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Abstract

This study investigates the impacts of sea ice initial conditions on
surface air temperature (SAT) predictions in Global seasonal forecasting
system version 5 (GloSea5). Motivated by warm Arctic-cold Eurasian SAT
pattern, which is prevalent in cold season, the three highest and the three
lowest years in the Barents-Kara sea ice concentration (SIC) are selected
for the November initializations. For those years, the two sets of GloSea5
experiments are conducted; i.e., the one initialized with observed SIC on
November 1st (CTL) and the other initialized with climatological SIC
(EXP). The CTL shows a weak hint of warm Arctic-cold Eurasian (or cold
Arctic-warm Eurasian) SAT pattern in sub-seasonal to seasonal (S2S)
prediction from 1 to 5 weeks. This pattern disappears in more extended
forecast, failing to reproduce a dipolar SAT anomaly pattern. Although
the SIC memory is rather short, its impact on the Arctic SAT is non-
negligible. The predictional sensitivity to sea ice initial conditions is most
prominent in Eurasia, where the model shows the highest SAT prediction
skill. The CTL shows a slightly smaller Arctic-SAT bias than the EXP. The
EXP shows the lowered Arctic and Eurasian SAT prediction than CTL.
This result may indicate that sea ice initial condition has a minimal

impact on northern extratropical prediction skill in the current



generation of the seasonal prediction model.
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1. Introduction

Arctic seaice has recently been declining, and the environment in the
high latitudes adjacent to the Arctic ocean is also changing rapidly
(Stroeve et al,, 2007; Comiso et al., 2008; Comiso et al., 2012). Arctic sea
ice is known to be associated with the climate in north hemispheric mid
latitudes, as well as in the polar and highlatitudes. Kim et al. (2014) found
that the decrease in sea ice over the Barents—Kara Sea in November and
December in the observation caused a weakening of the polar vortex in
the stratosphere, leading to a decrease in temperature over midlatitudes
in the model experiment. Kug et al. (2015) showed a negative lagged
correlation between the Arctic temperature and the mid-latitude
temperature in several days. The correlation is simulated in most models
of the Coupled Model Intercomparison Project 5 (CMIP5). Previous
studies suggested that the Arctic variability could provide additional
prediction skill for improving winter seasonal forecast in midlatitudes.

Subseasonal-to-Seasonal (S2S) is a research project with goals of
improving forecast skill on a time scale from 2 weeks to a season (Vitart
et al, 2012). The potential sources of S2S prediction skill are soil
moisture (Zhu et al,, 2019), sea ice (Zampieri et al., 2018; Wayland et al,,

2019), and tropospheric variability (e.g., Madden—Julian oscillation; M]O;
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Lim et al,, 2018; Zhou et al., 2018), and the stratospheric variability (e.g.,
Sudden Stratospheric warming; SSW; Domeisen et al., 2020; Son et al,
2020). However, Several of the findings are related to MJO, and the
majority of recent studies have been focusing on the prediction skill itself.
The sources of S2S prediction need to be quantified.

Several approaches have been performed to perturb the sea ice
component in the atmospheric model. Adjusting the sea ice
concentration (SIC) is a way to assess a sensitivity in the model directly.
There is a nudging experiment (Smith et al., 2017) that prescribed the
initial data as observation data (Morioka et al., 2019) or the initial data
at intervals in consideration of increasing errors as integration time. The
model can simulate unintended responses because the unrealistic value
is prescribed. Experiments were conducted by reducing the sea ice
albedo (Blackport and Kushner, 2017; Blackport and Screen, 2019) and
the sea ice thickness (Petrie et al.,, 2015; Semmler et al., 2017). Since the
experimental design has advantages and limitations, implications for
interpreting the results were suggested in the previous study (Screen et
al, 2018). Adjusting sea surface temperature (SST), an important
variable determining SIC, can help model the response accurately. Screen
et al. (2013) and Jun et al. (2014) suggested the importance of

prescribing appropriate SST and SIC in the study of prescribing suitable
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SST for SIC. Koenigk et al. (2019) showed that the improvement of
prediction skill was remarkably better in a model experiment adjusting
appropriate SST on SIC than only changing SIC.

Global Seasonal Forecast System version 5 (GloSea5), an operational
forecasting system of the Korea Meteorological Administration, is
participating in the S2S project by sharing data and results through the
S2S database. Several previous studies have been conducted to evaluate
the prediction skill of GloSea5 and identify climate predictors on the S2S
time scale. The prediction skill of temperature, precipitation,
geopotential height, stratospheric sudden warming, and Arctic sea ice
was confirmed (Ham etal.,, 2017; Kim et al., 2018a; Kim et al., 2018b; Park
etal, 2018; Song et al., 2018). Several studies investigated the prediction
skill of precipitation variability in East Asia in summer using the Indian
Ocean and Northwest Pacific as predictors (Lee and Kwon, 2015), the
effect of prediction skill of summer temperature and precipitation on the
improvement of soil moisture initialization (Seo et al., 2016), and the
prediction skill of mid-latitude temperature and heatwave (Seo et al,,
2019). The results as mentioned above are mainly focused on the
prediction skill itself. Studies based on prediction skill itself do not
answer the question of impacts on their skill for the climate variables.

This study presents evidence from GloSea5 simulation that
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modulates the prediction skill of mid-latitude surface air temperature
(SAT) on Arctic sea ice initialization by taking coupled processes into
account. The study aims to investigate the sensitivity of winter mid-
latitude prediction skill to Arctic sea ice initial conditions in GloSea5 in
S2S time scale. The simulation allows us to prognostically examine the
contributions of regional and temporal change in prediction skill to

different sea ice initial conditions.



2. Data and Methodology

2.1 Data

We use GloSea5, which is coupled system with atmosphere, land,
ocean, sea ice component through Ocean Atmosphere Sea Ice Soil (OASIS)
coupler (MacLachlan et al,, 2015). The atmospheric component is based
on Hadley Centre Global Environmental Model version 3 (HadGEM3),
and the land component is the Joint UK Land Environment Simulator
(JULES). The ocean component is the Nucleus for European Modeling of
the Ocean (NEMO), and the sea ice component is Los Alamos Sea Ice
Model (CICE). The atmospheric model is run with a horizontal resolution
of N216 (=60 km) with 85 levels in the vertical. Initial conditions were
taken from the ERA-Interim (Dee et al,, 2011) of the European Centre for
Medium-Range Weather Forecasts (ECMWF) in the atmospheric model
and Nucleus for European Modelling of the Ocean variational data
assimilation scheme (NEMOVAR) in ocean/sea ice model. The ocean and
sea ice initial condition is ORCA tripolar grid with a 0.25° (»28 km)
horizontal resolution in midlatitudes and 75 levels vertical resolution.
The details on GloSea5 reforecast data are summarized in Table 1.
Reforecast data has the period 1991-2010 (20 years) initialized on 1, 9,

17, 25 in a month and generates 3 ensemble members on each day. A
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stochastic physics scheme, Stochastic Kinetic Energy Backscattering
version 2 (SKEB2; Bowler et al, 2009) is used to generate spread
between ensemble members.

The SIC from National Snow and Ice Data Center (NSIDC) and other
variables from ERA-Interim data are used as a reference. The model data

and observation are interpolated horizontally to 1.5°x 1.5°.



2.2 Methodology

The model error increases as the integration time increases, and the
error moves according to a certain tendency of the model itself (Gupta et
al, 2013). This tendency is due to model uncertainties, and it is an
essential factor affecting prediction skill as a characteristic of the model
that appears without external forcing. In this study, the results applied
with bias correction was analyzed by calculating the error between the
forecasts and the observation as a mean bias (MB) and removing it. The

average error of the model is expressed as below.

N

MBz)= ) [F,(t)—0,(7))

n=1

Here, F indicates ensemble mean forecasts, O denotes
observation, 7 isforecastleadtime,and N isthe number ofinitial dates.
The prediction skill is quantified by computing the pattern anomaly

correlation coefficient (PACC, hereafter ACC). The ACC is defined as

follows.
N
Y [Fl(e.i)= O(z.))} {O(z.i)— Oz.i) | cosh,
i=1
ACC(z)= = =
.'Z{Fr/ z'z)‘cos Z z'z)‘cosf)

Al [ 21

Here, F, O, t are the same as an equation above and N is the total

number of grid points in each area. The cosine of the latitude (8) is
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applied to weight the area of each grid. ACC has a value from -1 to 1, and
when the value is 1, the pattern is perfectly matched, and when it is -1,
the pattern of the opposite sign is matched.

The forecast lead time refers to the time difference between the
initialization time and the forecast time, lead week 1 indicates the
average of 1 to 7 days from the initial date, and lead week 2 indicates the
average of 8 to 14 days. In this study, from 1 to 8 week corresponding to
the S2S time scale were mainly discussed. The analyzed regions were
Arctic (180°E-180°W, 65°-90°N), Barents-Kara Sea (BK), and
midlatitudes (180°E-180°W, 30°-65°N), and Eurasia (30°-65°N, 30°-

150°E).



3. Experimental designs

Here we perform an idealized model simulation to quantify the
relative contributions of local and remote processes to sea ice
initialization. In one set of experiments, reforecasts with operational
configuration were carried out (control simulation). The other set of
experiments was prescribed SIC climatology as boundary conditions in
the Arctic (north of 60°). The sensitivity experiment was conducted by
selecting a specific year in which Arctic sea ice was more or less than
climatology to consider the limitations of computational resources and
to enhance the effect of sea ice initialization. The averaged SIC on
November 1st over the Arctic and the Barents-Kara Sea using NSIDC was
analyzed (Fig. 1) to select the experiment years. The SIC in the period of
reforecast data is shown by year. The 3 years (1992, 1993, 1994) when
the SIC in the Arctic and the Barents-Kara Sea was relatively high are
indicated in red, and the 3 years (2007, 2009, 2010) when the SIC was
relatively low are indicated in blue. When selecting the case, the years
when the SIC anomalies are higher or lower than the climatology and
when SIC in the Arctic was higher than that in the Barents-Kara Sea were
considered first. To enhance the effect of the sea ice climatology

prescribed as initial conditions, 3 year experiments in which the SIC in
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the Arctic and the Barents-Kara Sea was relatively high are called High-
SIC experiment. On the contrary, 3 year experiments in which the SIC in
the Arctic and the Barents-Kara Sea was relatively high are called Low-
SIC experiment. Since the climatology is calculated the average of 20
years, not including the recent years, there can be a limit that may not
sufficiently reflect the Arctic warming trend. The initial conditions were
generated by weighting the SST climatology linearly according to
latitudes to reduce the discrepancy between SIC and SST. SST climatology
is prescribed in the north of 70°N, where SIC variability is small. SST
blended climatology and linear weighted daily fields are forced in 60°-
70°N, where the boundary region SIC variability is high (Table 2). Sea ice
is formed when the SST is lower than the freezing point ocean
temperature in the model. Therefore, the salinity used to determine the
freezing point temperature was modified in the same way as SST.
Experiments are initialized on November 1st and run 61 days with 6
ensemble members.

The influence on the sea ice initial conditions is analyzed by
comparing the control experiment (CTL) with the sea ice climatology
experiment (EXP) in midlatitudes and highlatitudes. We assume that CTL

skill would be better than EXP skill.

-10 -



4. Results

4.1 Effect of sea ice initial conditions

Figure 2 and Figure 3 present SIC and SST difference of initial
conditions between CTL and EXP averaged of lead week 1 to 8 simulated
in the High-SIC and Low-SIC. The lower SIC and higher SAT in High-SIC
and higher SIC and lower SIC in Low-SIC is prescribed in EXP. Barents-
Kara sea is the strongest forced region in sea ice initial conditions. The
SIC initial condition shows a maximum deviation of about 0.4 in the
Barents-Kara Sea and the Bering Sea, indicating that the largest deviation
of SIC in the region is prescribed as the initial conditions. The Barents—
Kara Sea is known as a region with large seasonal and annual variation
(Overland etal., 2015). Compared to the CTL, the SST initial conditions of
EXP in High-SIC, higher SST is prescribed in the Barents—Kara Sea and the
Bering Sea, which are the areas where lower SIC is prescribed. On the
contrary, in Low-SIC, lower SST is prescribed in the region where higher
SIC is prescribed.

The SST difference prescribed as initial conditions is a maximum of
+1.8K, which is SST as standard for determining the presence or absence

of sea ice in the model. Since the SST in the region where sea ice exists is
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constant at -1.8°C, there is no SST difference in the center of the Arctic.
The difference in initial conditions suggests that the experimental
designs are suitable for investigating the Arctic sea ice change impacts on
prediction skill.

The persistence of SIC prescribed as initial conditions is examined
for each area (Fig. 4). The gray shadings are the SIC variability of the case
corresponding to High-SIC and Low-SIC in the observation, CTL is black,
and green lines indicate EXP. The range of SIC simulated by the model of
the cases corresponding to the High-SIC and Low-SIC are indicated by the
error bar. The model captures the observed SIC included in the grey
shading for both areas and lead 1 to 8 week except for the lead 1 to 3
week over the Arctic in Low-SIC. The lower Arctic SIC in Low-SIC seems
to consistent with the characteristics of the model that overestimates in
spring and underestimates in autumn (Park et al., 2018). In the High-SIC,
EXP is prescribed a lower SIC than CTL, and in the Low-SIC, a higher SIC
is prescribed. The forced SIC initial conditions over the Arctic are
appropriately prescribed as a value outside the range of observation, and
they seem to remain effective up to 5 weeks. It has an implication that if
the model responds sensitively to changes in Arctic sea ice, it can affect

midlatitudes and highlatitudes for more than 5 weeks.
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4.2 Prediction skill on sea ice initialization

The model simulates the overall negative anomalies in High-SIC and
positive anomalies in Low-SIC. The decreasing SAT anomalies in EXP is
found in Figure 5. The model reproduces observed SAT anomalies
qualitatively (pattern correlation is 0.75 in High-SIC, and 0.67 in Low-
SIC), but EXP shows more contrasts to observation in some regions than
CTL (pattern correlation is 0.68 in High-SIC, and 0.56 in Low-SIC). The
bias is found that EXP is greater than CTL in both experiments. The Arctic
sea ice initial conditions prescribed climatology may lead to decrease of
SAT prediction skill at highlatitudes and midlatitudes.

The SAT prediction skill and its difference (CTL minus EXP) is shown
in Figure 6. Green boxes denote the Eurasia region where the model
shows the highest SAT prediction skill and the predictional sensitivity to
sea ice initial conditions is most prominent. When sea ice initial
conditions are forced with climatology, mid-latitude SAT prediction skill
decreases in lead week 1-5 extends.

The SAT prediction skill over the Arctic and Eurasia in CTL and EXP
is shown in Figure 7. The CTL is in black lines and EXP is in green lines.
Figure 9 shows the difference in prediction skill between CTL and EXP.

Red dots are High-SIC, blue dots are Low-SIC, red and blue lines are *1
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standard deviation for each case of the experiment. The numbers in the
dots indicate the lead week. As the distribution of the dots is skewed
toward the upper right area, it means that the sea ice initialization in the
model can improve the prediction skill over the Arctic and Eurasia. The
decrease in the Arctic prediction skill is shown for all lead weeks in High-
SIC and from lead week 1 to 3 in Low-SIC. The decreasing prediction skill
over the Arctic is found for all lead weeks in both experiments. Patterns
are similar for SAT prediction skill in other variables (e.g., mean sea level
pressure and geopotential height) (not shown). It might be because of the
impacts of changing circulation from surface conditions.

The Surface polar cap height (PCH) responses occur in lead week
1-3 (Fig. 8). The surface atmospheric response to the sea ice change
might have reached the air above and affected circulation. PCH anomaly
is known that is linearly correlated with the Arctic oscillation (AO) index,

a key factor for forecasting winter temperature over Eurasia.
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5. Summary and Discussion

The study aims to understand the atmospheric changes in
highlatitudes and midlatitudes that may have occurred in response to
forced sea ice initial conditions over the Arctic. We present results from
simulations using GloSea5 in which the prescribed forcing is SIC and SST
climatology. The prediction skill is quantitatively compared to
experiments with and without the daily variation in sea ice initial
conditions. The EXP prediction skill from lead week 1-2 decreases
compared with CTL prediction skill, especially in High-SIC, the
experiment in the year when the Arctic SIC is high.

The results suggest that first, properly prescribing sea ice initial
conditions can lead to marginally improved surface prediction skill in the
Arctic and the midlatitudes. Second, The decrease in prediction skill of
EXP is mainly found over Eurasia. We found evidence that modifying only
sea ice initial conditions in the model affects prediction skill in some
regions of highlatitudes and midlatitudes. The winter prediction skill in
operational prediction system is likely to be sensitive to the autumn sea
ice variability over the Arctic. However, we note it is necessary to expand
the number of experimental cases and ensemble members to find

reasonable results for a longer lead time. Additional research is needed
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to maintain the effect on prescribed sea ice initial conditions for a
sufficient time to affect the midlatitudes, such as a nudging experiment

with observation.
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6. Tables

Table 1. Description of GloSeab reforecast configuration.

Atmosphere UM 8.6 (Global Atmosphere 6.0)

Ocean NEMO 3.4 (Global Ocean 5.0)

Sea ice CICE 4.1 (Global Sea Ice 6.0)

Land JULES 4.7 (Global Land 6.0)

Resolution Atmosphere N216 (0.83°X0.56") L85

Ocean 0.25° on tri-polar grid L75

Initial state

Atmosphere ERA-interim

Ocean/Sea ice | NEMOVAR

Reforecast period

1991-2010 (20 years)

Number of ensembles

6

Ensemble generation

SKEB2 (Bowler et al., 2009)
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Table 2. Description of initial conditions in experimental designs.

Control experiment
(CTL)

Observed sea ice concentration and sea surface temperature
(Operational configuration)

Sea ice climatology
experiment (EXP)

CTL + Sea ice concentration climatology + From north of
60°N to 70°N, ocean temperature is blended climatological
and daily ocean temperature and salinity with linear weights
determined by latitudes. In the north of 70°N, the
climatological ocean temperature and salinity are used.
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7. Figures
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Figure 1. NSIDC Sea ice concentration for the entire area of the Arctic ocean
and Barents—Kara sea region on November 1st during the period 1991-2010.
Red dots indicate the three highest years and blue dots indicate the three
lowest years in the entire area of the Arctic ocean and Barents—Kara sea
region.
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Figure 2. Composite difference (CTL minus EXP) of sea ice concentration
initial conditions in High-SIC and Low-SIC. Green boxes denote the region
for Barents—Kara sea.

Ralhaie T



High-SIC Low-SIC

Figure 3. Same as Fig. 2, but for sea surface temperature.
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Figure 4. Sea ice concentration over (a), (c) the Arctic, and (b), (d) Barents-
Kara sea on the lead week in OBS (shading), CTL (black lines), and EXP
(green lines). The error bars indicate one standard deviation on years.
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Figure 5. Surface air temperature anomalies averaged on 1-5 week in High-
SIC and Low-SIC. Numbers show pattern correlation coefficient with
observation.
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Figure 6. Decomposed ACC and its difference (CTL minus EXP) for surface
air temperature at each grid point averaged on 1-5 week in High-SIC and
Low-SIC. Green boxes denote the Eurasia region.
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Figure 7. Surface air temperature ACC over (a) midlatitude and (b) Eurasia
on the lead week in High-SIC and Low-SIC.
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Figure 8. Polar cap height anomalies on the lead week in High-SIC and Low-
SIC.
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Figure 9. Surface air temperature ACC difference (CTL minus EXP) over (a)
Arctic and midlatitude and (b) Arctic and Eurasia in High-SIC and Low-SIC.

The numbers are lead week. The error bars indicate one standard deviation
on years.
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