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Abstract

Automatic Diagnosis for
Odontogenic Cysts and Tumors of
Jaw on Panoramic Radiographs using

a Deep Convolutional Neural Network

ODEUK KWON
Department of Oral and Maxillofacial Radiology
School of Dentistry

Seoul National University

Objective: The purpose of this study was to automatically diagnose
odontogenic cysts and tumors of the jaw on panoramic radiographs
using a deep convolutional neural network. A novel framework method
of deep convolutional neural network was proposed with data

augmentation for detection and classification of the multiple diseases.

Methods: A deep convolutional neural network modified from
YOLOv3 was developed for detecting and classifying odontogenic



cysts and tumors of the jaw. Our dataset of 1,282 panoramic
radiographs comprised 350 dentigerous cysts, 302 periapical cysts,
300 odontogenic keratocysts, 230 ameloblastomas, and 100 normal
jaw with no disease. In addition, the number of radiographs was
augmented 12—fold by flip, rotation, and intensity changes. The
Intersection over union threshold value of 0.5 was used to obtain
performance for detection and classification. The classification
performance of the developed convolutional neural network was
evaluated by calculating sensitivity, specificity, accuracy, and AUC

(Area under the ROC curve) for diseases of the jaw.

Results: The overall classification performance for the diseases
improved from 78.2% sensitivity, 93.9% specificity, 91.3% accuracy,
and 0.86 AUC wusing the convolutional neural network with
unaugmented dataset to 88.9% sensitivity, 97.2% specificity, 95.6%
accuracy, and 0.94 AUC using the convolutional neural network with
augmented dataset. Convolutional neural network using augmented
dataset had the following sensitivities, specificities, accuracies, and
AUC: 91.4%, 99.2%, 97.8%, and 0.96 for dentigerous cysts, 82.8%,
99.2%, 96.2%, and 0.92 for periapical cysts, 98.4%, 92.3%, 94.0%,
and 0.97 for odontogenic keratocysts, 71.7%, 100%, 94.3%, and 0.86
for ameloblastomas, and 100.0%, 95.1%, 96.0%, and 0.94 for normal

jaw, respectively.
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Conclusion: The novel framework convolutional neural network
method was developed for automatically diagnosing odontogenic cysts
and tumors of the jaw on panoramic radiographs using data
augmentation. The proposed convolutional neural network model
showed high sensitivity, specificity, accuracy, and AUC despite the

limited number of panoramic images involved.

Keywords: Automatic diagnosis, odontogenic cysts
and tumors, panoramic radiographs, data augmentation,

deep learning, deep convolutional neural network

Student Number: 2017—38170
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Tables

Table 1. The number of panoramic images and augmented data for

four diseases, and average lesion size (pixels)

Table 2. Average precision (AP), mean average precision (mAP),
precision (positive predictive value), recall (sensitivity), and F1—
score for detecting dentigerous cysts (DC), periapical cysts (PC),
odontogenic keratocysts (OKC), and ameloblastomas (AB) of the
developed convolutional neural network with or without dataset

augmentation.

Table 3. Confusion matrix for classifying dentigerous cysts (DC),
periapical  cysts (PC), odontogenic keratocysts (OKO),
ameloblastomas (AB), and normal jaws (Normal) by the developed

convolutional neural network, with or without dataset augmentation.

Table 4. Sensitivity, specificity, accuracy, and area under the curve
(AUC) for classifying dentigerous cysts (DC), periapical cysts (PC),
odontogenic keratocysts (OKC), ameloblastomas (AB), and normal
jaws (Normal) by the developed convolutional neural network, with

or without dataset augmentation.
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Figure legends

Figure 1. Labeling process on a panoramic image using ImagelJ
Figure 2. Data augmentation using flipping, rotation, and gamma

correction.

Figure 3. A framework of the deep convolutional neural network for

detection and classification of multiple diseases.

Figure 4. A convolutional neural network architecture modified from

YOLOv3 with the modified layers in Bold.

Figure 5. Detection of a dentigerous cyst. The solid line area is the
disease area labeled by the radiologist and the dotted area is the

predicted area.

Figure 6. Detection of a periapical cyst. The solid line area is the
disease area labeled by the radiologist and the dotted area is the

predicted area.

Figure 7. Detection of an odontogenic keratocyst. The solid line area
1s the disease area labeled by the radiologist and the dotted area is

the predicted area.
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Figure 8. Detection of ameloblastoma. The solid line area is the
disease area labeled by the radiologist and the dotted area is the

predicted area.

Figure 9. Precision—recall curves from automatic detection of
dentigerous cysts, periapical cysts, odontogenic keratocysts, and
ameloblastomas without (a) and with (b) data set augmentation. AB,
ameloblastoma; DCs, dentigerous cysts; OKCs, odontogenic

keratocysts; PCs, periapical cysts.

Figure 10. Lesions annotated by the radiologist (solid line) and
correctly classified by the developed convolutional neural network
model (dotted line) as a dentigerous cyst (a), periapical cyst (b),
odontogenic keratocyst (c), and ameloblastoma (d) without dataset
augmentation. A correctly classified (solid line) dentigerous cyst
(e), periapical cyst (f), odontogenic keratocyst (g), and
ameloblastoma (h) with dataset augmentation, and a falsely
classified (dotted line) odontogenic keratocyst (e), none (f),
dentigerous cyst (g), and dentigerous cyst (h) without dataset

augmentation.
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Figure 11. Receiver Operating Characteristic curves from automatic
classification of dentigerous cysts, periapical cysts, odontogenic

keratocysts, ameloblastomas, and normal jaws without (a) and with

(b) dataset augmentation.
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Introduction

Panoramic radiography is an essential modality in diagnosis and
treatment in the oral and maxillofacial field. In particular, it is useful
for diagnosing cavities, periodontitis, bony lesions, maxillary sinus
lesions, and temporomandibular joint dysfunctions, as it provides overall
anatomical and pathological information on the maxillary sinus,
temporomandibular joints, bone structures, and all teeth in the oral
and maxillofacial region'?. In dental clinics, panoramic imaging
remains the most routinely applied diagnostic modality in comparison
with other options such as periapical radiography, cone—beam

computed tomography, magnetic resonance imaging, and ultrasound

3.4

As general dentists are in charge of primary diagnosis and
treatment in oral and maxillofacial patients in local clinics, their
principal item of concern and interest is the presence of any cavities
or periodontitis in radiographic readings®. Because of a lack of interest
or expertise with diagnosis and the potential masking of lesions by
superpositioning structures on panoramic radiographs, the clinician
may misdiagnose or not detect lesions that require early detection and
immediate surgical intervention. In dental hospitals, diagnosis using
radiographic images is performed by professional oral and

maxillofacial radiologists. However, the diagnosis may take too long



to finalize because of the critical shortage of experts in this field and
the subspecialized nature of the dental hospital®’. One of the available
solutions for these problems is the further expansion of the use of

computer—aided diagnosis in oral and maxillofacial imaging.

Computer—aided diagnosis has been utilized to identify cavities and
periodontitis lesions as well as maxillary sinusitis, osteoporosis, and
other pathologies in the oral and maxillofacial field®. It can provide
dental professionals with a valuable second opinion by detecting and
classifying pathological changes automatically. Conventional
computer—aided diagnosis systems require extraction of the most
significant features before training to successfully recognize or
classify images, but feature extraction is a difficult and time-—
consuming task. A recent method based on deep learning, a subset of
machine learning, can overcome this limitation by automatically
extracting relevant features during training, and uses the whole image

11

directly without best—feature representation’” Deep learning—

based methods have been used extensively to solve complex
problems in radiology'?. A deep convolutional neural network, a type

of deep learning, is the most commonly used method for organ

13,14 15,16 17,18

segmentation as well as classification and detection of
organs and related diseases in medical imaging. Various attempts have
been made to determine specific characteristics of target regions

intended for detection and classification'!’. Research into the



applications of computer—aided diagnosis using deep convolutional
neural network has been expanding rapidly, and is expected to

produce more accurate diagnoses at faster rates®.

However, application of deep learning in the field of oral and
maxillofacial imaging has been limited to detection of landmarks in
cephalograms®, detection and classification of teeth® "%, diagnosis of
cavities** ™", diagnosis of periodontitis®®, and detection of maxillary
sinusitis?”’. One study aimed to achieve automatic segmentation of all
teeth?', while other research used deep learning to classify the root
morphology of the mandibular first molar®, convert a two—
dimensional panoramic image to a three—dimensional one®!, and

diagnose osteoporosis in panoramic radiographs®>%°,

To date, few studies have used deep learning to detect and classify
radiolucent lesions in the jaw. A deep learning object detection
technique was used for automatic detection and classification of
radiolucent lesions in the mandible®*, and for differential diagnosis
between ameloblastomas and odontogenic keratocysts of the jaw on
panoramic radiographs®. Precise preoperative diagnosis of these
tumors and cysts of the jaw can help oral and maxillofacial surgeons
plan appropriate treatment, but this is more difficult in the maxilla than
in the mandible because of superimposition of the normal structures
in the maxilla®®. Nonetheless, no study to date has examined the
functionality of deep convolutional neural network for automatic

3



diagnosis of odontogenic cysts and tumors occurring in the jaw using

panoramic radiographs.

In order, first is the periapical cyst, which develops and proliferates
from the epithelial cell rests of Malassez in the periodontal ligament
through inflammatory stimulation of infected tooth tissue®’*®. Second
is the dentigerous cyst, the most common form of developmental
odontogenic cysts, which originates from the separation of the tooth
follicle and the crown of an unerupted tooth®*°, Next are odontogenic
keratocysts. Unlike other cysts enlarged solely by osmosis, these are
filled with highly viscous keratin from the epithelium and have the
highest recurrence among odontogenic cysts*'*2,  Last are
ameloblastomas, the most common, clinically significant neoplasms of
the odontogenic epithelium that—though benign—display locally

invasive growth characteristics**™*°,

Therefore, the purpose of this study was to automatically diagnose
odontogenic cysts and tumors of the jaw with the highest rate of
occurrence in the oral and maxillofacial regions. A novel framework
of deep convolutional neural network was proposed with data

augmentation for detection and classification of the multiple diseases.



Materials and Methods

Data preparation and augmentation of panoramic

radiographs

A total of 1,282 panoramic radiographs of patients who visited Seoul
National University Dental Hospital from 1999 to 2017 was prepared.
The panoramic radiographs of each patient were acquired using a
dental panoramic X-ray machine (Orthopantomograph OP 100D,
Instumentarium corporation, Tuusula, Finland) at Seoul National
University Dental Hospital. These radiographs included 350
dentigerous cysts (273 in the mandible and 77 in the maxilla), 302
periapical cysts (123 in the mandible and 179 in the maxilla), 300
odontogenic keratocysts (266 in the mandible and 34 in the maxilla),
and 230 ameloblastomas (222 in the mandible and eight in the maxilla)
(Table 1). As a control group, 100 normal panoramic radiographs
were also prepared. Panoramic radiographs were obtained from adult
patients without mixed dentition, and only one radiograph was used
per patient. The study was approved by the Institutional Review

Board (IRB) of Seoul National University Dental Hospital (ERI18001).

The cysts and tumors were classified finally based on the
histopathologic diagnosis from biopsies in addition to clinical diagnosis,

and panoramic radiographs were selected with the same radiologic



diagnosis by two radiologists with more than 15 years of experience.
In other words, it was only used the panoramic radiographs with
identical radiological and histopathological diagnoses. Panoramic
radiographs had a resolution of 1,976xX976 pixels(295mm X
145mm), and each radiograph was labeled manually by drawing
rectangular bounding boxes around the lesions using ImageJ*® for
training (Figure 1). The bounding boxes included radiographic
characteristics of each disease such as cortical margin and internal
radiolucent lesions. Average sizes of the annotated lesions were
178 X196 pixels for dentigerous cysts, 186 X170 pixels for periapical
cysts, 297 X304 pixels for odontogenic keratocysts, and 386 X351
pixels for ameloblastomas. A contrast—limited adaptive histogram
equalization (CLAHE) technique was applied to the images to expand
the high values and compress the values in the dark layer more

effectively®.
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panoramic average lesion size

) augmented data )
image (pixels)
dentigerous cyst 350 4200 178%196
periapical cyst 302 3624 186x170

odontogenic
300 3600 297x304
keratocyst

ameloblastoma 230 2760 386x351

Table 1. The number of panoramic images and augmented data for

four diseases, and average lesion size (pixels)

Figure 1. Labeling process on a panoramic image using Imagel



Original image Horizontally flipped image Rotation (1°) image

4

Intensity conversed image by Intensity conversed image by
gamma correction (y= 0.8) gamma correction (y= 1.2)

Figure 2. Data augmentation using flipping, rotation, and gamma
correction.

Data augmentation was performed to increase the amount of training
data for deep learning. Using MATLAB (MathWorks, Natick, MA,
USA), images were flipped horizontally, rotated by 1° and —1° , and
their grayscale was transformed by gamma correction (y = 0.8, 1,
1.2) (Figure 2). As a result, the number of images was increased 12—
fold. Images were randomly separated into a training dataset (80%)
and a test dataset (20%) before data augmentation. The training
dataset for dentigerous cyst, periapical cyst, odontogenic keratocyst,
and ameloblastoma comprised 280, 242, 240 and 184 panoramic
images, respectively, and test dataset, 70, 60, 60, and 46,
respectively. The training dataset was used to train the convolutional
neural network, and the test dataset was used to evaluate the final

trained model.



A deep convolutional neural network model for
detection and classification of multiple diseases -

YOLOvS

A modified convolutional neural network from the YOLOv3 based on
the Darknet—53 network for detecting and classifying multiple
diseases on panoramic radiographs was developed (Figure 3).
YOLOv3 predicted bounding boxes at three different scales using
features from scales extracted using a similar concept to feature
pyramid networks (FPN)*". In the last of these layers, the
convolutional neural network replaced the softmax function with
independent logistic classifiers to calculate the objectness of the input
belonging to a specific class*®. The convolutional neural network
predicted the bounding box, confidence (objectness), and class
predictions (Figure 3). Each bounding box had a confidence value
calculated from the logistic regression. The input resolution from 320
X 320 pixels to 608 X 608 pixels, which made it possible to predict
lesions of smaller pixel sizes, was modified. The location of skip
connection was also changed from the convolutional layers of
76x76x256 to 76x76x256 to those of 152x152x128 to 152x152x128
in order to use four times up—sampling instead of two times for
reducing the losses of spatial information (Figure 4). The network

was trained on a total of 8,000 epochs with a 64 —batch size and one—



or two—stride size by using pre—prepared augmented images. An
adaptive moment estimation solver was used to optimize the network

with a learning rate of 0.001 and momentum of 0.9.

After training, the network outputted bounding boxes and the
confidence that the bounding box enclosed a lesion for input
panoramic images. Intersection over union score, ratio of the area of
intersection and area of union of the predicted bounding box and
ground truth bounding box, was computed in the final set of outputs.
The intersection over union threshold value of 0.5 was used to obtain
the average precision score for disease detection (Figure 3). The
network could detect one or more bounding boxes of possible classes
for one lesion at the input panoramic image. If multiple bounding boxes
of the same class were generated for one lesion, only one bounding
box among the boxes was predicted for the class by non—maximum
suppression. Finally, one bounding box of the highest confidence
among the multiple predictions was adopted for disease classification

(Figure 3).
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Detection —

Classification —

Class 1

‘ Non maximum suppression ‘ Non maximum suppression |

.

Classification

Figure 3. A framework of the deep convolutional neural network for

detection and classification of multiple diseases.
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Panoramic image
(1976x976x1)

Skip connection

Input
| (608x608x3)
Convolution
(304x304x64) |
4 Convolution
f (152x152x128) Convolution

Convolution
(38x38x512)Convolution  Convolution (38x]3x5 12)
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Prediction
(19x19x27)
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Prediction
(38x38x27)

¥

Convolution

(152x152x128)

Prediction
(152x152x27)

Figure 4. A convolutional neural network architecture modified from

YOLOv3 with the modified layers in Bold.
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Evaluation of detection and  classification
performance of the deep convolutional neural network

model

The performance of the developed model was evaluated by five—
fold cross validation method, which divided the whole data into five
sets, takes 80% for training and 20% for testing, and then rotated the
two groups five times. The performance of the developed model was
evaluated using a test data set not used for training. For detection
performance, it was calculated recall (sensitivity) (TP / (FN + TP)),
precision (positive predictive value) (TP / (FP + TP)), Fl—score
(2 XprecisionXrecall / (precision + recall)), and average precision
values, which are common parameters in object detection**”". The
precision—recall curve (PRC) was also computed from the model’ s
detection output by varying the confidence threshold that determined
what was counted as a model—predicted positive detection*’. average
precision was calculated as the average value of precision across all
recall values. A confusion matrix was calculated to evaluate the
classification performance of the convolutional neural network for
diseases®. For classification performance, it was calculated
sensitivity (TP / (FN + TP)), specificity (TN / (TN + FP)), and
accuracy ((TN + TP)/(TN+TP+FN+FP)) from the confusion matrix.

The receiver operating characteristic curve (ROC) was also computed

13



from the model’ s classification output by varying the confidence
threshold for each disease’®. The value of the area under the ROC

curve (AUC) was calculated.

14



Results

First, average precision, precision and recall were measured to
evaluate model performance for lesion detection with data

augmentation. Figure 5 features a dentigerous cyst, with a crown,

radiolucent lesion, and surrounding cortical bony margin detected.

Figure 5. Detection of a dentigerous cyst. The solid line area is the
disease area labeled by the radiologist and the dotted area is the

predicted area.

Figure 6 displays a periapical cyst. The enclosed area around the
cyst includes a root apex, radiolucent lesion and surrounding cortical

bony lesion.

15



Figure 6. Detection of a periapical cyst. The solid line area is the
disease area labeled by the radiologist and the dotted area is the

predicted area.

Figure 7 relay the results for the odontogenic keratocyst. The
unilocular radiolucent cystic lesion is located to the left of the upper
inferior alveolar nerve, closer to the periapical region and away from

the cementoenamel junction (CEJ) of the third molar.




Figure 7. Detection of an odontogenic keratocyst. The solid line
area is the disease area labeled by the radiologist and the dotted area

is the predicted area.

Lastly, for ameloblastoma (Figure 8), the panoramic image reveals a

large unilocular lesion on the maxilla’s left anterior side.

Figure 8. Detection of ameloblastoma. The solid line area is the
disease area labeled by the radiologist and the dotted area is the

predicted area.

Average precision, precision, recall, and F1—score values were
measured to evaluate model performance for lesion detection with or
without data augmentation using YoLoV3(Table 2). average precision
values for dentigerous cysts, periapical cysts, odontogenic
keratocysts, and ameloblastomas using non—augmented dataset were

0.91, 0.79, 0.67, and 0.78, respectively, compared to 0.84, 0.89, 0.91,

17



and 0.88, for augmented dataset, respectively (Table 2). Mean
average precision, precision, recall, and F1—score for dentigerous
cysts, periapical cysts, odontogenic keratocysts, and ameloblastomas
were 0.79, 0.78, 0.74, and 0.76 for non—augmented dataset and 0.88,
0.87, 0.83, and 0.85 for augmented dataset, respectively (Table 2).
The precision—recall (PR) curves for detecting lesions are shown in

Figure 9.

18



AP F1-
Mean AP Precision Recall

DC PC OKC AB score

With 0.84 0.89 091 088 0.88+£0.04  0.87 0.83  0.85
augmentation

Without 091 0.79 0.67 0.78 0.79+£0.12  0.78 0.74  0.76
augmentation

Table 2. Average precision (AP), mean average precision (mAP),
precision (positive predictive value), recall (sensitivity), and F1—
score for detecting dentigerous cysts (DC), periapical cysts (PC),
odontogenic keratocysts (OKC), and ameloblastomas (AB) of the

developed convolutional neural network with or without dataset

augmentation.
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Figure 9. Precision—recall curves from automatic detection of
dentigerous cysts, periapical cysts, odontogenic keratocysts, and
ameloblastomas without (a) and with (b) data set augmentation. AB,
ameloblastoma; DCs, dentigerous cysts; OKCs, odontogenic

keratocysts; PCs, periapical cysts.
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Table 3 shows the confusion matrix for classifying dentigerous
cysts, periapical cysts, odontogenic keratocysts, ABs, and normal
jaws using the developed convolutional neural network with or without
data augmentation. To assess the classification performance of the
convolutional neural network for absence of diseases, panoramic
radiographs with no diseases were designated normal. Table 4
summarizes the classification results of sensitivity, sensitivity,

accuracy, and AUC for each disease.

Without augmentation With augmentation
Input

DC PC OKC AB Normal DC PC OKC AB Normal

DC 0.87 0.05 0.03 0.00 005 092 0.03 0.03 0.00 0.03
PC 0.06 0.72 0.08 0.00 0.14 0.03 0.84 0.04 0.00 0.10
OKC 0.06 0.06 0.78 0.03 0.06 000 0.00 098 0.00 0.02
AB 0.05 0.05 027 055 009 0.00 000 022 072 0.06

Normal 0.00 0.00 0.01 0.00 099 0.00 0.00 0.00 0.00 1.00

Table 3. Confusion matrix for classifying dentigerous cysts (DC),
periapical  cysts (PC), odontogenic  keratocysts (OKO),
ameloblastomas (AB), and normal jaws (Normal) by the developed

convolutional neural network, with or without dataset augmentation.
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Without augmentation With augmentation

Sen(sni/ii)vity Spe(coi/flcity Acg;z‘)acy AUC Sen(sni/ii)vity Spe(coi/fl)city Acg‘l)z‘)acy AUC

DC 87.1 94.7 94.1 0.91 91.4 99.2 97.8 0.96
PC 71.9 95.0 91.2 0.84 82.8 99.2 96.2 0.92
OKC 78.9 89.4 87.8 0.83 98.4 92.3 94.0 0.97
AB 54.3 99.1 90.3 0.77 71.7 100.0 94.3 0.86
Normal 99.0 91.1 92.9 0.94 100.0 95.1 96.0 0.97
Mean 78.2 93.9 91.3 0.86 88.9 97.2 95.6 0.94

Table 4. Sensitivity, specificity, accuracy, and area under the curve
(AUC) for classifying dentigerous cysts (DC), periapical cysts (PC),
odontogenic keratocysts (OKC), ameloblastomas (AB), and normal
jaws (Normal) by the developed convolutional neural network, with

or without dataset augmentation.
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Figure 10 shows the correctly and falsely classified lesions with
and without dataset augmentation. The receiver operating
characteristic (ROC) curves for classifying multiple diseases are
shown in Figure 11. For dentigerous cysts, lesions correctly classified
by the convolutional neural network had a crown, radiolucent lesion,
and surrounding cortical bony margin both without (Figure 10 (a))
and with data augmentation (Figure 10 (e)). Sensitivity, specificity,
accuracy, and AUC for dentigerous cysts without augmentation were
87.1%, 94.7%, 94.1% and 0.91, respectively, compared to 91.4%,
99.2%, 97.8%, and 0.96, respectively, with augmentation. For
periapical cysts, correctly classified lesions had a root apex,
radiolucent lesion, and surrounding cortical bony lesion both without
(Figure 10 (b)) and with data augmentation (Figure 10 ().
Sensitivity, specificity, accuracy, and AUC for periapical cysts were
71.9%, 95.0%, 91.2%, and 0.84, respectively, without augmentation,
and 82.8%, 99.2%, 96.2%, and 0.92, respectively, with augmentation.
For odontogenic keratocysts, correctly classified lesions were
unilocular radiolucent cystic lesions associated with the third molar
on the mandible without augmentation (Figure 10 (c)) and large
radiolucent cystic lesions extending from the border of the maxilla
with augmentation (Figure 10 (g)). Sensitivity, specificity, accuracy,
and AUC for odontogenic keratocysts without augmentation were

78.9%, 89.4%, 87.8%, and 0.83, respectively, compared to 98.4%,

23
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92.3%, 94.0%, and 0.97, respectively, with augmentation.
Ameloblastomas were presented as large unilocular lesions on the
maxilla’ s anterior side without augmentation (Figure 10 (d)), and
radiolucent lesions including the crown of the third molar with teeth
root resorption on the mandible with augmentation (Figure 10 (h)).
Sensitivity, specificity, accuracy, and AUC of the convolutional neural
network for ameloblastomas was 54.3%, 99.1%, 90.3%, and 0.77,
respectively, without augmentation, and 71.7%, 100%, 94.3%, and
0.86, respectively, with augmentation. Lastly, sensitivity, specificity,
accuracy, and AUC for normal jaws was 99.0%, 91.1%, 92.9% and
0.94, respectively, without augmentation, and 100%, 95.1%, 96.0%
and 0.97, respectively, with augmentation. Mean sensitivity,
specificity, accuracy, and AUC for all diseases were 78.2%, 93.9%,
91.3%, and 0.86, respectively, without augmentation, and 88.9%,

97.2%, 95.6%, and 0.94, respectively, with augmentation.
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Figure 10. Lesions annotated by the radiologist (solid line) and

correctly classified by the developed convolutional neural network
model (dotted line) as a dentigerous cyst (a), periapical cyst (b),
odontogenic keratocyst (c), and ameloblastoma (d) without dataset
augmentation. A correctly classified (solid line) dentigerous cyst
(e), periapical cyst (f), odontogenic keratocyst (g), and
ameloblastoma (h) with dataset augmentation, and a falsely
classified (dotted line) odontogenic keratocyst (e), none (f),
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dentigerous cyst (g), and dentigerous cyst (h) without dataset

augmentation.
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Figure 11. Receiver Operating Characteristic curves from automatic
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keratocysts, ameloblastomas, and normal jaws without (a) and with

(b) dataset augmentation.
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Discussion

A deep convolutional neural network, a type of deep learning model,
automatically and adaptively learns spatial hierarchies of image
features by using multiple building blocks of convolutional layers,

1 Various imaging

pooling layers, and fully connected layers’”
modalities, such as periapical, cephalometric, panoramic radiographs,
as well as cone—beam computed tomography have been used to detect
and classify diseases in computer—aided diagnosis studies using a
deep convolutional neural network. One study involved segmentation
of teeth on panoramic images®®. Another evaluated the root
morphology of the mandibular first molar on panoramic radiography®.
Sinusitis was detected by learning the form of the maxillary sinus on
panoramic images®’. Osteoporosis has also been diagnosed by
evaluating cortical erosion of the mandibular inferior cortex from
panoramic images®’. However, there are few convolutional neural

network —based computer—aided diagnosis studies of radiolucent jaw

lesions on panoramic radiographs.

A modified convolutional neural network from YOLOv3 for
automatically detecting and classifying odontogenic cysts and tumors
of the jaw on panoramic images was developed, as these types of
cysts and tumors have the highest rate of occurrence in the oral and

maxillofacial region. The input resolution of the panoramic image was
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increased, and the skip connections compared with the original
YOLOv3 was changed, which could reduce information loss during
training, and increase the performance the convolutional neural
network. The developed convolutional neural network based on
YOLOv3 showed overall detection performance of 0.88 of average
precision, 0.87 of precision, and 0.83 of recall. Classification
sensitivity was 72% for ameloblastomas, 98% for odontogenic
keratocysts, 91% for dentigerous cysts, and 83% for periapical cysts
using augmented dataset. A study reported automatic classification of
ameloblastomas, odontogenic keratocysts, dentigerous cysts, RCs,
and SBCs using DIGITS, a pre—trained deep learning model**. In the
study, the total number of training dataset was 210, and the number
of test dataset was three ameloblastomas, six odontogenic
keratocysts, eight dentigerous cysts, and seven radicular cysts to
evaluate the performance®*. As the result, classification sensitivity
was 60% for ameloblastomas, 13% for odontogenic keratocysts, 82%
for dentigerous cysts, and 77% for RCs?*. On the other hand, a total
of 1,282 panoramic radiographs was used and data augmentation of
12 times. Generally, our convolutional neural network model showed
higher sensitivities for these diseases than the model of Ariji et al.,
most likely because these authors used a smaller number of cysts and
tumor images than we did for training and evaluation. In addition to

this, odontogenic cysts and tumors in both the maxilla and mandible
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was classified, while they only classified cysts and tumors in the
mandible®*. Another study reported binary classification of
ameloblastomas and odontogenic keratocysts using a VGG—16
convolutional neural network, a pre—trained network using ImageNet.
The number of original training dataset and test dataset was 200 and
50, respectively, for each disease. They used data augmentation of
double using only horizontal flips for training dataset, and the
sensitivity and specificity for differential diagnosis was 81.8%, and
83.3%, respectively®. In our study, the sensitivity and specificity for
ameloblastomas were 71.7%, and 100%, respectively, while that for
odontogenic keratocysts was 98.4%, and 92.3%, respectively. Overall
sensitivity was 88.9% and overall specificity was 97.2% using data
augmentation in spite of multiple classification for four diseases.
Generally, the deep learning model developed based on the state—of—
the—art network YOLOv3 and augmented dataset had higher
sensitivity and specificity than those of previous models in classifying

cysts and tumors of the jaw on panoramic images.

Odontogenic cysts and tumors classified in this study share some
radiologic features, thus differential diagnosis may be difficult®®. It is
common for dentigerous cysts to wrap around the crown
symmetrically, and it should not come into contact with the root as it
originates from the cementoenamel junction of the crown. If a cyst

arising from the crown of an unerupted tooth extends towards the
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periapical side over the cementoenamel junction of the unerupted
tooth, then it is likely an odontogenic keratocysts®. Separately,
multilocular odontogenic keratocysts with scalloped borders may
appear similar to ameloblastomas, but they tend to grow along the
marrow space without significant cortical bone expansion compared
to ameloblastomas, which usually show significant cortical expansion
with well—defined cortical borders in the mandible and ill—defined
margins in the maxilla®. It is more difficult to diagnose these
radiolucent lesions correctly in the maxilla than in the mandible
because of superimposition of structures such as the nasal cavity,

maxillary sinus, hard palate, and inferior nasal concha in the maxilla®®.

Our convolutional neural network had 88.9% sensitivity for
classification using augmented dataset. It had a 100% sensitivity
(false negative rate of 0) for classification of disease—free (normal)
jaws. The sensitivity for odontogenic keratocysts was the highest at
98.4% (lowest false negative rate of 0.02) among the four diseases;
the false negative was classified as normal. In contrast, the lowest
sensitivity of 71.7% (highest false negative rate of 0.28) was obtained
for ameloblastomas among the four diseases, with false diagnosis of
ameloblastomas as odontogenic keratocysts (0.22) and normal (0.06).
Fewer images were used for ameloblastomas learning than for the
other three diseases, despite their heterogeneous radiographic

appearance (multilocular and unilocular). The second highest
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sensitivity of 91.4% (false negative rate of 0.09) was obtained for
dentigerous cysts among the four diseases, and dentigerous cysts
were falsely diagnosed as periapical cysts (0.03), odontogenic
keratocysts (0.03), or normal (0.03). dentigerous cyst lesions
involving the third molar in the maxilla, those associated with the
supernumerary tooth in the anterior maxilla, or those that overlapped
with the wall of the maxillary sinus or anterior teeth were
misdiagnosed. The sensitivity for periapical cysts was 82.8% (false
negative rate of 0.17). Our model failed to diagnose smaller lesions in
the root apex of the tooth overlapping with other anatomical
structures (0.1), and misdiagnosed them as dentigerous cysts (0.03)
or odontogenic keratocysts (0.04), especially in the maxilla. As a
result, sensitivities for dentigerous cysts and periapical cysts were
lower than that for odontogenic keratocysts as dentigerous cysts, and
periapical cysts occur more commonly in the maxilla. Generally,
sensitivity (false negative rate) for lesions located in the maxilla was
lower (higher) than that for lesions in the mandible due to the overlap

between lesions and other anatomical structures in the maxilla.

The classification specificity of 97.2% when using augmented
dataset was higher than the sensitivity of 88.9% for all diseases.
Specificity for ameloblastomas was the highest (lowest false positive
rate) at 100% (0.00); no diseases were falsely diagnosed as

ameloblastomas. Specificity for dentigerous cysts and periapical cysts
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was also high at 99.2%. Specificity for odontogenic keratocysts was
lowest at 92.3%. Ameloblastomas were frequently misdiagnosed as
odontogenic keratocysts, and the classification was least sensitive for
ameloblastomas. This might be due to the smaller number of
ameloblastomas used for learning compared with all the other cystic
diseases in addition to the large variations in radiological appearance
of ameloblastomas. Rectangular bounding boxes around the lesions
should have included more normal anatomical structures to cover the
larger boundary of ameloblastomas. As a result, our model showed
poorer generalizability for ameloblastomas than the other cystic
diseases. Nonetheless, our model showed high sensitivity for
odontogenic keratocysts and high specificity for ameloblastomas. It is
important to note that differential diagnosis between odontogenic
keratocysts and ameloblastomas based on panoramic radiographs can

be difficult even for experienced radiologists.

Transfer learning is another effective way to train a network with a
small dataset in radiology research. In transfer learning, a network
trained previously on a large number of images such as an ImageNet
challenge dataset is applied to the specific task of interest. The basic
assumption of transfer learning is that the generic features learned
from a sufficiently large dataset can be shared with seemingly
disparate datasets. the learned kernels were utilized and the

pretrained network was weighted from model of Darknet—53 and
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fine—tuned all of the kernels of the YOLOv3 network on the pretrained
convolutional base. With this strategy, the network learned specific
features that were more specialized for lesion detection on the
radiograph dataset progressively, while the generic features such as
edges and corners could be applicable to a variety of datasets’®°’. The
advantage of reusing learned generic features makes the deep
convolutional neural network very useful in various tasks with small

datasets in medical and dental imaging.

An essential requirement for deep learning detection and
classification of lesions on medical and dental images is large sets of
accurately labeled data. However, large collections of images labeled
manually by experts are not easily available in many situations. In our
study, the panoramic images used herein were labeled by experienced
oral and maxillofacial radiologists and matched with the
histopathologic findings from the lesion biopsy. For evaluating the
deep learning model with the limited image samples, the k—fold
cross—validation method has been used to accurately estimate the
performance of the deep learning model on images not used for
training®’. The method generally resulted in a less biased estimate of
the model performance than did one simple split of train and test®®.
Using the five—fold cross—validation method, it was measured how
accurately the developed model predicted when used to make

predictions on unseen images.
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Overfitting of the training convolutional neural network model,
which results in the model learning statistical regularity specific to
the training data set, negatively impacts the model’ s ability to
generalize to a new data set”. One solution to reduce overfitting is
data augmentation, which is the process of modifying data through
flipping, moving, cropping, rotating, and grayscale transformation®”.
Data augmentation can improve the performance of the convolutional
neural network in medical image analysis®’. In this study, augmented
technology increased the number of images in the dataset by 12—fold.
Mean average precision, precision, recall, and F1—score values for
detection performance of the convolutional neural network generally
increased after data augmentation. As the recall value increased, the
precision value decreased more gradually with data augmentation than
without data augmentation, which resulted in a higher average
precision with data augmentation than without data augmentation.
Classification performance of the convolutional neural network
improved from 78.2% sensitivity, 93.9% specificity, 91.3% accuracy,
and 0.86 AUC to 88.9% sensitivity, 97.2% specificity, 95.6% accuracy,
and 0.94 AUC for the four diseases when augmented dataset was used.
As the false positive rates increased, the sensitivity increased more
steeply with data augmentation than without data augmentation, which
resulted in a higher AUC with data augmentation than without data

augmentation. In particular, the performance for diagnosing
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odontogenic keratocysts improved from 78.9% sensitivity, 89.4%

specificity, 87.8% accuracy, and 0.83 AUC to 98.4% sensitivity, 92.3%

specificity, 94.0% accuracy, and 0.97 AUC, and the performance for
ameloblastomas from 54.3% sensitivity, 99.1% specificity, 90.3%
accuracy, and 0.77 AUC to 71.7% sensitivity, 100% specificity, 94.3%

accuracy, and 0.86 AUC.

To date, oral and maxillofacial medicine has benefited little from
advancements in computer—aided diagnosis. Here, A convolutional
neural network model to automatically detect and classify cysts and
tumors of the jaw on panoramic radiographs with high accuracy using
data augmentation was developed. The developed computer—aided
diagnosis can help general dental clinicians diagnose and treat patients
more efficiently, and thus improve diagnostic performance and patient
care. In future studies, the use of a more complex annotation method,
such as lesion segmentation rather than a rectangular bounding box,
and the use of more images for training, especially images of the
maxilla, will increase the classification performance of the

convolutional neural network for diseases of the jaw.
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Conclusion

The convolutional neural network method was developed for
automatically diagnosing odontogenic cysts and tumors of the jaw on
panoramic radiographs using data augmentation. The proposed
convolutional neural network model showed high sensitivity,
specificity, accuracy, and AUC when using augmented data despite

the limited number of panoramic images available.
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