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Abstract	
 

This	 study	 investigates	 the	 impacts	of	 sea	 ice	 initial	 conditions	on	

surface	air	temperature	(SAT)	predictions	in	Global	seasonal	forecasting	

system	version	5	(GloSea5).	Motivated	by	warm	Arctic-cold	Eurasian	SAT	

pattern,	which	is	prevalent	in	cold	season,	the	three	highest	and	the	three	

lowest	years	in	the	Barents-Kara	sea	ice	concentration	(SIC)	are	selected	

for	the	November	initializations.	For	those	years,	the	two	sets	of	GloSea5	

experiments	are	conducted;	i.e.,	the	one	initialized	with	observed	SIC	on	

November	 1st	 (CTL)	 and	 the	 other	 initialized	 with	 climatological	 SIC	

(EXP).	The	CTL	shows	a	weak	hint	of	warm	Arctic-cold	Eurasian	(or	cold	

Arctic-warm	 Eurasian)	 SAT	 pattern	 in	 sub-seasonal	 to	 seasonal	 (S2S)	

prediction	from	1	to	5	weeks.	This	pattern	disappears	in	more	extended	

forecast,	 failing	 to	 reproduce	a	dipolar	SAT	anomaly	pattern.	Although	

the	 SIC	 memory	 is	 rather	 short,	 its	 impact	 on	 the	 Arctic	 SAT	 is	 non-

negligible.	The	predictional	sensitivity	to	sea	ice	initial	conditions	is	most	

prominent	in	Eurasia,	where	the	model	shows	the	highest	SAT	prediction	

skill.	The	CTL	shows	a	slightly	smaller	Arctic-SAT	bias	than	the	EXP.	The	

EXP	 shows	 the	 lowered	Arctic	 and	 Eurasian	 SAT	 prediction	 than	 CTL.	

This	 result	 may	 indicate	 that	 sea	 ice	 initial	 condition	 has	 a	 minimal	

impact	 on	 northern	 extratropical	 prediction	 skill	 in	 the	 current	



 

 

generation	of	the	seasonal	prediction	model.	
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Figure 1. NSIDC Sea ice concentration for the entire area of the Arctic ocean 
and Barents–Kara sea region on November 1st during the period 1991–2010. 
Red dots indicate the three highest years and blue dots indicate the three 
lowest years in the entire area of the Arctic ocean and Barents–Kara sea 
region. 

Figure 2. Composite difference (CTL minus EXP) of sea ice concentration 
initial conditions in High-SIC and Low-SIC. Green boxes denote the region 
for Barents–Kara sea. 

Figure 3. Same as Fig. 2, but for sea surface temperature. 

Figure 4. Sea ice concentration over (a), (c) the Arctic, and (b), (d) Barents-
Kara sea on the lead week in OBS (shading), CTL (black lines), and EXP 
(green lines). The error bars indicate one standard deviation on years. 

Figure 5. Surface air temperature anomalies averaged on 1-5 week in High-
SIC and Low-SIC. Numbers show pattern correlation coefficient with 
observation. 

Figure 6. Decomposed ACC and its difference (CTL minus EXP) for surface 
air temperature at each grid point averaged on 1-5 week in High-SIC and 
Low-SIC. Green boxes denote the Eurasia region. 

Figure 7. Surface air temperature ACC over (a) midlatitude and (b) Eurasia 
on the lead week in High-SIC and Low-SIC. 

Figure 8. Polar cap height anomalies on the lead week in High-SIC and Low-
SIC. 

Figure 9. Surface air temperature ACC difference (CTL minus EXP) over (a) 
Arctic and midlatitude and (b) Arctic and Eurasia in High-SIC and Low-SIC. 
The numbers are lead week. The error bars indicate one standard deviation 
on years. 
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1.	Introduction	

 

Arctic	sea	ice	has	recently	been	declining,	and	the	environment	in	the	

high	 latitudes	 adjacent	 to	 the	 Arctic	 ocean	 is	 also	 changing	 rapidly	

(Stroeve	et	al.,	2007;	Comiso	et	al.,	2008;	Comiso	et	al.,	2012).	Arctic	sea	

ice	is	known	to	be	associated	with	the	climate	in	north	hemispheric	mid	

latitudes,	as	well	as	in	the	polar	and	highlatitudes.	Kim	et	al.	(2014)	found	

that	the	decrease	in	sea	ice	over	the	Barents-Kara	Sea	in	November	and	

December	in	the	observation	caused	a	weakening	of	the	polar	vortex	in	

the	stratosphere,	leading	to	a	decrease	in	temperature	over	midlatitudes	

in	 the	model	 experiment.	 Kug	 et	 al.	 (2015)	 showed	 a	 negative	 lagged	

correlation	 between	 the	 Arctic	 temperature	 and	 the	 mid-latitude	

temperature	in	several	days.	The	correlation	is	simulated	in	most	models	

of	 the	 Coupled	 Model	 Intercomparison	 Project	 5	 (CMIP5).	 Previous	

studies	 suggested	 that	 the	 Arctic	 variability	 could	 provide	 additional	

prediction	skill	for	improving	winter	seasonal	forecast	in	midlatitudes.	 	

Subseasonal-to-Seasonal	 (S2S)	 is	 a	 research	 project	 with	 goals	 of	

improving	forecast	skill	on	a	time	scale	from	2	weeks	to	a	season	(Vitart	

et	 al.,	 2012).	 The	 potential	 sources	 of	 S2S	 prediction	 skill	 are	 soil	

moisture	(Zhu	et	al.,	2019),	sea	ice	(Zampieri	et	al.,	2018;	Wayland	et	al.,	

2019),	and	tropospheric	variability	(e.g.,	Madden-Julian	oscillation;	MJO;	
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Lim	et	al.,	2018;	Zhou	et	al.,	2018),	and	the	stratospheric	variability	(e.g.,	

Sudden	Stratospheric	warming;	SSW;	Domeisen	et	al.,	2020;	Son	et	al.,	

2020).	 However,	 Several	 of	 the	 findings	 are	 related	 to	 MJO,	 and	 the	

majority	of	recent	studies	have	been	focusing	on	the	prediction	skill	itself.	

The	sources	of	S2S	prediction	need	to	be	quantified.	

Several	 approaches	 have	 been	 performed	 to	 perturb	 the	 sea	 ice	

component	 in	 the	 atmospheric	 model.	 Adjusting	 the	 sea	 ice	

concentration	(SIC)	is	a	way	to	assess	a	sensitivity	in	the	model	directly.	

There	is	a	nudging	experiment	(Smith	et	al.,	2017)	that	prescribed	the	

initial	data	as	observation	data	(Morioka	et	al.,	2019)	or	the	initial	data	

at	intervals	in	consideration	of	increasing	errors	as	integration	time.	The	

model	can	simulate	unintended	responses	because	the	unrealistic	value	

is	 prescribed.	 Experiments	 were	 conducted	 by	 reducing	 the	 sea	 ice	

albedo	(Blackport	and	Kushner,	2017;	Blackport	and	Screen,	2019)	and	

the	sea	ice	thickness	(Petrie	et	al.,	2015;	Semmler	et	al.,	2017).	Since	the	

experimental	 design	 has	 advantages	 and	 limitations,	 implications	 for	

interpreting	the	results	were	suggested	in	the	previous	study	(Screen	et	

al.,	 2018).	 Adjusting	 sea	 surface	 temperature	 (SST),	 an	 important	

variable	determining	SIC,	can	help	model	the	response	accurately.	Screen	

et	 al.	 (2013)	 and	 Jun	 et	 al.	 (2014)	 suggested	 the	 importance	 of	

prescribing	appropriate	SST	and	SIC	in	the	study	of	prescribing	suitable	
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SST	 for	 SIC.	 Koenigk	 et	 al.	 (2019)	 showed	 that	 the	 improvement	 of	

prediction	skill	was	remarkably	better	in	a	model	experiment	adjusting	

appropriate	SST	on	SIC	than	only	changing	SIC.	

Global	Seasonal	Forecast	System	version	5	(GloSea5),	an	operational	

forecasting	 system	 of	 the	 Korea	 Meteorological	 Administration,	 is	

participating	in	the	S2S	project	by	sharing	data	and	results	through	the	

S2S	database.	Several	previous	studies	have	been	conducted	to	evaluate	

the	prediction	skill	of	GloSea5	and	identify	climate	predictors	on	the	S2S	

time	 scale.	 The	 prediction	 skill	 of	 temperature,	 precipitation,	

geopotential	 height,	 stratospheric	 sudden	warming,	 and	Arctic	 sea	 ice	

was	confirmed	(Ham	et	al.,	2017;	Kim	et	al.,	2018a;	Kim	et	al.,	2018b;	Park	

et	al.,	2018;	Song	et	al.,	2018).	Several	studies	investigated	the	prediction	

skill	of	precipitation	variability	in	East	Asia	in	summer	using	the	Indian	

Ocean	 and	Northwest	 Pacific	 as	 predictors	 (Lee	 and	Kwon,	 2015),	 the	

effect	of	prediction	skill	of	summer	temperature	and	precipitation	on	the	

improvement	 of	 soil	moisture	 initialization	 (Seo	 et	 al.,	 2016),	 and	 the	

prediction	 skill	 of	mid-latitude	 temperature	 and	 heatwave	 (Seo	 et	 al.,	

2019).	 The	 results	 as	 mentioned	 above	 are	 mainly	 focused	 on	 the	

prediction	 skill	 itself.	 Studies	 based	 on	 prediction	 skill	 itself	 do	 not	

answer	the	question	of	impacts	on	their	skill	for	the	climate	variables.	

This	 study	 presents	 evidence	 from	 GloSea5	 simulation	 that	
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modulates	 the	 prediction	 skill	 of	mid-latitude	 surface	 air	 temperature	

(SAT)	 on	Arctic	 sea	 ice	 initialization	 by	 taking	 coupled	 processes	 into	

account.	 The	 study	 aims	 to	 investigate	 the	 sensitivity	 of	 winter	 mid-

latitude	prediction	skill	to	Arctic	sea	ice	initial	conditions	in	GloSea5	in	

S2S	time	scale.	The	simulation	allows	us	to	prognostically	examine	the	

contributions	 of	 regional	 and	 temporal	 change	 in	 prediction	 skill	 to	

different	sea	ice	initial	conditions.	

 	



 

-	5	-	

2.	Data	and	Methodology	

 

2.1	Data	

We	 use	 GloSea5,	which	 is	 coupled	 system	with	 atmosphere,	 land,	

ocean,	sea	ice	component	through	Ocean	Atmosphere	Sea	Ice	Soil	(OASIS)	

coupler	(MacLachlan	et	al.,	2015).	The	atmospheric	component	is	based	

on	 Hadley	 Centre	 Global	 Environmental	Model	 version	 3	 (HadGEM3),	

and	 the	 land	 component	 is	 the	 Joint	 UK	 Land	 Environment	 Simulator	

(JULES).	The	ocean	component	is	the	Nucleus	for	European	Modeling	of	

the	 Ocean	 (NEMO),	 and	 the	 sea	 ice	 component	 is	 Los	 Alamos	 Sea	 Ice	

Model	(CICE).	The	atmospheric	model	is	run	with	a	horizontal	resolution	

of	N216	(»60	km)	with	85	levels	in	the	vertical.	Initial	conditions	were	

taken	from	the	ERA-Interim	(Dee	et	al.,	2011)	of	the	European	Centre	for	

Medium-Range	Weather	Forecasts	(ECMWF)	in	the	atmospheric	model	

and	 Nucleus	 for	 European	 Modelling	 of	 the	 Ocean	 variational	 data	

assimilation	scheme	(NEMOVAR)	in	ocean/sea	ice	model.	The	ocean	and	

sea	 ice	 initial	 condition	 is	 ORCA	 tripolar	 grid	 with	 a	 0.25°	 (»28	 km)	

horizontal	 resolution	 in	midlatitudes	 and	75	 levels	 vertical	 resolution.	

The	 details	 on	 GloSea5	 reforecast	 data	 are	 summarized	 in	 Table	 1.	

Reforecast	data	has	the	period	1991-2010	(20	years)	initialized	on	1,	9,	

17,	25	 in	a	month	and	generates	3	ensemble	members	on	each	day.	A	
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stochastic	 physics	 scheme,	 Stochastic	 Kinetic	 Energy	 Backscattering	

version	 2	 (SKEB2;	 Bowler	 et	 al.,	 2009)	 is	 used	 to	 generate	 spread	

between	ensemble	members.	

The	SIC	from	National	Snow	and	Ice	Data	Center	(NSIDC)	and	other	

variables	from	ERA-Interim	data	are	used	as	a	reference.	The	model	data	

and	observation	are	interpolated	horizontally	to	1.5°´	1.5°.	
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2.2	Methodology	

The	model	error	increases	as	the	integration	time	increases,	and	the	

error	moves	according	to	a	certain	tendency	of	the	model	itself	(Gupta	et	

al.,	 2013).	 This	 tendency	 is	 due	 to	 model	 uncertainties,	 and	 it	 is	 an	

essential	factor	affecting	prediction	skill	as	a	characteristic	of	the	model	

that	appears	without	external	forcing.	In	this	study,	the	results	applied	

with	bias	correction	was	analyzed	by	calculating	the	error	between	the	

forecasts	and	the	observation	as	a	mean	bias	(MB)	and	removing	it.	The	

average	error	of	the	model	is	expressed	as	below.	

	

	 Here,	 𝐹 	 indicates	 ensemble	 mean	 forecasts,	 𝑂 	 denotes	

observation,	 𝜏	 is	forecast	lead	time,	and	 N	 is	the	number	of	initial	dates.	

The	 prediction	 skill	 is	 quantified	 by	 computing	 the	 pattern	 anomaly	

correlation	 coefficient	 (PACC,	 hereafter	 ACC).	 The	 ACC	 is	 defined	 as	

follows.	

	

Here,	 𝐹,	 𝑂,	 𝜏	 are	the	same	as	an	equation	above	and	 N	 is	the	total	

number	 of	 grid	 points	 in	 each	 area.	 The	 cosine	 of	 the	 latitude	 (𝜃)	 is	
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applied	to	weight	the	area	of	each	grid.	ACC	has	a	value	from	-1	to	1,	and	

when	the	value	is	1,	the	pattern	is	perfectly	matched,	and	when	it	is	-1,	

the	pattern	of	the	opposite	sign	is	matched.	 	

The	 forecast	 lead	 time	 refers	 to	 the	 time	 difference	 between	 the	

initialization	 time	 and	 the	 forecast	 time,	 lead	 week	 1	 indicates	 the	

average	of	1	to	7	days	from	the	initial	date,	and	lead	week	2	indicates	the	

average	of	8	to	14	days.	In	this	study,	from	1	to	8	week	corresponding	to	

the	 S2S	 time	 scale	were	mainly	 discussed.	 The	 analyzed	 regions	were	

Arctic	 (180˚E–180˚W,	 65˚–90˚N),	 Barents–Kara	 Sea	 (BK),	 and	

midlatitudes	 (180˚E–180˚W,	 30˚–65˚N),	 and	 	 Eurasia	 (30°–65°N,	 30°–

150°E).	
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3.	Experimental	designs	
	

Here	 we	 perform	 an	 idealized	 model	 simulation	 to	 quantify	 the	

relative	 contributions	 of	 local	 and	 remote	 processes	 to	 sea	 ice	

initialization.	 In	 one	 set	 of	 experiments,	 reforecasts	 with	 operational	

configuration	 were	 carried	 out	 (control	 simulation).	 The	 other	 set	 of	

experiments	was	prescribed	SIC	climatology	as	boundary	conditions	in	

the	Arctic	(north	of	60°).	The	sensitivity	experiment	was	conducted	by	

selecting	a	 specific	year	 in	which	Arctic	 sea	 ice	was	more	or	 less	 than	

climatology	to	consider	the	limitations	of	computational	resources	and	

to	 enhance	 the	 effect	 of	 sea	 ice	 initialization.	 The	 averaged	 SIC	 on	

November	1st	over	the	Arctic	and	the	Barents-Kara	Sea	using	NSIDC	was	

analyzed	(Fig.	1)	to	select	the	experiment	years.	The	SIC	in	the	period	of	

reforecast	data	is	shown	by	year.	The	3	years	(1992,	1993,	1994)	when	

the	 SIC	 in	 the	Arctic	 and	 the	Barents-Kara	 Sea	was	 relatively	 high	 are	

indicated	in	red,	and	the	3	years	(2007,	2009,	2010)	when	the	SIC	was	

relatively	 low	are	 indicated	 in	blue.	When	selecting	the	case,	 the	years	

when	 the	SIC	 anomalies	 are	higher	or	 lower	 than	 the	 climatology	and	

when	SIC	in	the	Arctic	was	higher	than	that	in	the	Barents-Kara	Sea	were	

considered	 first.	 To	 enhance	 the	 effect	 of	 the	 sea	 ice	 climatology	

prescribed	as	initial	conditions,	3	year	experiments	in	which	the	SIC	in	
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the	Arctic	and	the	Barents-Kara	Sea	was	relatively	high	are	called	High-

SIC	experiment.	On	the	contrary,	3	year	experiments	in	which	the	SIC	in	

the	Arctic	and	the	Barents-Kara	Sea	was	relatively	high	are	called	Low-

SIC	 experiment.	 Since	 the	 climatology	 is	 calculated	 the	 average	 of	 20	

years,	not	including	the	recent	years,	there	can	be	a	limit	that	may	not	

sufficiently	reflect	the	Arctic	warming	trend.	The	initial	conditions	were	

generated	 by	 weighting	 the	 SST	 climatology	 linearly	 according	 to	

latitudes	to	reduce	the	discrepancy	between	SIC	and	SST.	SST	climatology	

is	 prescribed	 in	 the	 north	 of	 70˚N,	where	 SIC	 variability	 is	 small.	 SST	

blended	climatology	and	linear	weighted	daily	fields	are	forced	in	60˚–

70˚N,	where	the	boundary	region	SIC	variability	is	high	(Table	2).	Sea	ice	

is	 formed	 when	 the	 SST	 is	 lower	 than	 the	 freezing	 point	 ocean	

temperature	in	the	model.	Therefore,	the	salinity	used	to	determine	the	

freezing	 point	 temperature	 was	 modified	 in	 the	 same	 way	 as	 SST.	

Experiments	 are	 initialized	 on	November	 1st	 and	 run	 61	 days	with	 6	

ensemble	members.	

The	 influence	 on	 the	 sea	 ice	 initial	 conditions	 is	 analyzed	 by	

comparing	 the	 control	 experiment	 (CTL)	with	 the	 sea	 ice	 climatology	

experiment	(EXP)	in	midlatitudes	and	highlatitudes.	We	assume	that	CTL	

skill	would	be	better	than	EXP	skill.	
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4.	Results	

 

4.1	Effect	of	sea	ice	initial	conditions	

	

Figure	 2	 and	 Figure	 3	 present	 SIC	 and	 SST	 difference	 of	 initial	

conditions	between	CTL	and	EXP	averaged	of	lead	week	1	to	8	simulated	

in	the	High-SIC	and	Low-SIC.	The	lower	SIC	and	higher	SAT	in	High-SIC	

and	higher	SIC	and	lower	SIC	in	Low-SIC	is	prescribed	in	EXP.	Barents-

Kara	sea	is	the	strongest	forced	region	in	sea	ice	initial	conditions.	The	

SIC	 initial	 condition	 shows	 a	 maximum	 deviation	 of	 about	 0.4	 in	 the	

Barents–Kara	Sea	and	the	Bering	Sea,	indicating	that	the	largest	deviation	

of	SIC	in	the	region	is	prescribed	as	the	initial	conditions.	The	Barents–

Kara	Sea	is	known	as	a	region	with	large	seasonal	and	annual	variation	

(Overland	et	al.,	2015).	Compared	to	the	CTL,	the	SST	initial	conditions	of	

EXP	in	High-SIC,	higher	SST	is	prescribed	in	the	Barents–Kara	Sea	and	the	

Bering	Sea,	which	are	 the	areas	where	 lower	SIC	 is	prescribed.	On	 the	

contrary,	in	Low-SIC,	lower	SST	is	prescribed	in	the	region	where	higher	

SIC	is	prescribed.	

The	SST	difference	prescribed	as	initial	conditions	is	a	maximum	of	

±1.8K,	which	is	SST	as	standard	for	determining	the	presence	or	absence	

of	sea	ice	in	the	model.	Since	the	SST	in	the	region	where	sea	ice	exists	is	
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constant	at	-1.8°C,	there	is	no	SST	difference	in	the	center	of	the	Arctic.	

The	 difference	 in	 initial	 conditions	 suggests	 that	 the	 experimental	

designs	are	suitable	for	investigating	the	Arctic	sea	ice	change	impacts	on	

prediction	skill.	

The	persistence	of	SIC	prescribed	as	initial	conditions	is	examined	

for	each	area	(Fig.	4).	The	gray	shadings	are	the	SIC	variability	of	the	case	

corresponding	to	High-SIC	and	Low-SIC	in	the	observation,	CTL	is	black,	

and	green	lines	indicate	EXP.	The	range	of	SIC	simulated	by	the	model	of	

the	cases	corresponding	to	the	High-SIC	and	Low-SIC	are	indicated	by	the	

error	 bar.	 The	 model	 captures	 the	 observed	 SIC	 included	 in	 the	 grey	

shading	 for	both	areas	and	 lead	1	to	8	week	except	 for	the	 lead	1	to	3	

week	over	the	Arctic	in	Low-SIC.	The	lower	Arctic	SIC	in	Low-SIC	seems	

to	consistent	with	the	characteristics	of	the	model	that	overestimates	in	

spring	and	underestimates	in	autumn	(Park	et	al.,	2018).	In	the	High-SIC,	

EXP	is	prescribed	a	lower	SIC	than	CTL,	and	in	the	Low-SIC,	a	higher	SIC	

is	 prescribed.	 The	 forced	 SIC	 initial	 conditions	 over	 the	 Arctic	 are	

appropriately	prescribed	as	a	value	outside	the	range	of	observation,	and	

they	seem	to	remain	effective	up	to	5	weeks.	It	has	an	implication	that	if	

the	model	responds	sensitively	to	changes	in	Arctic	sea	ice,	it	can	affect	

midlatitudes	and	highlatitudes	for	more	than	5	weeks.	
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4.2	Prediction	skill	on	sea	ice	initialization	

	

The	model	simulates	the	overall	negative	anomalies	in	High-SIC	and	

positive	anomalies	in	Low-SIC.	The	decreasing	SAT	anomalies	in	EXP	is	

found	 in	 Figure	 5.	 The	 model	 reproduces	 observed	 SAT	 anomalies	

qualitatively	 (pattern	correlation	 is	0.75	 in	High-SIC,	 and	0.67	 in	Low-

SIC),	but	EXP	shows	more	contrasts	to	observation	in	some	regions	than	

CTL	(pattern	correlation	is	0.68	in	High-SIC,	and	0.56	in	Low-SIC).	The	

bias	is	found	that	EXP	is	greater	than	CTL	in	both	experiments.	The	Arctic	

sea	ice	initial	conditions	prescribed	climatology	may	lead	to	decrease	of	 	

SAT	prediction	skill	at	highlatitudes	and	midlatitudes.	

The	SAT	prediction	skill	and	its	difference	(CTL	minus	EXP)	is	shown	

in	 Figure	 6.	 Green	 boxes	 denote	 the	 Eurasia	 region	 where	 the	 model	

shows	the	highest	SAT	prediction	skill	and	the	predictional	sensitivity	to	

sea	 ice	 initial	 conditions	 is	 most	 prominent.	 When	 sea	 ice	 initial	

conditions	are	forced	with	climatology,	mid-latitude	SAT	prediction	skill	

decreases	in	lead	week	1-5	extends.	

The	SAT	prediction	skill	over	the	Arctic	and	Eurasia	in	CTL	and	EXP	

is	shown	in	Figure	7.	The	CTL	is	in	black	lines	and	EXP	is	in	green	lines.	

Figure	9	shows	the	difference	in	prediction	skill	between	CTL	and	EXP.	

Red	dots	are	High-SIC,	blue	dots	are	Low-SIC,	red	and	blue	lines	are	±1	
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standard	deviation	for	each	case	of	the	experiment.	The	numbers	in	the	

dots	 indicate	 the	 lead	week.	As	 the	 distribution	 of	 the	 dots	 is	 skewed	

toward	the	upper	right	area,	it	means	that	the	sea	ice	initialization	in	the	

model	can	improve	the	prediction	skill	over	the	Arctic	and	Eurasia.	The	

decrease	in	the	Arctic	prediction	skill	is	shown	for	all	lead	weeks	in	High-

SIC	and	from	lead	week	1	to	3	in	Low-SIC.	The	decreasing	prediction	skill	

over	the	Arctic	is	found	for	all	lead	weeks	in	both	experiments.	Patterns	

are	similar	for	SAT	prediction	skill	in	other	variables	(e.g.,	mean	sea	level	

pressure	and	geopotential	height)	(not	shown).	It	might	be	because	of	the	

impacts	of	changing	circulation	from	surface	conditions.	

The	Surface	polar	 cap	height	 (PCH)	 responses	occur	 in	 lead	week	

1-3	 (Fig.	 8).	 The	 surface	 atmospheric	 response	 to	 the	 sea	 ice	 change	

might	have	reached	the	air	above	and	affected	circulation.	PCH	anomaly	

is	known	that	is	linearly	correlated	with	the	Arctic	oscillation	(AO)	index,	

a	key	factor	for	forecasting	winter	temperature	over	Eurasia.	 	
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5.	Summary	and	Discussion	
	

The	 study	 aims	 to	 understand	 the	 atmospheric	 changes	 in	

highlatitudes	 and	midlatitudes	 that	may	have	 occurred	 in	 response	 to	

forced	sea	ice	initial	conditions	over	the	Arctic.	We	present	results	from	

simulations	using	GloSea5	in	which	the	prescribed	forcing	is	SIC	and	SST	

climatology.	 The	 prediction	 skill	 is	 quantitatively	 compared	 to	

experiments	 with	 and	 without	 the	 daily	 variation	 in	 sea	 ice	 initial	

conditions.	 The	 EXP	 prediction	 skill	 from	 lead	 week	 1-2	 decreases	

compared	 with	 CTL	 prediction	 skill,	 especially	 in	 High-SIC,	 the	

experiment	in	the	year	when	the	Arctic	SIC	is	high.	

The	 results	 suggest	 that	 first,	 properly	 prescribing	 sea	 ice	 initial	

conditions	can	lead	to	marginally	improved	surface	prediction	skill	in	the	

Arctic	and	the	midlatitudes.	Second,	The	decrease	in	prediction	skill	of	

EXP	is	mainly	found	over	Eurasia.	We	found	evidence	that	modifying	only	

sea	 ice	 initial	 conditions	 in	 the	model	 affects	 prediction	 skill	 in	 some	

regions	of	highlatitudes	and	midlatitudes.	The	winter	prediction	skill	in	

operational	prediction	system	is	likely	to	be	sensitive	to	the	autumn	sea	

ice	variability	over	the	Arctic.	However,	we	note	it	is	necessary	to	expand	

the	 number	 of	 experimental	 cases	 and	 ensemble	 members	 to	 find	

reasonable	results	for	a	longer	lead	time.	Additional	research	is	needed	
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to	 maintain	 the	 effect	 on	 prescribed	 sea	 ice	 initial	 conditions	 for	 a	

sufficient	time	to	affect	the	midlatitudes,	such	as	a	nudging	experiment	

with	observation.	
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6.	Tables	
Table 1. Description of GloSea5 reforecast configuration. 

  

Atmosphere UM 8.6 (Global Atmosphere 6.0) 

Ocean NEMO 3.4 (Global Ocean 5.0) 

Sea ice CICE 4.1 (Global Sea Ice 6.0) 

Land JULES 4.7 (Global Land 6.0) 

Resolution 
Atmosphere N216 (0.83˚✕0.56˚) L85 

Ocean 0.25˚ on tri-polar grid L75 

Initial state 
Atmosphere ERA-interim 

Ocean/Sea ice NEMOVAR 

Reforecast period 1991-2010 (20 years) 

Number of ensembles 6 

Ensemble generation SKEB2 (Bowler et al., 2009) 
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Table 2. Description of initial conditions in experimental designs. 

	

 	

Control experiment 
(CTL) 

Observed sea ice concentration and sea surface temperature 
(Operational configuration) 

Sea ice climatology 
experiment (EXP) 

CTL + Sea ice concentration climatology + From north of 
60˚N to 70˚N, ocean temperature is blended climatological 
and daily ocean temperature and salinity with linear weights 
determined by latitudes. In the north of 70˚N, the 
climatological ocean temperature and salinity are used. 
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7.	Figures	

 

Figure 1. NSIDC Sea ice concentration for the entire area of the Arctic ocean 
and Barents–Kara sea region on November 1st during the period 1991–2010. 
Red dots indicate the three highest years and blue dots indicate the three 
lowest years in the entire area of the Arctic ocean and Barents–Kara sea 
region. 

 



 

-	24	-	

 

Figure 2. Composite difference (CTL minus EXP) of sea ice concentration 
initial conditions in High-SIC and Low-SIC. Green boxes denote the region 
for Barents–Kara sea. 
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Figure 3. Same as Fig. 2, but for sea surface temperature. 
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Figure 4. Sea ice concentration over (a), (c) the Arctic, and (b), (d) Barents-
Kara sea on the lead week in OBS (shading), CTL (black lines), and EXP 
(green lines). The error bars indicate one standard deviation on years. 
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Figure 5. Surface air temperature anomalies averaged on 1-5 week in High-
SIC and Low-SIC. Numbers show pattern correlation coefficient with 
observation. 
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Figure 6. Decomposed ACC and its difference (CTL minus EXP) for surface 
air temperature at each grid point averaged on 1-5 week in High-SIC and 
Low-SIC. Green boxes denote the Eurasia region. 
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Figure 7. Surface air temperature ACC over (a) midlatitude and (b) Eurasia 
on the lead week in High-SIC and Low-SIC. 
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Figure 8. Polar cap height anomalies on the lead week in High-SIC and Low-
SIC. 
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Figure 9. Surface air temperature ACC difference (CTL minus EXP) over (a) 
Arctic and midlatitude and (b) Arctic and Eurasia in High-SIC and Low-SIC. 
The numbers are lead week. The error bars indicate one standard deviation 
on years. 
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초     록	

	
기후예측시스템(GloSea5)의 해빙 초기화에 따른 

겨울철 중·고위도 계절내 예측성 평가 
 

박진경 

지구환경과학부 

석사과정 

서울대학교 

 

	
계절 예측의 정확성을 향상시키기 위해서는 대기-해양-해빙 

간의 상호과정에 대한 이해가 필수적이다. 대기의 초기 조건은 약 

2 주 이내의 짧은 지속성을 가지고 있어 계절 규모에서의 영향이 

제한적이나 해양 및 해빙의 초기 조건은 계절 이상의 긴 지속성을 

가지고 있어 계절 규모의 변동성에 영향을 미칠 수 있다. 특히 

북극 해빙은 북반구 기후 변동성의 많은 부분을 설명하고 있어 

겨울철 중·고위도 지역의 중요한 예측 인자로 활용되고 있다. 본 

연구에서는 현업 기후예측시스템(Global Seasonal Forecast 

System version 5, GloSea5)의 해빙 초기화 실험을 통해 북반구 

겨울철 중·고위도 예측 인자로서의 해빙의 역할을 진단하였다. 

해빙 초기화 효과를 확인하기 위하여 1991~2010 년 동안 북극 및 

바렌츠-카라 해의 해빙농도가 높았던 3 년과 낮았던 3 년을 
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선택하여 11 월 1 일의 해빙농도를 기후값으로 처방하는 실험을 

수행하였다. 또한 해빙농도 기후값에 따라 해수면온도를 함께 

조정하여 초기장으로 처방하였다. 기후값 사례 실험과 해빙농도와 

해수면온도의 일변동성을 반영한 규준 실험의 예측성을 

비교하였다. 해빙농도 기후값을 초기장으로 처방한 실험의 경우, 

규준 실험과 비교하여 북극과 중위도, 특히 유라시아 지역의 

지상기온 오차가 증가하였다. 해빙 초기화의 변화에 따른 

지상기온의 예측성의 저하는 북극과 유라시아 지역에서 크게 

나타나며 이러한 예측성의 차이는 지표 뿐만 아니라 지표 위의 

대기 순환 또한 영향을 주는 것으로 나타났다.  

	

주요어: 해빙, GloSea5, S2S, 예측성 

학번: 2019-22969 
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