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Abstract

Biometric authentication using fingerprints requires a method for image denois-
ing and inpainting to extract fingerprints from degraded fingerprint images. A few
deep learning models for fingerprint image denoising and inpainting were proposed
in ChaLearn LAP Inpainting Competition - Track 3, ECCV 2018. In this thesis, a
new deep learning model for fingerprint image denoising is proposed. The proposed
model is adapted from FusionNet, which is a convolutional neural network based deep
learning model for image segmentation. The performance of the proposed model was
demonstrated using the dataset from the ECCV 2018 ChaLearn Competition. It was
shown that the proposed model obtains better results compared with the models that
achieved high performances in the competition.

Key words: Deep learning, Fingerprint image, Image denoising, Convolutional neural
network, FusionNet
Student Number: 2018-28868
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Chapter 1

Introduction

Fingerprint is an impression of friction ridges of a finger left on a surface. Because of
its uniqueness and durability over the life of an individual, fingerprint authentication
methods are used in various real-life devices. In recent years, biometric authentica-
tion has been used as a major authentication technique for smart devices. Biometric
authentication utilizes personal biometric information to significantly reduce leakage
or theft, compared with traditional authentication methods such as personal identifi-
cation number (PIN) or password[1]. In biometric identification, the matching of two
fingerprints is one of the most widely used and reliable technique. Automated finger-
print identification system (AFIS) is a biometric authentication technology that has
recently attracted much attention, because of its convenience in using simple touch-
based sensors[2].

In fingerprint recognition, various kinds of environmental noise are generated when
a user’s finger touches the sensor in some undesirable conditions, which can severely
damage the fingerprint image. This degrades the quality of the image, which makes
user authentication difficult. Therefore, in order to solve this problem, image restora-
tion studies are preferentially necessary.

Several studies have been conducted on noise reduction, enhancement, and recon-
struction of fingerprint images based on existing algorithms. Traditional fingerprint
image processing methods include image filtering or the use of partial differential
equations. Traditional image filtering methods using a Wiener filter, an anisotropic
filter[3] and a directional median filter[4] were proposed. A method based on partial
differential equations was also proposed for automatic fingerprint restoration[5]. Sev-
eral methods using orientation information have been proposed. Hong et al. used local
ridge orientation and frequency information to improve the clarity of ridge and valley
structures of a fingerprint image[6]. The method used Gabor filters as bandpass filters
to remove noise and enhance the ridge and valley structures. Chikkerur et al. improved
low-quality fingerprint images by estimating intrinsic properties of the fingerprints
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including local ridge orientation with an algorithm based on Short-time Fourier Trans-
form (STFT)[7]. Feng et al. proposed an orientation field estimation algorithm that
uses the prior information embedded in the fingerprint structure[8]. Cappelli et al.
took an approach to reconstruct fingerprint images from standard templates by extract-
ing the information of the orientation field and ridge structure from a given fingerprint
image[9].

Recently, image processing using a convolutional neural network (CNN) has at-
tracted much attention. CNN models are able to extract hierarchical image features
from input data, which showed great performances in image recognition. Using con-
volutional neural networks, many developments have been made in the areas of image
denoising, image segmentation and image enhancement.

In this thesis, a new CNN-based model for fingerprint image denoising and inpaint-
ing is proposed, which improves artificially degraded fingerprint images with random
transformations. Several experiments were conducted to verify the performance of the
proposed model. It was confirmed that the proposed model shows better results com-
pared with the previously proposed CNN models.

The remainder of the paper is organized as follows: In Section 2, a brief introduc-
tion to the neural networks that are related to the study is given. Also, recent research
related to the topic is described. In Section 3, a new CNN model for fingerprint image
denoising and inpainting is proposed. The feasibility of the proposed model is verified
through the experiments in Section 4. The conclusions are presented in Section 5.
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Chapter 2

Related Work

2.1 Residual Neural Network

Residual Neural Network (ResNet)[10] is one of the best known deep neural networks
for image recognition that showed great performance in ILSVRC 2015 challenge. The
model is composed of a stack of residual blocks, where each residual block contains a
skip connection between few layers. The skip connection adds the input to the output
in each residual block as shown in Figure 2.1. The input x is added to the output after
the layers, so that the output of the residual block before the ReLU activation function
is H(x) = F (x)+ x. The network is called residual neural network since the network
learns the residual mapping F (x) = H(x) − x. The skip connection allows gradient
information to pass through the layers, which makes it possible to build a much deeper
network without vanishing gradient problem. Residual blocks and skip connections
are widely adopted in many deep neural networks.
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(a) A residual block with a stack of 2 layers (b) A residual block with a stack of 3 layers 

Figure 2.1: Examples of the residual blocks.
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2.2 Convolutional Neural Networks for Semantic Segmenta-

tion

2.2.1 U-Net

Ronneberger et al. proposed U-Net[11] for image segmentation in 2015. The model
is an end-to-end deep learning model for semantic image segmentation which stems
from the fully convolutional network (FCN)[12]. The U-Net consists of a contraction
path (also known as an encoder) and an expanding path (also known as a decoder).
The encoder includes a stack of convolution and maxpooling layers to capture the con-
text of an image, while the decoder is symmetric to the encoder to propagate context
information of the image to higher resolution layers. The decoder enable precise local-
ization using transposed convolutions. Long skip connections are used in the decoder
to combine the feature information with the spatial information. In the skip connec-
tions, the feature maps of the decoder are concatenated with the feature maps from the
same level of the encoder. Figure 2.2 shows the architecture of U-Net where the green,
the blue, the red and the yellow boxes in the figure represent the convolution layer,
2× 2 maxpooling, the deconvolution layer and the concatenation, respectively.
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Figure 2.2: U-Net Architecture.
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2.2.2 FusionNet

FusionNet[13] is a model for image segmentation that improves U-Net by increasing
the depth of a network using residual blocks and summation-based skip connections.
Like U-Net, the network consists of an encoder, a decoder and long skip connections.
FusionNet utilizes residual blocks in the encoder and the decoder parts in order to build
a deeper network. A residual block in the model consists of three convolutional blocks
and a short skip connection. Every residual block is surrounded by two convolution
layers before and after the block. Also, a pixel-wise addition is used in the long skip
connections in order to make the network fully residual network. Therefore, the net-
work is nested with short and long skip connections to pass information through the
network. A part of FusionNet architecture is shown in Figure 2.3.

+ 

… 

… 

3 × 3 convolution 

+ 

= 

2 × 2 maxpooling 

deconvolution 

residual block 

=3 ×(3 × 3 conv)+skip connection 

Figure 2.3: A part of FusionNet architecture
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2.3 Recent Trends in Fingerprint Image Denoising

Several convolutional neural network based models have been proposed for fingerprint
image denoising and enhancement. FingerNet was proposed by Tang et al. which is
a CNN-based model to extract latent fingerprint minutiae from noisy ridge patterns
and complex backgrounds[14]. The method extracted fingerprint details by integrating
orientation estimation, segmentation, Gabor enhancement and extraction as a convo-
lutional network. Also, Li et al. improved FingerNet to propose a latent fingerprint
enhancement model[15]. Nguyen et al. proposed MinutiaeNet that performs automatic
minutiae extraction using a coarse and fine network[16]. The coarse network improved
the image based on domain knowledge and extracted a segmentation map to provide
candidate minutiae locations. The fine network used a technique to refine these can-
didate minutiae locations and approximate minutiae orientation. Also, Svoboda et al.
proposed a model that uses generative neural network to reconstruct latent fingerprint
images that predicts the missing parts of the ridge pattern[17].

Based on these studies, ChaLearn LAP Inpainting Competition Track 3 for finger-
print image denoising and inpainting1 was held. The ECCV 2018 Chalearn competi-
tion motivated researchers to develop deep learning models to restore degraded fin-
gerprint images. Several CNN-based architectures were proposed in the competition.
U-Finger[18], which adopted the U-shaped deep denoiser[19] to perform fingerprint
image denoising, achieved good results in the competition. The overall architecture of
U-Finger includes feature encoding and feature decoding that consist of convolution
layers and residual blocks. In addition, FPD-M-Net[20] was proposed in the competi-
tion. The FPD-M-Net architecture was adapted from M-Net[21], where it modified the
block arrangement order and loss function of M-Net. M-Net is a model for 3D brain
structure segmentation and utilizes U-Net[11] to derive better segmentation results.
The method approached fingerprint image denoising and inpainting with a deep neu-
ral network for image segmentation. Image segmentation was applied to the degraded
fingerprint image to segment fingerprint ridges from the noisy background, while the
proper training of the deep neural networks solved image inpainting problem.

Overall, these related studies inspired us to propose a new convolutional neural
network for fingerprint image denoising and inpainting.

1http://chalearnlap.cvc.uab.es/challenge/26/track/32/description/
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Chapter 3

Proposed Model

3.1 Model Architecture

In this section, a new model for fingerprint image denoising and inpainting is de-
scribed. The proposed model is adapted from FusionNet[13], which utilizes U-shaped
structure for image segmentation. The proposed model is based on the architecture
of a convolutional autoencoder, which consists of an encoder, a symmetric decoder
and long skip connections. The residual block which consists of three convolution lay-
ers and a residual skip connection is used in the proposed model as in the FusionNet
model.

There are some differences between FusionNet and the proposed model. First, the
size of the input and the output of the proposed model is set to 256 × 384 in order to
match the size similar to the size of the image from the dataset used in the experiments.
Therefore the number of downsampling and upsampling of the proposed network were
reduced by one compared with FusionNet. Next, concatenations of feature maps were
used in the skip connections of the proposed model whereas summation-based skip
connections were used in FusionNet. Also, the number of channels (depth) is reduced
in the proposed model compared with FusionNet. Subsection 4.4.1 provides an expla-
nation for the above modifications.

The overall architecture of the proposed model is shown in Figure 3.1. There are
five types of basic components that are used to build the proposed network: a convolu-
tion layer with filter size 3× 3, a deconvolution layer with filter size 2× 2, a residual
block, a concatenation, and a 2× 2 maxpooling. The green, purple, blue, red and yel-
low boxes in the figure represent the convolution layer, the residual block, the 2 × 2

maxpooling, the deconvolution layer and the concatenation, respectively. The batch
normalization and ReLU are always performed after the convolution blocks. Table 3.1
shows the detail description of the proposed network.
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Figure 3.1: Proposed network architecture.
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Table 3.1: Summary of proposed network architecture

Block type Ingredients Size of feature map

Inputs 256× 384× 3

Downscaling1
conv+res+conv 256× 384× 16

+maxpool(2× 2) 128× 192× 16

Downscaling2
conv+res+conv 128× 192× 32

+maxpool(2× 2) 64× 96× 32

Downscaling3
conv+res+conv 64× 96× 64

+maxpool(2× 2) 32× 48× 64

Bridge conv+res+conv 32× 48× 128

deconv 64× 96× 128

Upscaling3 +concat 64× 96× 192

+conv+res+conv 64× 96× 64

deconv 128× 192× 64

Upscaling2 +concat 128× 192× 96

+conv+res+conv 128× 192× 32

deconv 256× 384× 32

Upscaling1 +concat 256× 384× 48

+conv+res 256× 384× 16

Output conv and normalization 256× 384× 1

3.2 Architecture Detail

3.2.1 Residual Block

The proposed network utilizes residual blocks in the encoder and the decoder to build a
deeper network. Each residual block consists of three convolution blocks and a residual
skip connection as shown in Figure 3.2. The purple block in the figure represent the
residual block, and the green blocks represent the convolution layers with filter size
3× 3.
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= 

Figure 3.2: A residual block in the proposed model.

3.2.2 Encoder

The encoder consists of three downscaling blocks. Each downscaling block consists of
a residual block, two convolution blocks that surround the residual block and a 2 × 2

maxpooling. For each downscaling block, a feature map is sequentially passed through
a convolution block, a residual block, and a convolution block. The resulting feature
map is then used as an input for the 2 × 2 maxpooling and the long skip connection.
The feature map is downsampled using stride-2 2× 2 maxpooling. Figure 3.3 depicts
a downscaling block in the encoder. In the figure, the green blocks represent the con-
volution layers, the blue block represents the 2 × 2 maxpooling and the purple block
represents the residual block. The red arrow represents the long skip connection to the
decoder.

In the proposed model, a degraded fingerprint image of size 275 × 400 is resized
to an image of size 256× 384 to be used as an input. The resized image is then passed
through three downscaling blocks of the encoder. The feature map of size 32×48×64

is the output of the encoder to be passed to the bridge.

Figure 3.3: A downscaling block in the encoder.
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3.2.3 Bridge

In the bridge, the feature map of size 32 × 48 × 64 is sequentially passed through a
convolution block, a residual block and a convolution block to output a feature map of
size 32 × 48 × 128. The bridge part is depicted in Figure 3.4. In the figure, the green
blocks represent the convolution layers, and the purple block represents the residual
block.

32 × 48 × 64 

32 × 48 × 128 

Figure 3.4: Bridge in the proposed model.

3.2.4 Decoder

The decoder consists of three upscaling blocks. Each upscaling block consists of a
deconvolution block, a concatenation, a residual block and two convolution blocks
that surrounds the residual block. For each block, the feature map is passed through
a deconvolution block to expand the size of the feature map. Next, the feature map
and the corresponding feature map of the encoder is concatenated using a long skip
connection. Then the resulting feature map is passed through a convolution block, a
residual block and a convolution block, sequentially. Figure 3.5 depicts an upscaling
block in the decoder. In the figure, the red block represents the deconvolution block
with filter size 2 × 2, the green blocks represent the convolution layers, the purple
block represents the residual block and the yellow block represents the concatenation.
The red arrow represents the long skip connection from the encoder.

After the last upscaling block, the feature map is passed through the last convo-
lution block with an output depth of 1. Then the feature map of size 256 × 384 × 1

is normalized to obtain a grayscale image. The normalization is done by setting the
minimum value of the feature map to 0 and the maximum value to 1. The size of the
resulting feature map from the decoder is 256× 384× 1.
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Figure 3.5: An upscaling block in the decoder.

3.3 Loss Function

The loss function used in the training is the loss function presented by Zhao et al.[22],
which was proposed for neural networks for image restoration. The loss function is
defined as in Equation 3.1.

L = αLms−ssim + (1− α)L1 (3.1)

The goal of the loss function is to output an image that is appealing to a human
observer. Experimental results showed that L1 loss preserves colors and luminance
while the MS-SSIM loss better preserves the contrast in high-frequency regions[22].
To capture the best characteristics of both loss functions, the loss function utilizes both
the L1 loss and the MS-SSIM using a weighted sum. α was set to 0.85 in this study.
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Chapter 4

Experiments

4.1 Experimental Setup

Experiments were performed to verify the proposed architecture. Table 4.1 shows the
experimental environment used in this study.

Table 4.1: Experimental environment

Hardware Specification

CPU Intel Core i5-6500

GPU Tesla K 80

Memory Capacity 16GB

Software Specification

Python Version : 2.7.12

TensorFlow Version : 1.12.0

Operation System Linux Ubuntu 16.04

The proposed network was trained for 50 epochs with the batch size of 32. In
training the network, Adam optimizer was used for the training. The learning rate
schedule was a step decay of 10−4 in epoch 1, 10−5 from epochs 2 to 3, 5×10−6 from
epochs 4 to 9, 10−6 from epochs 10 to 19, 5 × 10−7 from epochs 20 to 39, and 10−7

from epochs 40 to 50.
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4.2 Evaluation Metrics

We used peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) as the
evaluation metrics to verify the similarity between the ground-truth image and the pre-
dicted image. PSNR is defined as in Equation 4.1 and it indicates the ratio of the power
of corrupting noise to the maximum possible power of a signal. SSIM is the measure
of similarity between the distorted image and the original image, where the distor-
tions are caused by compression and transformation. SSIM is not a numerical error,
but it is more correlated to assessing the similarity of the image qualities perceived by
humans[23]. SSIM is defined as in Equation 4.2.

PSNR = 10 · log10
(MAX2

I

MSE

)
= 20 · log10

(MAXI√
MSE

) (4.1)

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2x + µ2y + c1)(σ2x + σ2y + c2)
(4.2)

4.3 Dataset

The dataset used in this study is a large-scale synthesized dataset of fingerprint images
released in the Chalearn LAP Inpainting Competition Track 3. The dataset consists of
pairs of ground-truth fingerprint images and degraded fingerprint images, where the
ground-truth images are grayscale images of size 275× 400 and the degraded images
are RGB images of size 275 × 400. There are training, validation, and test sets in the
dataset. Table 4.2 shows the number of image pairs in each category.

Table 4.2: Number of images in the dataset

Dataset Training Validation Test

Number of image pairs 75,600 8,400 8,400

The ground-truth images in the dataset are synthetic data generated by the Anguli
Synthetic Fingerprint Generator. Synthetic data are used not only because collecting
a large amount of real fingerprint images takes considerable time and effort, but also
due to the privacy legislation in some countries where the distribution of such personal
information is prohibited[24, 25].
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The degraded fingerprint images in the dataset were created by adding some ran-
dom artifacts and background to the ground-truth images. Such random artifacts in-
clude rotation, blur, contrast, brightness, occlusion, scratch, resolution and elastic trans-
formation. Figure 4.1 shows the examples of the dataset. In the figure, the first and the
third rows show the degraded fingerprint images of the dataset, while the second and
the fourth rows show the corresponding ground-truth images of the dataset.

Figure 4.1: The examples of image pairs from the dataset.
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4.4 Experimental Results

4.4.1 Ablation Study

As the proposed model was created based on FusionNet, the performance of the pro-
posed model was compared with those of other models that modified FusionNet. Two
different modifications of FusionNet were trained for comparison with the proposed
model.

First, a modified FusionNet model with a decreased number of feature maps was
trained with the original input size, 640 × 640. The number of feature maps for the
modified model was set the same as for the proposed model for fairness in the number
of training parameters. Also, a model of input size 256×384 that used addition instead
of concatenation in skip connections was trained. In order to perform the addition in
the skip connections, the depths of the feature maps of the decoder were adjusted in
the deconvolution blocks to match those of the encoder.

For a more detailed description of the modified FusionNet models used in the
study, refer to Table 4.3.

Table 4.3: Description of modified models used in the ablation study

Modified(1) Modified(2) Proposed

Input size 640× 640× 3 256× 384× 3 256× 384× 3

Output size 640× 640× 1 256× 384× 1 256× 384× 1

Number of
4 3 3

downscaling/upscaling

Channels in the
16, 32, 64, 128 16, 32, 64 16, 32, 64

downscaling block

Merge in skip connection addition addition concatenation

The experimental results are shown in Table 4.4 and Table 4.5. The tables show
that the method proposed in Section 3 provides the best results among the approaches
in the modified models.
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Table 4.4: Experimental results on the validation dataset

Method PSNR SSIM

Modified(1) 17.0090 0.8037

Modified(2) 17.1688 0.8472

Proposed 17.1775 0.8480

Table 4.5: Experimental results on the test dataset

Method PSNR SSIM

Modified(1) 17.0548 0.8044

Modified(2) 17.1858 0.8471

Proposed 17.1904 0.8478

4.4.2 Comparison with Other Models

U-Finger[18] and FPD-M-Net[20] were selected for comparison with the proposed
model. The models are two CNN-based models that showed great performances in
the ECCV 2018 challenge. The proposed model, U-Finger and FPD-M-Net all have u-
shaped architecture with encoder, decoder and long skip connections. FPD-M-Net uses
the same loss function that is used in the proposed model while U-Finger uses mean-
square-error (MSE) for the loss function. Also, U-Finger and the proposed model both
uses residual blocks, while FPD-M-Net does not. Unlike the other two models, FPD-
M-Net includes two side paths called a left leg and a right leg which make input-to-
encoder and decoder-to-output skip connections.

Table 4.6: Quantitative results for the validation dataset

Method PSNR SSIM

Base-model 16.4782 0.7889

FPD-M-Net 16.5149 0.8265

U-Finger 16.8623 0.8040

Proposed 17.1775 0.8480
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Table 4.7: Quantitative results for the test dataset

Method PSNR SSIM

Base-model 16.4109 0.7965

FPD-M-Net 16.5534 0.8261

U-Finger 16.9688 0.8093

Proposed 17.1904 0.8478

Table 4.6 and Table 4.7 show the average values of PSNR and SSIM of the models
using the validation and the test dataset. The results from the baseline network pro-
vided in the competition were attached for comparison1. The tables indicate that the
proposed method provides the best results in both PSNR and SSIM among all the ap-
proaches in the experiment.

The qualitative results from the validation dataset are shown in Figure 4.2. From
left to right, the input and the ground-truth images from the validation dataset, the out-
put images of FPD-M-Net, U-Finger and the proposed model are shown. The red cir-
cles in the figure indicate the areas that are inaccurately predicted in the output images.
As indicated by the red circles in the first and second rows, FPD-M-Net and U-Finger
incorrectly predict the fingerprints due to the background noise of the input images. In
addition, the large red circles in the first, third and fourth rows of column (d) indicate
that the output images of U-Finger often include the blurry parts. Also, the small red
circles in the third and fourth rows of column (c) and (d) show that FPD-M-Net and
U-Finger inaccurately predict the outer parts of the images as fingerprints. However,
the proposed model predicted the fingerprints well in the corresponding areas of the
images.

The qualitative results from the test dataset are shown in Figure 4.3. From left to
right, the input and the ground-truth images from the test dataset, the output images
of FPD-M-Net, U-Finger and the proposed model are shown. As indicated by the red
circles in the the first row of column (c) and (d) and the fourth row of column (c), FPD-
M-Net and U-Finger inaccurately predict the outer parts of the images as fingerprints.
Also, the red circles in the second, third and fourth rows of column (d) indicate that
some of U-Finger’s output images include blurry areas. In addition, the red circles in
the second and third rows of column (c) indicate that FPD-M-Net incorrectly predicts
the fingerprints due to the non-uniform parts of the input fingerprint images. However,
the proposed network predicts the fingerprints well in the corresponding areas.

1http://chalearnlap.cvc.uab.es/challenge/26/track/32/baseline/
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(a) Input (b) GT (c) FPD-M-Net (d) U-Finger (e) Proposed 

Figure 4.2: Qualitative results from the validation dataset.
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(a) Input (b) GT (c) FPD-M-Net (d) U-Finger (e) Proposed 

Figure 4.3: Qualitative results from the test dataset.
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Chapter 5

Conclusion

In this thesis, a new CNN-based deep learning model for fingerprint image denoising
and inpainting was proposed. The proposed model is based on FusionNet, which is a
CNN-based image segmentation model with a very good performance. A few modifi-
cations were made to the FusionNet model to build a powerful fingerprint denoising
and inpainting model. To verify the performance of the proposed model, the experi-
mental results of the proposed model were compared with those of the existing CNN
models for fingerprint denoising and inpainting. It was shown that the proposed model
outperforms other models that achieved good results in the ECCV 2018 workshop
challenge. The results are expected to be applied to real-life devices such as finger-
print sensors.
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국문초록

지문을사용한생체인식인증은품질이저하된지문영상에서지문을추출하기위

한영상잡음제거및복원방법을필요로한다.지문영상잡음제거및복원을위한
몇가지딥러닝모델이 ChaLearn LAP Inpainting Competition - Track 3, ECCV 2018
에서 제안되었다. 본 논문에서는 지문 영상 잡음 제거를 위한 새로운 딥러닝 모델
을 제안한다. 제안된 모델은 영상 분할을 위한 합성곱 신경망 기반 딥러닝 모델인
FusionNet을수정하여작성하였다.제안된모델의성능은 ChaLearn Competition의
데이터셋을 사용하여 검증되었다. 이를 통해 제안된 모델이 대회에서 높은 성능을
획득한다른모델들에비하여더나은결과를얻음을확인하였다.

주요어휘:딥러닝,지문영상,영상잡음제거,합성곱신경망, FusionNet
학번: 2018-28868
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