg, 1kg, 2kg 

 

 

Table5-5. Fundamental frequency on different payload condition 

 

Payload Maximum frequency 

0kg 313Hz 

1kg 314Hz 

2kg 314Hz 

(Velocity: 100%) 
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In Figure 5-16, the JSD of ordinal pattern distribution showed better distinction 

on fault axis and when there was no load on the joint. When increasing the order of 

the ordinal pattern, the similar result appeared as the velocity control condition, in 

which the backlash of the SWG is characterized more clearly when there was no load 

than load existing on end-effector.  

 

 

 

Figure5-16. JSD (scatter plot) on different payload conditions  

(a) payload 0kg  (b) payload 1kg  (c) payload 2kg 
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Figure5-17. JSD (histogram) on different payload conditions  

(a) payload 0kg  (b) payload 1kg  (c) payload 2kg 

 

 

In the same context as velocity control, the difference between before and after 

the assembly of faulty SWG could be seen more clearly when the JSD’s distribution 

was represented as a histogram in Figure 5-17. It was better distinguished in faulty 

axis through the estimates and the KS statistics which represents the distribution 

divergence. In addition, through dimension reduction to one-dimensional latent 

space via LDA in Figure 5-18 and 19, the classification performance increased when 

the order 𝛼 of ordinal pattern increased from 4 to 5. Similarly to velocity controls, 

the larger the order of the ordinal pattern is, the more capacity it is to represent the 

complexity of the pattern and make the distinction between normal and fault joints 

more pronounced as in Table 5-5,6. 
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Table5-6. Statistical distance between normal and fault after OPAMC 

 with 𝛼=4 

 

Payload △ 𝜇 △ 𝜎2 KS statistics LDA 

0kg 
Normal 8.6 * e-03 0.5 * e-04 0.692 -2.417 

Fault 121 * e-03 14.7 * e-04 1 3.506 

1kg 
Normal 4.8 * e-03 0.2 * e-04 0.547 -4.834 

Fault 22 * e-03 0.8 * e-04 0.957 3.003 

2kg 
Normal 5.3 * e-03 0.2 * e-04 0.680 -2.432 

Fault 33 * e-03 2.2 * e-04 1 3.173 

     

 

Table5-7. Statistical distance between normal and fault after OPAMC  

with 𝛼=5 

 

Payload △ 𝜇 △ 𝜎2 KS statistics LDA 

0kg 
Normal 29 * e-03 0.1 * e-04 0.792 -6.230 

Fault 160 * e-03 7.3 * e-04 1 7.799 

1kg 
Normal 20 * e-03 0.4 * e-04 0.759 -8.453 

Fault 50 * e-03 1.6 * e-04 1 6.961 

2kg 
Normal 22 * e-03 0.9 * e-04 0.920 -8.338 

Fault 53 * e-03 2.9 * e-04 0.957 8.261 
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Figure5-18. Dimension reduction through LDA (𝛼=4) 

(a) Feature space (3D)   (b) Latent space (1D) 

 

 

 

 

 

 

 

Figure5-19. Dimension reduction through LDA (𝛼=5) 

(a) Feature space (3D)   (b) Latent space (1D) 
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Chapter 6. Conclusion 

 

 

   In this research, the robot diagnosis framework was proposed through several 

steps such as motion segmentation, OPAMC and distribution-based fault detection. 

Robot’s motor input current was measured and segmented by a time-frequency 

technique which could represent the physical properties of the robot joint. Then, the 

ordinal pattern of the current’s envelope signal was extracted, and the fundamental 

frequency was introduced for determining the time delay parameter 𝜏𝑜𝑝𝑡 . Also, 

Jensen-Shannon Divergence (JSD) was suggested as a quantitative measure of health 

status with respect to the baseline of normal state. The JSD distribution was 

presented on 3-dimensional feature space with point estimates of gaussian model and 

KS statistics, and then the 3-dimensional feature space was reduced to 1-dimensional 

latent space via Linear Discriminant Analysis (LDA).  

The series of diagnosis framework were validated on 2 cases of control 

condition, increasing rotational velocity and payload on the end-effector. The 

experimental result showed that the JSD distribution in faulty joint after OPAMC 

was distinctively different and separated from normal axis. Also, the payload on end-

effector influenced the diagnosis performance as condition without payload showed 

better distinction in JSD distribution than the condition with payload. 
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6.1 Contribution and Future work 

Overall, this study contributes to the health assessment of robotic arm joint in 

3 aspects: 1) TFR-based approach of robot motion’s segmentation and 2) parameter 

selection based on physical interpretation, and 3) the validation of framework on 

different operating conditions such as speed and payload. Also, 4) The distribution-

based approach through comparative analysis gives a novel perspective compared to 

conventional method which has focused on concrete threshold that could be too 

subjective and dependent on personal experiences. 

However, the limitation of this study is that only joints known to be susceptible 

have been tested and the order parameter in OPAMC has not been considered of 

other different values. In future study, experiments and verification with other joints 

and different types of robot are necessary as well as increasing order values of ordinal 

pattern with respect to its capability for extracting fault features.
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요약(국문 초록) 

 

 

산업용 로봇은 스마트 팩토리의 보급에 따라 많은 산업 분야에 걸쳐 

사용되고 있으며, 그 수요는 지속적으로 늘어나고 있는 추세이다. 복잡한 

자동화 공정 라인들의 의존성으로 인해 한 라인의 고장은 커다란 경제적 

손실을 야기할 수 있고, 이에 따라 로봇의 건전성 진단은 중요한 이슈 

로 자리잡았다.  

산업용 로봇은 크게 센서부, 제어부, 구동부로 이루어져 있으며, 구동

부의 핵심 부품인 스트레인 웨이브 감속기는 모터의 동력을 엔드 이펙터

로 전달해주는 기능을 하게 된다. 하지만 감속기의 주요 구성요소인 플

렉스플라인은 피로파괴가 잘 일어나며, 이에 따라 백래쉬 현상이 일어나

는 문제를 보인다. 기존에 로봇의 건전성 진단을 위한 많은 방법이 소개

되었지만 1) 역학적 모델의 근사화 과정에서 불확실성이 존재하였고, 2) 

진동신호는 외부 노이즈 영향을 많이 받았으며, 3) 물리적 설명 및 모션 

전처리 과정이 부족하다는 단점을 보였다.  

따라서 본 연구에서는 로봇의 축에서 상대적으로 물리적인 외부 영향

을 덜 받는 전류신호를 측정하여 로봇의 건전성을 분석하였다. 또한 물

리적 해석에 기반하여 진단 프레임워크를 구성하였고, 각 단계는 1) 로

봇 모션 분리, 2) 모터 전류의 서수패턴 분석 (OPAMC), 3) 통계적 고장 

진단으로 설명된다. 처음으로, 모션 분리 단계에서는 축의 회전 속도에 

비례하여 전류신호의 주파수 변조가 일어나는 점에 착안해 신호의 시주

파수 분석을 진행하였고, 정규화 모션 신호를 이용해 로봇의 작동 구간

을 나누었다. 또한 모션 레퍼런스와의 코사인 유사도를 이용하여 모션 
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식별 과정을 진행하였고, 총 작동 사이클을 계산하고 모션 타입을 분류

하였다. 두번째 OPAMC 단계에서는 레퍼런스 모션에 시간 동기화된 신

호를 힐버트 변환 및 포락 신호를 구하였고, 운행 상태에 기반한 기본 

주파수를 이용하여 최적 파라미터를 이용하여 서수 패턴을 추출하였다. 

또한 특정 축에 대하여, 정상 상태 및 관찰 대상의 서수패턴을 확률 질

량 분포로 나타내었으며 그 차이를 Jensen-Shannon Divergence (JSD)으로 

계산하여 서수패턴의 분포가 정상 상태에 기반하여 얼마나 변화했는지 

정량적으로 나타내었다. 마지막으로, 확률적 고장 진단 단계에서는 앞서 

계산된 JSD 분포를 잘 나타낼 수 있는 통계적 추정치를 이용하여 고장 

감속기가 결합된 축과 정상 축을 특징인자 공간에서 구별하였고, 차원 

축소를 진행하여 1차원 공간에서 정량적으로 나타냈다.  

실험은 2가지 운행조건의 통제를 통해 검증되었는데, 로봇 축의 속도

를 20,50,100%로 증가하였고, 페이로드를 0, 1, 2kg로 증가시키며 고장 및 

정상축을 비교해보았다. 결과적으로 속도가 증가함에 따라 축에 관계없

이 기본주파수가 동일하게 비례하여 증가하는 것을 관찰할 수 있었고, 

분해결합 전후로 고장 축에서 서수패턴 분포의 JSD가 더 큼을 볼 수 있

었다. 또한 모든 속도조건에서 정상축 및 고장축의 JSD 분포 차이가 확

연히 구별되는 것을 볼 수 있었다. 페이로드의 통제 조건에서는 엔드 이

펙터에 부하가 존재하지 않을 때 정상 및 고장축이 확연히 구별되는 것

을 관찰할 수 있었다. 이는 페이로드가 없을 때 상대적으로 축에 걸리는 

토크의 변조가 컸고, 감속기의 백래쉬가 신호의 서수 패턴에 더 선명히 

드러남을 의미했다.  

본 연구에서는 모션 분리 및 서수패턴 분석 기법과 이에 필요한 최적 

파라미터를 제안함으로써 고장 진단 프레임워크을 구성하였다. 여기서 
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분포에 기반한 결함 진단은 로봇 고장을 판단하는 기준이 모호하다는 점

에 착안했을 때, 축 간 비교 분석 등을 통해 더욱 효과적으로 진단할 수 

있음을 의미하였다. 또한 이러한 일련의 과정은 속도 및 페이로드 등 다

양한 운행조건에서 검증됨으로써 신뢰성이 높은 결과를 도출했다는 점에

서 그 의의가 있다고 볼 수 있다. 
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