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Abstract

In this thesis, we propose a model-driven statistical arbitrage method, with appli-

cation to the Korean stock market from January, 2009 to December, 2020. Specifi-

cally, we first estimate high-dimensional systematic risks with principle component

analysis. Subsequently, with the estimated systematic risks, we then employ the mean-

reverting and volatility clustering strategies, which are representative characteristics

frequently observable in various finance data. Unlike previous researches which at-

tempted to model the idiosyncratic risk via stochastic process models, we instead con-

sider a systematic risk-based autoregressive model. Moreover, based on our proposed

model, we construct a conditional mean-variance optimized portfolio by building upon

Markowitz’s mean-variance optimized portfolio method. Our results show that our op-

timized portfolio outperforms other signal-based strategies throughout the analysis pe-

riod.

keywords: Statistical arbitrage, autoregressive model, principal component analysis,

sparse PCA, mean-variance portfolio optimization, asset pricing model, Korean

securities

student number: 2019-24588
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Chapter 1

Introduction

Modeling stock prices has been one of the primary interests in various research area,

including economics and finance. Particularly, in economics, the capital asset pricing

model (CAPM), which describes the relationship between the stock market and the ex-

pected return of individual stocks, was introduced and studied by various researchers,

including Treynor (1961), Sharpe (1964), Lintner (1965), and Mossin (1966). Later,

Pama and French (1993) suggested the three-factor model, which includes more sys-

tematic risk factors upon explaining the individual risks of the stock. However, these

asset pricing models (APM) cannot well capture the return on individual shares in the

short-term period, because APMs are highly correlated with long-term variables and

they primarily focuses on the correlation between risk factors and individual shares.

Moreover, they fail to recognize the time-dependent characteristics of the short-term

stock price models such as the mean-reversion behavior of stock price, see Poterba

(1988) and Mukherji (2010). For this reason, models such as APM may not be suffi-

cient enough when inspecting the structural behavior of the stock market.

To alleviate the drawbacks, several statistical models present in the literature can

be utilized to capture the structure of sequentially observed time series datasets. To

illustrate, the autoregressive moving average (ARMA) coined by Whittle (1951) is uti-

lized for modeling the conditional mean in a given time series, and is further espoused
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by the model selection scheme and the estimation method by Box and Jenkins (1954).

Furthermore, the volatility clustering phenomenon, initially discovered by Mandelbrot

(1963), can be modeled with the autoregressive conditional heteroscedasticity (ARCH;

Engle, 1982) and the generalized ARCH (GARCH; Bollerslev, 1986) models. As such,

Li et al. (2002) suggested the ARMA-GARCH model for simultaneously modeling the

conditional mean and variance.

Some techniques for building a portfolio based on mathematical models have also

been extensively reviewed. To elaborate, the mean-variance portfolio theory, first es-

tablished by Markowitz (1952), provided a way to construct the mean-variance opti-

mized portfolio called the ‘efficient frontier’. Also, Black and Litterman (1992) consid-

ered the mean-variance optimized portfolio that models the expected behavior of mar-

ket participants. However, the mean-variance optimized portfolio model suffer from

a critical drawback: the covariance matrix, which is necessary when constructing the

optimized portfolio, can easily face rank deficiency problems, ultimately leading to

inconsistent estimates, see Choi et al. (2019). To avoid this problem, a portfolio is con-

ventionally constructed based on some key factors, such as business sectors systematic

factors; see Fama and French (2015).

Recently, many researches have developed strategies to construct portfolios which

takes into account both systematic risks across multi-dimensional time series of stock

prices and the sequential characteristics of individual returns. Avellaneda (2010) pro-

posed a factor model with mean-reverting residuals, then applied it to the U.S. equity

market. Guijarro-Ordonez (2019) derived the closed-form optimal strategies via PCA-

based systematic factors estimation. However, they applied the statistical methodolo-

gies to analyze only idiosyncratic risks, but not systematic risks. Thus, this thesis aims

to propose a model which considers systematic risks upon constructing the portfolio

with AR models based on systematic factors. Moreover, we improve upon Markowitz’s

optimized portfolio to construct our conditional mean-variance optimized portfolio.

Our analysis in subsequent chapters reveals that considering systematic risks is more
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important than idiosyncratic risks in forecasting stock returns.

The rest of the thesis is structured as follows. Chapter 2 provides comprehensive

properties regarding the Korean stock market. Chapters 3 and 4 introduce quantita-

tive methods to model risk factors and portfolio strategies. Chapter 5 explains mean-

variance optimized portfolio method in detail. The proposed model and its conditional

mean-variance optimized portfolio is described in Chapter 6. Chapter 7 depicts the

performance of our proposed portfolio, compared against other strategies. We provide

discussion regarding the results and the potential merits of our research in Chapter 8.
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Chapter 2

Exploratory Data Analysis

In this chapter, we provide some preliminary information regarding the Korean stock

market data, which we utilize in subsequent chapters to assess the performance of

portfolios. Also, we summarize some basic concepts regarding portfolio construction.

2.1 Data Description

We utilize the Korean stock market dataset throughout the thesis, which is obtained

from the DataGuide database provided by FNGuide. The dataset includes all currently

listed and delisted stocks (3,168 stocks) in Korea from January, 2009 to December,

2020, and is observed on a daily based (3,131 business days). We include all delisted

stocks when evaluating the performance, which is crucial when preventing survival

bias. Figure 2.1 shows the number of listed and delisted stocks from January, 2009 to

December, 2020.
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Figure 2.1: The number of listed (orange) and delisted (green) stocks.

2.2 Stock returns

Stock prices are often log-normally distributed, and its log-normality can be confirmed

from the stochastic differential equation as follows:

dSt = μStdt+ σStdWt, (2.1)

where Wt is a Brownian motion, μ is a drift term, and σ2 < ∞, σ2 > 0 is a con-

stant volatility. If the drift term is nonzero, we call this process the geometric Brownian

motion (GBM). Therefore, the more drift term becomes larger, the more the return of

stocks has a fat-tailed distribution. For this reason, we will use the logarithmic return:

rt = log(
Pt

Pt−1
), (2.2)

where Pt is the price at time t > 0. Figure 2.2 portrays the QQ plot with all stock

price returns.

From Figure 2.2, some abnormal patterns can be found at |rt| = 15 and |rt| = 30.

This is because the restriction of the daily price range of the Korean market changed

from 15 percent to 30 percent in June, 2015. Hence, Figure 2.3 plot separate QQ plots

prior and posterior June, 2015.

5



Figure 2.2: QQ plot of returns in Korea equity market

Figure 2.3: QQ plot with returns before (left) and After June, 2015 (right)
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Figure 2.3 implies that there exist some drift terms among stock returns. To prop-

erly analyze high-dimensional dataset, we use James-Stein (JS) estimator, proposed by

Stein (1956). It is known that the JS estimator dominates the least square (LS) estima-

tor when the dimension is large: p ≥ 3. If the variance σ2 is known, x ∼ Np(θ, σ
2I),

θ̂JS =

(
1− (p− 2)σ2

‖x‖2
)
x. (2.3)

However, when σ2 is unknown, we have to estimate it with σ̂2. Let Xn×p = [x1, · · ·xn]T ,

p ≥ 3, n ≥ 1,

σ̂2 =
1

p(n− 1)
tr

(
XT (I − J)X

)
. (2.4)

The difference between LS estimator and JS estimator is calculated as follows:

‖μ̂LS − μ̂JS‖
‖μ̂LS‖ = 0.375,

‖μ̂JS‖
‖μ̂LS‖ = 0.625. (2.5)
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2.3 Covariance of stock returns

We often face the rank deficiency problem when we obtain a covariance matrix with

a high dimensional dataset. To remedy the problem, various regularized estimation

method have been proposed, refer to Choi et al. (2019). Before conducting a further

study regarding covariance of returns, we first look at some chracteristic of covari-

ance of stock returns. Let the demeaned variant of x be denoted as x
′
JS = x − μ̂JS

where x ∈ Rp. Then, using the JS estimator, the covariance matrix can be obtained as

follows:

Σ̂JS =
1

n− 1
XT

JSXJS (2.6)

Figure 2.4 plots a histogram of diagonal components of the sample covariance

matrix and JS-based sample covariance.

Figure 2.4: Histogram of diagonal components of the sample covariance matrix (left)

and JS-based sample covariance (right).

As seen in Figure 2.4, the difference between the sample covariance and JS-based

covariance is small, namely ‖Σ̂JS − Σ̂‖F /‖Σ̂‖F = 0.0016 � 0. The sample covari-

ance was calculated over a specific horizon window to observe a change of covariance

over time. Specifically, the sample covariance at time t, denoted as Σ̂t, is obtained with

Xw×p = [xt, · · · , xt+w]
T , where w denotes the prescribed window size. Moreover, the

8



difference between two covariance matrices are defined as follows:

ΔΣt =
‖Σ̂t − Σ̂0‖F

‖Σ̂0‖F
(2.7)

We can notice that the structure among returns are changed along time. As depicted

in Figure 2.5, if we have a small window size to estimate the covariance, then it changes

more rapidly with as time difference becomes large.

Figure 2.5: Difference between covariances estimated at initial time t0 and time t.
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Chapter 3

Quantative method for risk factors

3.1 The PCA approach

In the asset pricing model (APM), the returns of each stock i ∈ {1, · · · p} can be

described as

ri,t =

K∑
k=1

βk,iFk,t + μ+ χi,t, (3.1)

where Fk,t, k = 1, · · ·K is the risk factor at time t > 0, χi,t is the idiosyncratic

component which is independent of any Fk,t, and μ ∈ Rp is the risk-free return. We

assume that Fk,t (k = 1, . . . ,K) is independent to other systematic risks Fj,t, j �= k

and j ∈ {1, · · · ,K}. By assumption, the covariance matrix

Cov(r) = βψβT + φ (3.2)

where β = [βij ], i = 1, · · · p, j = 1, · · · k. ψ = diag(var(Fi)), φ = diag(var(χi)).

We can use the principal component analysis (Jolliffe, 1986) to estimate the candidates

of systematic risk factors. With PCA, we can rewrite the covariance matrix as

Cov(r)− φ = βψβT = UΛUT , (3.3)
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where U is orthonormal eigenvectors and Λ = diag([λ1 · · · , λp]). We can estimate

ψ̂, Û by iterative methods.

Figure 3.1 shows the explained variance ratio, which is defined as follows:

explained variance ratio(n) =
n∑

i=1

λi∑p
j=1 λj

(3.4)

Principal components are estimated with using data from January, 2009 to June, 2017.

Figure 3.1: Explained variance ratio of PCA with the sample covariance (left) and the

correlation matrix (right).

Residual obtained from the principal components are defined as

residual(χi,t) = ri,t −
K∑
k=1

(uTk (Rt − μ)) · uk − μ, (3.5)

where Rt = [r1,t, · · · , rp,t]T . Figure 3.2 shows that residuals obtained after perform-

ing PCA has lower divergence compared to that of the pure return, and is distributed

much closer to the normal distribution.

3.2 Covariance vs correlation matrix

There are two options to estimate systematic risk factors: estimating the covariance

matrix or the correlation matrix. In this section, we investigate the difference between

the two matrices in terms of the principal components. Here, we use the same dataset

which was utilized in Section 3.1.
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Figure 3.2: QQ plot of the pure returns (left) and the residuals obtained from the prin-

cipal components (right).

Figure 3.3 illustrates the difference of the principal components between the two

matrices. The difference is measured by eigenvalue orders and similarities within the

principal components with in k ∈ {1, · · · ,K}.

Figure 3.3: Difference between the principal components ordered by eigenvalues (left)

and similarities (right) within k ∈ {1, · · · ,K}.

Moreover, the difference between principal components vi and vj is defined as

diff(vi, vj) =
min(‖vi − vj‖, ‖vi + vj‖)

‖vi‖ . (3.6)

Figure 3.4 shows that the residuals obtained from the principal components which

is estimated with the covariance matrix is more normally distributed than those esti-

mated with the correlation matrix.

12



Figure 3.4: QQ plot of the residuals explained by PCA with covariance (left) and cor-

relation (right).

3.3 Sparse PCA

The main problem of PCA becomes apparent when the dimension of the dataset gets

large. Principal components are the linear combination of p variables, thus are typi-

cally nonzero. To alleviate the problem, Zou et al. (2006) considered the sparse PCA

(SPCA), which considers the variable selection upon computing the principal compo-

nents. To compute the principal components, LASSO (Tibshirani, 1996) can be em-

ployed to estimate the modified principal components sparsely. Specifically, the gen-

eral SPCA algorithm by Zou et al. (2006) aims to minimize Equation 3.7, then solve it

via numerical methods.

(Û, L̂) =argmin
L,U

∑
i=1

∥∥xi −ULTxi

∥∥2 + λ
∑
j=1

‖lj‖2

subject to UTU = Ik×k

(3.7)

3.4 Industry based PCA

If some domain knowledge is available, it can be utilized upon employing quantitative

methods. For instance, FNGuide provides information regarding business sectors, and

it can be useful because the stocks within the same sector tends to be highly correlated.
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Therefore, we can reformulate the returns as the sector-based APM models:

ri,t =
S∑

s=1

∑
k∈Ks

βk,iFk,tI(i∈KS) + χi,t, (3.8)

where I is an indicator function, and Ks is an index set of stocks in sector s. Using

this model, we have blockwise diagonal covariance matrix of r. With some additional

constraints, we can construct more robust estimation of risk factors, provided that the

assumption is true.
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Chapter 4

Portfolio strategy

4.1 Mean reversion and momentum

The mean-reversion strategy is one of the trends of the financial industries to formu-

late a portfolio in the securities market. The gist of the concept is as follows: (1) some

quantities are historically correlated, and (2) one expects that the correlation will be

restored in the future, if these correlations are disrupted by some unusual market con-

ditions. (Kakushadze, 2014)

To elaborate, let PA(t1) and PB(t1) be the prices of A and B at time t1, and let

PA(t2) and PB(t2) be the prices of A and B at a later time t2. Then, we define RA and

RB as follows:

rA = log
PA (t2)

PA (t1)

rB = log
PB (t2)

PB (t1)
.

(4.1)

If there are two stocks A and B, and rA > rB , then this information implies that A

is relatively expensive, and vice versa. Then, in order to gain profit, we ‘short’ and buy

stocks A, B, respectively. That is, we make a bet on A that the price of A will decrease

15



in the next time period. In equations, this chain of events can be summarized as:

r̄ ≡ 1
2 (rA + rB)

r̃A ≡ rA − r̄

r̃B ≡ rB − r̄,

(4.2)

where R denotes the mean return. This encapsulates the mean-reversion strategy if

there are two participants in the securities market.

One can readily extend the pairwise trading methodology presented above to mul-

tiple stocks. Let ri, i = 1, ..., N be

ri = ln
(
Pi(t2)
Pi(t1)

)
r̄ ≡ 1

N

∑N
i=1 ri

r̃i ≡ ri − r̄.

(4.3)

We can decide on the amount of investment for each stock proportional to r̃i.

wi = cr̃i. (4.4)

We call this strategy the mean-reversion strategy if c < 0, and the momentum strategy

otherwise.

4.2 Korea stock market; reversion vs. momentum

In this section, a simple preliminary study on Korean stock market is conducted. Since

a portfolio is generated and updated by the daily basis after the market closes, imple-

mentation of the portfolio should be delayed one day from its generation. Here, we

consider four types of portfolios. First, we consider a strategy where we equally buy

then hold all stocks with the same weight. Second, a simple portfolio is generated each

day using Equation 4.4, where

c =
1∑p

i=1 |r̃i,t|
. (4.5)
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Third, we formulate the strategy which use R̂t

R̂t =

K∑
k=1

uku
T
k (Rt − μ) + μ (4.6)

instead of Rt = [r1,t, · · · , rp,t]T , and generate the portfolio with Equations 4.4 and

4.5. Finally, the fourth portfolio is constructed in the same manner as the second one,

but instead, we utilize the projected residuals obtained after PCA, which is denoted as

follows:

χ̂t = Rt − R̂t, (4.7)

where χt = [χ1,t, · · · , χp,t]
T .

Figure 4.1: Profit and Loss(%) of portfolios.

Figure 4.1 summarizes the result of the four portfolios introduced above. This

result shows that there is a strong evidence of relationship between previous return and

current returns in Korea stock market. This strongly upholds the validity of employing

AR(1) model, which effectively models the autocorrelation between returns. Thus, we

consider the following AR(1) model:

Xi,t = aiXi,t−1 + εi,t, (4.8)

where t > 0 is a time index, ai is a coefficient, and εi,t is a random variable with mean
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zero and variance σ2
i . Here, we fit AR(1) model with Rt, R̂t and Zt ∈ RK given as

Zt = [uT1 Rt, · · ·uTKRt]
T . (4.9)

Table 4.1: Summary of significant AR(1) models.

return Projected return PCA scores

DIMENSION 1709 1709 500

NUMBER OF SIGNIFICANT AR(1) 1302 1623 391

RATIO(%) 76.2 95.0 78.2

The number of stocks which have a significant AR(1) coefficient is summarized

in Table 4.1. Our results reveal that R̂t, the projected returns using PCA, appears to

have more autoregressive structures than the time series of unmodified returns Rt. Us-

ing the Gaussian kernel density function, we draw the estimated distribution of AR

coefficients of the returns in Figure 4.2. We can observe that the distributions of coeffi-

cients are positively skewed, indicating that the projected returns do indeed have more

significant autoregressive structure.
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Figure 4.2: Histogram and its estimated density function of the AR(1) coefficients

using the kernel density estimation scheme. Left above plot is from coefficients esti-

mated from Rt, right above is from R̂t, bottom left is from rt, and bottom right is the

comparison of the estimated densities of Rt, R̂t, χ̂t.
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4.3 Volatility clustering

Volatility clustering, initially coined by Mandelbrot (1963), is one of the most promi-

nent characteristics of financial data. The GARCH model (Bollerslev, 1986) is the

representative model to inspect the existence of the volitily clustering phenomenon

and its magnitude in time series. The GARCH(p,q) model is characterized as follows:

Xt = ηtσt

σ2
t = ω +

p∑
i=1

αiX
2
t−i +

q∑
j

βjσ
2
t−j ,

(4.10)

where ηt are i.i.d. such that E(ηt) = 0, var(ηt) = 0 and ηt ⊥ σk such that ∀k ≤ t.

We here observe the behavior of the residual χ̂i in Equation 4.7 with GARCH(1,1). let

α = α1, β = β1. the long run variance of GARCH(1,1) becomes

σ2
L =

ω

1− α− β
, (4.11)

where α + β < 1. Table 4.3 and Figure 4.3 summarize the effect of the volatility

clustering on the obtained residuals with GARCH(1,1).

Table 4.3: Basic study with various PCA methodologies.

Type ω̂ �= 0 α̂+ β̂ > 0.99 α̂+ β̂ > 0.95 total number of stocks

Number 486 348 846 1709

Ratio(%) 28.4 20.4 49.5 100
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Figure 4.3: Histogram of GARCH coefficients and long run variance based on fitting

GARCH(1,1) model.
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Chapter 5

Portfolio optimization

5.1 Mean-variance portfolio optimization

Mean-variance analysis (Markowitz, 1952) aims to maximize the return for a given

risk level. Hence, the mean-variance optimization criterion is suggested as follows:

minimize g(w, λ) ≡ λ

2
wTΣw −

N∑
i=1

RTw, (5.1)

where r is the r ∈ Rp stock return with mean R ∈ Rp and variance Σ, w ∈ Rp is

the portfolio weight satisfying ‖w‖ = 1, and λ > 0 can be chosen arbitrarily. Using

Cauchy–Schwarz inequality, we have the following closed-form solution for w:

w =
1

λ
Σ−1R. (5.2)

We can additionally impose another constraint to the weight vector called the dollar

neutrality, denoted as 1Tw = 0. To impose more constraint on the mean-variance

criterion then we can rewrite the objective function of Equation 5.1 as

minimize g(w, μ, λ) ≡ λ

2
wTΣw −RTw − wTCu, (5.3)

where C ∈ Rp×m is an m-homogeneous linear constraint, and u ∈ Rm is a Lagrange

multiplier for the constraint C. Using Sherman and Morrison (1950) and Woodbery
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(1950), the optimal solution of the weight vector and the Lagrange multiplier can be

obtained as the following:

w =
1

λ

[
Σ−1 − Σ−1C

(
CTΣ−1C

)−1
CTΣ−1

]
R

μ = − (
CTΣ−1C

)−1
CTΣ−1R.

(5.4)

We can consider adding more constraints and bounds on Equation 5.2 to consider

turnovers or to impose more limits onto weight values, see Kakushadze (2014).
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Chapter 6

Model description

6.1 Model description

From Section 3.2, we studied the autoregressive characteristics regarding the returns

of stocks. Moreover, in Section 4.3, we revealed that the linear heteroscedasticity is

not a general characteristic of the PCA-obtained residuals χt. The significant differ-

ence between our proposed model and the ordinary latent variable model formulated

with the stochastic process (Guijarro-Ordonez, 2019 and Avellaneda, 2010) is that we

consider the autocorrelation between stock returns. Furthermore, our proposed model

constructs autoregressive models based on the systematic risk factors, not the idiosyn-

cratic risk factors, denoted as follows:

Rt =

K∑
k=1

ukfk,t + μ+ χt

E(Rt+1|It) = diag(φi) ·
(

K∑
k=1

ukfk,t + μ

)

cov(Rt) = UΛUT +Ψ,

(6.1)

where uk ∈ Rp is the k-th systematic risk factor such that k ∈ {1, · · · ,K}, fk,t ∈ R is

the score at time t of factor k, and χt is the white noise process WN(0p×1,Ψ), φi is the

autoregressive coefficient of the i-th equity return, μ ∈ Rp is the risk-free return, Ψ =
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diag([ψ1, . . . , ψp]), U = [u1, · · · , uk] where UTU = Ik, λ = diag([λ1, · · · , λK ]),

and λk is the variance of k-th risk factor. From Chapter 5, we reviewed the funda-

mental concepts regarding the mean-variance optimized portfolio. Using the proposed

model, we can rewrite the analytic mean-variance optimized weight of the portfolio

(Equation 5.1) using conditional expectations. The proposed conditional portfolio op-

timized weight is given by

wt+1 = arg max
‖w‖=1,w∈Rp

E
RT

t+1w√
wTΣt+1w

= E
(
Σ−1
t+1Rt+1

)
= EE

(
Σ−1
t+1Rt+1|It

)
= Ψ−1EE [Rt+1|It] (∵ E(Σt+1|It) = Ψ)

= Ψ−1E

[
diag(φi) ·

(
K∑
k=1

ukfk,t + μ

)]
(∵ ψt+1 ∈ It)

= diag ·(φi

ψi
)

(
K∑
k=1

uku
T
k (rt − μ) + μ

)
.

(6.2)

6.2 Model selection

In this study, we consider the following parameter space:

Fp,K = {U ∈ Rp×K , diag(φi) ∈ Rp×p,Λ ∈ RK×K ,Ψ ∈ RK×K , μ ∈ Rp}. (6.3)

Hence, note that our proposed model depends on the number of principal components

K, which is a decisive factor when computing the outcome. Kaiser’s rule (1960) is the

most common method to decide the number of principal components:

λk > λ̄ =
1

p

p∑
i=1

λi. (6.4)

Moreover, using the maximum likelihood framework, the probabilistic PCA model

(Michael and Bishop, 1999) can be employed. That is, x = Lz +m + e where e ∼
N(0, vIp), z ∼ N(0, IK). Following this concept, optimal K for PCA can be chosen
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by using the Bayesian model selection method and Laplace transformation:

p(D | k) ≈
⎛⎝ k∏

j=1

λj

⎞⎠−N/2

v̂−N(d−k)/2N−(m+k)/2, (6.5)

where D = {x1, · · · , xN} is the observed data, see Minka (2000).

In this thesis, we consider two estimation schemes, namely the LS estimator and

the JS estimator introduced in Section 2.2, for R̂i in equation 4.2. To elaborate, we

have the following expressions:

R̂LS
t =

K∑
k=1

ûkû
T
k (Rt − μ̂LS) + μ̂LS

R̂JS
t =

K∑
k=1

ûkû
T
k (Rt − μ̂JS) + μ̂JS .

(6.6)

We compare the performance of R̂LS
t and R̂JS

t in the same way as in Section 4.2.

Table 6.1: Summary of the portfolio performance

Type JS estimator (R̂JS
t ) LS estimator (R̂LS

t )

Period Sharpe ratio Profit and Loss(%) Sharp ratio Profit and Loss(%)

2009 7.32 143.1 7.35 143.7

2010 8.34 152.6 8.38 153.0

2011 6.72 166.5 6.74 166.6

2012 8.02 146.2 8.05 146.4

2013 7.20 110.0 7.23 110.1

2014 7.45 111.5 7.51 111.8

2015 7.58 158.7 7.62 159.1

2016 4.85 96.0 4.85 95.9

2017 5.14 83.5 5.15 83.4

The results are summarized in Table 6.1. It reveals that the portfolio constructed

using the LS estimator outperforms that of the JS estimator throughout the whole pe-
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riod. We conduct one-sided paired t tests on daily profit and loss, which is given as

below:

H0 : pnlJS ≥ pnlLS vs. H1 : pnlJS < pnlLS , (6.7)

where pnlJS is the daily profit and loss when employing R̂JS
t , and pnlLS is that of

R̂LS
t . The p-value of the hypothesis is 1.86 × 10−3, thus fortifying that the strategy

which uses pnlLS does indeed have a better performance compared to that of pnlJS .
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Chapter 7

Results

In this chapter, we present the results regarding the performance of the proposed

model, when applied to Korean equity market from January, 2009 to December, 2020.

First, we divide the data into two parts, the training and the test data. Specifically,

the training data is from January, 2009 to May, 2017. Using Kaiser’s rule (Kaisar,

1950), the estimated number of principal components is K̂ = 519, and K̂ = 334

when estimated via the Minka’s method. Principal components estimation problem

was computationally solved by ‘sklearn’ decomposition package, see Minka (2001).

Subsequently, using the estimated number of principal components, we compute the

principal components and its corresponding scores. The sparse PCA is computed with

the ‘scikit-learn’ package in Python. Moreover, ‘statsmodels’ package in Python was

used to fit AR models. Table 7.1 summarizes the number of principal components and

significant AR(1) cofficients, categorized by the type of PCA. We set the significant

level to test whether the AR coefficient is statistically significant to α = 0.05. The

results indicate that the sparse PCA detects the largest number of significant AR(1)

coefficients.

The profit, loss and the Sharpe ratio were calculated based on a simple portfolio
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using hat return(R̂) presented in Section 4.2.

sharpe ratio =
Rp

σp
(7.1)

where Rp is the return of the portfolio and σp is a standard deviation of the portfolio’s

excess return. We then annualized the profit, loss and the Sharpe ratio, and considered

the cases of K = 334 and K = 519, using various types of PCA. The results are all

summarized in Table 7.1.

Table 7.1: Basic study with various PCA methodology

Type Classic PCA Probabilistic PCA Sparse PCA

Number of PCs 519 334 334 519 334

Significant AR(1) number 1623 1681 1680 1707 1705

Profit and loss(%/Yr) 132.4 132.1 132.2 122.5 122.1

Sharpe ratio(/Yr) 6.91 7.12 7.12 6.53 6.50

Conditional optimized portfolio based on each model have different performance

levels. The best performing portfolio was the one constructed using the classical PCA

with K = 519. Also, the portfolio constructed using Sparse PCA and the probabilistic

PCA underperformed compared to the one utilized their origin signal R̂. It implies that

they failed to estimate Ψ of the model in Section 6.1. Therefore, we use Ψ̂ estimated

from the classical PCA with K = 519 to optimize the conditional portfolio. These

models are labeled as the ‘mixed probabilistic PCA’ and the ‘mixed sparse PCA’.

The average portfolio performance of the classical PCA with K = 519 shows 13.9

times higher Sharpe ratio and 16.5 times higher profit compared to KOSPI. A brief

description of the portfolios was summarized in Tables 7.2 and 7.3. These tables show

that the optimized portfolio which was generated from the systematic factor-based

AR(1) model consistently has a outstanding performance compared to the KOSPI.
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Figure 7.1: Profit and loss(%) of portfolios in training dataset from January, 2009 to

May, 2017.

Figure 7.2: Profit and loss(%) of portfolios in Test dataset from June, 2017 to Decem-

ber, 2020.
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Chapter 8

Concluding Remark

In this thesis, we proposed a model that generates an optimal portfolio using system-

atic factors based the autoregressive model, then applied it to the Korean equity mar-

ket. The systematic factors are estimated from the sample covariance of returns. We

concluded that the using the sample covariance yield better performance than using

the factors extracted from the sample correlation. Sparse or probabilistic models were

employed to estimate the proper systematic risk. With the proposed model, we derived

conditional mean-variance optimized portfolio, which outperformed its origin signal

R̂.

One of the contributions of our model is that it provided some key ingredients to

construct a portfolio with high performance, and can readily be implemented to con-

struct more powerful portfolios. To illustrate, we can use various types of shrinkage

estimators for estimating the covariance matrix of returns when the dimension of a

given dataset is large, see Choi (2019). Also, factor analysis can be another enticing

option to estimate systematic risk factors more effectively, see Bhattacharya (2011). In

addition, time-series models can be applied upon estimating factor loadings, then these

can be utilized to observe the change of sample variance in Section 2.3. Ultimately, we

believe that this thesis will provide insights to future researchers and practitioners re-

garding modeling high-dimensional financial datasets, especially Korean stock market.
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초록

본논문에서는한국주식시장의모델기반통계적차익거래전략을연구하였다.

고차원자료로부터체계적위험을추정하기위해주성분분석기법을사용하였다.금

융자료의주요현상으로관찰되는평균회귀와분산군집화와같은특성들이추정된

체계적 위험 요소와 함께 평가되었다. 이런 평가로부터 개별위험기반에 확률 과정

모형을적용한기존연구들과는달리체계적위험기반의자기회귀모형이한국주

식의일간수익률을설명하기위해제안되었다.제안된모형을기반으로Markowitz

의평균분산최적화포트폴리오를조건부기대평균분산최적화방식의포트폴리

오전략으로개선하였다.분석에사용된데이터는한국주식시장의 2009년 1월부터

2020년 12월자료이며,테스트를포함한분석기간전체에서제안된조건부최적화

포트폴리오의성능이기존의 KOSPI와다른단순신호기반의전략들의성능을크게

상회하는결과를보여주었다.

주요어:통계적차익거래기법,자기회귀모형,주성분분석,희소주성분분석,평균

분산포트폴리오최적화,자산가격결정모형,한국유가증권

학번: 2019-24588
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