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Abstract

Most of previous works and applications of Bayesian factor model have assumed

the normal likelihood regardless of its validity. We propose a Bayesian factor model

for heavy-tailed high-dimensional data based on multivariate Student-t likelihood to

obtain better covariance estimation. We use multiplicative gamma process shrinkage

prior and factor number adaptation scheme proposed in Bhattacharya and Dunson

[Biometrika (2011) 291–306]. Since a naive Gibbs sampler for the proposed model

suffers from slow mixing, we propose a Markov Chain Monte Carlo algorithm where

fast mixing of Hamiltonian Monte Carlo is exploited for some parameters in proposed

model. Simulation results illustrate the gain in performance of covariance estimation

for heavy-tailed high-dimensional data. We also provide a theoretical result that the

posterior of the proposed model is weakly consistent under reasonable conditions. We

conclude the paper with the application of proposed factor model on breast cancer

metastasis prediction given DNA signature data of cancer cell.

keywords: Bayesian modeling, Factor model, Multiplicative gamma process prior,

Multivariate t-distribution, Hamiltonian Monte Carlo

student number: 2019-24162
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Chapter 1

Introduction

Factor model is a highly efficient tool to understand the covariance structure of high-

dimensional data. The covariance structure is captured by representing the p-dimensional

observation as the sum of linear transformation of latent factors (k � p) and an error

term. In the factor model, the covariance matrix Ω has the form of Ω = ΛΛT + Σ,

where Λ is a p × k factor loading and Σ is a p × p diagonal error variance matrix.

Due to the parsimony of representing p×p covariance with only p(k+1)-dimensional

parameters, the factor model is widely used for covariance estimation in many ap-

plications with high-dimensional data, e.g. spatial analysis (Lopes et al., 2008) and

genomics (Carvalho et al., 2008).

The number of latent factors k is a key element in the factor model. Variations of

the factor model have been proposed for the estimation of the number of factors. Lopes

& West (2004) updated the number of latent factors in the posterior sampling process

using reversible jump Markov Chain Monte Carlo (Green, 1995). Ando (2009) deter-

mined the number of latent factors by maximizing the marginal likelihood, which is

analytically derived with a chosen prior distribution. Bhattacharya & Dunson (2011)

proposed multiplicative gamma process shrinkage prior, which is a prior for the infi-

nite factor model and encourages factor loadings with large indices to be close to 0. In

the posterior sampling, the number of factors is adapted by adding or deleting latent
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factors depending on the sparsity of the current factor loading estimate. Such adapta-

tion in Bhattacharya & Dunson (2011) is desirable in that an additional calculation is

not required. Moreover, it is guaranteed that the Markov Chain Monte Carlo (MCMC)

algorithm using factor adaptation is ergodic.

For the last few decades, many approaches have been made to obtain sparse estima-

tor under the high-dimensional setting. Variations of factor model have been proposed

in a similar vein. West (2003) and Carvalho et al. (2008) used the spike-and-slab prior

on factor loadings, which is a mixture of a point mass at 0 and a continuous density.

Although the point mass mixture prior is intuitive and does induce sparse estimates,

it has a critical disadvantage of slow mixing and convergence. Later, due to the ad-

vantage in posterior computation over point mass mixture prior, factor models using

global-local shrinkage prior (Polson & Scott, 2010) have been suggested. For example,

the aforementioned infinite factor model of Bhattacharya & Dunson (2011) assigned

multiplicative gamma process shrinkage prior on factor loadings, and Ferrari & Dun-

son (2020) proposed a factor regression model using Dirichlet-Laplace shrinkage prior

(Bhattacharya et al., 2015) on factor loadings.

Most of the factor models aforementioned are based on the normality assumption

which, however, is ill-suited when outliers are present. Ando (2009) proposed a factor

model with matrix-variate t distribution to obtain robust estimate. Zhang et al. (2014)

proposed a robust version of the factor model utilizing the fact that a multivariate t

distribution can be represented as a scale mixture of normal distributions. To the best

of our knowledge, however, no approach has been proposed for both robustness against

outliers and sparsity of the estimate.

This work proposes a robust sparse Bayesian infinite factor model, which esti-

mates covariance robustly under heavy tail distribution. Specifically, it is an extension

of the sparse Bayesian infinite factor model (Bhattacharya & Dunson, 2011), utilizing

the multivariate t likelihood instead of normal likelihood. Under the heavy tail distri-

bution, the proposed model has improved performance of covariance estimation over
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the normal-likelihood factor model of Bhattacharya & Dunson (2011). Also, we show

that under the assumption of known degrees of freedom of t-distribution, the posterior

is consistent under the weak topology. Despite the optimal value of t degrees of free-

dom is not given in the real data analysis, simulation results indicate that the proposed

model outperforms the normal-likelihood factor model by choosing a sufficiently small

number as the degrees of freedom of t distribution.

In Chapter 2 basic concept and previous approaches of Bayesian factor model are

introduced. In Chapter 3 we propose robust factor model with Student’s t-likelihood.

The posterior computation algorithm is also presented. In Chapter 4 we show theo-

retical properties of the proposed model. In Chapter 5 performance of the proposed

model is demonstrated through simulation studies. In Chapter 6 the proposed model is

applied to prediction of breast carcinoma metastasis using microarray data of cancer

tissue. The discussion is given in Chapter 7.
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Chapter 2

Factor Models

2.1 Settings

Let Y ∈ Rn×p be an independent (centered) sample of n observations with p variables.

Factor model is a latent variable model which assumes that the mean of p-dimensional

observation yi is determined by latent factor ηi with lower dimensions k � p. The

formulation of factor model is as follows:

yi = Ληi + εi, i = 1, . . . , n,

ηi ∼ Nk(0, Ik), εi ∼ Np(0,Σ), Σ = diag(σ2
1, · · · , σ2

p),

where Λ ∈ Rp×k is a factor loading matrix and εi ∈ Rp is an error term for ith obser-

vation. In this paper, for simplicity, we only consider the case of independent sample,

i.e., the case where error covariance matrix Σ is a diagonal matrix. The diagonality as-

sumption on error covariance matrix can be relaxed according to dependence structure

of observations, for example, a banded matrix.

By the property of normal distribution, the conditional distribution and marginal

distribution of yi can be easily derived as follows:

yi|ηi ∼ Np(Ληi,Σ)

yi ∼ Np(0,Ω), Ω = ΛΛT + Σ.
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Note that the covariance of observation yi is Ω = ΛΛT + Σ in marginal likelihood.

In practical applications with high-dimensional data of large p, this characterization of

unknown covariance Ω is useful for capturing the low-dimensional(k � p) covariance

structure of the data.

For inference of parameters of interest, frequentist approach often uses expectation-

maximization (EM) algorithm or its variation, because of the presence of unobserved

latent variable η. The other example of frequentist approach is a principal component

method. Principal component method calculates truncated singular value decompo-

sition of covariance matrix of rank k and performs Cholesky factorization to obtain

factor loading estimate. On the other hand, Bayesian approach assigns prior distribu-

tion on parameters of interest and performs inference on posterior distribution.

2.2 Bayesian Factor Models

Assuming number of latent factors k is given, one can consider the following simple

prior distribution on factor loading Λ and error covariance Σ:

λjh ∼ N (0, σ2
Λ), j = 1, . . . , p, h = 1, . . . , k,

σ−2
j ∼ Ga(aσ, bσ), j = 1, . . . , p,

where λjh is (j, h)-th entry of Λ and σ2
j is (j, j)-th entry of Σ. In this case posterior

sampling is straightforward by Gibbs sampler. This simple formulation may be enough

for some applications when data is small or the number of latent factors is given.

There, however, are several issues need to be addressed when implementing factor

model: unidentifiability of factor loading and unknown number of latent factors. The

following sections focus on introducing preceding works of Bayesian factor models

and how they dealt with each issue.
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2.2.1 Unidentifiability of Factor Loading

For a statistical model P = {Pθ : θ ∈ Θ}, we say that P is identifiable if θ1 = θ2

implies Pθ1 = Pθ2 for all θ1, θ2 ∈ Θ. Under factor model formulation, unidentifiability

of factor loading Λ is due to rotation invariance of Λ, i.e., for any orthogonal matrix

Q ∈ Rk×k, the following holds:

Ω = ΛΛT + Σ = ΛQQTΛT + Σ = ΛQ(ΛQ)T + Σ = Λ̃Λ̃T + Σ.

Since a rotated factor loading Λ̃ = ΛQ induces the same covariance for any orthogonal

matrix Q, the factor model is not identifiable by nature.

A well-known solution is to impose lower-triangular constraint and positive diag-

onal constraint (Geweke & Zhou, 1996). This approach has a limitation that choosing

the order of first k variables whose factor loadings are under constraint becomes an

important modeling decision. Carvalho et al. (2008) imposed lower-triangular and pos-

itive diagonal constraint on factor loading and suggested an model search algorithm to

determine the set of variables to be included in the model and first k variables’ order.

It repeatedly adds variable and latent factor to initial choice of variable and latent fac-

tor dimension. However, the method is inefficient in that each iteration of the model

search consists of refitting factor model under new set of variables and number of la-

tent factors. Refer to Carvalho et al. (2008) for detailed procedure of the model search

algorithm.

The other solution is to post-process the posterior samples of factor loading Λ. This

approach is computationally more efficient than imposing constraints on factor load-

ing because additional calculation or modification in prior specification is not needed.

Ghosh & Dunson (2009) assigns prior on factor loading satisfying lower-triangular

constraint and post-process the obtained posterior samples to satisfy positive diagonal

constraint. McParland et al. (2014) used Procrustean method where the posterior sam-

ples of factor loading are rotated or reflected to be as close as possible to a reference

factor loading matrix.
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It is critical to obtain identifiablity of factor loading Λ in some applications where

interpretation of factor loading is necessary, say factor analysis of spatial data analysis

(Lopes et al., 2008). However, when performing covariance matrix estimation or latent

factor regression using factor model, this identifiability issue of factor loading is not a

problem under Bayesian framework, as it is in frequentist settings, as long as posterior

distribution is proper (Bhattacharya & Dunson, 2011; Ferrari & Dunson, 2020).

2.2.2 Unknown Latent Factor Dimension

Factor model is a dimension reduction technique where high-dimensional data is rep-

resented as a linear transformation of low-dimensional latent factors. The number of

latent factors k represents the dimension of low-dimensional subspace in which data

lie. Thus the number of latent factors is a key component of factor model. In Bayesian

framework, it is harder than it is in frequentist setting to compare estimates obtained

from factor models of different numbers of latent factors based on certain information

criteria, as Bayesian inference involves multiple iterations of posterior sampling. Thus

most of recent Bayesian works on factor model choose either to determine the number

of factors before main posterior computation or to update the number of factors within

posterior computation.

The model search algorithm of Carvalho et al. (2008) can be an example of deter-

mining the number of latent factors in advance. The algorithm chooses the number of

factors along with the set of variables to include in the model. Ando (2009) suggested

a factor model with matrix-variate t prior on factor loadings and derived marginal

likelihood of the number of latent factors analytically. The number of factors is then

determined by maximizing the marginal likelihood. The two methods have limitation

that the methods of determining the number of latent factors is not available in different

prior settings.

On the other hand, there have been approaches that update the number of factors

within parameter updates. Lopes & West (2004) updated the number of factors using
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reversible jump MCMC, which has birth/death move step at the end of every iteration.

In adaptation step, the number of factors is updated with modified Metropolis-Hastings

ratio. Bhattacharya & Dunson (2011) considered factor loading of all possible num-

ber of factors and dynamically truncated the latent factors with loadings close to 0,

along with the prior which imposes stronger shrinkage to 0 for the factor with large

index. This is efficient in that additional computation is not needed. Also the ergodic-

ity is guaranteed for MCMC algorithm using the adaptation method of Bhattacharya

& Dunson (2011), by condition of diminishing adaptation in Roberts & Rosenthal

(2007). Detailed procedure of the method is illustrated in Section 3.1.
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Chapter 3

Robust Sparse Bayesian Infinite Factor Models

3.1 Sparse Bayesian Infinite Factor Models

The sparse Bayesian infinite factor model (Bhattacharya & Dunson, 2011) is a Bayesian

factor model specialized for high-dimensional covariance estimation. The joint distri-

bution of observation yi ∈ Rp and latent factor ηi ∈ Rk is as follows:yi
ηi

 ∣∣∣Λ,Σ iid∼ Np+k

0
0

 ,
ΛΛT + Σ Λ

ΛT Id

 , i = 1, 2, . . . , n.

The model is differentiated from the preceding Bayesian factor models in mainly two

points: its expanded parameterization on factor loading Λ and the adaptation on the

number of factors k.

Choosing the number of the latent factor k is an important issue. The model ad-

dresses this issue by first allowing the parameter space ΘΛ to contain all possible

numbers of latent factor and by dynamically truncating the insignificant latent factors

in posterior computation. The parameter space of factor loading Λ and error covariance
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Σ are as follows:

ΘΛ =

{
Λ = (λjh), j = 1, . . . , p, h = 1, . . . ,∞, max

1≤j≤p

∞∑
h=1

λ2
jh <∞

}
,

ΘΣ =

{
Σ ∈ Rp×p : Σjj > 0 ∀j = 1, . . . , p, Σij = 0 ∀1 ≤ i 6= j ≤ p

}
,

where Σij is the (i, j)th element of matrix Σ. Note that the condition

max
1≤j≤p

∞∑
h=1

λ2
jh <∞

is a necessary and sufficient condition for all the entries of ΛΛT to be finite so that the

resulting covariance matrix Ω = ΛΛT + Σ is defined.

For prior ΠΛ on factor loadings with infinitely many latent factors, the multiplica-

tive gamma process prior is proposed. It is a global-local shrinkage prior (Polson &

Scott, 2010) having entry-wise and column-wise variance components as local and

global variance components, respectively. Also, choosing a2 ≥ 1, it is designed so

that the strong shrinkage is imposed for the factors with large column index. The full

prior specification of sparse Bayesian infinite factor models is as follows:

λjh|φjh, τh ∼ N (0, φ−1
jh τ

−1
h ), φjh ∼ Ga(κ/2, κ/2), τh =

h∏
l=1

δl,

δ1 ∼ Ga(a1, 1), δl ∼ Ga(a2, 1), l ≥ 2, a1 ∼ Ga(2, 1), a2 ∼ Ga(2, 1) (1)

Σ = diag(σ−2
1 , . . . , σ−2

p ), σ−2
j ∼ Ga(aσ, bσ), j = 1, . . . , p.

The number of factors k is determined adaptively by adding or removing latent

factor within MCMC iterations, inspecting current factor loading estimate Λ̂(t). At the

tth iteration of MCMC, the chain goes through adaptation step with decreasing proba-

bility p(t), say p(t) = 1/ exp(1 + 0.0005t). In adaptation step, if there are columns of

the current value Λ(t) whose entries are all close to zero under prespecified threshold,

the columns are removed, otherwise new columns are generated from the prior distri-

bution and are added to the current factor loadings. Also corresponding columns of

10



latent factor matrix η, variance components φjh, δh for deleted (added) column of fac-

tor loadings are also deleted (added) accordingly. The adaptation procedure is to keep

only the effective latent factors whose factor loadings take up a large part of current

posterior sample of the covariance.

This adaptive method has a significant advantage of computation, compared to

other methods which needed additional MCMC step (Lopes & West, 2004) or com-

parison of other model selection criteria (Ando, 2009). As justification for their adap-

tation scheme, Bhattacharya & Dunson (2011) showed that, with the prior specified as

equation 1, the prior probability of approximated covariance ΩH = ΛTHΛH + Σ being

arbitrarily close to Ω = ΛΛT + Σ converges to 1 at exponential rate as H goes to

∞, where ΛH is a truncated factor loading of Λ with first H columns. Furthermore,

the adaptation procedure satisfies the diminishing adaptation condition in Roberts &

Rosenthal (2007). Thus the convergence of the MCMC algorithm is guaranteed.

3.2 Robust Sparse Bayesian Infinite Factor Models

The sparse Bayesian infinite factor model is a factor model based on the normal like-

lihood. Even though the model has proven its success in high-dimensional covariance

estimation, the model may not be the best option when there are outliers in the data or

the error distribution has heavy tail. We extend the model by replacing the normal dis-

tribution with t-distribution which has heavier tail and propose robust sparse Bayesian

infinite factor model.

A multivariate t distribution has a polynomial tail instead of exponential one. The

probability density function of multivariate t distribution is as follows:

f(y|ν, µ,Ω) =
Γ(ν+p

2 )

Γ(ν2 )(νπ)p/2 det(Ω)1/2

[
1 +

(y − µ)TΩ−1(y − µ)

ν

]− ν+p
2

,

where Γ(x) is a gamma function and det(A) is the determinant of a square matrix A.

When extending normal likelihood to the t likelihood, we use an equivalent represen-
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Figure 3.1: The directed acyclic graph representation for the proposed models

tation of multivariate t distribution as a scale mixture of normal distributions.yi
ηi

 ∣∣∣Λ,Σ, ν ind∼ tp+k

ν,
0
0

 ,
ΛΛT + Σ Λ

ΛT Id

 , i = 1, 2, . . . , n.

⇐⇒

yi
ηi

 ∣∣∣γi,Λ,Σ ind∼ Np+k

0
0

 , 1

γi

ΛΛT + Σ Λ

ΛT Id

 , i = 1, 2, . . . , n.

(2)

γi|ν
iid∼ Ga

(ν
2
,
ν

2

)
, i = 1, 2, . . . , n.

It is desirable to use the representation in equation 2 because posterior computation

is a straightforward Gibbs update, exploiting conjugacy of the normal model with the

normal prior distribution. The directed acyclic graph representation for the proposed

model is illustrated in Fig. 3.1. The details of the posterior computation of the proposed

model are explained in Section 3.3.

For the prior distribution of factor loading Λ and error variance Σ, we follow the

prior ΠΛ and ΠΣ as defined in equation 1. As we are dealing with multivariate t-

distribution, we have ν, the degrees of freedom, as an additional parameter. We fix ν
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at sufficiently small value in all analyses. From extensive simulation studies, we found

that datasets with moderate size have only dim information for ν and unspecified ν

render slow mixing in the posterior sampling. Thus, the improved performance can

be attained by choosing sufficiently small value of ν in the presence of outliers. The

simulation results under different choices of ν are demonstrated in Chapter 5.

3.3 Inference

While most of the posterior computation steps of the proposed model are similar to

those in Bhattacharya & Dunson (2011), a Gibbs update step can be modified to incor-

porate the auxiliary variable γi which extends the normal likelihood to the multivariate

Student-t likelihood. For the number of latent factors k, we use the same factor adap-

tation strategy to adaptively determine k as illustrated in Section 3.1.

Since all conditionals are tractable distributions, a straightforward Gibbs sampler

can be implemented for posterior computation of the proposed factor model with t like-

lilhood, as in the normal-likelihood factor model of Bhattacharya & Dunson (2011).

However, in high-dimensional setting (n � p), we have observed slow mixing of

Markov chain when naive Gibbs sampler is implemented on the proposed model. To

cope with the computational issue arising from more complicated model structure, we

made two additional modifications upon Gibbs sampler; collapsing and Hamiltonian

Monte Carlo.

The collapsed Gibbs sampler (Liu, 1994) is a variation of Gibbs sampler which

utilizes the conditional of collapsed version of joint distribution with some parameters

are marginalized out of the condition term. Decoupling some dependencies between

conditionals, it is known that the collapsed Gibbs sampler leads to faster mixing than

that of the Gibbs sampler. We apply this collapsing idea on η and γ. This is equivalent

to regarding η and γ as a block of single parameter and updating them at a single step

13



of a Gibbs sampler.

p(γi, ηi|yi, · · · ) = p(ηi|yi, · · · )p(γi|ηi,yi, · · · )

p(ηi|yi, · · · ) ∼ tk
(
ηi : ν + p, (I + ΛΣΛ)−1ΛΣyi,

ν + yTi yi
ν + p

(I + ΛΣΛ)−1

)
p(γi|ηi,yi, · · · ) ∼ Ga

(
γi :

ν + p+ k

2
,
ν + (yi − Ληi)

TΣ−1(yi − Ληi) + ηTi ηi
2

)
Fundamentally, the Gibbs sampler is a random-walk Metropolis algorithm with full

conditional as a proposal distribution. Both methods explore parameter space via ran-

dom walk which is highly inefficient for high-dimensional parameter space. Nowa-

days, in such a case with high-dimensional parameters, the Hamiltonian Monte Carlo

is considered to be a gold-standard for posterior computation and has proven empirical

success in many applications. The Hamiltonian Monte Carlo uses an auxiliary variable

(momentum) and the information from gradient of the log-posterior to perform better

search.

To deal with the complicated model structure of γ which affects both latent vari-

able η and observation y, we apply No-U-Turn sampler (Hoffman & Gelman, 2014)

for updating η. The No-U-Turn sampler is a variation of the Hamiltonian Monte Carlo

which automatically tunes the path length of Hamiltonian approximation. Though the

No-U-Turn sampler is often used to update all parameters in the model, we applied

single No-U-Turn sampler update per iteration. This is comparable to commonly used

Metropolis-within-Gibbs scheme, which updates some parameter with Metropolis up-

date while updating the others with Gibbs sampler. Applying No-U-Turn sampler on

n× k dimensional η, we aim to keep both simplicity of overall posterior computation

and better mixing of Hamiltonian Monte Carlo in posterior inference.

For the Metropolis-Hastings updates of a1 and a2, we used Gaussian proposal with

lower bound constraint of a1 > 2 and a2 > 3, respectively. It is a sufficient condition

that induced prior on each entry of covariance Ω has finite second moment. Refer

to Section 2.2 of Bhattacharya & Dunson (2011) for the detailed explanation. Also

Durante (2017) suggests that choosing a2 moderately higher than a1 facilitates better
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shrinkage of factor loadings, which motivates higher lower bound for a2 than a1. The

MCMC algorithm for robust sparse Bayesian infinite factor models given the number

of factors k is as follows:

1. Sample λj , the jth row of factor loading Λ, for j = 1, . . . , p from normal distri-

bution:

p(λj | · · · ) ∼ Nk

(
λj : Ψj

Λ

(
σ−2
j

n∑
i=1

γiyijηi

)
,Ψj

Λ

)
,

where Ψj
Λ =

(
σ−2
j

n∑
i=1

γiηiη
T
i + diag(φjhτh)

)−1

.

2. Sample σ−2
j , for j = 1, . . . , p from gamma distributions:

p(σ−2
j | · · · ) ∼ Ga

(
σ−2
j : aσ +

n

2
, bσ +

∑n
i=1 γi(yij − λTj ηi)2

2

)
.

3. Sample ηi, for i = 1, . . . , n with a single iteration of No-U-Turns-Sampler with

step size ε from t distribution:

p(ηi|yi, · · · ) ∼ tk
(
ηi : ν + p, (I + ΛΣΛ)−1ΛΣyi,

ν + yTi yi
ν + p

(I + ΛΣΛ)−1

)
.

4. Sample γi, for i = 1, . . . , n from gamma distributions:

p(γi|ηi,yi, · · · ) ∼ Ga
(
γi :

ν + p+ k

2
,
ν + (yi − Ληi)

TΣ−1(yi − Ληi) + ηTi ηi
2

)
.

5. Sample φjh, for j = 1, . . . , p, h = 1, · · · , k from gamma distributions:

p(φjh| · · · ) ∼ Ga

(
φjh :

κ+ 1

2
,
κ+ τhλ

2
jh

2

)
.

6. Sample δh, for h = 1, . . . , k from gamma distributions:

p(δ1| · · · ) ∼ Ga

(
δ1 : a1 +

pk

2
, 1 +

∑k
`=1

∑p
j=1 τ`φj`λ

2
j`

2

)
,

p(δh| · · · ) ∼ Ga

(
δh : a2 +

p(k − h+ 1)

2
, 1 +

∑k
`=h

∑p
j=1 τ`φj`λ

2
j`

2

)
, h ≥ 2.

7. Sample a1, a2 by Metropolis-Hastings update, using Gaussian proposal with

lower bound constraint of a1 > 2 and a2 > 3.
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Chapter 4

Theoretical Properties

Bhattacharya & Dunson (2011) showed the weak consistency of the posterior density

of their model. In this chapter, we show that the posterior density of the proposed

model is weakly consistent, given that the degrees of freedom ν of the t-distribution is

well-specified. All proofs for theorems can be found in Chapter 8.

For the sake of coherence, we follow the notation of Bhattacharya & Dunson

(2011). ΠΛ and ΠΣ are prior distribution on ΘΛ and ΘΣ, respectively. ΘΩ is a space

of p× p positive semi-definite matrices, and an open ray Θν = (2,∞) is a parameter

space for the degrees of freedom ν. Let g : ΘΛ×ΘΣ → ΘΩ be a mapping which maps

(Λ,Σ) to covariance matrix as follows:

g(Λ,Σ) = ΛΛT + Σ.

Let g̃ : Θν ×ΘΛ ×ΘΣ → Θν ×ΘΩ be a mapping such that:

g̃((ν,Λ,Σ)) = (ν, g(Λ,Σ)) = (ν,ΛΛT + Σ).

The parameters of multivariate t likelihood are (ν,Ω). Then full prior distribuion Π on

Θν × ΘΩ is Π = (Πν ⊗ ΠΛ ⊗ ΠΣ) ◦ g̃−1 which is induced by Πν , ΠΛ, ΠΣ. If we

prespecify the degrees of freedom ν, say ν = ν̃, then it is equivalent to choosing Πν

as a Dirac probability measure at some point ν̃.
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Theorem 1 Let

B∞ε ((ν0,Ω0)) =
{

(ν,Ω) ∈ Θν ×ΘΩ : |ν − ν0| < ε, d∞(Ω,Ω0) < ε
}
,

where d∞(A,B) = max1≤i,j≤p |aij − bij | denotes a max-norm distance for two p× p

matrices. If ν0 > 2 and Ω0 is any p×p covariance matrix, then Π{B∞ε ((ν0,Ω0))} > 0

for any ε > 0.

Theorem 2 For fixed ν0 and Ω0, and for any ε > 0, there exists ε∗ > 0, such that

B∞ε ((ν0,Ω0)) ⊂
{

(ν,Ω) ∈ Θν ×ΘΩ : KL
(
(ν0,Ω0), (ν,Ω)

)
< ε
}
,

where KL((ν0,Ω0), (ν,Ω)) denotes the Kullback-Leibler divergence between two mul-

tivariate Student-t distribution, t(ν0,0,Ω0) and t(ν,0,Ω).

Theorem 1 states that the support of prior Π is large enough so that arbitrarily small

neighborhood of any (ν0,Ω0) ∈ Θν ×Θ has strictly positive prior probability. Along

with Theorem 1, Theorem 2 ensures that, Kullback-Leibler support condition is sat-

isfied for any (ν,Ω) for the proposed prior Π. Thus if we prespecify t degrees of

freedom correctly, i.e., if we choose Πν = δν0 for true t degrees of freedom ν0, the

weak posterior consistency holds by Schwartz (1965).
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Chapter 5

Simulation Study

In this chapter, we illustrate a simulation study of covariance estimation under high-

dimensional data and compare its performance with the normal-likelihood factor model

of Bhattacharya & Dunson (2011). We generated yi, i = 1, . . . , n from heavy-tailed

multivariate t distribution with parameter ν0 and Ω0 = Λ0ΛT0 + Σ0. The true co-

variance of synthetic data is then ν0
ν0−2Ω0. We let factor loading Λ0 be sparse so that

70–80% of entries of Ω0 are zero. The diagonal terms of error variance matrix Σ0 is

generated by the inverse gamma distribution of shape 1 and rate 1/4. Code for estimat-

ing covariance using the proposed model is available on https://github.com/

lee-jaejoon/robust-sparse-bayesian-infinite-factor-models.

The covariance estimation is conducted in two cases: when ν is well-specified

and misspecified. In the well-specified case, the true degrees of freedom ν0 and the

prespecified degrees of freedom ν in the model were set as ν0 = ν = 3. In mis-

specified case, the degrees of freedom was ν = 3, while the true degrees of freedom

was ν0 = 7. For each settings of (p, k), 10 repeated simulations were conducted. We

ran 20,000 iterations of Markov Chain Monte Carlo as described in Section 3.3 with

5,000 burn-in steps. Learning rate ε for updating η is set at ε = 0.025, 0.015, 0.01 for

(p, k) = (200, 10), (500, 15), (1000, 20), respectively. The adaptation probability in

t th iteration p(t) is chosen p(t) = exp(−1.2 − 0.0004t). In the adaptation step, we
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Model Normal likelihood Multivariate t likelihood

(p, k) 1-norm 2-norm MSE AAB MAB 1-norm 2-norm MSE AAB MAB

mean 33.3858 9.1841 0.0098 0.0561 1.0011 30.0996 8.1040 0.0083 0.0530 0.8983

p = 200 min 29.3328 8.1465 0.0077 0.0496 0.9280 28.7672 8.0434 0.0071 0.0486 0.8428

k = 10 median 33.4496 9.0973 0.0099 0.0566 0.9881 29.8370 8.1069 0.0081 0.0526 0.9042

max 36.4696 11.3066 0.0111 0.0593 1.0978 32.1881 8.1538 0.0093 0.0562 0.9511

mean 89.6723 25.3974 0.0116 0.0677 1.0639 78.2845 23.2956 0.0100 0.0656 0.9032

p = 500 min 82.4762 23.7311 0.0101 0.0638 0.9714 74.6951 23.1118 0.0088 0.0609 0.8452

k = 15 median 85.1119 24.2223 0.0118 0.0684 1.0143 78.1479 23.2990 0.0098 0.0649 0.8963

max 107.7094 31.6338 0.0127 0.0715 1.2807 82.4753 23.5229 0.0117 0.0714 0.9890

mean 217.1357 46.8709 0.0142 0.0752 1.6856 205.3249 37.6516 0.0131 0.0755 1.4546

p = 1000 min 198.5997 38.9138 0.0129 0.0715 1.5203 200.2763 37.5020 0.0116 0.0716 1.3352

k = 20 median 217.1729 45.1398 0.0132 0.0735 1.6032 205.5342 37.6245 0.0134 0.0763 1.4816

max 234.4568 57.5753 0.0164 0.0809 1.9884 211.1231 37.8733 0.0141 0.0786 1.5669

Table 5.1: The simulation result of the covariance estimation when the true degrees of

freedom is ν0 = 3 and the model degrees of freedom is ν = 3

deleted the factors 70% of whose loading entries are closer to 0 than 0.01. The proposal

variances of Metropolis-Hastings update for a1 and a2 are tuned so that the acceptance

rates be 50–70%. After sampling from the posterior distribution is done, the covariance

estimate is obtained by averaging the posterior samples of covariance. The estimated

covariance is then evaluated with the matrix 1-norm (maximum absolute column sum),

the matrix 2-norm (maximum singular value), the mean squared error (MSE), the av-

erage absolute bias (AAB), and the maximum absolute bias (MAB). The simulation

result for well-specified case and misspecified case are displayed in Table 5.1 and 5.2,

respectively.

Table 5.1 shows the simulation results of the well-specified case where both true
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Model Normal likelihood Multivariate t likelihood

(p, k) 1-norm 2-norm MSE AAB MAB 1-norm 2-norm MSE AAB MAB

mean 36.7584 10.9573 0.0105 0.0573 1.4114 30.9032 8.5313 0.0088 0.0544 1.3421

p = 200 min 30.5850 8.5565 0.0085 0.0511 1.2321 25.9585 7.1489 0.0078 0.0517 1.1556

k = 10 median 35.1613 10.6633 0.0100 0.0561 1.3626 31.4622 8.5725 0.0087 0.0546 1.3700

max 57.0237 17.8385 0.0178 0.0766 1.6724 36.5888 10.1715 0.0104 0.0587 1.4878

mean 91.8864 24.8418 0.0123 0.0709 1.1925 81.9975 24.4893 0.0090 0.0617 1.0973

p = 500 min 81.3002 24.5005 0.0102 0.0647 1.0277 79.2123 24.4243 0.0083 0.0587 0.9954

k = 15 median 90.7399 24.5695 0.0117 0.0699 1.1620 81.3976 24.4942 0.0088 0.0608 1.0718

max 104.1514 25.6546 0.0150 0.0791 1.5117 86.9735 24.5355 0.0100 0.0663 1.2767

mean 196.8423 44.7915 0.0113 0.0655 1.6796 193.8782 39.5985 0.0137 0.0769 1.3940

p = 1000 min 177.2834 39.5988 0.0108 0.0647 1.5423 188.0602 39.3843 0.0130 0.0746 1.3285

k = 20 median 200.2282 43.2991 0.0114 0.0652 1.6653 193.3312 39.4151 0.0133 0.0764 1.3789

max 213.9246 55.1276 0.0118 0.0667 1.9318 200.3391 40.3553 0.0151 0.0809 1.4485

Table 5.2: The simulation result of the covariance estimation when the true degrees of

freedom is ν0 = 7 and the model degrees of freedom is ν = 3
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and model degrees of freedoms are ν0 = ν = 3 for covariance estimation. The

proposed model performs better than the normal likelihood model in all cases. In

(p, k) = (1000, 20), MSE and AAB of normal likelihood model shows smaller value

than that of the proposed t likelihood model. However, observing that maximum ab-

solute bias of normal likelihood model is larger, we can presume that the scale of

covariance entries is underestimated in normal likelihood model’s case, which leads to

biased estimation. Though the estimation performance was slightly poor, the normal-

likelihood factor model estimated the number of factors in a stable manner, even with

the data from heavy-tailed distribution. Mean elapsed times for the proposed model

are 4.18, 15.51, 46.19 minutes, which are about 1.52, 1.47, 1.50 times longer than

those of the normal model in (p, k) = (200, 10), (500, 15), (1000, 20), respectively.

As we set up sparse true covariance matrix 70 to 80% of whose entries are zero,

we can monitor and compare the covariance estimates of the two model for those

strictly zero covariance entries. For covariance entries whose true values are zero,

10th and 90th percentile of estimated covariance entries from the proposed model

are (−0.0608, 0.0816), (−0.0873, 0.1010), (−0.0992, 0.1097) on average, while the

normal model showed (−0.0651, 0.0813), (−0.0835, 0.0937), (−0.0950, 0.1003) in

(p, k) = (200, 10), (500, 15), (1000, 20), respectively. This demonstrates that the pro-

posed model and the normal model have similar shrinkage for the true zero entries.

Table 5.2 shows the simulation results of the misspecified case where model de-

grees of freedom is ν = 3 while true degrees of freedom is ν0 = 7. Even when

the degrees of freedom is misspecified, we can see that using the proposed model with

small enough degrees of freedom yields better covariance estimation performance than

the normal model. Likewise, we can observe the same possible bias in the estimate of

normal likelihood model when (p, k) = (1000, 20) as in Table 5.1. Also the pro-

posed model does not lose the capability of estimating the number of latent factors

under misspecification of the degrees of freedom. Mean elapsed times for the pro-

posed model are 4.43, 17.19, 48.86 minutes, which are about 1.60, 1.59, 1.58 times
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longer than those of the normal model in (p, k) = (200, 10), (500, 15), (1000, 20),

respectively. From the proposed model, the 10th and 90th percentile of estimated co-

variance entries whose true values are zero are (−0.0612, 0.0892), (−0.0744, 0.0890),

(−0.1023, 0.1133) on average, while the normal model showed (−0.0640, 0.0858),

(−0.0882, 0.1023), (−0.0791, 0.0860) in (p, k) = (200, 10), (500, 15), (1000, 20),

respectively. This implies that, even under misspecified degrees of freedom, the pro-

posed model still shows similar shrinkage for true zero entries compared to normal

model.
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Chapter 6

Real Data Analysis : T1T2 Node-Negative Breast Can-

cer Application

6.1 Background and Previous Researches

Carcinoma is a type of cancer that develops from epithelial cells. Invasive ductal car-

cinoma is a type of breast carcinoma which begins growing in a milk duct and invades

adjacent tissue of the breast. It is the most common type of breast cancer, accounting

for 80% of all breast cancer diagnoses. Cancer cells are developed by accumulations of

multiple DNA mutations that are not repaired by their own repair mechanisms. Gravier

et al. (2010) analyzed the DNA signature of tumor cells from 168 patients with small

invasive ductal carcinomas without axillary lymph node involvement (T1T2N0) to pre-

dict metastasic progression in 5 years after diagnosis.

Gene expression of each patient’s tumor cell was obtained by array comparative

genomic hybridization(aCGH). aCGH is a technique to detect the change in chromo-

somal copy number. DNAs of tumor cell and normal cell are labelled with green and

red fluorescent protein, respectively. The DNAs are then mixed and undergone hy-

bridization: the process of single stranded DNA binding to its complementary DNA

strand. Next, green-to-red ratio is measured by fluorescent microscopy, which repre-
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Figure 6.1: The overview of array comparative genomic hybridization (aCGH) proce-

dure

sents the chromosomal gain or loss of tumor DNA in the region of interest. The overall

procedure of data acquisition through aCGH is illustrated in Fig. 6.1.

The training set contained 2,905 predictor variables (log2 transformed) represent-

ing genomic signatures of chromosome 2p22.2, 3p23, and 8q21-24. Among 168 pa-

tients, 111 patients did not have any metastatic event in 5 years after initial diag-

nosis, while early metastasis of breast carcinoma was reported in other 57 patients.

The dataset analysed during the current study is available in the Gene Expression

Omnibus (GEO) repository database with accession number GSE19159, https://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE19159. In order

to predict the progression of metastasis, Gravier et al. (2010) combined the outcome

of multiple classifiers each of which are based on logistic regression.

The latent factor regression is an efficient method under high-dimensional setting

of p � n, where joint covariance structure of continuous dependent variable zi and

predictor variable xi is estimated by performing factor model on yi = (zi,x
T
i )T . The

predictive distribution for znew can be obtained as follows:

p(znew|xnew,y1, . . . ,yn) =

∫
p(znew|xnew,Ω)p(Ω|y1, . . . ,yn)dΩ,

Under joint normality assumption, the conditional distribution of z given x,Ω is as
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follows:

z|x,Ω ∼ N (xTΩ−1
xxΩxz,Ωzz − ΩzxΩ−1

xxΩxz).

Here β = Ω−1
xxΩxz can be considered as a regression coefficient in latent factor regres-

sion. There have been a few approaches to analyze high-dimensional microarray data

with latent factor regression (Carvalho et al., 2008; Bhattacharya & Dunson, 2011).

Bhattacharya & Dunson (2011) implemented their shrinkage prior to induce shrinkage

in regression coefficient estimate. Then the feature selection is performed by sorting

predictor variables by absolute value of estimated regression coefficient.

6.2 Model and Results

Our goal is to predict the progression of metastasis given DNA signature data of cancer

cells (0: no metastasis, 1: metastasis). By investigating Q-Q plot of each variable,

we have observed a heavy-tailed structure of the data. Though the proposed factor

model is an efficient tool to estimate the low-dimensional structure of heavy-tailed

high-dimensional data, we cannot implement the latent factor regression method with

the proposed model because the dependent variable is not continuous but binary.

Instead, we implemented discriminant analysis using the covariance estimate ob-

tained by the proposed model. We divide the data set into the training set (118 of 168

patients) and the test set (50 of 168 patients). Covariance estimates for patients with

metastasis (36 of 118 patients) and without metastasis (82 of 118 patients) are ob-

tained separately from the training set. We ran Markov chain Monte Carlo algorithm

as in Section 3.3 for posterior computation for 20, 000 iterations with 5, 000 burn-in

steps. The degrees of freedom of t likelihood is set to ν = 5. The step size ε for Hamil-

tonian Monte Carlo update for ηi, i = 1, . . . , n is set to ε = 0.2. The estimated number

of factors for patients with metastasis and without metastasis are 50 and 70 with 95%

credible interval (48, 52) and (65, 71), respectively.

After estimating covariance for patients with metastasis and without metastasis,
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we calculated the log likelihood ratio of observations in test set as follows:

log

(
t(y; ν, µ̂1, Σ̂1)

t(y; ν, µ̂0, Σ̂0)

)
= log


∣∣∣Σ̂1

∣∣∣− 1
2
{
ν + (y − µ̂1)T Σ̂1(y − µ̂1)

}− ν+p
2

∣∣∣Σ̂0

∣∣∣− 1
2
{
ν + (y − µ̂0)T Σ̂0(y − µ̂0)

}− ν+p
2

 ,

where µ̂1, µ̂0 are training sample mean of patients with metastasis and without metas-

tasis, respectively. The covariance estimates of patients with metastasis and without

metastasis obtained by the proposed model are denoted as Σ̂1 and Σ̂0, respectively. If

the log likelihood ratio is greater than a threshold ξ, we classified the observation as a

patient with metastasis. We determined the value of threshold ξ = 0 in our case. Sen-

sitivity is the proportion of true positives which are correctly identified by classifier,

while specificity is the proportion of true negatives which are correctly identified by

classifier. Both are measures of classification performance widely used in medicine.

The test accuracy was 86% which outperforms the classfier suggested by Gravier et al.

(2010). The classfier of Gravier et al. (2010) showed test accuracy of 78%. Test sensi-

tivity of 66.7% and test specificity of 90.2% are observed, while Gravier et al. (2010)

showed 84% and 66%, respectively.
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Chapter 7

Discussion

In this paper, we have proposed a Bayesian infinite factor model with multiplicative

gamma process shrinkage prior for robust covariance estimation under heavy-tailed

high-dimensional data. Also we have shown the fact that, under well-specified degrees

of freedom of t distribution, the posterior density from the proposed model is weakly

consistent.

There are a few research directions which are worthy of further study. Kleijn et al.

(2006) and Ramamoorthi et al. (2015) have studied posterior consistency under model

misspecification. In the same spirit, theoretical properties of the proposed model under

misspecification of the degrees of freedom can be potential avenues of exploration.

Murphy et al. (2020) has introduced the infinite mixture of infinite factor analysers

(IMIFA) model, which is a Pitman-Yor mixture of the model of Bhattacharya & Dun-

son (2011). The same extension of the proposed model from normal likelihood to Stu-

dent’s t-likelihood can also be made when some or all of the mixture components are

suspected to follow heavy-tailed distribution. Finally, the proposed model is not com-

pletely choice-free, due to step size parameter ε used in No-U-Turn sampler update

for η. Hoffman & Gelman (2014) suggested a method of adaptive setting for the value

of ε. This, however, is not directly applicable in our settings, because we are using a

single iteration of No-U-Turn sampler whose target function changes as estimates of
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the other parameters change. Devising a method of tuning ε would be an improvement

on our work.
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Chapter 8

Appendix

8.1 Proof of Theorem 1

Let ε > 0 be fixed, and let

Bε
(
(ν0,Λ0,Σ0)

)
=
{

(ν,Λ,Σ) : |ν − ν0| < ε, d2(Λ,Λ0) < ε, d∞(Σ,Σ0) < ε
}
.

By Lemma 2 of Bhattacharya & Dunson (2011), there exists ε1 > 0 such that

g̃
(
Bε1
(
(ν0,Λ0,Σ0)

))
⊂ B∞ε

(
g̃
(
(ν0,Λ0,Σ0)

))
= B∞ε

(
(ν0, g(Λ0,Σ0))

)
= B∞ε

(
(ν0,Ω0)

)
.

Thus, we have

Bε1
(
(ν0,Λ0,Σ0)

)
⊂ g̃−1

(
B∞ε

(
(ν0,Ω0)

))
.

Denoting the prior distribution as Π = Πν ⊗ΠΩ = (Πν ⊗ΠΛ ⊗ΠΣ) ◦ g̃−1, we have

(Πν ⊗ΠΛ ⊗ΠΣ)
{
Bε1
(
(ν0,Λ0,Σ0)

)}
≤ (Πν ⊗ΠΛ ⊗ΠΣ)

{
g̃−1
(
B∞ε

(
(ν0,Ω0)

))}
= Π

(
B∞ε

(
(ν0,Ω0)

))
.

29



Thus, if

Πν

({
ν ∈ Θν : |ν − ν0| < ε1

})
> 0

ΠΛ

({
Λ ∈ ΘΛ : d2(Λ,Λ0) < ε1

})
> 0

ΠΣ

({
Σ ∈ ΘΣ : d∞(Σ,Σ0) < ε1

})
> 0,

we obtain the conclusion.

Since the support of Πν and ΠΣ are Θν and ΘΣ, respectively, the inequalities for

ν and Σ hold. For the inequality of the Λ, we can apply the proof of Proposition 2 of

Bhattacharya & Dunson (2011).

8.2 Proof of Theorem 2

Let ν0 > 2,Ω0 ∈ ΘΩ be true parameter. We wish to show that, for any ε > 0, we can

choose ε∗ > 0 such that

KL
(

(ν0,Ω0), (ν,Ω)
)
< ε, for all |ν0 − ν| < ε∗ and d∞(Ω0,Ω) < ε∗. (3)

Let ε > 0 be given. By the definition of Kullback-Leibler divergence, we have

KL
(

(ν0,Ω0), (ν,Ω)
)

=

∫
log

t(y; ν0,Ω0)

t(y; ν,Ω)
t(y; ν0,Ω0)dy

= E(ν0,Ω0)

log

 Γ[(ν0+p)/2]

Γ(ν0/2)(ν0π)p/2 det(Ω0)1/2

[
1 +

yTΩ−1
0 y
ν0

]−(ν0+p)/2

Γ[(ν+p)/2]

Γ(ν/2)(νπ)p/2 det(Ω)1/2

[
1 + yTΩ−1y

ν

]−(ν+p)/2




= log

 Γ[(ν0+p)/2]
Γ(ν0/2) ν

ν0/2
0

Γ[(ν+p)/2]
Γ(ν/2) νν/2

+
1

2
log

(
det(Ω)

det(Ω0)

)
+ E(ν0,Ω0)

[
log

[
ν0 + yTΩ−1

0 y
]−(ν0+p)/2

[ν + yTΩ−1y]−(ν+p)/2

]

≤
∣∣∣∣log

(
Γ[(ν0 + p)/2]

Γ(ν0/2)
ν
ν0/2
0

)
− log

(
Γ[(ν + p)/2]

Γ(ν/2)
νν/2

)∣∣∣∣
+

∣∣∣∣12 log (det(Ω))− 1

2
log (det(Ω0))

∣∣∣∣+

∣∣∣∣∣∣E(ν0,Ω0)

log

[
ν0 + yTΩ−1

0 y
]− ν0+p

2

[ν + yTΩ−1y]−
ν+p
2

∣∣∣∣∣∣ .
(4)
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By continuity of the functions in the equation 4, we can choose ε∗1, ε∗2 > 0 that bounds

the first and second terms of equation 4 with ε/3, respectively. By the triangle inequal-

ity, the third term of equation 4 is∣∣∣∣∣E(ν0,Ω0)

[
log

[
ν0 + yTΩ−1

0 y
]−(ν0+p)/2

[ν + yTΩ−1y]−(ν+p)/2

]∣∣∣∣∣
≤
∣∣∣∣ν + p

2
E log

[
ν + yTΩ−1y

]
− ν0 + p

2
E log

[
ν + yTΩ−1y

]∣∣∣∣
+

∣∣∣∣ν0 + p

2
E log

[
ν + yTΩ−1y

]
− ν0 + p

2
E log

[
ν0 + yTΩ−1

0 y
]∣∣∣∣ (5)

= A+B.

Denote the first and second terms of equation 5 as A and B, respectively. For A, we

have

A =
|ν − ν0|

2

∣∣E log
[
ν + yTΩ−1y

]∣∣
≤ |ν − ν0|

2
E
[ ∣∣log

[
ν + yTΩ−1y

]∣∣ ]
=
|ν − ν0|

2
E
[

log
[
ν + yTΩ−1y

] ]
≤ |ν − ν0|

2
E
[
ν − 1 + yTΩ−1y

]
.

Using the fact that the expectation of quadratic form of y ∼ t(ν0,0,Ω0) is E[yTΩ−1y] =

ν0
ν0−2 tr(Ω−1Ω0), we have

A =
|ν − ν0|

2

[
ν − 1 +

ν0

ν0 − 2
tr(Ω−1Ω0)

]
=
|ν − ν0|

2

ν − 1 +
ν0

ν0 − 2

p∑
j=1

λj(Ω
−1Ω0)


≤ |ν − ν0|

2

[
|ν − ν0|+ ν0 − 1 +

ν0

ν0 − 2
pλmax(Ω−1Ω0)

]
.
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Let λmax(Ω−1Ω0) be the largest eigenvalue of Ω−1Ω0. For an eigenvector v ∈ Rp

corresponding to λmax(Ω−1Ω0) and sufficiently large M1 > 0, the following holds:

λmax(Ω−1Ω0) = ‖λmax(Ω−1Ω0)v‖2

≤ p1/2‖λmax(Ω−1Ω0)v‖∞

= p1/2‖Ω−1Ω0v‖∞

≤ p1/2‖Ω−1‖∞‖Ω0‖∞‖v‖∞

≤ p1/2(‖Ω−1 − Ω−1
0 ‖∞ + ‖Ω−1

0 ‖∞)‖Ω0‖∞‖v‖∞

≤ p1/2(‖Ω−1 − Ω−1
0 ‖∞ +M1)M1‖v‖∞

≤ p1/2(‖Ω−1 − Ω−1
0 ‖∞ +M1)M1

= p1/2(‖Ω−1 − Ω−1
0 ‖∞ +M1)M1.

With this upper bound of λmax(Ω−1Ω0), we have

A ≤ |ν − ν0|
2

[
|ν − ν0|+ ν0 − 1 +

ν0

ν0 − 2
pλmax(Ω−1Ω0)

]
≤ |ν − ν0|

2

[
|ν − ν0|+ ν0 − 1 +

ν0

ν0 − 2
p3/2(‖Ω−1 − Ω−1

0 ‖∞ +M1)M1

]
.

By continuity of matrix inversion, we can choose ε̃ > 0 such that ‖Ω − Ω0‖∞ < ε̃

implies ‖Ω−1 − Ω−1
0 ‖∞ < 1. Plus we can choose ε∗3 ∈ (0, ε̃) small enough so that A

is bounded above by ε/6. So we have

A <
|ν − ν0|

2

[
|ν − ν0|+ ν0 − 1 +

ν0

ν0 − 2
p3/2(1 +M1)M1

]
<
ε∗3
2

[
ε∗3 + ν0 − 1 +

ν0

ν0 − 2
p3/2(1 +M1)M1

]
<
ε

6
.

For B, by Jensen’s inequality, we have

B =

∣∣∣∣ν0 + p

2
E log

[
ν + yTΩ−1y

]
− ν0 + p

2
E log

[
ν0 + yTΩ−1

0 y
]∣∣∣∣

=
ν0 + p

2

∣∣∣∣E log

[
ν + yTΩ−1y

ν0 + yTΩ−1
0 y

]∣∣∣∣
≤ ν0 + p

2
E
∣∣∣∣log

[
ν + yTΩ−1y

ν0 + yTΩ−1
0 y

]∣∣∣∣ . (6)
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For a fixed unit vector ω ∈ Rp, let gω(t) be a function defined on t > 0 as follows:

gω(t) =
ν + yTΩ−1y

ν0 + yTΩ−1
0 y

∣∣∣∣∣
y=tω

=
ν + t2ωTΩ−1ω

ν0 + t2ωTΩ−1
0 ω

.

Investigating critical points and limits of t > 0, we have the following bound of gω(t),

ωTΩ−1ω

ωTΩ−1
0 ω

∧ ν

ν0
≤ gω(t) ≤ ωTΩ−1ω

ωTΩ−1
0 ω

∨ ν

ν0
. (7)

Equation 7 holds for any unit vector ω ∈ Rp. Thus by taking infimum and supremum

on lower and upper bounds, respectively, we have[(
inf
‖ω‖=1

ωTΩ−1ω

ωTΩ−1
0 ω

)
∧ ν

ν0

]
≤ gω(t) ≤

[(
sup
‖ω‖=1

ωTΩ−1ω

ωTΩ−1
0 ω

)
∨ ν

ν0

]
. (8)

For ω̃ = Ω
−1/2
0 ω/‖Ω−1/2

0 ω‖2, we yield the following inequality of ω
TΩ−1ω

ωTΩ−1
0 ω

,

λmin(Ω
1/2
0 Ω−1Ω

1/2
0 ) ≤ ωTΩ−1ω

ωTΩ−1
0 ω

≤ λmax(Ω
1/2
0 Ω−1Ω

1/2
0 ), (9)

which is obtained by following result,

ωTΩ−1ω

ωTΩ−1
0 ω

=
ωTΩ

−1/2
0 Ω

1/2
0 Ω−1Ω

1/2
0 Ω

−1/2
0 ω

ωTΩ
−1/2
0 Ω

−1/2
0 ω

=
ω̃TΩ

1/2
0 Ω−1Ω

1/2
0 ω̃

ω̃T ω̃
.

Here λmin(Ω
1/2
0 Ω−1Ω

1/2
0 ) and λmax(Ω

1/2
0 Ω−1Ω

1/2
0 ) are the smallest and the largest

eigenvalues of Ω
1/2
0 Ω−1Ω

1/2
0 , respectively. By equation 8 and equation 9, log gω(t) is

bounded as follows:[
λmin(Ω

1/2
0 Ω−1Ω

1/2
0 ) ∧ ν

ν0

]
≤ gω(t) ≤

[
λmax(Ω

1/2
0 Ω−1Ω

1/2
0 ) ∨ ν

ν0
,

]

log

[
λmin(Ω

1/2
0 Ω−1Ω

1/2
0 ) ∧ ν

ν0

]
≤ log gω(t) ≤ log

[
λmax(Ω

1/2
0 Ω−1Ω

1/2
0 ) ∨ ν

ν0

]
.

(10)
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Note that equation 10 holds for any ω ∈ Rp, ‖ω‖2 = 1. For any y ∈ Rp, y can be

written as y = ‖y‖ y
‖y‖ = tω, t

let
= ‖y‖, ω let

= y
‖y‖ . Thus we have the upper bound of

the integrand of equation 6 as follows:∣∣∣∣log

[
ν + yTΩ−1y

ν0 + yTΩ−1
0 y

]∣∣∣∣
≤ max

{∣∣∣∣log

[
λmin(Ω

1/2
0 Ω−1Ω

1/2
0 ) ∧ ν

ν0

]∣∣∣∣ , ∣∣∣∣log

[
λmax(Ω

1/2
0 Ω−1Ω

1/2
0 ) ∨ ν

ν0

]∣∣∣∣} .
Here we use the following limiting property of eigenvalue as Ω → Ω0 in max-norm

sense:

λmin(Ω
1/2
0 Ω−1Ω

1/2
0 )→ 1, λmax(Ω

1/2
0 Ω−1Ω

1/2
0 )→ 1, ν/ν0 → 1.

So we can choose sufficiently small ε∗4 > 0 such that the following inequalities hold

for all d(Ω,Ω0) < ε∗4,

B ≤ ν0 + p

2
E
∣∣∣∣log

[
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<
ε

6
.
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Therefore, letting ε∗ = min{ε∗1, ε∗2, ε∗3, ε∗4}, |ν0 − ν| < ε∗ and d∞(Ω0,Ω) < ε∗ imply

the following.
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)
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∣∣∣∣log
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2
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6
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= ε

In other words, for any ε > 0, we can choose ε∗ > 0 such that

KL
(

(ν0,Ω0), (ν,Ω)
)
< ε, for all |ν0 − ν| < ε∗ and d∞(Ω0,Ω) < ε∗.

Thus equation 3 is proved and we have{
(ν,Ω) : |ν0−ν| < ε∗ and d∞(Ω0,Ω) < ε∗

}
⊂
{

(ν,Ω) : KL
(

(ν0,Ω0), (ν,Ω)
)
< ε
}
.

The proof of Theorem 2 is done.
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초록

베이즈인자모형에대한대부분의선행연구는자료가따르는분포가정규분포

임을가정한다.이연구는다변수 t가능도를사용함으로써,이상치가존재하는고차

원자료에대해더개선된공분산추정성능을갖는베이즈인자모형을제시한다.잠

재인자의수를결정하기위해서본모형은,무한히많은잠재인자에대해수축사전

분포를 부여하고 이를 동적으로 절단해나가는 Bhattacharya와 Dunson [Biometrika

(2011) 291–306]의 방법을 적용했다. 일반적인 깁스 샘플러는 느린 믹싱으로 인해

본연구에서제안한모형의사후분포를계산하는데한계가있기때문에,본연구는

모형내일부모수에대해해밀토니안몬테카를로방법을사용한사후분포계산알

고리즘을 제시한다. 본 연구는 제안된 모형으로부터 유도된 사후분포가 특정 조건

하에서 사후일치성을 만족한다는 이론적 성질을 증명하였다. 모의실험을 통해 본

연구에서 제안된 모형이 이상치가 존재하는 고차원 자료 하에서 개선된 공분산 추

정성능을보인다는것을확인할수있다.또한암조직의 DNA시그니처자료에본

연구에서 제안한 공분산 추정 모형을 적용하여 유방암 전이 여부를 예측하는 분석

사례를소개한다.

주요어:베이즈모델링,인자모형,곱감마과정사전분포,다변수 t분포,해밀토니

안몬테카를로

학번: 2019-24162
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