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Abstract 
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a Deep Convolutional Neural Network 
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Objective: The purpose of this study was to automatically diagnose 

odontogenic cysts and tumors of the jaw on panoramic radiographs 

using a deep convolutional neural network. A novel framework method 

of deep convolutional neural network was proposed with data 

augmentation for detection and classification of the multiple diseases.  

 

Methods: A deep convolutional neural network modified from 

YOLOv3 was developed for detecting and classifying odontogenic 
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cysts and tumors of the jaw. Our dataset of 1,282 panoramic 

radiographs comprised 350 dentigerous cysts, 302 periapical cysts, 

300 odontogenic keratocysts, 230 ameloblastomas, and 100 normal 

jaw with no disease. In addition, the number of radiographs was 

augmented 12-fold by flip, rotation, and intensity changes. The 

Intersection over union threshold value of 0.5 was used to obtain 

performance for detection and classification. The classification 

performance of the developed convolutional neural network was 

evaluated by calculating sensitivity, specificity, accuracy, and AUC 

(Area under the ROC curve) for diseases of the jaw.  

 

Results: The overall classification performance for the diseases 

improved from 78.2% sensitivity, 93.9% specificity, 91.3% accuracy, 

and 0.86 AUC using the convolutional neural network with 

unaugmented dataset to 88.9% sensitivity, 97.2% specificity, 95.6% 

accuracy, and 0.94 AUC using the convolutional neural network with 

augmented dataset. Convolutional neural network using augmented 

dataset had the following sensitivities, specificities, accuracies, and 

AUC: 91.4%, 99.2%, 97.8%, and 0.96 for dentigerous cysts, 82.8%, 

99.2%, 96.2%, and 0.92 for periapical cysts, 98.4%, 92.3%, 94.0%, 

and 0.97 for odontogenic keratocysts, 71.7%, 100%, 94.3%, and 0.86 

for ameloblastomas, and 100.0%, 95.1%, 96.0%, and 0.94 for normal 

jaw, respectively.  
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Conclusion: The novel framework convolutional neural network 

method was developed for automatically diagnosing odontogenic cysts 

and tumors of the jaw on panoramic radiographs using data 

augmentation. The proposed convolutional neural network model 

showed high sensitivity, specificity, accuracy, and AUC despite the 

limited number of panoramic images involved. 
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Tables 

Table 1. The number of panoramic images and augmented data for 

four diseases, and average lesion size (pixels)  

Table 2. Average precision (AP), mean average precision (mAP), 

precision (positive predictive value), recall (sensitivity), and F1-

score for detecting dentigerous cysts (DC), periapical cysts (PC), 

odontogenic keratocysts (OKC), and ameloblastomas (AB) of the 

developed convolutional neural network with or without dataset 

augmentation. 

Table 3. Confusion matrix for classifying dentigerous cysts (DC), 

periapical cysts (PC), odontogenic keratocysts (OKC), 

ameloblastomas (AB), and normal jaws (Normal) by the developed 

convolutional neural network, with or without dataset augmentation.  

Table 4. Sensitivity, specificity, accuracy, and area under the curve 

(AUC) for classifying dentigerous cysts (DC), periapical cysts (PC), 

odontogenic keratocysts (OKC), ameloblastomas (AB), and normal 

jaws (Normal) by the developed convolutional neural network, with 

or without dataset augmentation. 
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Figure legends 

Figure 1. Labeling process on a panoramic image using ImageJ 

Figure 2. Data augmentation using flipping, rotation, and gamma 

correction. 

Figure 3. A framework of the deep convolutional neural network for 

detection and classification of multiple diseases. 

Figure 4. A convolutional neural network architecture modified from 

YOLOv3 with the modified layers in Bold.  

Figure 5. Detection of a dentigerous cyst. The solid line area is the 

disease area labeled by the radiologist and the dotted area is the 

predicted area. 

Figure 6. Detection of a periapical cyst. The solid line area is the 

disease area labeled by the radiologist and the dotted area is the 

predicted area. 

Figure 7. Detection of an odontogenic keratocyst. The solid line area 

is the disease area labeled by the radiologist and the dotted area is 

the predicted area. 
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Figure 8. Detection of ameloblastoma. The solid line area is the 

disease area labeled by the radiologist and the dotted area is the 

predicted area. 

Figure 9. Precision-recall curves from automatic detection of 

dentigerous cysts, periapical cysts, odontogenic keratocysts, and 

ameloblastomas without (a) and with (b) data set augmentation. AB, 

ameloblastoma; DCs, dentigerous cysts; OKCs, odontogenic 

keratocysts; PCs, periapical cysts. 

Figure 10. Lesions annotated by the radiologist (solid line) and 

correctly classified by the developed convolutional neural network 

model (dotted line) as a dentigerous cyst (a), periapical cyst (b), 

odontogenic keratocyst (c), and ameloblastoma (d) without dataset 

augmentation. A correctly classified (solid line) dentigerous cyst 

(e), periapical cyst (f), odontogenic keratocyst (g), and 

ameloblastoma (h) with dataset augmentation, and a falsely 

classified (dotted line) odontogenic keratocyst (e), none (f), 

dentigerous cyst (g), and dentigerous cyst (h) without dataset 

augmentation. 
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Figure 11. Receiver Operating Characteristic curves from automatic 

classification of dentigerous cysts, periapical cysts, odontogenic 

keratocysts, ameloblastomas, and normal jaws without (a) and with 

(b) dataset augmentation. 

 



 

１ 

Introduction 

Panoramic radiography is an essential modality in diagnosis and 

treatment in the oral and maxillofacial field. In particular, it is useful 

for diagnosing cavities, periodontitis, bony lesions, maxillary sinus 

lesions, and temporomandibular joint dysfunctions, as it provides overall 

anatomical and pathological information on the maxillary sinus, 

temporomandibular joints, bone structures, and all teeth in the oral 

and maxillofacial region1,2. In dental clinics, panoramic imaging 

remains the most routinely applied diagnostic modality in comparison 

with other options such as periapical radiography, cone-beam 

computed tomography, magnetic resonance imaging, and ultrasound 

3,4. 

As general dentists are in charge of primary diagnosis and 

treatment in oral and maxillofacial patients in local clinics, their 

principal item of concern and interest is the presence of any cavities 

or periodontitis in radiographic readings5. Because of a lack of interest 

or expertise with diagnosis and the potential masking of lesions by 

superpositioning structures on panoramic radiographs, the clinician 

may misdiagnose or not detect lesions that require early detection and 

immediate surgical intervention. In dental hospitals, diagnosis using 

radiographic images is performed by professional oral and 

maxillofacial radiologists. However, the diagnosis may take too long 
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to finalize because of the critical shortage of experts in this field and 

the subspecialized nature of the dental hospital6,7. One of the available 

solutions for these problems is the further expansion of the use of 

computer-aided diagnosis in oral and maxillofacial imaging. 

Computer-aided diagnosis has been utilized to identify cavities and 

periodontitis lesions as well as maxillary sinusitis, osteoporosis, and 

other pathologies in the oral and maxillofacial field8. It can provide 

dental professionals with a valuable second opinion by detecting and 

classifying pathological changes automatically. Conventional 

computer-aided diagnosis systems require extraction of the most 

significant features before training to successfully recognize or 

classify images, but feature extraction is a difficult and time-

consuming task. A recent method based on deep learning, a subset of 

machine learning, can overcome this limitation by automatically 

extracting relevant features during training, and uses the whole image 

directly without best-feature representation9-11. Deep learning-

based methods have been used extensively to solve complex 

problems in radiology12. A deep convolutional neural network, a type 

of deep learning, is the most commonly used method for organ 

segmentation13,14 as well as classification15,16 and detection17,18 of 

organs and related diseases in medical imaging. Various attempts have 

been made to determine specific characteristics of target regions 

intended for detection and classification19. Research into the 
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applications of computer-aided diagnosis using deep convolutional 

neural network has been expanding rapidly, and is expected to 

produce more accurate diagnoses at faster rates8. 

However, application of deep learning in the field of oral and 

maxillofacial imaging has been limited to detection of landmarks in 

cephalograms20, detection and classification of teeth21-23, diagnosis of 

cavities24-27, diagnosis of periodontitis28, and detection of maxillary 

sinusitis29. One study aimed to achieve automatic segmentation of all 

teeth21, while other research used deep learning to classify the root 

morphology of the mandibular first molar30, convert a two-

dimensional panoramic image to a three-dimensional one31, and 

diagnose osteoporosis in panoramic radiographs32,33. 

To date, few studies have used deep learning to detect and classify 

radiolucent lesions in the jaw. A deep learning object detection 

technique was used for automatic detection and classification of 

radiolucent lesions in the mandible34, and for differential diagnosis 

between ameloblastomas and odontogenic keratocysts of the jaw on 

panoramic radiographs35. Precise preoperative diagnosis of these 

tumors and cysts of the jaw can help oral and maxillofacial surgeons 

plan appropriate treatment, but this is more difficult in the maxilla than 

in the mandible because of superimposition of the normal structures 

in the maxilla36. Nonetheless, no study to date has examined the 

functionality of deep convolutional neural network for automatic 
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diagnosis of odontogenic cysts and tumors occurring in the jaw using 

panoramic radiographs.  

In order, first is the periapical cyst, which develops and proliferates 

from the epithelial cell rests of Malassez in the periodontal ligament 

through inflammatory stimulation of infected tooth tissue37,38. Second 

is the dentigerous cyst, the most common form of developmental 

odontogenic cysts, which originates from the separation of the tooth 

follicle and the crown of an unerupted tooth39,40. Next are odontogenic 

keratocysts. Unlike other cysts enlarged solely by osmosis, these are 

filled with highly viscous keratin from the epithelium and have the 

highest recurrence among odontogenic cysts41,42. Last are 

ameloblastomas, the most common, clinically significant neoplasms of 

the odontogenic epithelium that—though benign—display locally 

invasive growth characteristics43-45. 

Therefore, the purpose of this study was to automatically diagnose 

odontogenic cysts and tumors of the jaw with the highest rate of 

occurrence in the oral and maxillofacial regions. A novel framework 

of deep convolutional neural network was proposed with data 

augmentation for detection and classification of the multiple diseases. 
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Materials and Methods 

Data preparation and augmentation of panoramic 

radiographs 

A total of 1,282 panoramic radiographs of patients who visited Seoul 

National University Dental Hospital from 1999 to 2017 was prepared. 

The panoramic radiographs of each patient were acquired using a 

dental panoramic X-ray machine (Orthopantomograph OP 100D, 

Instumentarium corporation, Tuusula, Finland) at Seoul National 

University Dental Hospital. These radiographs included 350 

dentigerous cysts (273 in the mandible and 77 in the maxilla), 302 

periapical cysts (123 in the mandible and 179 in the maxilla), 300 

odontogenic keratocysts (266 in the mandible and 34 in the maxilla), 

and 230 ameloblastomas (222 in the mandible and eight in the maxilla) 

(Table 1). As a control group, 100 normal panoramic radiographs 

were also prepared. Panoramic radiographs were obtained from adult 

patients without mixed dentition, and only one radiograph was used 

per patient. The study was approved by the Institutional Review 

Board (IRB) of Seoul National University Dental Hospital (ERI18001). 

The cysts and tumors were classified finally based on the 

histopathologic diagnosis from biopsies in addition to clinical diagnosis, 

and panoramic radiographs were selected with the same radiologic 
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diagnosis by two radiologists with more than 15 years of experience. 

In other words, it was only used the panoramic radiographs with 

identical radiological and histopathological diagnoses. Panoramic 

radiographs had a resolution of 1,976×976 pixels(295mm × 

145mm), and each radiograph was labeled manually by drawing 

rectangular bounding boxes around the lesions using ImageJ46 for 

training(Figure 1). The bounding boxes included radiographic 

characteristics of each disease such as cortical margin and internal 

radiolucent lesions. Average sizes of the annotated lesions were 

178×196 pixels for dentigerous cysts, 186×170 pixels for periapical 

cysts, 297×304 pixels for odontogenic keratocysts, and 386×351 

pixels for ameloblastomas. A contrast-limited adaptive histogram 

equalization (CLAHE) technique was applied to the images to expand 

the high values and compress the values in the dark layer more 

effectively35.  
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Table 1. The number of panoramic images and augmented data for 

four diseases, and average lesion size (pixels)  

 

 

Figure 1. Labeling process on a panoramic image using ImageJ 

 

  

 
panoramic 

image 
augmented data 

average lesion size 

(pixels) 

dentigerous cyst 350 4200 178×196 

periapical cyst 302 3624 186×170 

odontogenic 

keratocyst 
300 3600 297×304 

ameloblastoma 230 2760 386×351 
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Figure 2. Data augmentation using flipping, rotation, and gamma 

correction. 

 

Data augmentation was performed to increase the amount of training 

data for deep learning. Using MATLAB (MathWorks, Natick, MA, 

USA), images were flipped horizontally, rotated by 1° and −1°, and 

their grayscale was transformed by gamma correction (γ = 0.8, 1, 

1.2)(Figure 2). As a result, the number of images was increased 12-

fold. Images were randomly separated into a training dataset (80%) 

and a test dataset (20%) before data augmentation. The training 

dataset for dentigerous cyst, periapical cyst, odontogenic keratocyst, 

and ameloblastoma comprised 280, 242, 240 and 184 panoramic 

images, respectively, and test dataset, 70, 60, 60, and 46, 

respectively. The training dataset was used to train the convolutional 

neural network, and the test dataset was used to evaluate the final 

trained model.  
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A deep convolutional neural network model for 

detection and classification of multiple diseases – 

YOLOv3 

A modified convolutional neural network from the YOLOv3 based on 

the Darknet-53 network for detecting and classifying multiple 

diseases on panoramic radiographs was developed (Figure 3). 

YOLOv3 predicted bounding boxes at three different scales using 

features from scales extracted using a similar concept to feature 

pyramid networks (FPN)47. In the last of these layers, the 

convolutional neural network replaced the softmax function with 

independent logistic classifiers to calculate the objectness of the input 

belonging to a specific class48. The convolutional neural network 

predicted the bounding box, confidence (objectness), and class 

predictions (Figure 3). Each bounding box had a confidence value 

calculated from the logistic regression. The input resolution from 320 

× 320 pixels to 608 × 608 pixels, which made it possible to predict 

lesions of smaller pixel sizes, was modified. The location of skip 

connection was also changed from the convolutional layers of 

76x76x256 to 76x76x256 to those of 152x152x128 to 152x152x128 

in order to use four times up-sampling instead of two times for 

reducing the losses of spatial information (Figure 4). The network 

was trained on a total of 8,000 epochs with a 64-batch size and one- 
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or two-stride size by using pre-prepared augmented images. An 

adaptive moment estimation solver was used to optimize the network 

with a learning rate of 0.001 and momentum of 0.9. 

After training, the network outputted bounding boxes and the 

confidence that the bounding box enclosed a lesion for input 

panoramic images. Intersection over union score, ratio of the area of 

intersection and area of union of the predicted bounding box and 

ground truth bounding box, was computed in the final set of outputs. 

The intersection over union threshold value of 0.5 was used to obtain 

the average precision score for disease detection (Figure 3). The 

network could detect one or more bounding boxes of possible classes 

for one lesion at the input panoramic image. If multiple bounding boxes 

of the same class were generated for one lesion, only one bounding 

box among the boxes was predicted for the class by non-maximum 

suppression. Finally, one bounding box of the highest confidence 

among the multiple predictions was adopted for disease classification 

(Figure 3). 
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Figure 3. A framework of the deep convolutional neural network for 

detection and classification of multiple diseases. 
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Figure 4. A convolutional neural network architecture modified from 

YOLOv3 with the modified layers in Bold.  
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Evaluation of detection and classification 

performance of the deep convolutional neural network 

model 

The performance of the developed model was evaluated by five-

fold cross validation method, which divided the whole data into five 

sets, takes 80% for training and 20% for testing, and then rotated the 

two groups five times. The performance of the developed model was 

evaluated using a test data set not used for training. For detection 

performance, it was calculated recall (sensitivity) (TP / (FN + TP)), 

precision (positive predictive value) (TP / (FP + TP)), F1-score 

(2×precision×recall / (precision + recall)), and average precision 

values, which are common parameters in object detection49,50. The 

precision-recall curve (PRC) was also computed from the model’s 

detection output by varying the confidence threshold that determined 

what was counted as a model-predicted positive detection49. average 

precision was calculated as the average value of precision across all 

recall values. A confusion matrix was calculated to evaluate the 

classification performance of the convolutional neural network for 

diseases51. For classification performance, it was calculated 

sensitivity (TP / (FN + TP)), specificity (TN / (TN + FP)), and 

accuracy ((TN + TP)/(TN+TP+FN+FP)) from the confusion matrix. 

The receiver operating characteristic curve (ROC) was also computed 
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from the model’s classification output by varying the confidence 

threshold for each disease52. The value of the area under the ROC 

curve (AUC) was calculated. 
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Results 

First, average precision, precision and recall were measured to 

evaluate model performance for lesion detection with data 

augmentation. Figure 5 features a dentigerous cyst, with a crown, 

radiolucent lesion, and surrounding cortical bony margin detected. 

 

Figure 5. Detection of a dentigerous cyst. The solid line area is the 

disease area labeled by the radiologist and the dotted area is the 

predicted area. 

 

Figure 6 displays a periapical cyst. The enclosed area around the 

cyst includes a root apex, radiolucent lesion and surrounding cortical 

bony lesion. 
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Figure 6. Detection of a periapical cyst. The solid line area is the 

disease area labeled by the radiologist and the dotted area is the 

predicted area. 

 

Figure 7 relay the results for the odontogenic keratocyst. The 

unilocular radiolucent cystic lesion is located to the left of the upper 

inferior alveolar nerve, closer to the periapical region and away from 

the cementoenamel junction (CEJ) of the third molar. 
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Figure 7. Detection of an odontogenic keratocyst. The solid line 

area is the disease area labeled by the radiologist and the dotted area 

is the predicted area. 

Lastly, for ameloblastoma (Figure 8), the panoramic image reveals a 

large unilocular lesion on the maxilla’s left anterior side. 

 

 

Figure 8. Detection of ameloblastoma. The solid line area is the 

disease area labeled by the radiologist and the dotted area is the 

predicted area. 

Average precision, precision, recall, and F1-score values were 

measured to evaluate model performance for lesion detection with or 

without data augmentation using YoLoV3(Table 2). average precision 

values for dentigerous cysts, periapical cysts, odontogenic 

keratocysts, and ameloblastomas using non-augmented dataset were 

0.91, 0.79, 0.67, and 0.78, respectively, compared to 0.84, 0.89, 0.91, 
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and 0.88, for augmented dataset, respectively (Table 2). Mean 

average precision, precision, recall, and F1-score for dentigerous 

cysts, periapical cysts, odontogenic keratocysts, and ameloblastomas 

were 0.79, 0.78, 0.74, and 0.76 for non-augmented dataset and 0.88, 

0.87, 0.83, and 0.85 for augmented dataset, respectively (Table 2). 

The precision-recall (PR) curves for detecting lesions are shown in 

Figure 9. 
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AP 

Mean AP Precision Recall 
F1-

score DC PC OKC AB

With 
augmentation 

0.84 0.89 0.91 0.88 0.88±0.04 0.87 0.83 0.85 

Without 
augmentation 

0.91 0.79 0.67 0.78 0.79±0.12 0.78 0.74 0.76 

 

Table 2. Average precision (AP), mean average precision (mAP), 

precision (positive predictive value), recall (sensitivity), and F1-

score for detecting dentigerous cysts (DC), periapical cysts (PC), 

odontogenic keratocysts (OKC), and ameloblastomas (AB) of the 

developed convolutional neural network with or without dataset 

augmentation. 
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Figure 9. Precision-recall curves from automatic detection of 

dentigerous cysts, periapical cysts, odontogenic keratocysts, and 

ameloblastomas without (a) and with (b) data set augmentation. AB, 

ameloblastoma; DCs, dentigerous cysts; OKCs, odontogenic 

keratocysts; PCs, periapical cysts. 
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Table 3 shows the confusion matrix for classifying dentigerous 

cysts, periapical cysts, odontogenic keratocysts, ABs, and normal 

jaws using the developed convolutional neural network with or without 

data augmentation. To assess the classification performance of the 

convolutional neural network for absence of diseases, panoramic 

radiographs with no diseases were designated normal. Table 4 

summarizes the classification results of sensitivity, sensitivity, 

accuracy, and AUC for each disease.  

 

 

Table 3. Confusion matrix for classifying dentigerous cysts (DC), 

periapical cysts (PC), odontogenic keratocysts (OKC), 

ameloblastomas (AB), and normal jaws (Normal) by the developed 

convolutional neural network, with or without dataset augmentation.  

Input 
Without augmentation With augmentation 

DC PC OKC AB Normal DC PC OKC AB Normal

DC 0.87 0.05 0.03 0.00 0.05 0.92 0.03 0.03 0.00 0.03 

PC 0.06 0.72 0.08 0.00 0.14 0.03 0.84 0.04 0.00 0.10 

OKC 0.06 0.06 0.78 0.03 0.06 0.00 0.00 0.98 0.00 0.02 

AB 0.05 0.05 0.27 0.55 0.09 0.00 0.00 0.22 0.72 0.06 

Normal 0.00 0.00 0.01 0.00 0.99 0.00 0.00 0.00 0.00 1.00 
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Table 4. Sensitivity, specificity, accuracy, and area under the curve 

(AUC) for classifying dentigerous cysts (DC), periapical cysts (PC), 

odontogenic keratocysts (OKC), ameloblastomas (AB), and normal 

jaws (Normal) by the developed convolutional neural network, with 

or without dataset augmentation. 

  

 
Without augmentation With augmentation 

Sensitivity 
(%) 

Specificity 
(%) 

Accuracy 
(%) AUC Sensitivity 

(%) 
Specificity

(%) 
Accuracy 

(%) AUC 

DC 87.1 94.7 94.1 0.91 91.4 99.2 97.8 0.96 

PC 71.9 95.0 91.2 0.84 82.8 99.2 96.2 0.92 

OKC 78.9 89.4 87.8 0.83 98.4 92.3 94.0 0.97 

AB 54.3 99.1 90.3 0.77 71.7 100.0 94.3 0.86 

Normal 99.0 91.1 92.9 0.94 100.0 95.1 96.0 0.97 

Mean 78.2 93.9 91.3 0.86 88.9 97.2 95.6 0.94 
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Figure 10 shows the correctly and falsely classified lesions with 

and without dataset augmentation. The receiver operating 

characteristic (ROC) curves for classifying multiple diseases are 

shown in Figure 11. For dentigerous cysts, lesions correctly classified 

by the convolutional neural network had a crown, radiolucent lesion, 

and surrounding cortical bony margin both without (Figure 10 (a)) 

and with data augmentation (Figure 10 (e)). Sensitivity, specificity, 

accuracy, and AUC for dentigerous cysts without augmentation were 

87.1%, 94.7%, 94.1% and 0.91, respectively, compared to 91.4%, 

99.2%, 97.8%, and 0.96, respectively, with augmentation. For 

periapical cysts, correctly classified lesions had a root apex, 

radiolucent lesion, and surrounding cortical bony lesion both without 

(Figure 10 (b)) and with data augmentation (Figure 10 (f)). 

Sensitivity, specificity, accuracy, and AUC for periapical cysts were 

71.9%, 95.0%, 91.2%, and 0.84, respectively, without augmentation, 

and 82.8%, 99.2%, 96.2%, and 0.92, respectively, with augmentation. 

For odontogenic keratocysts, correctly classified lesions were 

unilocular radiolucent cystic lesions associated with the third molar 

on the mandible without augmentation (Figure 10 (c)) and large 

radiolucent cystic lesions extending from the border of the maxilla 

with augmentation (Figure 10 (g)). Sensitivity, specificity, accuracy, 

and AUC for odontogenic keratocysts without augmentation were 

78.9%, 89.4%, 87.8%, and 0.83, respectively, compared to 98.4%, 



 

２４ 

92.3%, 94.0%, and 0.97, respectively, with augmentation. 

Ameloblastomas were presented as large unilocular lesions on the 

maxilla’s anterior side without augmentation (Figure 10 (d)), and 

radiolucent lesions including the crown of the third molar with teeth 

root resorption on the mandible with augmentation (Figure 10 (h)). 

Sensitivity, specificity, accuracy, and AUC of the convolutional neural 

network for ameloblastomas was 54.3%, 99.1%, 90.3%, and 0.77, 

respectively, without augmentation, and 71.7%, 100%, 94.3%, and 

0.86, respectively, with augmentation. Lastly, sensitivity, specificity, 

accuracy, and AUC for normal jaws was 99.0%, 91.1%, 92.9% and 

0.94, respectively, without augmentation, and 100%, 95.1%, 96.0% 

and 0.97, respectively, with augmentation. Mean sensitivity, 

specificity, accuracy, and AUC for all diseases were 78.2%, 93.9%, 

91.3%, and 0.86, respectively, without augmentation, and 88.9%, 

97.2%, 95.6%, and 0.94, respectively, with augmentation.  
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Figure 10. Lesions annotated by the radiologist (solid line) and 

correctly classified by the developed convolutional neural network 

model (dotted line) as a dentigerous cyst (a), periapical cyst (b), 

odontogenic keratocyst (c), and ameloblastoma (d) without dataset 

augmentation. A correctly classified (solid line) dentigerous cyst 

(e), periapical cyst (f), odontogenic keratocyst (g), and 

ameloblastoma (h) with dataset augmentation, and a falsely 

classified (dotted line) odontogenic keratocyst (e), none (f), 
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dentigerous cyst (g), and dentigerous cyst (h) without dataset 

augmentation. 
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Figure 11. Receiver Operating Characteristic curves from automatic 

classification of dentigerous cysts, periapical cysts, odontogenic 

keratocysts, ameloblastomas, and normal jaws without (a) and with 

(b) dataset augmentation. 
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Discussion 

A deep convolutional neural network, a type of deep learning model, 

automatically and adaptively learns spatial hierarchies of image 

features by using multiple building blocks of convolutional layers, 

pooling layers, and fully connected layers9-11. Various imaging 

modalities, such as periapical, cephalometric, panoramic radiographs, 

as well as cone-beam computed tomography have been used to detect 

and classify diseases in computer-aided diagnosis studies using a 

deep convolutional neural network. One study involved segmentation 

of teeth on panoramic images23. Another evaluated the root 

morphology of the mandibular first molar on panoramic radiography30. 

Sinusitis was detected by learning the form of the maxillary sinus on 

panoramic images30. Osteoporosis has also been diagnosed by 

evaluating cortical erosion of the mandibular inferior cortex from 

panoramic images32. However, there are few convolutional neural 

network -based computer-aided diagnosis studies of radiolucent jaw 

lesions on panoramic radiographs. 

A modified convolutional neural network from YOLOv3 for 

automatically detecting and classifying odontogenic cysts and tumors 

of the jaw on panoramic images was developed, as these types of 

cysts and tumors have the highest rate of occurrence in the oral and 

maxillofacial region. The input resolution of the panoramic image was 



 

２９ 

increased, and the skip connections compared with the original 

YOLOv3 was changed, which could reduce information loss during 

training, and increase the performance the convolutional neural 

network. The developed convolutional neural network based on 

YOLOv3 showed overall detection performance of 0.88 of average 

precision, 0.87 of precision, and 0.83 of recall. Classification 

sensitivity was 72% for ameloblastomas, 98% for odontogenic 

keratocysts, 91% for dentigerous cysts, and 83% for periapical cysts 

using augmented dataset. A study reported automatic classification of 

ameloblastomas, odontogenic keratocysts, dentigerous cysts, RCs, 

and SBCs using DIGITS, a pre-trained deep learning model34. In the 

study, the total number of training dataset was 210, and the number 

of test dataset was three ameloblastomas, six odontogenic 

keratocysts, eight dentigerous cysts, and seven radicular cysts to 

evaluate the performance34. As the result, classification sensitivity 

was 60% for ameloblastomas, 13% for odontogenic keratocysts, 82% 

for dentigerous cysts, and 77% for RCs34. On the other hand, a total 

of 1,282 panoramic radiographs was used and data augmentation of 

12 times. Generally, our convolutional neural network model showed 

higher sensitivities for these diseases than the model of Ariji et al., 

most likely because these authors used a smaller number of cysts and 

tumor images than we did for training and evaluation. In addition to 

this, odontogenic cysts and tumors in both the maxilla and mandible 
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was classified, while they only classified cysts and tumors in the 

mandible34. Another study reported binary classification of 

ameloblastomas and odontogenic keratocysts using a VGG-16 

convolutional neural network, a pre-trained network using ImageNet. 

The number of original training dataset and test dataset was 200 and 

50, respectively, for each disease. They used data augmentation of 

double using only horizontal flips for training dataset, and the 

sensitivity and specificity for differential diagnosis was 81.8%, and 

83.3%, respectively35. In our study, the sensitivity and specificity for 

ameloblastomas were 71.7%, and 100%, respectively, while that for 

odontogenic keratocysts was 98.4%, and 92.3%, respectively. Overall 

sensitivity was 88.9% and overall specificity was 97.2% using data 

augmentation in spite of multiple classification for four diseases. 

Generally, the deep learning model developed based on the state-of-

the-art network YOLOv3 and augmented dataset had higher 

sensitivity and specificity than those of previous models in classifying 

cysts and tumors of the jaw on panoramic images. 

Odontogenic cysts and tumors classified in this study share some 

radiologic features, thus differential diagnosis may be difficult53. It is 

common for dentigerous cysts to wrap around the crown 

symmetrically, and it should not come into contact with the root as it 

originates from the cementoenamel junction of the crown. If a cyst 

arising from the crown of an unerupted tooth extends towards the 
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periapical side over the cementoenamel junction of the unerupted 

tooth, then it is likely an odontogenic keratocysts54. Separately, 

multilocular odontogenic keratocysts with scalloped borders may 

appear similar to ameloblastomas, but they tend to grow along the 

marrow space without significant cortical bone expansion compared 

to ameloblastomas, which usually show significant cortical expansion 

with well-defined cortical borders in the mandible and ill-defined 

margins in the maxilla55. It is more difficult to diagnose these 

radiolucent lesions correctly in the maxilla than in the mandible 

because of superimposition of structures such as the nasal cavity, 

maxillary sinus, hard palate, and inferior nasal concha in the maxilla36. 

Our convolutional neural network had 88.9% sensitivity for 

classification using augmented dataset. It had a 100% sensitivity 

(false negative rate of 0) for classification of disease-free (normal) 

jaws. The sensitivity for odontogenic keratocysts was the highest at 

98.4% (lowest false negative rate of 0.02) among the four diseases; 

the false negative was classified as normal. In contrast, the lowest 

sensitivity of 71.7% (highest false negative rate of 0.28) was obtained 

for ameloblastomas among the four diseases, with false diagnosis of 

ameloblastomas as odontogenic keratocysts (0.22) and normal (0.06). 

Fewer images were used for ameloblastomas learning than for the 

other three diseases, despite their heterogeneous radiographic 

appearance (multilocular and unilocular). The second highest 
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sensitivity of 91.4% (false negative rate of 0.09) was obtained for 

dentigerous cysts among the four diseases, and dentigerous cysts 

were falsely diagnosed as periapical cysts (0.03), odontogenic 

keratocysts (0.03), or normal (0.03). dentigerous cyst lesions 

involving the third molar in the maxilla, those associated with the 

supernumerary tooth in the anterior maxilla, or those that overlapped 

with the wall of the maxillary sinus or anterior teeth were 

misdiagnosed. The sensitivity for periapical cysts was 82.8% (false 

negative rate of 0.17). Our model failed to diagnose smaller lesions in 

the root apex of the tooth overlapping with other anatomical 

structures (0.1), and misdiagnosed them as dentigerous cysts (0.03) 

or odontogenic keratocysts (0.04), especially in the maxilla. As a 

result, sensitivities for dentigerous cysts and periapical cysts were 

lower than that for odontogenic keratocysts as dentigerous cysts, and 

periapical cysts occur more commonly in the maxilla. Generally, 

sensitivity (false negative rate) for lesions located in the maxilla was 

lower (higher) than that for lesions in the mandible due to the overlap 

between lesions and other anatomical structures in the maxilla. 

The classification specificity of 97.2% when using augmented 

dataset was higher than the sensitivity of 88.9% for all diseases. 

Specificity for ameloblastomas was the highest (lowest false positive 

rate) at 100% (0.00); no diseases were falsely diagnosed as 

ameloblastomas. Specificity for dentigerous cysts and periapical cysts 
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was also high at 99.2%. Specificity for odontogenic keratocysts was 

lowest at 92.3%. Ameloblastomas were frequently misdiagnosed as 

odontogenic keratocysts, and the classification was least sensitive for 

ameloblastomas. This might be due to the smaller number of 

ameloblastomas used for learning compared with all the other cystic 

diseases in addition to the large variations in radiological appearance 

of ameloblastomas. Rectangular bounding boxes around the lesions 

should have included more normal anatomical structures to cover the 

larger boundary of ameloblastomas. As a result, our model showed 

poorer generalizability for ameloblastomas than the other cystic 

diseases. Nonetheless, our model showed high sensitivity for 

odontogenic keratocysts and high specificity for ameloblastomas. It is 

important to note that differential diagnosis between odontogenic 

keratocysts and ameloblastomas based on panoramic radiographs can 

be difficult even for experienced radiologists. 

Transfer learning is another effective way to train a network with a 

small dataset in radiology research. In transfer learning, a network 

trained previously on a large number of images such as an ImageNet 

challenge dataset is applied to the specific task of interest. The basic 

assumption of transfer learning is that the generic features learned 

from a sufficiently large dataset can be shared with seemingly 

disparate datasets. the learned kernels were utilized and the 

pretrained network was weighted from model of Darknet-53 and 
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fine-tuned all of the kernels of the YOLOv3 network on the pretrained 

convolutional base. With this strategy, the network learned specific 

features that were more specialized for lesion detection on the 

radiograph dataset progressively, while the generic features such as 

edges and corners could be applicable to a variety of datasets56,57. The 

advantage of reusing learned generic features makes the deep 

convolutional neural network very useful in various tasks with small 

datasets in medical and dental imaging. 

An essential requirement for deep learning detection and 

classification of lesions on medical and dental images is large sets of 

accurately labeled data. However, large collections of images labeled 

manually by experts are not easily available in many situations. In our 

study, the panoramic images used herein were labeled by experienced 

oral and maxillofacial radiologists and matched with the 

histopathologic findings from the lesion biopsy. For evaluating the 

deep learning model with the limited image samples, the k-fold 

cross-validation method has been used to accurately estimate the 

performance of the deep learning model on images not used for 

training57. The method generally resulted in a less biased estimate of 

the model performance than did one simple split of train and test58. 

Using the five-fold cross-validation method, it was measured how 

accurately the developed model predicted when used to make 

predictions on unseen images. 
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Overfitting of the training convolutional neural network model, 

which results in the model learning statistical regularity specific to 

the training data set, negatively impacts the model’s ability to 

generalize to a new data set9. One solution to reduce overfitting is 

data augmentation, which is the process of modifying data through 

flipping, moving, cropping, rotating, and grayscale transformation59. 

Data augmentation can improve the performance of the convolutional 

neural network in medical image analysis59. In this study, augmented 

technology increased the number of images in the dataset by 12-fold. 

Mean average precision, precision, recall, and F1-score values for 

detection performance of the convolutional neural network generally 

increased after data augmentation. As the recall value increased, the 

precision value decreased more gradually with data augmentation than 

without data augmentation, which resulted in a higher average 

precision with data augmentation than without data augmentation. 

Classification performance of the convolutional neural network 

improved from 78.2% sensitivity, 93.9% specificity, 91.3% accuracy, 

and 0.86 AUC to 88.9% sensitivity, 97.2% specificity, 95.6% accuracy, 

and 0.94 AUC for the four diseases when augmented dataset was used. 

As the false positive rates increased, the sensitivity increased more 

steeply with data augmentation than without data augmentation, which 

resulted in a higher AUC with data augmentation than without data 

augmentation. In particular, the performance for diagnosing 



 

３６ 

odontogenic keratocysts improved from 78.9% sensitivity, 89.4% 

specificity, 87.8% accuracy, and 0.83 AUC to 98.4% sensitivity, 92.3% 

specificity, 94.0% accuracy, and 0.97 AUC, and the performance for 

ameloblastomas from 54.3% sensitivity, 99.1% specificity, 90.3% 

accuracy, and 0.77 AUC to 71.7% sensitivity, 100% specificity, 94.3% 

accuracy, and 0.86 AUC. 

To date, oral and maxillofacial medicine has benefited little from 

advancements in computer-aided diagnosis. Here, A convolutional 

neural network model to automatically detect and classify cysts and 

tumors of the jaw on panoramic radiographs with high accuracy using 

data augmentation was developed. The developed computer-aided 

diagnosis can help general dental clinicians diagnose and treat patients 

more efficiently, and thus improve diagnostic performance and patient 

care. In future studies, the use of a more complex annotation method, 

such as lesion segmentation rather than a rectangular bounding box, 

and the use of more images for training, especially images of the 

maxilla, will increase the classification performance of the 

convolutional neural network for diseases of the jaw.  
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Conclusion 

 The convolutional neural network method was developed for 

automatically diagnosing odontogenic cysts and tumors of the jaw on 

panoramic radiographs using data augmentation. The proposed 

convolutional neural network model showed high sensitivity, 

specificity, accuracy, and AUC when using augmented data despite 

the limited number of panoramic images available.  
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요약(국문초록) 

1. 목 적 

 구강악안면영역에서 발생하는 낭종 혹은 종양을 조기에 발견하지 

못하여 적절한 치료가 이루어지지 못하고 지연되는 경우가 있다. 이러한 

문제를 해결하기 위하여 인공신경망을 기반으로 하는 기계학습 기술인 

딥러닝신경망(deep convolutional neural network)을 이용하는 컴퓨터 

보조진단은 보다 정확하고 빠른 결과를 제공할 수 있다. 따라서 본 

연구에서는 파노라마방사선영상에서 딥러닝신경망을 이용하여 

구강악안면에서 자주 나타나는 4가지 질환(함치성낭, 치근단당, 

치성각화낭, 법랑모세포종)을 자동으로 검출 및 진단하는 딥러닝신경망을 

개발하고 그 정확성을 평가하였다. 

 

2. 방 법 

 본 연구에서는 파노라마방사선영상에서 악골에 발생한 치성 낭과 

종양을 검출하고 진단하기 위하여 YoLoV3를 기반으로 한 

딥러닝신경망을 구축하였다. 1999년부터 2017년까지 

서울대학교치과병원에서 조직병리학적으로 확진된 함치성낭 350례, 

치근단낭 302례, 치성각화낭 300례, 법랑모세포종 230례의 환자로부터 

획득한 총 1182매 파노라마방사선영상을 분석하였다. 또한 대조군으로 

질환이 없는 정상 파노라마방사선영상 100매를 선택하였다. 

파노라마방사선영상 데이터는 감마, 보정, 회전, 뒤집기 기법을 통하여 

12배 증강되었다. 총 데이터의 60%는 훈련세트, 20%는 검증세트, 



 

４９ 

20%는 테스트세트로 사용하였다. 개발된 딥러닝신경망은 5배 

교차검증(5-fold cross validation)기법을 이용하여 평가하였다. 본 

연구에서 개발한 딥러닝신경망의 성능은 정확도(Accuracy), 

민감도(sensitivity), 특이도(specificity) 및 ROC분석을 통한 

AUC(area under the curve) 지표를 사용하여 측정하였다. 

 

3. 결 과 

본 연구에서 개발한 딥러닝신경망은 데이터 증강을 하지 않았을 때 

78.2% 민감도, 93.9% 특이도, 91.3% 정확도 및 0.86의 AUC 값을 

보였고 데이터 증강을 하였을 때에는 88.9% 민감도, 97.2% 특이도, 

95.6% 정확도 및 0.94 AUC의 개선된 성능을 보여주었다. 함치성낭은 

91.4% 민감도, 99.2% 특이도, 97.8% 정확도 및 0.96 AUC 값을 

보였다. 치근단낭은 82.8% 민감도, 99.2% 특이도, 96.2% 정확도 및 

0.92 AUC 값을 나타냈다. 치성각화낭은 98.4% 민감도, 92.3% 특이도, 

94.0% 정확도 및 0.97 AUC 결과를 보였다. 법랑모세포종은 71.7% 

민감도, 100% 특이도, 94.3% 정확도 및 0.86 AUC의 결과를 보였다. 

그리고 정상적인 악골에서는 100% 민감도, 95.1% 특이도, 96.0% 

정확도 및 0.97 AUC값을 각각 보였다.  

 

4. 결 론 

 본 연구에서는 파노라마방사선영상에서 치성 낭과 종양을 자동으로 

검출하고 진단하는 딥러닝신경망을 개발하였다. 본 연구는 
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파노라마방사선영상의 수가 충분하지 않았음에도 불구하고 데이터 증강 

기법을 이용하여 우수한 민감도, 특이도 및 정확도 결과를 보였다. 본 

연구결과를 통하여 개발된 시스템은 환자의 상기 질환을 조기에 

진단하고 적절한 시기에 치료하는데 유용하다. 

 

 

주요어: 자동진단, 치성 낭, 치성 종양, 딥러닝, 인공지능, 파노라마방사선

영상, 악골 
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