

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

이학박사학위논문

Machine learning approach for phase
transitions

기계학습방법론을통한상전이연구

2021년 2월

서울대학교대학원

물리·천문학부
최 광 종

이학박사학위논문

Machine learning approach for phase
transitions

기계학습방법론을통한상전이연구

2021년 2월

서울대학교대학원

물리·천문학부
최 광 종

Abstract

Machine learning approach for phase
transitions

Kwangjong Choi
Department of Physics and Astronomy

The Graduate School
Seoul National University

This study analyzed the quantum phase transition in a quantum contact process

through machine learning approaches based on the artificial neural network and dis-

covered an open quantum system’s critical phenomenon different from a classical sys-

tem. Also, we analyzed the critical phenomena of the synchronization transition of

the Kuramoto model with machine learning approaches and predicted the dynamic be-

havior of the model. It showed that the machine learning approached is an alternative

framework for numerical analysis for synchronization phenomena.

Chapter 1 outlines the conventional phase transition theory for critical phenom-

ena and the general concepts of the machine learning approaches. The phase transition

theory covers the critical phenomena and their universality near the critical point. Ma-

chine learning approaches define machine learning’s essential elements and explain the

model’s type and model optimization as mathematical descriptions. Furthermore, we

introduce artificial neural networks, which is a promising machine learning method.

Chapter 2 includes the machine learning approaches for quantum phase transi-

tion of the quantum contact process. Using the quantum jump Monte Carlo method,

we simulate a one-dimensional spin chain following a quantum contact process. We

i

train the artificial neural networks such as convolutional neural networks and fully-

connected neural networks with supervised learning to detect whether the system is in

an active state or absorbing states depending on the observed density of active sites.

It is hard to estimate the critical point of the quantum phase transition using only

the finite-size scaling, but we measure the critical point precisely by extrapolating the

well-train the artificial neural networks’ results. We employ the finite-size scaling for

critical dynamics at the critical point estimated by machine learning and measure the

one-dimensional quantum contact process’s critical exponents. As a result, we dis-

cover that the critical exponent related to the active site density in a homogeneous

initial state different from the classical directed percolation model and find that quan-

tum phase transition exhibits new universality.

Chapter 3 includes the machine learning approaches for the synchronization tran-

sition of the Kuramoto model. We train the artificial neural networks such as recur-

rent neural networks and feed-forward networks with supervised learning to estimate

the coupling constant, the strength of the interaction between oscillators from the dy-

namic behavior of oscillators governed by the Kuramoto model. Though the Kuramoto

model’s conventional order parameter can only estimate the coupling strength only in

the synchronized state, the well-trained artificial neural networks measure the coupling

strength among the oscillators in the synchronized asynchronous state. This result im-

plicates that the artificial neural networks capture the order parameter for the syn-

chronous state and the latent parameter for the asynchronous state. Also, we train the

artificial neural networks such as convolutional neural networks and fully-connected

neural networks with supervised learning to detect whether the system is in a syn-

chronous state or asynchronous state according to the configuration of the oscillators’

phase. Using extrapolation of the trained artificial neural network’s outputs, we could

estimate the critical exponent related to a correlation length between oscillators, which

was not measured by the data collapse method. The machine learning approach can be

ii

an alternative to finite-size scaling methods, including the data collapse method, as a

numerical framework for measuring the critical point and critical exponents of syn-

chronization phenomena. Furthermore, as applications, we propose a reservoir com-

puter and a recurrent neural network reproducing the Kuramoto model’s dynamics or

tracking the network of the interaction between oscillators.

Chapter 4 remarks on the results and the meaning of this study. As the quantum

contact process is a typical model of the open quantum system, this study shows that

the machine learning approach can be applied to the open quantum system beyond

the classical and closed quantum systems. Though this study focuses on the Kuramoto

model as a typical nonlinear dynamics model exhibiting synchronization transition, we

expect that the artificial neural networks will be a significant breakthrough in follow-

up studies to predict the dynamical behavior of the chaotic system and to illuminate

synchronization phenomena.

Keywords: Machine learning, Supervised learning, Deep learning, Recurrent

neural network, Open quantum system, Quantum contact process, Quantum

phase transition, Non-linear dynamics, Kuramoto model, Synchronization tran-

sition

Student number: 2014-22378

iii

Contents

Abstract . i

Contents . iv

List of Figures . vi

List of Tables . viii

1 Introduction . 1

1.1 Theory of phase transitions . 5

1.2 Machine learning . 18

1.2.1 Data-driven optimization of multivariate functional 21

1.2.2 Artificial neural networks 41

2 Machine learning approach for open quantum systems 56

2.1 Quantum contact process . 58

2.2 Finding the quantum phase transition 61

2.3 Finite-size scaling on quantum jump Monte Carlo 64

2.3.1 The pure quantum limit . 64

2.3.2 The classcial limit . 67

2.4 Discussion and Summary . 69

3 Machine learning approach for non-linear dynamics systems 73

3.1 The Kuramoto model . 74

3.2 Finding the coupling strength . 76

3.3 Finding the synchronized state . 78

3.4 Prediction of the phase dynamics . 80

iv

3.5 Reconstructing the network structure 83

3.6 Summary . 85

4 Conclusion . 87

Appendices . 89

Appendix A Feed-forward neural networks 90

A.1 Forwarding propagation . 90

A.2 Backpropagation . 91

Appendix B Recurrent neural networks 95

B.1 Reservoir computer . 95

Appendix C Techniques for deep learning 97

C.1 Data management . 97

C.2 Advanced optimization . 99

Appendix D Kasteleyn-Fortuin formalism 107

Bibliography . 114

Abstract in Korean . 129

v

List of Figures

1.1 Plots of the phase transition of water 7

1.2 Plots of the order parameter for the control parameter 11

1.3 Flowchart of the general process in machine learning 19

1.4 Schematic illustration of the relations between the concepts of ma-

chine learning . 21

1.5 Data preprocessing of spin configurations 23

1.6 Schematic illustration of the connections between neurons 45

1.7 Schematic illustration of the inputs of a neuron 45

1.8 Graphical representation for a fully-connected layer 48

1.9 Graphical representation for a sparsely-connected layer 50

1.10 Examples of artificial neural networks 53

2.1 Cchematic phase diagram for the quantum contact process model . . . 57

2.2 Trajectory of the one dimensional quantum contact process 60

2.3 Plots of the artificial neural network’s outputs 62

2.4 Schematic illustration of an convolution neural network for detecting

the quantum phase transition . 63

2.5 Estimates of the critical exponents in the pure quantum limit from a

single active site . 66

2.6 Estimates of the critical exponents in the pure quantum limit from the

homogeneous state . 67

2.7 Estimates of the critical exponents in classical limit from the single

active initial state . 68

2.8 Estimates of the critical exponents in classical limit from the fully ac-

tive initial state . 68

vi

2.9 Estimates of the critical exponents of the one dimension quantum con-

tact process from the single active initial state 70

3.1 Schematic illustration of the process carried out for finding the cou-

pling strength . 76

3.2 Plots of prediction for coupling strength 77

3.3 Plots of detecting the synchronization transition 79

3.4 Schematic illustration of learning processes by artificial neural net-

works for prediction of phase dynamics 80

3.5 Prediction for the phase dynamics of the Kuramoto oscillators 82

3.6 Reconstruction of the visual cortex network 84

A.1 Graphical representation of the forwarding propagation of FCN 90

A.2 Graphical representation of the backpropagation of FCN 92

B.1 Graphical representation of a reservoir computer 95

C.1 Schematic plots of the baseline and deep learning models’ average loss

for a training dataset and a validation dataset 103

vii

List of Tables

1.1 Critical exponents and their scaling behavior in the typical spin model 16

1.2 Comparison between machine learning and physics 20

1.3 List of loss functions for optimizing the model in supervised learning 31

1.4 Activation functions for a neuron . 43

2.1 Critical point and critical exponents in the pure quantum limit from a

single active site . 65

2.2 Critical exponent α for the one dimensional quantum contact process

for finite value of κ . 71

viii

Chapter 1

Introduction

In the last decades, the rapid progress of computer processing devices, such as CPU,

GPU, and TPU, and the advanced software for the parallel computation and optimiza-

tion of linear algebra computing shed new light on machine learning.

Machine learning approaches based on artificial neural networks have recently ex-

panded the scope of the industry application, such as prediction of the stock market

in financial, new manufacturing invention of medicines and chemicals, computer vi-

sion by recognition of images, automatic driving, cognition of natural language, and

forecasting climate change, and factory automation. Furthermore, machine learning

covers numerous data called big-data from statistics of social science. For instance,

machine learning introduces to classify groups on social network service, predict epi-

demic spreading, and distinguish the fake news on mass media. Beyond science, in

humanity and arts, the machine learning approach is employed to interpret the ancient

document, restore old paint, and imitate music and pictures.

Of course, in physics, there are attempts to apply machine learning to analyze

data from experiments in particle physics and solid physics and detect phase transi-

tions of classical and quantum models in statistical physics [1]. Here are three main

reasons why physics employs machine learning approaches, including artificial neural

networks.

First, we employ machine learning approaches to assist in developing and im-

proving physics. Artificial neural networks can refine data and statistics from experi-

ments [2–4] and replace classical fitting methods, such as at the least χ2 fitting for sta-

1

tistical analysis. For instance, in solid physics, machine learning approaches estimate

the solid matter’s properties, such as the bandgap energy, the thermal conductivity, and

the Curie temperature from experimental data. [5]

On the other hand, we use physical intuition and physics to solve challenging ma-

chine learning problems and invent new machine learning models. For example, rein-

forcement learning and unsupervised learning would need to calculate the expectation

values for all possible model parameters. Still, this calculation taking much time is not

possible in practice. Therefore, we use the Gipps sampling used in numerical simula-

tion in statistical physics’s models for the condensed matter and collective behavior for

the calculations. Recently, quantum machine learning [6] has been proposed to over-

come this adversity using the well-known quantum system. In this sense, Boltzmann

machines [7] and restricted Boltzmann machines [8] were developed based on spin

models such as Ising models and spin glass models. Furthermore, we use concepts and

terminologies in statistical physics to interpret and to understand their results.

Finally, there are previous studies to compare physics with machine learning ap-

proaches. Those studies confirm that the machine learning approach results are con-

sistent with physical theories for the same data and then apply the machine learning

approach for frontier areas where the conventional physics methods do not work. In-

stead, excluding traditional physical methods and results, some studies apply machine

learning approaches to analyze data from the experiments and numerical simulations

by own-way and find new phenomena and interpretation for the physical system.

In many cases, researches for phase transitions with machine learning approaches

follow the above purpose and motivation. Here, pioneer research establishes the ma-

chine learning approach by employing artificial neural networks to estimate the criti-

cal point and analyze the Ising model’s critical phenomena [9]. The Ising model, the

typical spin model, exhibits the second-order phase transition as decreasing the tem-

perature without an external magnetic field in a two-dimensional lattice. This study

designs artificial neural networks, including fully-connected neural networks and con-

2

volutional neural networks, to distinguish the ordered state from the disordered states

for a given spin configuration with supervised learning and estimate the Curie tempera-

ture and critical exponent related to spin-spin correlation. They confirm that the results

obtained by artificial neural networks are consistent with theoretical values and numer-

ical values through the finite-size scaling, which is conventional numerical methods for

analyzing critical phenomena. Then, they argue that the machine learning approach is

valid in the classical spin models. Then they extend their approach to the square ice

model and the Ising gauge model, in which it is hard to use the magnetization to iden-

tify the phase transition as the order parameter. Following the above study, the machine

learning approaches based on artificial neural networks are used to analyze another

model’s critical phenomena, such as the long-range Ising model [10], two dimensional

XY model, two-dimensional bond/site percolation model [11], and the traverse-field

Ising model [12]. Here, the percolation model is the mathematical diffusion model,

and the traverse-field Ising model is the typical model for a quantum system.

Another approach to analyzing phase transitions is by using unsupervised learn-

ing. Some studies generated the spin configuration of the spin model, such as the two-

dimensional Ising model and XY model, then inputted them into the machine learning

model, including artificial neural networks such as the auto-encoder and the restricted

Boltzmann machine. After the machine learning model is trained with unsupervised

learning, they measure the latent parameters from the trained machine learning model

and compare the order parameter to find the correlation between latent parameters

and the order parameter [13]. Moreover, using the latent parameters, the other studies

predict the phase transition or find a new phase for the spin model, such as the long-

range Ising model [14] and the Blume-Capel model [15]. For unsupervised learning,

although some studies employ artificial neural networks such as the (restricted) Boltz-

man machine and auto-encoder, most researches still perform with classical models

such as the PCA (principal component analysis) and the t-SNE (t-distributed stochas-

tic neighbor embedding) [10, 11, 15, 16].

3

Our study aims to understand the phase transitions and estimate the critical point

and critical exponents using machine learning approaches based on artificial neural

networks and supervised learning. Previous studies cover the classical spin model

such as the Ising model and XY models and the closed quantum model such as the

transverse-field Ising model. Still, there is no research discovering the phase transi-

tions of the open quantum and the nonlinear dynamical system. This study will em-

ploy artificial neural networks to detect the open quantum system’s phase transition

and analyze nonlinear dynamical systems’ synchronization transitions. Then, we will

determine the limit of the application range of machine learning approaches.

Chapter 2 covers the machine learning approach for the quantum contact process,

a typical model for an open quantum system. The classical contact process, the pro-

totype model of a quantum contact process, consists of sites with two states; active

and inactive states. Diseases spreading motivates the propagation rule of the contact

process. An active site becomes inactivated spontaneously with a rate γ, and an inac-

tivated site is activated by the neighboring activated site with a rate κ. For the theoret-

ical reason, the quantum contact process is developed as an extended contact process,

in which the state of a site is determined with probability. We describe the quantum

contact process such that the density matrix of the system follows the Lindblad equa-

tion [17]. The Lindblad equation consists of a coherent Hamiltonian and an incoher-

ent dissipative term with Lindblad operators, where the omega means the strength of

quantum effects from Hamiltonian and the kappa means the strength of classical ef-

fects from Lindblad operators. For the geometrical dimension equal to or langer than

the upper critical dimension, it is well-known that the type of phase transition follows

the result of the mean-field approximation. However, it has been questioned whether

the one-dimensional quantum contact process’s universality follows the classical di-

rected percolation universal class or exhibits a new quantum universal class. Recently,

a quantum contact process has realized with a one-dimensional spin chain made up

of the Rydberg atoms [18]. Finding the universality of the one-dimensional quantum

4

contact process satisfies academic and physical needs. However, it is hard to estimate

critical exponents using the only quantum jump Monte Carlo simulation. It is a reason

why we introduce the machine learning approaches for the quantum contact process.

Chapter 3 covers machine learning approaches for the Kuramoto model, a typi-

cal nonlinear dynamical model that exhibits the synchronization transition. Machine

learning has been used to analyze and predict brain signals such as EEG [19–22],

while there are other studies to predict the dynamics of the chaotic system through

machine learning [23–30]. However, it is challenging to cover analyzing data from the

real world and predicting the dynamical system using machine learning approaches.

Here, the Kuramoto model is a prototype model to study the synchronization transition

and describe the power grid [31, 32] and the brain nervous system [33]. Nevertheless,

there is no research to analyze the dynamic behavior and synchronization transition of

the Kuramoto model using machine learning based on artificial neural networks. It is

a reason why we introduce the machine learning approaches for the Kuramoto model.

We will confirm that the machine learning approaches can numerically estimate

the critical points and the critical exponent of the quantum phase transition of open

quantum systems and synchronization transition of chaotic nonlinear dynamical sys-

tems. As our study results, we expect that machine learning based on artificial neural

networks will help analyze the critical phenomenon of phase transition, which was

difficult to analyze with finite-size scaling methods.

This chapter reminds terminology and the basic theory of phase transitions and

introduces the fundamental concepts of machine learning, including artificial neural

networks.

1.1 Theory of phase transitions

The kinetic theory for thermodynamics is the cornerstone of statistical mechanics.

Since then, statistical physics try to understand macroscopic phenomena as the collec-

tive behavior of a microscopic many-particle system consisting of at least Avogadro

5

number (NA = 6.02214076×1023) particles. Statistical physics is a theoretical bridge

between the macroscopic and microscopic worlds.

In everyday life, we encounter that the water, a vital substance of our lives, trans-

forms its states depending on the temperature and the pressure. At the pressure of one

atm (the standard atmosphere), the liquid water freezes up ice when the temperature

is lower than 273.15 K or evaporates up steam (vapor water) when the temperature is

higher than 373.13 K. The macrostate of a substance is called phase, for example, ice

is a solid-state of the water, and steam is a gas-state of the water. Roughly speaking,

the phase can also be changed with an external macroscopic parameter such as temper-

ature and pressure. The change of the phase is called a phase transition. Here, phase

transitions theory [34–37] aims to define the phase, describe quantitatively and mathe-

matically the phase and phase transition, and understand their underlying mechanisms.

Phase and phase transition Let us return to the example of water, how we distin-

guish among the states even though ice, water, and steam are all composed of the same

substance, H2O molecules. To define the system phase, we introduce a state function

measured in macroscopic time and space lengths. We can employ the macroscopic

physical quantity such as the density, the entropy, and the free energy as the state func-

tion depending on external variables.

For example, we can use density ρ, the number of particles per volume, as a state

function for the water system. Figure 1.1(b) shows an isobar process where the density

of water changes for the temperature with the constant pressure. When the temper-

ature increases to evaporate from the liquid water to the steam, the density decreases

smoothly in each liquid-state and gas-state, but the density drastically changes from ρg

to ρl at the particular temperature Tt. Here, we call a domain where the state function

is analytical a phase and the singular (non-analytic) point of the state function a transi-

tion point. A phenomenon in which the state function exhibits singularities according

to varying the external parameter and is divided into the different analytic regions is

6

Figure 1.1: Plots of the phase transition of the water. (a) Typical phase diagram with
temperature and pressure in an equilibrium state. The solid line denotes the transition
curve, which is a set of transition points, TP denotes the triple point where the three
transition curves join, and CP denotes the critical point where the transition curve ends.
A dashed line (b) indicates an isobar path, the line with constant pressure. A dashed
line (c) indicates an isotherm path, the line with a constant temperature. A dashed line
(d) indicates a path bypassing the critical point without the phase transition. (b) Plot
of the density for the temperature along the dashed line (b) in panel (a). (c) Plot of the
density for the pressure along the dashed line (c) in panel (a).

7

a phase transition. Similarly, Figure 1.1(c) shows the phase transition from the gas-

state to the liquid-state, increasing the pressure under the constant temperature. In the

isotherm process, the phase is determined by pressure, and the density has a singularity

at the transition pressure pT .

We can then obtain discontinuous points in the density by repeating the isotherm

process for each pressure or isobar process for each temperature. Figure 1.1(a) shows

the phase diagram with the solid line representing a transition curve, a set of singular

points of the state function. For example, the transition curve exhibits the transition

temperature for each isobar process. Thus, the transition curve divides external pa-

rameter space into three phases, solid, liquid, and gas. The transition curve is called a

coexistence curve since the system exhibits a mixed state in phases facing the transi-

tion curve. Remarkably, three phases can exist simultaneously at the triple point, where

the three transition curves join. Refer to Figure 1.1(a), the water’s triple point is the

temperature (TT) of 273.16 K and the pressure (pT) of 0.00604 atm, and we can obtain

the mixture of ice, water, and steam at this point.

An anomalous point in the phase diagram is a critical point where the transition

curve ends, and the phase transition is terminated. Near the critical point, physically

anomalous phenomena called critical phenomena occur. An example of a critical phe-

nomenon is critical opalescence when the correlation length and the scattering cross-

section diverge, and it causes the transparent to cloudy. The water’s critical point is

the critical temperature (TC) of 647.096 K and the critical pressure (pC) of 217.75

atm, and it is hard to distinguish whether the water is a liquid-state or a gas-state with

the density in high temperature over the critical temperature or high pressure over the

critical pressure.

The presence of the critical point raises one question: Following the thermody-

namic process along a path that bypasses the critical point, as shown in the dashed line

(d) in Figure 1.1(a), it seems like the phase transition occurs from liquid water to vapor

water, but there is no transition point in the path (d). However, this irony is the result of

8

misunderstanding the phase transition as everyday words. Strictly speaking, there is no

phase transition, and we cannot separate the water state into liquid and vapor following

the thermodynamic process along the path (d) because the density is continuous and

has no singularity. Thus, to define the phases in the external parameters space, we need

the state function and also consider the thermodynamic process relying on the path.

Phase transition theory conventionally uses free energy as a state function for phys-

ical systems because we can derive the free energy from a classical system governed by

Hamiltonian mechanics to open quantum systems described by the Lindblad equation.

We classify the type of phase transition with the free energy function’s analytic

behaviors near the transition point. We order the phase transition as the lowest order

derivatives of the free energy, showing discontinuity or divergence at the transition

point. Therefore, the free energy exhibits a singular behavior such as a discontinuous

jump or non-differentiable in the first-order phase transition at the transition point.

However, the free energy is continuous in the second-order or the higher-order phase

transition at the transition point, and we determine the phases and transition points

with the first derivative of free energy in the second-order phase transition.

Thus, free energy is the heart of the phase transition theory to determine the phases

and classify the type of phase transition.

On the other hand, it is hard to define free energy of the phase transition in the

non-physical system, such as the synchronization transition of fireflies and a flock

of birds, a pandemic outbreak resulting from disease spreading, and the global out-

age in a power grid and mathematical models for these phenomena. As to extend the

phase transition theory to a mathematical model without free energy, there are studies

to identify mechanisms governing the system’s dynamics and find the model’s state

function corresponding to free energy. For example, Kasteleyn-Fortuin formalism [38]

was developed to connect the percolation model [39] with the q-state Potts model [40]

to analyze percolation transitions in the percolation model, a mathematical model of

propagation and diffusion. See Appendix D. There are also studies in the Kuramoto

9

model to interpret the self-consistent equation as Landau free energy to explain the

synchronization transition [41].

Critical phenomena As we mentioned above, the phase transition theory particu-

larly interests in the critical phenomena where the phase transition terminates.

Return the example of water, and we consider the difference in density between

liquid water and water vapor at the transition temperature. Increasing the transition

temperature, as shown in Figure 1.2(a), the density difference reduces and goes to zero

when the transition temperature over the critical temperature. We take the density as

the order parameter for water because the density means, roughly speaking, the average

distance among water molecules or the occupied volume where a particle freely moves.

In this way, we define the order parameter as the average value of the microscopic

quantity characterizing the particle’s state. On the other hand, the control parameter

is an external macroscopic parameter such as temperature and pressure. Due to a par-

ticle’s microscopic state relying on the model, we should determine which physical

quantity is proper as the order parameter for each model.

For example, in the Ising model, a prototype model of magnetic materials, a par-

ticle i has two spin states, up σi = 1 and down σi = −1. The Hamiltonian governing

the Ising model follows

H = −J
∑
〈i,j〉

σiσj − h
∑
i

σi, (1.1)

where J denotes the coupling constant representing interaction strength between two

spins, h denotes an external magnetic field, and 〈i, j〉 denotes an interaction pair of

neighboring two spins i and j. When J > 0, the Ising model describes the ferromag-

netic material. Here, we take the magnetization m, the average value of all spin states,

10

Figure 1.2: Plots of the order parameter for the control parameter (a) in the water
system, (b) in the Ising model on the two-dimensional lattice, and (c) in the percolation
model on the random graph [42]. (a) In the water system, the order parameter is the
difference between the density of liquid water ρl and water vapor ρg, and the control
parameter is the transition temperature Tt. (b) In the Ising model, the order parameter
is magnetization m, which is the sum of all spin states, and the control parameter is
the temperature T . (c) In the percolation model, the order parameter is the probability
that a site belongs to the giant (infinite) cluster P∞, and the control parameter is the
occupation probability p.

11

as the order parameter as follows,

m =
1

N

∑
i

σi, (1.2)

whereN is the system size. Figure 1.2(b) shows that the Ising model’s order parameter

on the two-dimensional lattice for the temperature T .

When the temperature is over the particular temperature Tc, called the Curie tem-

perature or the critical temperature, the system exhibits paramagnetism. So, with the

external magnetic field going to zero, the magnetization also goes to zero. Meanwhile,

the temperature is below the critical temperature, and then the system has exhibits fer-

romagnetism and has a finite magnetization without the external magnetic field. Here,

a sign of magnetization depends on the direction of decreasing the external magnetic

field. Of course, the positive direction (h → 0+) makes the magnetization positive

(m > 0), the negative direction (h→ 0−) makes the magnetization negative (m < 0).

When J < 0, the Ising model describes the anti-ferromagnetic material and uses

the staggered magnetization instead of the ordinary magnetization as the order param-

eter. Therefore, even though the model is the same, we may choose a different quantity

as the order parameter relying on what phenomenon we want to discover. Sometimes, it

is a significant issue to determine the proper order parameter for a complicated model.

Although a mathematical model without the Hamiltonian does not have free en-

ergy, the order parameter can be defined if a particle has a microscopic state.

The percolation model is a good example. Let us consider a network consisting of

N sites and B bonds, and a bond connects two sites. In the bond percolation, a bond

has two states, an occupied state or a vacant state. Bond percolation occupies a bond

with the probability of p and empties a bond with the probability of 1 − p, where p is

called an occupation probability. After percolating the network, we call the set of sites

linked with occupied bonds a cluster, and the size of the cluster denotes the number of

sites belonging to the cluster. Increasing the occupation probability, the giant cluster,

12

which has the size coming near the system size, emerges, and a site has two states,

belonging to the giant cluster or not.

Here, we conventionally use the probability that a site belongs to the giant cluster

as the order parameter, and Figure 1.2(c) shows the order parameter for the occupation

probability. When the occupation probability is lower than the critical point, the giant

cluster does not exist, and then the order parameter is zero. However, the occupation

probability is over than the critical point, and then the percolation transition occurs.

As shown in Figure 1.2, if we set the physical quantity as the order parameter

appropriately, the order parameter is divided into two regions for the control parameter:

the disordered state and the ordered state, and the boundary of the two regions is the

critical point. The order parameter is zero in the disordered state. On the other hand,

the order parameter is finite in the ordered state.

Sometimes, the disordered state area is called a disordered phase, and the area of

the ordered state is called an ordered phase because, in many physical models, the

region of the disordered and ordered states corresponds to the phase defined by free

energy, respectively.

For these empirical reasons, when it is hard to obtain the analytical form of free

energy or calculate the singularity of free energy, we consider a desperate measure as

the order parameter to distinguish the system’s phase even though the Hamiltonian is

given. The order parameter is useful for a mathematical model without Hamiltonian

in which free energy is not defined. However, distinguishing phases with only the

order parameter’s value may not be appropriate, strictly speaking, because there is no

guarantee that the disordered state defined by the order parameter’s value as the system

microscopic parameter is the same as the disordered phase defined by the singularity

of free energy as the system macroscopic observable. Once again, we note that the

textbook models also use the disordered state and the disordered phase based on well-

known results, but we should care to distinguish the phase based on the order parameter

for a new phase transition.

13

The order parameter represents the average of the particle’s microscopic state.

When the system is in a disordered state, the possible particle’s states are distributed

evenly, and the order parameter goes to zero. When the state distribution is equal, we

say that the system has a symmetry of states in the disordered state. However, when the

system is in the ordered state, the control parameter as an external variable drives the

particles to have a particular state, and the order parameter has non-zero. So, in the or-

dered state, the system’s symmetry is broken through the critical point. This symmetry

breaking is a fundamental mechanism underlying critical phenomena.

Let us look at examples of symmetry breaking at the critical point. First, water

has isotropic movement in the vapor state, where the interaction such as the van der

Waals force between water molecules occurs at a short time in the collisions among

the molecules. However, water has anisotropic movement in the liquid state, where

the distance between molecules is close to interact with each other, and the particles

align along the particular direction. When the transition temperature is below the crit-

ical temperature, at the transition point, the water may have two states, isotropic or

anisotropic states, and then the symmetry of two states is represented as the difference

between the density of the liquid and the vapor states. However, when the temperature

is higher than the critical temperature, we cannot distinguish two states, the symmetry

of states breaks, and the density difference as the order parameter goes to zero.

The Ising model exhibits a more intuitive example of symmetry breaking. As

shown in Figure 1.2(b), when the temperature is higher than the critical temperature

without the external magnetic field, a particle has an equal chance of the up or down

spins, and then the magnetization as the average spin value goes to zero. Meanwhiles,

when the temperature is below the critical temperature, decreasing the external mag-

netic field, some of the particles remain as an aligned spin cluster depending on the

direction of the external field. If up spin clusters remain, the magnetization is positive;

otherwise, the magnetization is negative. So, we understand the critical phenomena in

the Ising model as the breaking of Z2 symmetry.

14

For instance, the percolation transition relates to the breaking of the translation

symmetry on the Euclidean lattice, and the synchronization transition relates to the

breaking of the rotation symmetry in the frequency phase space.

As the control parameter approaches the critical point in the ordered state, the or-

der parameter exhibits scaling behavior near the critical point. For example, the mag-

netization as the Ising model’s order parameter goes to zero following the power-law

scaling such as

|m| ∼ |t|β, (T < Tc). (1.3)

Here, t = (T − Tc)/Tc is reduced temperature, the dimensionless quantity, ∼ denotes

asymptotics, and β is the critical exponent (index) for the order parameter representing

the degree of scaling behavior. The phenomenon of order parameters following the

power-law near the critical point is one of the significant critical phenomena.

Other physical quantities, including the order parameters, also exhibit divergence

or convergence following the power-law scaling. For instance, in the Ising model, in-

teresting physical quantities such as (magnetization) susceptibility ξ, a heat capacity

C, a correlation length ξ, and a two-point correlation function G(r) diverge follow-

ing the power-law near the critical point; Refer to Table 1.1. Critical exponents (α, β,

γ, δ, ν, τ , ...) represent the degree of each physical quantity’s singularity and scaling

behavior near the critical point.

Furthermore, we define the critical exponent differently for the disordered state and

the ordered state. For example, the susceptibility diverges along with each direction,

and then γ and γ′ denote scaling behavior for the disordered state and the ordered state,

respectively. Two critical exponents, γ and γ′, have the same value in the Ising model.

However, in general, there is no guaranty that two critical exponents are always the

same. Moreover, for discontinuous transitions, the critical exponent for susceptibility

is only defined in the ordered state.

There are relations called the scaling law among the critical exponents, and then the

15

Physical quantity Scaling bebavior and critical exponent

Magnetization, m |m| ∼ |t|β (T < Tc),

|m| ∼ |h|1/δ (T = Tc)

Susceptibilty, χ χ ∼ |t|−γ (T > Tc),

χ ∼ |t|−γ′ (T < Tc)

Heat capacity, C C ∼ |t|−α (T > Tc),

C ∼ |t|−α′
(T < Tc)

Correlation length, ξ ξ ∼ |t|−ν (T > Tc),

ξ ∼ |t|−ν′ (T < Tc)

Two point correaltion function, G(r) G(r) ∼ r−τe−r/ξ (T 6= Tc),

G(r) ∼ r−d+2+η (T = Tc)

Table 1.1: Critical exponents and their scaling behavior in the typical spin model.
Here, we define a two-point correlation function such as G(r) = 〈σiσj〉 − 〈σi〉 〈σj〉,
where r = |rij |. d denotes the spatial dimension of the system.

16

critical exponents are not independent. One of the scaling relations is the Rushbrooke

scaling law as follows

α′ + 2β + γ′ = 2. (1.4)

When we consider the real space’s dimensionality embedding the system, the critical

exponents and the spatial dimension d satisfy the following scaling laws,

βδ = β + γ′, (1.5)

β =
1

2
(d− 2 + η)ν ′, (1.6)

dν ′ = 2− α′, (1.7)

γ′ = (2− η)ν ′. (1.8)

We call the relation with the critical exponents and spatial dimension the hyper

scaling relation. The Ising model has the same critical exponents for disordered and

ordered states, and there are only two degrees of freedom to determine the critical

exponents and describe the critical phenomena.

Here, we encounter an essential question: what physical quantities of the Hamilto-

nian determine the critical exponents. According to the renormalization theory, there

are two main factors to dominate the critical exponents, the degrees of freedom related

to the symmetry of the particle’s states and the spatial length of interaction among the

particles.

First, parameters related to the particle’s state and the state’s symmetry, such as

the number of particle’s states and the state space’s geometry, could change the crit-

ical exponents. For example, the Potts model generalized the Ising model describes

q-states particles, and the critical exponents in the Potts model depend on the number

of possible states, q.

Second, parameters related to the spatial length of the interaction among particles,

17

such as a range of interaction and the dimension of the space on which the system

is, determine the critical exponents’ value. For instance, there are only interactions

between the nearest neighboring two-spin pair in the Ising model. However, in the

long-range Ising model, a spin interacts with the other spin with an interaction strength

relying on the distance between the two spins. Therefore, the long-range Ising model

has different critical exponents’ values from the ordinary Ising model; even the inter-

action range changes the phase transition type. Also, the critical exponents vary on the

spatial dimension, determining the distance and the coordinates. For example, the crit-

ical exponent’s values of the Ising model on the two-dimensional lattice are different

from the three-dimensional lattice. We note an upper critical dimension of the Ising

model as MATH, and the critical exponents in the dimension higher or equal to the

upper critical dimension are the same values in the mean-field approximation.

However, the details of the model do not affect the critical exponents. For example,

the Ising model in the two-dimensional lattice has the same critical exponents, regard-

less of lattice formation, such as triangle lattice and square lattice. The amplitude of

spin and the interaction strength unit does not change the critical exponents’ value.

There are various phase transitions, and each model different with substance con-

sisting of the system and the interaction strength in detail. Nevertheless, if systems

have the same symmetry of the states and the interaction range (length), the different

systems exhibit the same phase transition with the same value of critical exponents.

That is why the critical phenomena are universal. In this sense, we call a set of critical

exponents universal class to determine the critical phenomena’ universality.

1.2 Machine learning

Machine learning is a theoretical framework for identifying data.

As shown in Figure 1.3, machine learning involves a series of processes in which

we accumulate data like signals, pictures, images, and statistics from nature, society,

and experiments, design a model to describe the data, train the model based on the

18

Model
ANN
SVM
PCA

Output
Classification
Prediction
Reproduction

Data
Signal
Statistics
Image

Source
Nature
Social

Experiment

Figure 1.3: A flowchart of the general process in machine learning.

data, and then classify or reproduce new data through the trained model.

This sequence of processes is very similar to the methodology of modern science,

especially physics. It is historically correct that scientific procedures, including mod-

eling, experiments, and validation, mathematical approaches in physics motivate ma-

chine learning. Machine learning inherits the methodology of physics by extending the

subject from nature to general data.

However, machine learning differs from physics in detail; refer to Table 1.2. As

mentioned above, physics only focuses on nature, but machine learning does not ask

where the data source is and needs the given data to be quantified.

Physics establishes theories and models with physical operators corresponding

to measurements in an experiment or a system. Moreover, physics develops theories

based on fundamental principles, such as the least action principle, the uncertain prin-

ciple, and the Lorentz invariant. Meanwhile, a designer is free to build a machine learn-

ing model’s architecture, and the model should be trained based on data. A physical

theory is validated through new experimental results, and then we determine whether

the theory is accepted, rejected, or modified. Likewise, machine learning models is

also validated through new data, and then we determine whether the model is verified,

discarded, or refined.

There is a difference between machine learning and physics in introducing vari-

ables. Physics has fundamental physical constants, such as the speed of light in vacuum

c, the gravitational constant G, the Planck constant h, the electric constant ε0, and the

elementary charge e, and introduces a variable with physical meaning based on physi-

cal constants. Physical theory elucidates the connection between physical variables and

19

Machine learning Physics

Data source Everywhere Nature

Model Data-drived Operator-based

Parameters Multi-variables Physical quantities

Principle Minimization of loss function Least action principle

Table 1.2: a comparison between machine learning and physics.

physical constants and reduces the degree of freedom of variables. However, machine

learning employs multi-variable models and does not require each model parameter to

have any physical meaning. Sometimes, the number of model parameters closes to the

number of data points. Physics can derive the physical meaning of theoretical results

using the physical variables, while machine learning has flexibility in the design of

models, but it is hard to infer the meaning of the model’s results.

Machine learning is called data science or data mining, depending on which pro-

cess to focus on [43], and is sometimes considered a branch of artificial intelligence

implementation; refer to Figure 1.4. We classify the machine learning approaches into

unsupervised learning, supervised learning, and reinforcement learning depending on

the problem and requirements, the purpose of a model, and the learning process. Be-

sides, depending on the model’s structure and optimization algorithms, we have vari-

ous machine learning methods, such as classical models including the support vector

machine, PCA, and t-SNE, and recently re-illuminated artificial neural networks.

This study employs artificial neural networks for the model structure and super-

vised learning for model optimization. This section mathematically describes the ba-

sic concept and essential elements of machine learning to understand what the above

methodology means.

20

Artificial
Intelligence

Machine
Learning

(Restricted) Boltzmann Machine

Supervised Learning

Unsupervised Learning

Reinforcement Learning

Support
Vector Machine

Self-organizing Map

Artificial
Neural
Networkst-distributed Stochastic

Neighbor Embedding

Principal
Component Analysis

Deep Learning

Hopfield Networks

Reservoir Computing

Decision Tree Learning

Figure 1.4: A schematic illustration of the relations between the concepts of machine
learning.

1.2.1 Data-driven optimization of multivariate functional

Machine learning and physics gather data from the complex system and design a model

that analyzes and predicts system behaviors. The physics theory is established on phys-

ical operators and quantities, but many user-defined variables, so-called parameters,

implement machine learning models. Also, without prior knowledge of the system,

a machine learning model goes through a so-called learning (training) process using

given data. Therefore, the primary process in machine learning is optimizing the mul-

tivariate model based on data. Here, we review the meaning and mathematical expres-

sion of data, model, optimization, and other machine learning requisites.

Data

The objectMachine learning is a theoretical framework identifying data, sometimes

called patterns. In the dictionary, data is information that is in the form of facts or

statistics. More strictly speaking, in machine learning, data is a set of the formalized

21

numbers. The formation of data is analog or digital depending on the storage medium,

and the data can be expressed as strings, numerals, or bits. Nevertheless, without losing

generality, we represent data by multi-dimensional array or mathematically tensor.

x ≡ {xi1i2...iR} ∈ Rn, ik ∈ Znk , n =

R∏
k=1

nk, (1.9)

where R is the rank of the tensor, n is the total degree of freedom of the tensor, and n

is also the dimension of data space.

For an example of data preprocessing, let us recall the Ising model that deals with

the two-state spin chain. We can denote a state of spin as an integer; for example,

we denote an up spin as 1 and a down spin as 0. Then we represent the spin chain

on the one-dimensional lattice as a one-dimensional array in Figure 1.5(a) and the

spin chain on the two-dimensional square lattice as a two-dimensional array in Fig-

ure 1.5(b). Likewise, we can also represent spin configuration on the Euclidean lattice

as a multi-dimensional array with the system’s dimension. We can also denote the

dynamical change of spin configuration over time by adding a time index to the ar-

ray. Figure 1.5(c) shows that a one-dimensional spin chain dynamics is denoted as a

two-dimensional array.

This process of expressing information as the formatted number is referred to

as data preprocessing, data representing, or data encoding. There are different ways

for the same information. If the spin state is denoted as a vector, we denote the one-

dimensional spin chain as a two-dimensional array in Figure 1.5(d), compared in Fig-

ure 1.5(a). Therefore, what is essential in the data preprocessing is consistent repre-

sentation.

Because there is a one-to-one correspondence between an R rank tensor with total

dimension n and an n-dimensional vector, many textbooks for artificial neural net-

22

Figure 1.5: Data preprocessing for spin configuration obtained from the Ising model.
If the spin is denoted as an integer, we represent the spin chain (a) on the one-
dimensional lattice as a one-dimensional array (vector) and (b) on the two-dimensional
square lattice as a two-dimensional array (matrix). (c) Dynamics of spin configuration
on the one-dimensional lattice is denoted as a two-dimensional array. (d) If the spin
state is expressed as a vector, we represent the one-dimensional spin chain as a two-
dimensional array.

23

works often simplify data as a vector.

φ : xi1i2...iR 7→ xj , j ∈ Zn. (1.10)

Map φ from a tensor to a vector by compressing multi-index to one index is also a

sort of data preprocessing, called flattening. Flattened data is widely used to introduce

artificial neural networks because it helps explain algorithms for the fully-connected

neural networks without losing its generality. However, the flattening ignores the dif-

ference between indices, and it may cause fatal problems depending on data and meth-

ods of machine learning.

For example, we introduce two indices for each spatial axis in two-dimensional

spin configurations, and we employ one index to represent the spatial axis and an-

other index to represent the temporal axis in the time series of a one-dimensional spin

chain. The index implies temporal-spatial information of the system, the source of data.

Therefore, we should use the flattening carefully when temporal-spatial information

becomes a significant factor in identifying the data, and the index denotes the spatial

axis or temporal axis in the data. We consider the index representing the temporal-

spatial information of data because the geometry characterizes the nature of the phase

transition. It is important to employ machine learning appropriate for the data structure

when introducing machine learning for studying phase transition.

Generally, representing data as a tensor is advantageous to preserve the data’s di-

mension, but it also helps to implement numerical algorithms of machine learning

through programming languages. Furthermore, some machine learning methods are

designed to reflect the form of the data. For example, the convolutional neural net-

works [44] learn that the data is in the euclidean space, the graph neural networks

learn that the data is a network [45], and the recurrent neural networks learn that the

data is sequential such as time series. [46]

24

A datasetX is a set of data from the same source;

X = {x0, · · · ,xN−1}, Xi = xi, i ∈ ZN (1.11)

where N is the number of data and Xi denotes (i+1)th data in datasetX . While each

data may have different dimensions or ranks, using padding that fits the data uniformly

based on the data with the largest dimension or rank, we obtain the dataset consisting

of the same data form. Sometimes, we represent data, including the dataset to which it

belongs:

X = {Xji1i2...ip} = {(xj)i1i2...ip} ∈ RNn (1.12)

where the data xj follows Eq. (1.9).

According to purpose, we divide the dataset into a training dataset and a testing

dataset in a broad sense. Machine learning designs and verifies a model based on the

training dataset. In a narrow sense, a training dataset is a dataset for optimizing the

model, and a dataset for self-verifying the trained model is a validation dataset. Some

machine learning methods do not validate the model, and then the training dataset

is not separated into a training dataset and validation dataset. The testing dataset is

a dataset for evaluating the completed model, and the model is not modified when

dealing with the testing dataset. We obtain the models’ results for the testing dataset,

evaluate the models’ performance, and compare their performance. See Appendix C.1

for know-how to divide and manage datasets for artificial neural networks. This study

refers to the dataset as a training dataset unless otherwise noted.

Sometimes a dataset is split into multiple parts for practical computational reasons.

For example, in an artificial neural network, the parted dataset called batch is the subset

of the entire dataset. The reasons and advantages of introducing the batch are addressed

in Appendix C.2.

25

Model: Multivariate functional

Identifying patterns in machine learning is mapping the data into the other variables

that human understands or needs. This mapping is called a model in machine learning,

and mathematically the model can be represented in the form of functional.

F : x 7→ y ∈ Rm (1.13)

Here y is the model’s output and a tensor with a total m dimension. The model F
consists of several functions embodied through model parameters in machine learning.

For example, let us look at a linear model as a toy model. To help to understand,

we assume that the data and model’s output is an n-dimensional and m-dimensional

vector, respectively. Here is a mathematical representation of the linear model F0 as

follows

F0[W](x) = Wx, W ∈ Rmn, (1.14)

where the variable W ∈ W becomes a model parameter, and the model has mn

variables.

If the model is a function when the model parameters are fixed, such as the lin-

ear model F0, the model is called a deterministic model. We generally express the

deterministic model as follows

y = F [θ](x), θ ∈ Rk, (1.15)

where we denote the model parameter as θ ∈ θ. Machine learning usually employs nu-

merous parameters to construct the model compareing the data space. In other words,

in many cases, the dimension of the model parameter space k is larger than the the

dimension of the data space or the model’s output space; k � n,m. It is different

from the classical method of dimension regression, such as the linear regression and

26

the least square fitting, which use the restricted number of parameters for designing

the model. In this context, the machine learning model is a multivariate functional.

Because the machine learning model has many model parameters, it is hard to find

each model parameter’s mathematical or physical meaning. Instead, the overall layout

of the model parameters becomes essential to understand the model. For example, in

the linear model, Uncovering what kind of characteristics the weight matrix W has

gives an excellent intuition to understand and design the linear model rather than what

each value W of the weight matrix means.

The deterministic model is mainly used for data clustering, data regression, and

data compression. As the above works called different words, but we concise them as

dimension reduction. In dimension reduction, the model maps the data into a smaller

variable space to extract the main feature from the data. A classifier is a model with a

smaller dimension of the output m than the dimension of data space n: m ≤ n. Since

the deterministic model always the same output for a given input, the deterministic

model is suitable for a classifier.

Another machine learning model is a statistical model. The statistical model is a

model that uses random variables from the well-known distribution such as uniform

distribution, Gaussian distribution, and Poisson distribution. We understand the statis-

tical model as a combined model with the deterministic model and probability density

functions. Generally, we express the statistical model as follows

y = F [θ](ξ,x), ξ ∈ Rl (1.16)

where ξ denotes a tensor consisting of l random variables. Each random variable fol-

lows a probability density function independently.

ξi ∼ Pi(ξi;αi), αi ∈ Rpi , i ∈ Zl, (1.17)

whereαi denotes the parameters of the probability density function. The random vari-

27

able vector ξ follows the multi-dimensional probability density function as follows

ξ ∼ P (ξ;α), P (ξ;α) =

l−1∏
i=0

Pi(ξi;αi). (1.18)

Here, the parameters α is an tensor with total p dimension.

α = {α0, · · · ,αl−1} ∈ Rp, p =

l−1∏
i=0

pi (1.19)

The probability density function P (ξ;α) is the main factor of the statistical model,

and the parameters α of the probability density function are included in the model

parameter.

A generator is a machine learning model that reproduces outputs similar to given

data by imitating the system, which provides the original data. It is the essential point

of the generator to produce similar data, not the same data. Because the statistical

model’s outputs continuously vary depending on the random variables, the statistical

model is appropriate for a generator. The deterministic part of the statistical model

extracts the main feature of the data and reconstructs the data, and the randomness

from the probability distribution of the statistical model adjusts to the similarity of

outputs.

So far, we distinguish the machine learning model into the deterministic model and

the statistical model based on whether to use random variables and to include prob-

ability distribution as a component of the model. According to the model’s purpose,

we distinguish the machine learning model into the classifier recognizing the data’s

feature and the generator reproducing similar data. Furthermore, the model’s purpose

and structure are closely related to each other. Usually, the deterministic model serves

as a classifier, and the statistical model serves as a generator. Of course, it is possible

to make a stochastic classifier or deterministic generator for a particular purpose.

28

Optimization: Supervised and Unsupervised learning

We introduced and explained the two requisites of machine learning: the data and the

model. For a given data, the model’s output varies depending on the model parameters’

value, even if the model’s structure is not changed. Therefore, another requisite of

machine learning is finding a suitable value for the model parameter such that the

model outputs what we want. In machine learning, tuning the model parameters to

obtain the best model for the purpose is called optimization, learning, or training the

model.

We distinguish the method of optimizing the model into two types depending on

whether the supervisor supports to train the model: supervised learning and unsuper-

vised learning. In supervised learning, we make the model to imitate the supervisor or

work better than the supervisor using the supervisor’s outputs for the data. On the other

hand, in unsupervised learning, we optimize the model using only given data without

the supervisor’s help.

Supervised learning As briefly mentioned above, supervised learning is a method

of optimizing the model with a supervisor’s help. In machine learning language, the

supervisor F̂ is a prepared model that provides the output for the data. The supervisor’s

outputs for the data is a target or label ŷ in supervised learning.

F̂ : x 7→ ŷ ∈ Rm, (1.20)

where the label ŷ is also a tensor with the same rank and dimension as the outputs of

the model we want to train.

Because the supervisor is an outsider in supervised learning, who plays a supervi-

sor depends on the problem. For example, if a human being becomes a supervisor, then

the human’s recognization of the data is a target. We also employ theoretical frame-

works such as physics and statistics, and the other pre-trained machine learning model

29

as supervisors. Even if the environment that provides the data becomes a supervisor,

we use another signal from the system correlated to a given data as a label.

The ultimate goal of supervised learning is to make a model produce an output

similar to the label, which is the supervisor’s output for the data. Minimizing a loss

function is the most widely used method in supervised learning. The loss function E

takes two arguments: the label ŷ and the output y, and is called an error function, cost

function, and energy function, depending on the textbook.

E = E(y, ŷ). (1.21)

where we assume a label and an output as an m-dimensional vector.

Usually, we need the loss function to satisfy two characteristics: local convexity

and non-negativity. First, let us define the Hessian matrix of the loss function for the

output at the label.

H = HyE|y=ŷ , Hij =
∂2E

∂yi∂yj

∣∣∣∣
y=ŷ

(1.22)

where Hy is the Hessian operator for the domain y. If the Hessian matrixH is positive

semi-definite, the loss function is a convex function near the fixed label.

xTHx ≥ 0, ∀x ∈ Rm (1.23)

Second, the loss function is a non-negative function and has zero value if the label and

output are the same.

E ≥ 0, E|y=ŷ = 0. (1.24)

For example, the mean square loss function EMSE is widely used to satisfy the above

30

Loss function Mathematical form Constraints

Mean absolute 1
m |y − ŷ| = 1

m

∑m−1
i=0 |ŷi − yi|

Mean square 1
m‖y − ŷ‖2 = 1

m

∑m−1
i=0 (ŷi − yi)2

Binary cross entropy − [ŷ ln y + (1− ŷ) ln(1− y)]
ŷ ∈ {0, 1}
y ∈ (0, 1)

Cross entropy −∑m−1
i=0 [ŷi ln yi] yi, ŷi ∈ (0, 1)

Kullback–Leibler
divergence

∑m−1
i=0 [ŷi ln (ŷ/yi)] ‖y‖ = ‖ŷ‖ = 1

Huber 1
m

∑m−1
i=0 Hd(ŷi − yi)

Hinge 1
m

∑m−1
i=0 max(1− ŷiyi, 0) ŷi ∈ {−1, 1}

Table 1.3: List of loss functions for optimizing the model in supervised learning. For
two vector a and b, we denote a Taxicab distance and a Euclidean distance as |a− b|
with 1-norm and ‖a−b‖ with 2-norm, respectively. If |x| ≤ d the Huber loss function
is Hd(x) = 1

2x
2, otherwise Hd(x) = d

(
|x| − 1

2d
)

where d is [47]. The cross en-
tropy loss function borrows the cross entropy’s mathematical form of two probability
distributions in statistics. If the label ŷ and output y are a probability mass function,
the cross entropy loss function is the cross entropy between the label and output in a
statistical sense. However, we should distinguish the cross entropy loss function and
the cross entropy because the label and the output do not always mean the probability
mass function even though the label and the output satisfy the normalization of the
probabilities mass function. Likewise, the binary cross entropy loss function and the
Kullback–Leibler divergence loss function copies the mathematical form of the binary
cross entropy and the mathematical form of the Kullback–Leibler divergence, respec-
tively.

31

characteristics.

EMSE(y, ŷ) =
1

m
‖y − ŷ‖2, (1.25)

where we denote the Euclidean distance between the label and outputs as ‖y − ŷ‖
with 2-norm. Table 1.3 shows examples of the loss function. In Table 1.3, loss func-

tions such as the cross entropy loss function and the Kullback–Leibler divergence loss

function borrows the mathematical functional form used in physics and statistics. We

are careful to take the loss function in physical or statistical meaning.

Once the loss function is explicitly determined, we calculate the loss function’s

value for a given data. If the output is more similar to the label, the loss function’

value is smaller. Therefore, we quantify a gap between the model and the supervisor,

evaluate the model’s performance.

Let us consider that the model is deterministic. An average loss Ē is the expected

value of the loss function for a given datasetX as follows

Ē = Ex [E(F [θ](x), ŷ(x))] = Ē(θ), x ∈X, (1.26)

where Ex [·] denotes the mathematical expectation for all data x in dataset. As the

dataset and labels are fixed, only the model output depends on the model parame-

ters, but the average loss also depends on the model parameters. Therefore, supervised

learning the model is finding the optimal model parameters θ∗ minimizing the average

loss:

θ∗ = argmin
θ

Ē(θ). (1.27)

If we obtain the optimal model parameters sequentially, we can build the optimal

32

model F∗ such as

F∗(x) = F [θ∗](x). (1.28)

To specify the above process in supervised learning, we need to determine a model

as an explicit form. Moreover, according to the mathematical form of the model, it is

possible to solve the equation analytically or not. In many cases, we only use numerical

way for solving the minimum value problem. Thus, there are many supervised learning

implementations, depending on the model’s structure and methodology for solving the

minimum value problem. In appendix A, the optimizing process of the feed-forward

neural networks is a typical example of supervised learning for a deterministic model.

The statistical model can also be trained through supervised learning. However, the

statistical model takes random variables as arguments, and the outputs are distributed

for given data and the label. To define the average loss for a statistical model, we need

to consider how the model follows the supervisor from a statistical perspective.

We first suppose that the average of the statistical model’s outputs will be the same

as the supervisor’s label for the given, then we introduce the average loss as follows

Ē = Ex [E (Eξ [F [θ](ξ,x)] , ŷ(x))] , x ∈X, ξ ∼ P (ξ;α). (1.29)

Theoretically, we can obtain the expectation values of the output for the random

variables because we already know the probability distribution we set.

Eξ [F [θ](ξ,x)] =

∫
[F [θ](ξ,x)P (ξ;α)] dξ. (1.30)

However, in most cases, it is hard to calculate the expectation values such as Eq. (1.30)

analytically. Instead, we employ the numerical methods for statistical inference, such

as simulated annealing, Monte Carlo method, and Gibbs sampling.

Another way to define the average loss for the statistical model is to sum the value

33

of the loss function for each output.

Ē = Eξ,x [E(F [θ](ξ,x), ŷ(x))] (1.31)

= Eξ [Ex [E(F [θ](ξ,x), ŷ(x))]]

= Ex [Eξ [E(F [θ](ξ,x), ŷ(x))]] .

The above two types of average losses are typical examples, but we can invent

various forms, such as mixing the two average losses. Nevertheless, once an average

loss is defined in a statistical model, as in a deterministic model, the heart of supervised

learning is to find the optimal model parameters minimizing the average loss, such as

Eq. (1.27).

For some statistical models, the probability distribution parameters α are not con-

stant and are included as model parameters, so we also need to find the optimal values

for the probability distribution parameters minimizing the average loss.

(θ∗,α∗) = argmin
θ,α

Ē(θ,α). (1.32)

Then, we can build an optimal statistical model as follows in

F∗(x) = F [θ∗](ξ,x), ξ ∼ P (ξ,α∗). (1.33)

For example, the variational auto-encoder [48] is a statistical model with probabil-

ity distribution called a sampler and is optimized by supervised learning.

Unsupervised learning In supervised learning, the supervisor only gives the guide-

lines on the forms and the meaning of the outputs but provides the label as the correct

answer for each training data. To opposite supervised learning, another method of ma-

chine learning is unsupervised learning in which the model is trained with the only

dataset without an external model such as the supervisor. Thus, in unsupervised learn-

34

ing, we have no choice but to focus on the dataset’s statistics, clustering and similarity

between data, and the physical meaning of data. Thus, unsupervised learning aims to

build a model that can store a given dataset or regenerate outputs similar to the given

data.

In a statistical sense, if we know the probability of data on the data space, then we

restore the given dataset. Following this view, unsupervised learning mainly employs

the methods of statistical inference. Here, we introduce the example of unsupervised

learning based on the Bayesian inference.

Let us consider a dataset consisting of N data, as shown in Eq. (1.11). The dataset

is evidence of Bayesian statistics for establishing a hypothesis, and the data (point) is

sampled from an unknown population. We propose the Bayesian hypothesis that the

machine learning model works as a likelihood (function) of Bayesian, then we develop

the Bayesian inference as the method of unsupervised learning.

Here, we have to determine the type of our model is whether a deterministic model

or a statistical model. The reason is that the likelihood’s parameter is a random variable

following the probability distribution called a prior distribution in Bayesian statistics.

We intuitively correspond the statistical model’s probability distribution to Bayesian’s

prior distribution, but the deterministic model has no random variables to match the

prior distribution’s parameters.

First, let us look at unsupervised learning for a deterministic model. The model

should be a real-valued function and a non-negative function to use the model as a

likelihood function.

F : x 7→ y ∈ R, F [θ](x) ≥ 0, ∀x. (1.34)

The model also satisfies the normalization condition as follows

Z =

∫
[F [θ](x)] dx <∞, (1.35)

35

whereZ denotes a normalization factor. Note that the normalization factor depends on

the model parameters; Z = Z(θ).

Back again, to establish the hypothesis, we suggest that the probability of choosing

the data point from the population is proportional to the machine learning model’s

output for the data. In the language of Bayesian statistics, the sampling distribution for

a single data denotes with the model’s output and the normalization factor as follows

P(x|θ) =
1

Z
F [θ](x), x ∈X (1.36)

Moreover, we define the likelihood of a given dataset as

P (X|θ) ≡
∏
x∈X

P(x|θ) =
1

ZN

N−1∏
i=0

F [θ](xi). (1.37)

Here, we attempt a little logical leap. In standard Bayesian statistics, the likelihood

parameter is a random variable following a prior distribution, but in machine learning,

especially for the deterministic model, the model parameter is a variable tuned by the

optimization but not a random variable. Nevertheless, as above, we consider the model

parameter as the likelihood parameter. So we assume that the model parameter follows

a probability distribution, which refers to a prior distribution.

θ ∼ P(θ) (1.38)

We can use a uniform distribution, Gaussian distribution, and even Dirac delta

function as an example of the prior distribution. As will be mentioned later, accord-

ing to which probability distribution is used as the prior distribution, the analytical

theory for optimization for the model differs. The prior distribution is closely related

to the probability distribution used in the initialization of the model parameters, and

sometimes two distributions have the same meaning in numerical approaches.

According to the Bayesian rule, which is the core of Bayesian inference, we obtain

36

a posterior distribution, which gives the probability of the likelihood parameters for a

given dataset as follows

P (θ|X) =
P (X|θ)P (θ)

P (X)
. (1.39)

Here, P (X) denotes a marginal likelihood such as

P (X) =

∫
[P (X|θ)P (θ)] dθ. (1.40)

In Bayesian inference, we estimate the relevant likelihood parameters as the mode

of the posterior distribution. This estimation is called the maximum posterior estima-

tion. Following the mind of maximum a posterior estimation, unsupervised learning

aims to find the model parameters that maximize the posterior distribution.

θ∗ = argmax
θ

P (θ|X) = argmax
θ

[P (X|θ)P (θ)] . (1.41)

If a prior distribution is a uniform distribution, then the maximum posterior esti-

mation coincides with the maximum likelihood estimation.

θ∗ = argmax
θ

P (X|θ) , P (θ) = 1. (1.42)

Moreover, we introduce the log-likelihood to solve the maximum likelihood esti-

mation as follows

L (X|θ) ≡ 1

N

∑
x∈X

log [P(x|θ)] = Ex [F [θ](x)]−Z. (1.43)

Theoretically, the points at which the likelihood is maximum are the same as the points

at which the log-likelihood is maximum. Then, we again obtain the optimal parameter

37

such that

θ∗ = argmax
θ

[Ex [F [θ](x)]−Z] . (1.44)

However, when we take the uniform prior distribution, the prior distribution may do

not satisfy the normalization condition of the probability distribution required by stan-

dard Bayesian statistics because there is no regularization for the model parameters in

machine learning.

Once we obtain the optimal model parameter, regardless of using the maximum

posterior estimation or the maximum likelihood estimation, we also find the optimal

deterministic model F∗ such as Eq. (1.28).

By applying the optimized model to sampling distribution, we obtain a probability

distribution to get new data x′

P(x′|θ∗) =
1

Z(θ∗)
F [θ∗](x′) (1.45)

This distribution allows us to reconstruct a new dataset similar to the given dataset.

For example, the Hopfield model [49] is deterministic and is optimized by unsu-

pervised learning. The Hopfield model is a prototype model for storing data in artificial

neural networks.

Second, we develop unsupervised learning based on Bayesian inference for a sta-

tistical model. The statistical model already has a probability distribution, and we use

the probability distribution as a prior distribution. Unlike the deterministic model, we

take the random variables ξ following the statistical model’s probability distribution

as the Bayesian parameters, not the model parameters θ.

ξ ∼ P (ξ;α) = P(ξ|α). (1.46)

Then, the parameters α of the probability distribution become the hyperparameter of

38

the prior distribution. This approach is reasonable to follow the Bayesian statistics’

theoretical framework because the Bayesian parameter is a random variable following

a prior distribution.

Of course, likewise the deterministic model, the statistical model satisfies condi-

tions of the probability distribution. For observed random variables, the model is a

real-valued function and non-negative function.

F : x 7→ y ∈ R, F [θ, ξ](x) ≥ 0, ∀x (1.47)

Furthermore, the model follows the normalization condition.

Z =

∫
[F [θ, ξ](x)] dx <∞ (1.48)

Next, we suggest that the probability of sampling the data point from the popula-

tion for the given model parameters and the given random variables is proportional to

the model’s outputs. In other words, the sampling distribution of single data for given

Bayesian parameters is

P(x|ξ,θ) =
1

Z
F [θ, ξ](x), x ∈X (1.49)

Moreover, we define the likelihood of a given dataset as

P (X|ξ,θ) ≡
∏
x∈X

P(x|ξ,θ) =
1

ZN

N−1∏
i=0

F [θ, ξ](xi). (1.50)

Subsequently, we obtain the marginal likelihood as follows

P (X|θ,α) =

∫
[P (X|ξ,θ)P (ξ|α)] dξ. (1.51)

The marginal likelihood depends on only the Bayesian hyperparameters, which are

model parameters θ and probability distribution parameters α.

39

For two sets of Bayesian hyperparameters M1 = {θ1,α1} and M2 = {θ2,α2},
the Bayes factor K12 is defined as the ratio of two marginal likelihoods of each hyper-

parameter.

K12 =
P (X|M1)

P (X|M2)
(1.52)

The Bayes factor indicates how much the given dataset supports the Bayesian hyper-

parameters. If the Bayer factor greater than 1 (K12 > 1), M1 is more robust supported

by the dataset than M2. It means that the relevant Bayesian hyperparameters are the

arguments in which the marginal likelihood is maximum. So, the goal of unsupervised

learning for the statistical model is to find the optimal model parameters and probabil-

ity distribution parameters.

(θ∗,α∗) = argmax
θ,α

P (X|θ,α) . (1.53)

Finally, using the above optimal hyperparameters, we can build an optimal statistical

model F∗ such as Eq. (1.33).

For example, Boltzmann machines [7], including the restricted Boltzmann ma-

chine [8], are the statistical model and are optimized by unsupervised learning.

There are two ways to optimize the model: supervised learning and unsupervised

learning. Depending on whether there is a supervisor, we distinguish supervised learn-

ing and unsupervised learning, and then we obtain two different optimized model. As

a result of supervised learning, we obtain the optimal model to imitate the supervisor.

On the other hand, due to unsupervised learning, we obtain the optimal model to be the

probability distribution of data from the population. Furthermore, whether the model

is deterministic or statistical, each learning methods are different in detail.

Another machine learning algorithm is reinforcement learning [50–52]. Reinforce-

ment learning considers more particular situations than supervised and unsupervised

learning. In reinforcement learning, the model called an agent determines the action as

40

output for the given data called a state. Here, the probability distribution of the action

for a given state is called a policy. An environment renews the state from the agent’s

action and returns a new state to the agent. The environment feedback on the action

as a reward shows how the action is suitable for the previous state. Therefore, rein-

forcement learning aims to find the best policy to maximize the rewards for any state.

Reinforcement learning may seem to supervised learning in that the environment, sim-

ilar to the supervisor, outside the agent gives feedback and the reward, similar to the

average loss, quantifies the agent’s fitness. On the other hand, optimizing the policy,

which is the probability distribution of the action for a given state, seems similar to

optimizing the likelihood function in unsupervised learning. It is not easy to compare

reinforcement learning to supervised and unsupervised learning in the same criteria.

Because supervised and unsupervised learning focuses on optimizing a fixed model

with the given data, the beginning of problem-solving is to determine a proper learning

method for the above problem situations in reinforcement learning. Therefore, accord-

ing to internal implementation, reinforcement learning employs supervised learning or

unsupervised learning.

So far, we mathematically described three fundamental factors of machine learn-

ing: data, models, and optimization. To sum up the discussions, the heart of machine

learning is the data-driven optimization of multivariate functional.

1.2.2 Artificial neural networks

The root of machine learning is to gather the amount of data, and then the stem of

machine learning is the optimization algorithm. Nevertheless, what a tree needs to

bear fruit are branches and leaves, which let us know the tree’s identity. So, we need

a model architecture, like branches and leaves, to realize and embody the machine

learning approach.

The artificial neural network is a generic term for a machine learning model com-

posed of artificial neurons. It motivated the artificial neural network approach that

41

a biological neural network, such as the brain, works as a mathematical function in

a cognition process. We benchmark biological neural networks to construct artificial

neural networks and describe artificial neural networks mathematically.

Neuron The nerve system consists of nerve cells called biological neurons. We con-

sider an artificial neuron or a perceptron [53] as a basic unit of an artificial neural

network. From now on, we call an artificial neuron just a neuron unless otherwise

mentioned.

A biological neuron has two states; an excited state and a resting state. The biolog-

ical resting neuron becomes the excited state when stimulated by an electrical impulse

that exceeds an absolute value called the threshold voltage from the neuron outside.

To emulate the biological neuron’s excitation process, we introduce a stimulus s and a

neuron’s state a. For the given stimulus s, the neuron is activated following an activa-

tion function f such as

f : s 7→ a, s, a ∈ R, (1.54)

where the stimulus s is called an inactivated neuron’s state.

In the early artificial neural network, the neuron’s state was expressed as 0 and 1,

corresponding to the biological neuron’s resting state and excited state, respectively.

Here, we denote the neuron’s state as a real number. For example, using the Heaviside

step function H(x; θ) as an activation function, we retrieve traditional expression and

can describe a biological neuron with a threshold voltage θ as follows

a = H(s, θ) =


d
ds max(s; θ) (s 6= θ)

1 (s = θ)

. (1.55)

In artificial neural networks, we use various activation functions, such as Table 1.4.

Some artificial neural network approaches need the activation function to satisfy the

42

Activation function Mathematical form

Sigmoid f(x) = 1/(1 + e−x)

Rectified linear unit (ReLU) f(x) = max(x, 0)

Linear f(x) = x

Heaviside step f(x) = H(x; θ)

Hyperbolic tangent f(x) = tanh(x)

Softmax x = f(x), xi = exi/
∑

j e
xj

Table 1.4: Activation functions for a neuron. Here, the Heaviside step function
f(x) = H(x; θ) is the same as Eq. (1.55), and θ is a constant. A softmax function
is an activation function for a layer z, a group of neurons, not one neuron.

43

function condition, such as continuity, differentiability, or injection.

We generally express the inactivated neuron’s state s and the neuron’s state a as

an R rank tensor in the total D dimensions.

a ≡ {ai1i2...iR} ∈ RD, s ≡ {si1i2...iR} ∈ RD, ik ∈ ZDk , D =
R∏
k=1

Dk.

(1.56)

If an activation function takes an inactivated neuron’s state as an argument, it means

that the activation function is applied to each element of the inactivated neuron’s state

as follows,

a = f(s)→ ai1i2...iR = f(si1i2...iR). (1.57)

This notation is not mathematically strict but is useful in the theory of artificial neuron

networks. If a real-valued function takes a tensor, it is applied to each element unless

otherwise mentioned.

The propagation of signals in the biological neural network consists of continuous

transmission of neurons’ excited state. A biological neuron has dendrites accepting

a stimulus from excited neurons and axon terminals, which is send out its state to

other neurons. The connection between a neuron’s dendrite and the other neuron’s

axon terminal is called a synapse. In the biological neural network, signals propagate

through the synapses by a chemical reaction.

Imitating the directed transmission of a signal in the synapse, we link two neurons

with a directed edge, as shown in Figure 1.6. We call a graph consisting of the edges

and neurons an artificial neural network. A neuron can receive inputs from multiple

neurons simultaneously, and it can also output multiple neurons simultaneously. Now

let us define what input and output for neurons are.

First, we define how neurons update their state for given inputs through directed

edges in the artificial neural network. Figure 1.7 shows that a neuron i receives input

44

Figure 1.6: A schematic illustration of the connections between neurons. A neuron
receives input and outputs to others. A squared box denotes a neuron, and an arrow
denotes a direction of input.

Figure 1.7: A schematic illustration of the inputs of a neuron. A neuron i receives
input from N neurons and the bias neuron in the identical state and renews its states.
A squared box denotes a neuron, and an arrow represents a weight for input and input
direction.

45

from N neurons and the bias neuron in the identical state 1 and renews its states. xj

denotes the input given by neuron j, and wij denotes its weight.

We need each input to have the same tensor form of the neuron i’s stimulus si

satisfying Eq. (1.56), and the weight for each input is a real number.

xj ≡ {xj;i1i2...iR} ∈ RD, wij ∈ R ∀j ∈ Zm. (1.58)

The input of the bias neuron, 1, is also the same tensor form of the other inputs but is

an identity tensor with all values equal to one. The weight for the bias neuron, bi, is

called a bias.

We define the neuron’s stimulus as the linear combination of the inputs and their

weights of all neurons, including the bias neuron, such as

si =
N−1∑
j=0

wijxj + bi1. (1.59)

Once we obtain the neuron’s stimulus for given inputs, we can renew the neuron i’s

state following Eq. (1.57).

In many cases, the neuron’s output is defined as its state. For example, the neuron

i’s output, input xi from the neuron i to other neurons, is the state of the neuron i;

xi = ai. (1.60)

Layer Structurally similar biological neurons in the brain, such as the cerebral cor-

tex and cerebellum cortex, form a cell layer. Biological neurons exhibit a collective

behavior in which neurons in the cell layer activate simultaneously rather than sepa-

rately.

Following the nerve system’s layer structure, artificial neural network approaches

gather neurons in a group called a layer and update their state concurrently. Neurons in

a layer have the same state’s tensor form and share an activation function. Therefore,

46

an artificial neural network’s conceptual unit is a neuron, but the functional unit of an

artificial neural network for calculation is a layer.

Let us consider a layer consisting of M neurons. We define a layer’s inactivated

state z as a set of the neurons’ inactivated state, such as

z ≡ {s0, · · · , sM−1} ∈ RMD, zj = sj , j ∈ ZM , (1.61)

where zj is the (j + 1)th neuron’s inactivated state. Similarly, we define a layer’s state

y as a set of the neurons’ state, such as

y ≡ {a0, · · · ,aM−1} ∈ RMD, yj = aj , j ∈ ZM , (1.62)

where yj is the (j + 1)th neuron’s state.

Because neurons in the layer share an activation function, the layer is updated for

the given layer’s inactivated state as follows

y = f(z)→ yi = f(zi), i ∈ ZN (1.63)

As in Eq. (1.57), if an activation function takes the layer’s inactivated state, it means

to apply the activation function for each neuron in the layer.

We will repeat the process of a neuron getting inputs and renewing its states about

a layer. To update the neurons’ state in a layer simultaneously, we gather all inputs

received in the layer and call a set of inputs a layers’ input. When there are N inputs,

and each input follows Eq. (1.58), the layer’s input denotes

x ≡ {x0, · · · ,xN−1} ∈ RND. (1.64)

Here, we can design various layers depending on how to determine the layer’s

inactivated state for a given layer’s input.

As in Figure 1.8, we consider that each neuron in the layer receives all the given

47

Figure 1.8: Panel (a) shows a fully-connected layer based on a neuron unit, and panel
(b) shows the equal layer based on a layer unit. (a) A schematic illustration for a fully-
connected layer. A square box is a neuron, and an arrow connects inputs to the neuron
with the weight. Each neuron receives all the given inputs and additional input from
the bias neuron, the identity tensor. We activate each neuron’s state using the shared
activation function. (b) A graphical representation for a fully-connected layer. A circle
denotes a layer, and an arrow connects the input to the layer with weights w and the
biases b.

48

inputs and additional input from the bias neuron, the identity tensor. Such a layer is

called a full-connected layer, both the primary and widely used layer in an artificial

neural network.

For neuron i, wij denotes the weight of the input xj , and bi is the bias.

w = {wij} ∈ RMN , b = {bi} ∈ RM , i ∈ ZM , j ∈ ZN (1.65)

According to Eq. (1.59), neurons in the fully-connected layer have an inactivated state,

the total stimulus, as follows

zi =
N−1∑
j=0

wijxj + bi1, i ∈ ZM . (1.66)

Note that the zi indicates the inactivated states of the (i+ 1)th neuron in the layer and

has the same tensor form of the input xj .

When we can obtain a neuron’s state as a real number (D = 1), we represent the

layer’s state as an M -dimensional vector and the layer’s input as an N -dimensional

vector. Furthermore, the weights are an matrix with MN dimensions, and the biases

are an M -dimensional vector. So, we rewrite Eq. (1.66) for the real-valued neuron’s

state as matrix form such as

z = wx+ b. (1.67)

A sparsely-connected layer is another type of layer. Figure 1.9 shows the sparsely-

connected layer, in which Each neuron receives the input from the bias neuron and

only the linked inputs. We generally represent the connection between a neuron and an

input by an adjacency matrix A of the graph theory. The adjacency matrix is Aij = 1

if neuron i links to an input xj , otherwise the adjacency matrix Aij = 0. We define

the inactivated neuron’s state in the sparsely-connected layer for the given adjacency

49

Figure 1.9: Panel (a) shows a sparsely-connected layer based on a neuron unit, and
panel (b) shows the equal layer based on a layer unit. (a) A schematic illustration for a
sparsely-connected layer. A square box is a neuron, and an arrow connects inputs to the
neuron with the weight. Each neuron receives the input from the bias neuron and only
the linked inputs. The dotted line links an input to a neuron following the adjacency
matrix A. We activate each neuron’s state using the shared activation function. (b) A
graphical representation for a sparsely-connected layer. A circle denotes a layer, and an
arrow connects the input to the layer with weights w, the biases b, and the adjacency
matrixA.

50

matrix as follows

zi =
N−1∑
j=0

Aijwijxj + bi1, i ∈ ZM . (1.68)

This equation equivalent to Eq. (1.66) with constrain holding the weight wij to

zero for non-connection between neuron i and input xj .

We can adjust the connection between the input and the neuron by the adjacency

matrix, and multiplying the adjacency matrix to weights in the fully-connected layer is

called masking. We employ masking for a dropout [54], which is a method to prevent

overfitting the artificial neuron network.

Similar to the sparsely-connected layer, a neuron in a locally connected layer re-

ceives inputs from neighboring neurons. A convolutional layer [44, 55] is the most fa-

mous locally connected layer in which each neuron has the same number of inputs and

shares weights with other neurons. However, the convolutional layer’s weight called

feature map is a tensor with the rank of the layer’s input, not scalar, and the convolu-

tional layer employs multiple weights for the same input. Thus, we can not represent

the inactivated state of neurons in the convolutional layer as a linear combination of

inputs and weights but instead express a complicated form, including a convolution

operator of input tensor and weight tensor.

Above layers do not have intra-connections between neurons in the same layer

but only have interconnections between neurons in the different layers. However, a

recurrent layer in Appendix B has intra-connections to let an artificial neuron network

have a memory for sequential data.

In addition to the above layers, various layers have been developed, and new layers

are still proposed according to how to define an inactivated state for given inputs.

Once we obtain the inactivated state of the layer, we also calculate the layer’s state

following Eq. (1.63). Of course, like neurons, a layer can output its state. For example,

51

a layer l outputs its state to give input to other layers.

x(l) = y(l) (1.69)

Modeling So far, we have looked at neurons and layers for constructing artificial

neural networks. Here, we employ artificial neural networks to implement a machine

learning model defined in subsection 1.2.1. It is possible to configure both the deter-

ministic model and the statistical model with an artificial neural network.

First, let us design an artificial neural network for the deterministic model, satisfy-

ing Eq. (1.15). We introduce an input layer that has its state as the given data following

Eq. (1.9). The input layer’s state becomes a model’s input. Moreover, we introduce an

output layer with a state tensor with the same form of the model’s output following

Eq. (1.13). The output layer’s state becomes a model’s output.

The next to complete the artificial neural networks is connecting the input layer

and the output layer. For example, as shown in Figure 1.10(a), we can directly link the

input layer to the output layer. We assume that the flattened data is an n-dimensional

vector and the input layer’s neuron has a real-valued state. (D = 1, N = n) And the

model’s output is an m-dimensional vector and and the output layer’s neuron has a

real-valued state. (D = 1, M = m) If the output layer is the fully-connected layer, we

obtain the artificial neural networkM0 as a machine learning model as follows

M0[w, b, f](x) = f(wx+ b). (1.70)

The artificial neural network M0 consisting of a single fully-connected layer is

called a perceptron model. Here, the perceptron model’s weights and biases are the

model variables defined in the machine learning approach.

The perceptron model has limited performance but is essential in the artificial neu-

ral network approach as a null or baseline model. The perceptron model is the base for

designing artificial neural networks, and we estimate models’ performance by compar-

52

Figure 1.10: Examples of artificial neural networks. A circle denotes a layer with the
state, an activation function, and biases, and an arrow denotes a fully-connection with
weights. (a) The perceptron model consisting of an input layer and a fully-connected
output layer. (b) A simple model of deep learning model with a single hidden layer.
(c) A example of a feed-forward neuron network with multiple hidden layers. (d) The
modified perceptron model for a statistical model.

53

ing the perceptron model’s performance.

We can consider an artificial neural network M1 with a layer between the input

and output layers, as shown in Figure 1.10(b). A layer between the input layer and

the output layer is called a hidden layer, and a model with at least one hidden layer is

called a deep learning model. If the hidden layer and the output layer in Figure 1.10(b)

is the fully-connected layer, we obtain the modelM1 as follows

M1[w(1), b(1), f (1),w, b, f](x) = f
(
wf (1)

(
w(1)x+ b(1)

)
+ b
)
. (1.71)

One of the useful properties of artificial neural networks is that they have modu-

larity. Thus, we rewrite the modelM1 as a combination of two perceptron models as

follows

M1[w(1), b(1), f (1),w, b, f](x) =M0[w, b, f]
(
M0[x(1), b(1), f (1)](x))

)
.

(1.72)

It is possible to design a complex model by placing several hidden layers between

the input and output layers, as shown in Figure 1.10(c).

Second, let us design an artificial neural network for the statistical model, satisfy-

ing Eq. (1.16). We introduce that a sampler is a layer such that its state ξ following the

probability distribution P (ξ|α).

Figure 1.10(d) shows a perceptron model modified for the statistical model. The

output layer receives the given data as the input layer’s state and the random variables

as the sampler’s state. Because the fully-connected layer’s inactivated state is a linear

combination of all the given inputs and their weight, for the multiple inputs, the fully-

connected layer accepts each layer’s state with its weights. Since the output layer in

the perceptron model is a fully-connected layer, and we obtain the modified perceptron

54

modelMs as follows

Ms[w,v, b, f](ξ,x) = f(wx+ vξ + b), ξ ∼ P (ξ|α). (1.73)

We can design various artificial neural networks with input layers, output layers,

hidden layers, and samplers for the machine learning model.

Artificial neural network approaches are welcomed and widely used in many fields

because the principles of developing a model are clear and concise, but the model ex-

hibits powerful performance. Furthermore, an artificial neural network has modularity,

which let us develop from a simple model to a complicated model combined with ba-

sic models. In practically, an artificial neural network’s flexibility helps us design the

model considering technical environments such as computing capacity and speed.

55

Chapter 2

Machine learning approach for open quantum sys-

tems

Quantum critical phenomena in nonequilibrium systems have drawn considerable at-

tention recently from physics community [56–75] as experimental techniques are de-

veloped in cold atomic physics such as trapped ions [59] and lattices of ultracold

ions [60–62]; driven circuit quantum electrodynamics systems [63]; and semiconduc-

tor microcavities [64]. The quantum criticality in equilibrium state may be perturbed

by external environment, and thus the combined system is left in a non-equilibrium

state. One of the associated phenomena is the quantum phase transition arising in a

Josephson junction, from a normal to a superconductor state, depending on the value

of an external shunt resistor [76]. We are interested in dissipative phase transitions

arising from the competition between coherent Hamiltonian dynamics and incoherent

dissipation process [74, 76–86, 86, 87]. For these systems, the questions arise whether

the competition between quantum and classical fluctuations leads to novel universal

behavior [74, 79], and under which conditions they exhibit classical critical behavior

in terms of the loss rates by the environment [76, 81, 83].

Here, we aim to answer these questions by considering the quantum contact pro-

cess [88–94] in one dimension lattice. A recent numerical study of the quantum contact

process with setting κ = 0 in one dimension [92–94] revealed that only a continu-

ous transition occurs and the discontinuous transition disappears. Moreover, when the

quantum contact process starts from a homogeneous state. In other words, all sites

56

Figure 2.1: A schematic phase diagram for the quantum contact process model in the
parameter space (κ, ω) in the mean-field limit (inside) and one dimension (outside).
For the former, a discontinuous (dashed curve) and a continuous transition (solid line)
occur and they meet at a tricritical point. For the latter, a continuous transition occurs
over the entire region [0, κc], however, in the interval [0, κ∗], the exponent α of the
density of active sites n(t) ∼ t−α continuously decreases as κ is increased with non-
directed percolation values. In the region κ ∈ [κ∗, κc], it has the directed percolation
value.

are in active state, the density of active sites at time t, denoted as n(t), decays as

n(t) ∼ t−α at the transition point ωc for κ = 0. The exponent α is estimated as 0.36

different from the directed percolation value 0.16. It was argued that one dimensional

quantum contact process creates a novel critical behavior. This result was obtained

using the tensor network algorithm.

In this study, we will confirm the above result and further show that there exists an

interval [0, κ∗], in which the exponent α decreases continuously as κ is increased, and

for κ ≥ κ∗, it has the directed percolation value. The phase diagram for the one dimen-

sional quantum contact process is shown in Figure 2.1. We obtain this result by per-

forming the quantum jump Monte Carlo method [95–101]. Moreover, using the neural

57

network machine learning algorithm, we determine the transition point ωc(κ) for each

κ. Applying the finite-size scaling analysis, we determine the exponent ν⊥ associated

with the correlation length. This exponent value is also deviated from that obtained

using the tensor network approach [94]. However, it is consistent with the directed

percolation value within the error bar. We find that when the one dimensional quantum

contact process starts from a single active site, all the critical exponents are consistent

with the directed percolation values. Based on these results, we conclude that when

the one dimensional quantum contact process starts from the homogeneous state, the

quantum coherence is long-ranged and it plays a similar role to the Lévy-flight long-

range interaction in the tricritical contact process. When an active site interacts to an

inactive site at a distance r with rate κP (r) ∼ κ/rd+σ in one dimension [90,102,103],

the exponent α depends on σ in an appropriate range of σ.

2.1 Quantum contact process

The contact process is a prototype model exhibiting a nonequilibrium phase transition.

Each element of the system is in active or inactive state, and it changes its state ac-

cording to the rule of contact process model [102, 104–109]. When all elements are in

inactive state, then the system becomes trapped in a frozen configuration. Examples

include the catalytic reactions arising in the oxidation of carbon monoxide on platinum

surface [107]. Recently this dynamics was realized using the spin orientations of Ry-

dberg atoms in one dimension [18]. The classical contact process problem extends to

the contact process in dissipative quantum systems in one dimension, denoted as one

dimensional quantum contact process. The dynamics of the one dimensional quan-

tum contact process model is described by the Lindblad equation, which consists of

coherent Hamiltonian and incoherent dissipative terms. Their contributions to overall

dynamics are adjusted by model parameters ω for the coherent quantum effect and κ

for the incoherent classical dynamics.

The system would exhibit a quantum or classical phase transition in the extreme

58

cases. A previous result based on the mean-field solution [88] showed that the quantum

contact process exhibits a continuous (discontinuous) phase transition when κ is large

(small). There exists a tricritical point as shown in Figure 2.1. This result is similar

to the phase diagram generated by the so-called tricritical contact process explored in

classical systems [108]. We remark that the absorbing phase transition of the classical

contact process belongs to the directed percolation universality class.

We consider a one-dimensional quantum spin chain with a periodic boundary con-

dition, where each state of a site, either active or inactive, represents the up or down

spin state, denoted as |↑〉 or |↓〉 . The time evolution of the density matrix ρ̂ is de-

scribed by the Lindblad equation, which consists of the Hamiltonian and dissipative

terms [17]:

∂tρ̂ = −i
[
ĤS , ρ̂

]
+
∑

a=b,c,d

N∑
`=1

[
L̂

(a)
` ρ̂L̂

(a)†
` − 1

2

{
L̂

(a)†
` L̂

(a)
` , ρ̂

}]
. (2.1)

The Hamiltonian ĤS , which governs the branching and coagulation processes and

represents coherent interactions, is expressed as

ĤS = ω

N∑
`=1

[
(n̂`−1 + n̂`+1) σ̂x`

]
. (2.2)

The Lindblad operators of decay, branching, and coagulation are given by

L̂
(d)
` =

√
γσ̂−` , (2.3)

L̂
(b)
` =

√
κ(n̂`−1 + n̂`+1)σ̂+

` , (2.4)

L̂
(c)
` =

√
κ(n̂`−1 + n̂`+1)σ̂−` , (2.5)

respectively. σ̂+
` and σ̂−` are the raising and lowering operators of the spin at site `,

respectively. They are defined in terms of the spin basis as σ̂+ = |↑〉〈↓| and σ̂− =

|↓〉〈↑|. In addition, n̂ = σ̂+σ̂− and σ̂x = σ̂+ + σ̂− are the number operator and spin

59

Figure 2.2: (a) Trajectory of the one dimensional quantum contact process with κ = 0
and ω > ωc from a single active site at the center. Branching and coagulation processes
are coherently driven by the Hamiltonian. (b) Histogram of the densities of active sites
in steady states as a function of ω for system sizeN = 20. The data are obtained using
quantum jump Monte Carlo simulations. Time t and the control parameter ω are given
in units of 1/γ and γ, respectively.

flip operator, respectively.

Quantum branching and coagulation processes occur at a rate ω, and the corre-

sponding classical processes occur at a rate κ. We first consider the pure quantum limit

κ→ 0 but ω is finite. In addition, we rescale time and the quantum control parameter

ω in units of γ; therefore, we set γ = 1.

When ω is small, inactive particles become more abundant with time, and eventu-

ally the system is fully occupied by inactive particles. The system is no longer dynamic

and falls into an absorbing state, which is represented by ρ̂ab = |↓ · · · ↓〉〈↓ · · · ↓|.
When ω is large, the system remains in an active state with a finite density of

active particles in Figure 2.2(a). Thus, the quantum contact process exhibits a phase

transition from an active to an absorbing state as the control parameter ω is decreased.

In Figure 2.2(b), the phase transition seems to be continuous. In fact, it was conjectured

that the one dimensional quantum contact process exhibits a continuous transition [91].

The transition point and spatial correlation length exponent were obtained numer-

ically using the tensor network approach as ωc = 6.0± 0.05 and ν⊥ = 0.5± 0.2 [92].

However, we obtain them using the following artificial neural network approach as

60

ωc ≈ 6.04 and ν⊥ = 1.06± 0.04.

2.2 Finding the quantum phase transition

The artificial neural network approach has recently served as a powerful tool [1, 110]

for classifying the phases in classical systems [9]. In this case, occupation of each

element is represented by a binary value. However, in quantum systems, it is repre-

sented by real value, thus the collective pattern would be more complex. Nevertheless,

the supervised learning for quantum systems has reportedly been successfully used

to identify the transition point of closed quantum systems on the basis of simulation

data [10, 12, 111, 112] and experimental images [2, 3].

The unsupervised learning has recently been applied to generate the configura-

tions of open quantum systems in steady state using the restricted Boltzmann machine

[113–117]. It is challenging to investigate the critical behaviors using unsupervised

learning techniques such as the restricted Boltzmann machine.

However, the artificial neural network approach has never been attempted to criti-

cal phenomena of dissipative phase transitions. For the first time, we try the supervised

learning to identify the transition point ωc(κ).

Here is the overview of artificial neural network approach to detect quantum phase

transition. We first take labeled snapshots of the one dimensional quantum contact

process generated by quantum jump Monte Carlo simulations of a finite system far

from a transition point in both directions, and then organized in datasets. The well-

optimized artificial neural networks then respond sensitively to the transition point.

This supervised learning method correctly identifies the position of the transition point.

Second, using the obtained transition points ωc(N) for given system sizes, we perform

finite-size scaling analysis and identify the transition point in the thermodynamic limit

ωc. We also determine the correlation length exponent ν⊥. Next, we determine other

critical exponents by performing extensive quantum jump Monte Carlo simulations at

ωc for a large system.

61

Figure 2.3: Plots of the artificial neural network’s outputs. (a) Plot of the output aver-
aged over a test set as a function of ω for different system sizes. The value of the first
(second) output neuron is represented as solid (dashed) line. From this plot, we esti-
mate the crossing point of the two outputs and regard it as the transition point ωc(N)
for a given system size N . The shaded regions [0, 4] and [8, 12] indicate the training
sets used in the convolutional artificial neural network analysis. (b) Plot of ωc−ωc(N)
versus N , where ωc is chosen so as to yield power-law behavior, and regarded as
the transition point in the thermodynamic limit. The slope represents the value of
the critical exponent −1/ν⊥. (c) Scaling plot of the output versus (ω − ωc)N

1/ν⊥ .
For the obtained numerical values of ν⊥ and ωc, the data well collapse for sys-
tem sizes N = 10, 12, 14, 16, and 18. From (b) and (c), we obtain ωc ≈ 6.04 and
ν⊥ = 1.06± 0.04.

To implement the artificial neural network approach, we first organize a dataset

of the occupation probability of site `, which is denoted as p`(t) = Tr[ρ̂(t)n̂`]. Using

the quantum jump Monte Carlo method, we generate a steady-state configuration and

obtain the occupation probabilities of each site, {p`}. We collect 5000 configurations

in ω ∈ [0, 12] at ∆ω = 0.04 intervals. To prepare the training dataset for supervised

learning, we label the configurations using one-hot encoding [118] of the absorbing

state (ω ∈ [0, 4]) as (0, 1) and of the active state (ω ∈ [8, 12]) as (1, 0). See shaded

regions in Figure 2.3(a).

Let us introduce the details of the structures of our neural network. We construct

the hidden layers of the artificial neural network, including one-dimensional convo-

lutional layers, batch normalization layers, and fully connected layers, as shown in

Fig. 2.4. We employ the framework of TENSORFLOW [119] and use ReLU and tanh

for the activation function in the hidden layer. Two neurons in the output layer are used,

and a softmax function is used as the activation function in the output layer. We employ

62

Figure 2.4: A schematic illustration of the convolutional neural network built in com-
bination of a one-dimensional convolutional layer and a fully connected layer. The red
circles represent the activation function of each layer. The green circles below the ar-
rows represent the batch normalization.

the cross-entropy or the mean-square loss function as the loss function of the artificial

neural network, which is then optimized using Adam [120] or RMSProp [121]. We

change the architecture and optimization algorithms in various ways. Regardless of

these changes, the well-trained machines produce consistent results.

Once the artificial neural network is well-trained with the labeled training dataset

in the two regions, we obtain the outputs for the entire ω region. In Figure 2.3(a),

we plot the output averaged over 5 × 103 configurations for system sizes N = 10,

12, 14, 16, and 18. The two outputs provide the probabilities that the system will fall

into the absorbing state and remain in the active state, respectively. The crossing point

of the two outputs indicates a transition point ωc(N) for a given system size N in

Figure 2.3(a).

Using the obtained ωc(N) for different system sizes, we determine ωc in the ther-

modynamic limit by plotting ωc − ωc(N) versus N , which is expected to behave as

63

ωc − ωc(N) ∼ N−1/ν⊥ , as shown in Figure 2.3(b). Indeed, the plot exhibits power-

law behavior when an appropriate value of ωc is chosen, and the critical exponent

ν⊥ is obtained from the slope of the power-law behavior. We obtain ωc ≈ 6.04 and

ν⊥ = 1.06 ± 0.04. Those results are in agreement with ν⊥ ≈ 1.096 for the directed

percolation class in one dimension, but differs from the value ν⊥ ≈ 0.5±0.2 obtained

using the tensor network approach. Finally, scaling plot is drawn in the form of the

output versus (ω − ωc)N1/ν⊥ for different N values. In Figure 2.3(c), the data seem

to collapse for different system sizes.

2.3 Finite-size scaling on quantum jump Monte Carlo

We measure the values of the other critical exponents using the numerical data obtained

by the quantum jump Monte Carlo method in the critical region around ωc.

2.3.1 The pure quantum limit

To do this, firstly, an initial state is taken as that a single active seed is present at

` = 0, whereas the remaining sites are inactive. This configuration is expressed as

ρ̂(0) = σ̂+
0 ρabσ̂

−
0 .

We measure the following quantities:

1. The survival probability, the probability that the system does not fall into an

absorbing state, P (t) = 1− Tr[ρ̂(t)ρ̂ab].

2. The number of active sites, Na(t) =
∑

` Tr[ρ̂(t)n̂`].

3. The mean square distance of the active sites from the origin,

R2(t) =
∑

` Tr[`2 ρ̂(t)n̂`]/Na(t).

4. The density of active sites over all runs, ρd(t) = Tr[ρ̂(t)n̂`=0] = Na(t)/R(t).

5. The density of active sites over surviving runs, ρd,s(t) = ρd/P (t).

64

1D QCP 1D QCP 1D DP

CNN+QJMC Tensor network [92, 93] FSS

ωc 6.04 6.0± 0.05 —

δ′ 0.16± 0.05 0.26± 0.04 0.159

z 1.55± 0.06 1.61± 0.16 1.581

η 0.30± 0.05 0.26± 0.05 0.313

δ + δ′ 0.32± 0.01 0.36± 0.12 0.318

α 0.32± 0.01 0.36± 0.08 0.159

ν⊥ 1.06± 0.04 0.5± 0.2 1.096

Table 2.1: Critical point and critical exponents for the one dimensional quantum con-
tact process. The first column shows the results of artificial neural network approach,
and the second column shows the results of the tensor network approach for the one
dimensional quantum contact process. The third column shows that the results of the
ordinary finite-size scaling method for one dimensional directed percolation.

At the transition point, these quantities exhibit the following power-law behaviors:

P (t) ∝ t−δ
′
, Na(t) ∝ tη, R2(t) ∝ t2/z , ρd(t) ∝ tη−1/z , and ρd,s(t) ∝ t−δ. Using

the relation ρd(t) ∼ ρd,s(t)P (t) ∼ t−δ−δ
′
, the scaling relation η − 1/z = −(δ + δ′)

holds [122].

We estimate the exponents δ + δ′, η, δ′, z, and δ by measuring the slopes directly

in the double-logarithmic plots as shown in Figs. 2.5. We estimate the exponent z

using the data-collapse technique. For instance, for the survival probability P (t), we

plot P (t)tδ
′

versus tN−z for different system sizes N . We determine z as the value

by which the data for different system sizes collapse onto a single curve. The critical

exponents are obtained as δ + δ′ = 0.32 ± 0.01, η = 0.30 ± 0.05, δ′ = 0.16 ± 0.05,

z = 1.55± 0.06, and δ = 0.16± 0.06. These exponent values are in good agreement

with the directed percolation values within the error bars. The exponent values are

listed in Table2.1.

Secondly, we take a homogeneous initial state. That is, the entire system is occu-

pied by active sites at t = 0, which is represented by ρ̂(0) = |↑ · · · ↑〉〈↑ · · · ↑|. From

65

Figure 2.5: Estimates of the critical exponents in the pure quantum limit from a single
active site. (a) Plot of ρd(t) versus t, which behaves as ρd(t) ∼ t−δ−δ

′
. The solid

line is a guideline with slope −0.32. (b) Scaling plot of ρd(t)tδ+δ
′

versus tN−z for
δ + δ′ = 0.32 and z = 1.55. (c) Scaling plot of Na(t)t

−η versus tN−z for η = 0.30
and z = 1.55. (d) Scaling plot of P (t)tδ

′
versus tN−z for δ′ = 0.16 and z = 1.55.

(e) Plot of R2(t) as a function of t. The solid line is a guideline with slope 2/z for
z = 1.55. (f) Scaling plot of ρd,s(t)tδ versus tN−z for δ = 0.16 and z = 1.55.

66

Figure 2.6: Estimates of the critical exponent α in the pure quantum limit from the
homogeneous state. (a) Plot of n(t) as a function of t for different system sizes, which
shows n(t) ∼ t−α. The solid line is a guideline with slope−0.32. The inset represents
the scaling plot of n(t)tα versus tN−z for α = 0.32 and z = 1.55. (b) Plot of n(t)
as a function of t for different κ in the range κ ∈ [0, 0.58] in steps of 0.2. The lower
(upper) solid line is a guideline with slope −0.32 (−0.16).

this initial state, we measure the density n(t) of active sites at time t averaged over

all runs. This quantity is formulated as n(t) = (
∑

` Tr[ρ̂(t)n̂`])/N . We find that n(t)

decays in power-law way as n(t) ∼ t−α with the exponent α = 0.32± 0.01 as shown

in Figure 2.6. This value is consistent with the result obtained by applying the tensor

network approach. However, it is not consistent with the corresponding directed per-

colation value, which was estimated as αDP = 0.16. Therefore, the one dimensional

quantum contact process with κ = 0 creates a novel universality class.

2.3.2 The classcial limit

When ω → 0, the model is reduced to the classical contact process, which belongs

to the directed percolation class. To check the consistency of the finite-size scaling

with the small system size, we obtain the critical exponents of one dimensional classi-

cal contact process using the finite-size scaling from the data of quantum jump Monte

Carlo method. At the critical point, we perform the finite-size scaling to one dimension

classical contact process using the quantum jump Monte Carlo method. The observ-

ables correspond to the above definitions.

67

Figure 2.7: Estimates of the critical exponents in classical limit from the single active
initial state. (a) Plot of ρd(t) versus t, which behaves as ρd(t) ∼ t−δ−δ

′
. The solid

line is a guideline with slope −0.32. Inset: scaling plot of ρd(t)tδ+δ
′

versus tN−z for
δ + δ′ = 0.32 and z = 1.58. (b) Scaling plot of Na(t)t

−η versus tN−z for η = 0.30
and z = 1.58. (c) Scaling plot of P (t)tδ

′
versus tN−z for δ′ = 0.16 and z = 1.58.

(d) Plot of R2(t) as a function of t. The solid line is a guideline with slope 2/z for
z = 1.58. (e) Scaling plot of ρd,s(t)tδ versus tN−z for δ = 0.16 and z = 1.58. The
units of t is given as 1/γ.

Figure 2.8: Estimates of the critical exponents in classical limit from the fully active
initial state. (a) Plot of n(t) as a function of t, which shows n(t) ∼ t−α. The solid line
is a guideline with slope −0.16. The inset represents the scaling plot of n(t)tα versus
tN−z for α = 0.16 and z = 1.58. (b) Plot of n(t) as a function of t for different
values of ω < ωc. Inset: Data points collapse well onto a single curve for α = 0.16,
and ν‖ = 1.73. The units of t is given as 1/γ.

68

First, we obtain the exponents δ + δ′, η, δ′, z, δ, and α directly by measuring the

slopes in the double-logarithmic plots shown in Figs. 2.7 and 2.8. Then, we collapse the

data by using the obtained exponents to compute the dynamic exponent z. Specifically,

we plot nseedt
δ+δ′ versus tN−z in Figure 2.7(a), Nat

−η versus tN−z in Figure 2.7(b),

and P (t)t−δ
′

versus tN−z in Figure 2.7(c) for different system sizes N . We measure

the exponent z directly using the plot of R2(t) versus t in Figure 2.7(d). In classical

limit, we can classify the surviving runs and thus we measure the exponent−δ directly

using the plot of nseed,sur(t) versus t in Figure 2.7(e). Next, we plot n(t)t−α versus

tN−z in Figure 2.8(a) for different system sizes N . The exponent ν‖ is obtained from

the rescaling plot of n(t)tα versus t(ωc − ω)ν‖ for different ω values in Figure 2.8(b).

The critical exponents are thus obtained as δ+ δ′ = 0.32± 0.01, η = 0.31± 0.02,

δ′ = 0.16± 0.01, δ = 0.16± 0.02, z = 1.58± 0.03, and α = 0.16± 0.01. Note that

δ = α. In addition, α = δ′ implying that rapidity-reversal symmetry holds. All the

critical exponents are in good agreement with the directed percolation values within

the error bars. Thus we verified that the critical exponents on classical contact process

can be successfully obtained using quantum jump Monte Carlo method with the same

system size.

2.4 Discussion and Summary

We note that ρd(t) and n(t) are actually the same quantities even though they start

from different initial states. They exhibit the same critical behaviors in the classical

contact process. Nevertheless, for the one dimensional quantum contact process, they

exhibit different critical behaviors. This is unconventional, because universality class

is independent of initial states according to the theory of critical phenomena. To un-

derstand the underlying mechanism, we increase the control parameter κ from zero to

κ = 0.58 in steps of 0.2, and explore the behavior of n(t) at each ωc(κ).

To confirm the continuously varying critical exponent α, we perform the finite-size

scaling for for κ ∈ [0, 0.6] in steps of 0.1. Finite size scaling for each value of κ is

69

Figure 2.9: Estimates of the critical exponents of the one dimension quantum contact
process from the single active initial state. (a) Plot of n(t) as a function of t for different
κ in the range κ ∈ [0, 0.58] in steps of 0.1. The lower (upper) solid line is a guideline
with slope −0.32 (−0.16). Scaling plot of n(t)tα versus tN−z . Incoherent control
parameter are taken as κ = 0.1 for (b), κ = 0.2 for (c), κ = 0.3 for (d), κ = 0.4 for
(e), κ = 0.5 for (f), and κ = 0.58 for (g). The units of t is given as 1/γ.

70

κ α δ′ z η δ

0.0 0.32± 0.01

0.1 0.28± 0.01

0.2 0.24± 0.01

0.3 0.22± 0.01 DP values

0.4 0.20± 0.01

0.5 0.18± 0.01

≥ 0.58 DP values

Table 2.2: Critical exponent α for the one dimensional quantum contact process for
finite value of κ. DP values denotes the critical exponent values of the directed perco-
lation universality.

shown in Fig. 2.9. We remark that the critical exponents starting from the single-seed

initial state have the directed percolation universal class in this region.

We find that the exponent value of α decreases continuously from 0.32 for κ = 0

to α = 0.16 for κ = 0.58. These results suggest that α is continuously varying as κ

is increased and reaches the directed percolation value at κ∗ ≈ 0.58. When κ = 0

and all sites are active at t = 0, the wave functions of each site are overlapped and

thus the coherence spreads over the entire system. This quantum effect is extremely

dominant when κ = 0. As the parameter κ is increased, this long-range coherence

is gradually reduced. This may be related to the behavior that occurs in the tricritical

contact process with power-law interactions. Each active particle activates an inactive

particle at distance r with rate κ/rd+σ, where d is the spatial dimension and σ is

a parameter. Then, the critical exponent value of α depends on the power σ in an

appropriate range of σ. As σ is increased, the effect of long-range interactions becomes

weaker and the exponent α becomes smaller [103]. This behavior is similar to the one

of the exponent α.

We investigated the phase transitions arising in the one dimensional quantum con-

tact process, as a prototypical example of dissipative phase transitions. The phase di-

agram was obtained as shown in Figure 2.1, in the parameter space spanned by κ

71

and ω, representing the degrees of the classical and quantum effects, respectively. The

transition curve between absorbing and active phases is composed of two parts: the

non-directed percolation region [0, κ∗] and the directed percolation region [κ∗, κc]. In

the non-directed percolation region, the critical exponent α, associated with the density

of active sites n(t) under the homogeneous initial state, decreases continuously as κ is

increased. It is also interesting to note that the discontinuous transition near κ = 0 in

the mean-field limit changes to the continuous transition with the continuously varying

exponent in one dimension.

72

Chapter 3

Machine learning approach for non-linear dynam-

ics systems

Incorporating machine learning approaches, recent progressive advances have been

achieved in diverse fields of science and engineering. In particular, studies in recog-

nizing phases and phase transition through machine learning methods became an cen-

tral issue in physics. Applying to various systems including classical Ising model, XY

model, and quantum systems, a well-trained machine used for classifying phases and

finding the critical point exhibits successful performance [3, 9, 11, 12, 111, 123, 124].

In the meanwhile, as one of the machine learning model, reservoir computing ap-

proach [125–127] has demonstrated progresses in model-free prediction of the dy-

namical behavior and inferring unmeasured variables of chaotic systems [23–30]. As

chaotic behaviors are observed in a variety of systems in nature such as cardiac cycle,

neuroscience, climate and stock market, it is a subject of the utmost interest to explore

the chaotic signals for predicting dynamical evolution of such systems.

Since such chaotic behaviors or signals of individuals represent the state of the

system, it is also crucial to figure out underlying correlations and connections between

them [128–130]. For example, in neurophysiology, studies for classifying and captur-

ing the physiological events such as seizure, stroke or headache has been progressed

by identifying the correlations between patterns of EEG signals, and machine learning

approaches has obviously contributed in such works as well [19–22].

In this chapter, we focus on the Kuramoto model which has been widely dealt with

73

as a mathematical model for the collective synchronization behavior [131, 132]. As

the system exhibits the synchronization transition at the critical point for appropriate

choice of natural frequencies, analytical and numerical analysis for its critical phe-

nomena and dynamical behavior has been explored [133–139]. Despite the progress in

describing the collective behavior of the Kuramoto oscillators, the machine learning

study for this system has not yet been worked out thoroughly.

We here examine whether underlying parameters of the system can be deduced

from the limited amount of information by introducing machine learning techniques.

In the first part of this work, exploiting the machine learning to predict the coupling

strength from the dynamics of the order parameter, we demonstrate that accurate value

of coupling is obtained from the well-trained machine. Next, the snapshot of phases

for all oscillators are also adopted to discriminate synchronized and asynchronized

states and to determine the critical value of the Kuramoto system. As the learning the

neural network with parameters of the Kuramoto model is achieved, we applied it to

other model-free tasks. We predict the future evolution of the system by considering a

situation where a detailed description for the dynamics of the system is unavailable or

insufficient, but observational data of time evolution is given. Finally, underlying con-

nections between oscillators are reconstructed from phase dynamics of all oscillators

using the machine learning techniques.

3.1 The Kuramoto model

As one of the model for descibing the synchronization phenomena, the Kuramoto

model consists of N globally coupled oscillators interacting with each other via non-

linear coupling, which is written as

θ̇i = ωi +
K

N

N∑
j=1

sin(θj − θi) (3.1)

74

where K denotes the coupling strength and ωi is the natural frequency of oscillator i

that follows the distribution g(ω). The collective behavior of the system is quantified

by the complex order parameter Z, which is defined as

Z = reiψ =
1

N

N∑
j=1

eiθj (3.2)

where ψ is the average phase and r indicates the phase coherence of oscillators and

plays a role of the order parameter. As K increases, r becomes a nonzero value in

the thermodynamic limit of N → ∞ at the critical strength Kc, which implies the

occurence of the phase synchronization. In this study, we consider the Kuramoto model

with natural frequencies following the normal distribution,

g(ω) =
1√
2π
e−

ω2

2 , (3.3)

and for this set of natural frequencies, the second-order synchronization transition

arises at the critical point Kc = 2/[πg(0)] =
√

8/π in the limit N → ∞ [131, 132].

For simplicity, we here used the normalized coupling strength J ≡ K/Kc in the fol-

lowing, hence the normalized critical value is Jc = Kc/Kc = 1.

For a finite population of oscillators with frequencies randomly drawn from the

Gaussian distribution, the result of critical exponents with

β = 1/2 and ν̄ = ν̄ ′ = 5/2 (3.4)

is obtained using the finite size scaling analysis

r = N−β/ν̄f(εN1/ν̄) (3.5)

where ε = |J − Jc| [140–143].

75

Figure 3.1: Schematic illustration of the process carried out for finding the coupling
strength.

3.2 Finding the coupling strength

Assuming a situation where any concrete form of dynamics is unavailable, we inves-

tigate that how accurate values of underlying coupling strengths can be obtained by

the neural network from the data for the dynamics of the order parameter, r(t), only.

As phases of oscillators and the corresponding order parameter proceed according to

Eq. (3.1), r(t) is obtained for given value of J . Once the generated time series of the

order parameter for given J goes into the neural network as an input, learning process

is carried out by a model as shown in Figure 3.1. Taking the trained neural network,

we tested for other generated 104 sets of r(t) with randomly chosen J in the range of

[0, 2].

Here, we produced configurations of r(t) for the system of N = 1000 using the

fourth-order Runge-Kutta method with a discrete time step δt = 0.05 up to a total of

2× 103 time steps. The sets of natural frequencies, {ωi}, are selected randomly from

the normal distribution given in Eq. (3.3) and initial phases, {θi(t = 0)}, are chosen

76

0

0.5

1

1.5

2

0

0.08

0.16

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2

(c)

0

0.5

1

1.5

2

0 0.5 1 1.5 2

J
,µ

J〈r̄〉
JML
µ〈r̄〉
µML

(a)

σ

J

σ〈r̄〉
σML

(b)

〈r̄
〉

J

J
〈r̄

〉

JML

0

0.5

1

1.5

2

0 0.5 1 1.5 2
100

101

102

(d)

Figure 3.2: (a) The scatter plot of prediction for coupling strength using a recurrent
neural network (light red) and using 〈r̄〉 (light blue). The line of y = x indicates
the correct value of J . For both methods of the recurrent neural network (red) and 〈r̄〉
(blue), the mean µ and the standard deviation σ are depicted in (a) and (b), respectively.
(c) Ensemble and time averaged value of the order parameter, 〈r̄〉, as a function of
coupling J for generated sample data of r(t). The system exhibits the synchronization
transition near the critical value Jc = 1. (d) 2D histogram of JML and J〈r̄〉 obtained
for each given test datasets.

randomly from the range of [0, 2π]. We generate 2 × 104 training datasets of r(t) for

each value of J ∈ [0.02, 2] with an interval of δJ = 0.02.

As shown in Figure 3.2(a), output values, JML, using recurrent neural networks

fits well with exact values of J in supercritical (J > 1) and subcrtical (J < 1)

regions both. To evaluate how accurate values of JML are obtained, we calculated the

Pearson correlation coefficient and the root mean square error, and obtained 0.9921

and 0.0727, respectively. By measuring the mean µML and the standard deviation σML

with varying actual coupling strength J , one can confirm that µML is close to J in both

super and subcritical regions, while the difference in standard deviations between two

regions appears as depicted in Figure 3.2(b). Although outputs are scattered broader in

the region J < 1 than J > 1, the tendency following the correct value of J provides

the fact that the neural network can distinguish configurations of r(t) and identify

corresponding coupling strengths.

As the result obtained can lead one to wonder what information is extracted from

the data by the neural network during training, we also compare the result with the es-

timation of J through the calculation for values of the order parameter to support the

77

quality of the result and investigate the learning of the neural network. Here, we used

time averaged value of the order parameter, r̄, over final 1000 steps of each training

datasets and calculated mean, 〈r̄〉, over all configurations with same value of J . As 〈r̄〉
increases monotonically with J as shown in Figure 3.2(c), one can estimate the coup-

ing strength for each test datasets by obtaining r̄ and comparing with Figure 3.2(c).

From results of this estimation, denoted as J〈r̄〉, their mean µ〈r̄〉 and standard devi-

ation σ〈r̄〉 are plotted in Figure 3.2(a) and (b) for comparison with µML and σML.

One can find that J〈r̄〉 is distributed in broader range than JML in subcritical region

as the Pearson correlation and the root mean square error with 0.9870 and 0.0945 are

obtained respectively for the case of J〈r̄〉. Then, the larger value of σ〈r̄〉 than σML in

J < 1 region demonstrates the better quality of the result achieved by the machine

learning.

In addition, narrow deviation in supercritical region is observed for the correlation

between JML and J〈r̄〉 as depicted in Figure 3.2(d) while the deviation in subcritical

region is broader. This implies that the information of the time-averaged value is dom-

inant for the neural network to evaluate the coupling strength in supercritical region,

while it can evaluate through acquisition of more information than the time-averaged

value from the data of r(t) in subcritical region, as smaller deviations for the machine

learning case are shown in Figure 3.2(b).

3.3 Finding the synchronized state

As the machine learning of thermodynamical phase transitions for diverse systems

have been paid much attention in previous studies [3, 9, 11, 12, 123, 124], we also

performed another study of machine learning model for the phase transition of the

Kuramoto system. Here, taking the neural network, we classify phase snapshots of all

oscillators in the steady state into subcritical and supercritical regimes and eventually

find the critical point of the system.

Again, the fourth-order Runge-Kutta method with a time step of δt = 0.01 is

78

0

0.5

1

0 0.5 1 1.5 2
10−2

10−1

100

103

(b)
0

0.5

1

−3 −2 −1 0 1 2 3

(c)

ou
tp
u
t

J

N = 200
400
800
1600
3200

(a)

|J
c
(N

)
−
J
c
|

N

0.92x−0.42

ou
tp
u
t

(J − Jc)N1/ν̄

N = 200
400
800
1600
3200

Figure 3.3: (a) Outputs of the neural network trained using data of phase snapshots as
a function of J with system size of N = 200, 400, 800, 1600 and 3200. The crossing
point of two output lines indicates Jc(N) for given N . (b) Behavior of |Jc(N) − Jc|
with increasing N . The straught line is the fitting line with slope of −0.42. (c) Scaling
plot for output lines against (J − Jc)N1/ν̄ with 1/ν̄ = 0.42.

adopted for generating 2 × 104 datasets of {θi} for each values of system size N and

J ∈ [0.01, 2.20] with δJ = 0.01. As in the previous section, for each configuration,

natural frequencies and initial phases are selected randomly from the normal distri-

bution and the uniform distribution, respectively. To avoid any transient behavior, we

collect snapshots of phases, {θi}, after the first 106 steps. For training datasets, each

snapshots are labelled through one-hot encoding where configurations obtained in su-

percritical region of J ∈ [0.01, 0.6] are encoded as (0, 1) and ones in supercritical

region of J ∈ [1.6, 2.2] are encoded as (1, 0). Moreover, we used data preprocessing

by taking cos θi and sin θi for each phases as an input, due to the cyclic feature of θi

which contains the 2π periodicity.

Constructing the fully-connected neural network, we train it with labelled snap-

shots of N phases, {θi}. When the network is optimized after the training, generated

snapshots in whole region of J goes in as an input at the test stage.

The trained neural network produces two outputs representing predictabilities for

the system to be in subcritical and supercritical region, respectively, as shown in Fig-

ure 3.3(a). And the crossing point of two output lines indicates a transition point Jc(N)

for given system size N . Since Jc(N) approaches to the critical point Jc = 1 as N is

increased, we can determine the value of ν̄ using the behavior |Jc(N)−Jc| ∼ N−1/ν̄ .

Figure 3.3(b) exhibits the finite size scaling of the Jc(N) with the exponent of 1/ν̄ =

79

Figure 3.4: Schematic illustration of learning processes by artificial neural networks
for prediction of phase dynamics. Using feedback process for given length of the time
window, L, inputs for all models are determined from the data of phase dynamics
{θi(t)} for all oscillators.

0.39 which is consistent with the exponent obtained in Ref. [140–143]. Using Eq. (3.5)

and the exponent 1/ν̄ = 0.39 calculated, output lines for different sizes are collapsed

as depicted in Figure 3.3(c).

In terms of phase transition and critical phenomena, machine learning approaches

for classifying phases and finding the critical point have been reported in classical spin

models, closed and open quantum models so far [9,11,111]. We here observe that such

studies on the nonlinear dynamical system are also achieved where the synchronization

transition is exhibited.

3.4 Prediction of the phase dynamics

Since the sine function in the coupling term of Eq. (3.1) induces nonlinear/chaotic

behavior of oscillators, the system has a sensitive dependence on initial conditions.

With the outstanding progress on the model-free prediction of chaotic dynamical sys-

80

tems [26–30], widespread application of the Kuramoto model provide sufficient mo-

tivation for the study of predicting the dynamics of each oscillators in the Kuramoto

model. In particular, reservoir computer approach has recently been adopted for vari-

ous studies of low-dimensional nonlinear systems due to its simplicity and efficiency.

In addition to the reservoir computers, we here used artificial neural networks, in-

cluding fully-connected neural networks, convolutional neural networks, and recurrent

neural networks for prediction of the Kuramoto system.

As an input for this study, time series of phase, θi(t), for each oscillators are gener-

ated. We implemented the fourth-order Runge-Kutta method with a discrete time step

δt = 0.005 up to a total of 1.95 × 105 time steps for this generation of datasets. To

examine predictability for behaviors of all oscillators, for reservoir computer, we take

9 × 104 steps of {cos θi(t), sin θi(t)} as washout period and subsequent 105 steps as

an training data to produce phases for last 5 × 103 time steps by feeding the output

data back to the reservoir in turn. For other models, taking 1.9× 105 steps for training

datasets, subsequent 5×103 time steps of phases are produced as an output by the neu-

ral network to compare with the exact dynamics of θi(t). The detailed description for

these methods is illustrated in Figure 3.4. For reservoir computer, we set time length

L = 1 to predict the henceforth phase dynamics, while L = 200 is given for inputs of

the other models.

Figure 3.5 shows the prediction for phase dynamics using various machine learn-

ing models. As shown in Figure 3.5(b), reservoir computer produces accurate predicted

data for observed time steps. And one can predict the phase dynamics for about 2000

and 3000 steps using a recurrent neural network, a convolutional neural networks, and

a fully-connected neural network, as depicted in Figure 3.5(c), (d), and (e). Although

the Kuramoto model with Eq. (3.1) contains nonlinearity, machine learning approaches

can be applied to learn the behavior of the phase dynamics and predict future behav-

iors.

81

(a)

(b)

(c)

(d)

(e)

t

Figure 3.5: Prediction for the phase dynamics of the Kuramoto oscillators using sev-
eral machine learning methods. (a) The actual evolution of {θi(t)}. The difference
between the actual data and the predicted solution obtained using (b) a reservoir com-
puter, (c) a recurrent neural network, (d) a convolutional neural network, and (e) a
fully-connected neural network.

82

3.5 Reconstructing the network structure

Identifying the network topology can be one of the main problem for predicting the

behavior of the system and understanding properties of individuals or implicit mech-

anisms in various systems such as neuronal connections in the brain and epidemics in

social networks. Since it is impossible to directly determine the neuronal structure, for

example, developments for measuring the time evolution of nodes has been studied

to indirectly recover the structure. In the Kuramoto model, it has been studied for the

relationship between the modular structure and the synchronization dynamics by ob-

serving the correlation between pairs of oscillators which is ordered in a hierarchical

way [144]. Applying to more general networks than the modular network, we here

assume the situation where the connections of network are not provided but only indi-

vidual patterns which is produced through inherent interactions between them. As it is

of great potential application, machine learning approach is performed to detect whole

network topology by comprehending interactions between signals.

For this purpose, we produce 106 training datasets for the coupled oscillators on

random networks and calculate dynamics of each oscillators following the equation

θ̇i = ωi +K

N∑
j=1

Aij sin(θj − θi) (3.6)

where Aij is the adjacency matrix of the given network. Here we adopt N = 29 and

the natural frequency set, {ωi}, selected regularly from the normal distribution, given

in Eq. (3.3). And the given set of {ωi} are shuffled and assigned to the 29 nodes on

the visual cortex network [145], and calcuation for Eq. (3.6) is progressed to generate

test datasets. As in the previous section, implementing the fourth-order Runge-Kutta

method with a time step δt = 0.05 up to a total of 200 steps, sets of time series of

phases, {θi(t)}, are generated for input. And we set the initial phase as θi(0) = 0 for

all i.

83

0

10

20

0 5 10

N
o
d
e

t

−π

0

π(a)

N
o
d
e

Node

0

10

20

0 10 20

(b)

N
o
d
e

Node

0

10

20

0 10 20
0

0.5

1(c)

N
o
d
e

Node

0

10

20

0 10 20

(d)

Figure 3.6: Reconstruction of the visual cortex network with N = 29. (a) An input
dataset of the actual phase evolution, {θi(t)}, for one of the sample set of shuffled nat-
ural frequencies. (b) The actual adjacency matrix of the visual cortex network. Black
square indicates the link existing on the network. (c) Outputs obtained through recur-
rent neural network. Output elements are in a range of [0, 1]. (d) Comparison between
the actual adjacency matrix and the rounded values of obtained output elements in
Panel (c). Blue (green) square denotes the case when the corresponding element in the
actual network is zero (one) and the one in the rounded output element is also zero
(one). Red (yellow) square denotes the case when the corresponding element in the
actual network is zero (one) and the one in the rounded output element is one (zero).

84

Figure 3.6(a) illustrates one of the pattern samples used for testing the neural net-

work. The actual given network topology for this pattern is depicted as the adjacency

matrix shown in Figure 3.6(b). As the trained neural network produces real numbers

in the range of [0, 1] (see Figure 3.6(c)) which implies the probabilities for each links

or elements in the adjacency matrix to exist, these outputs are rounded off to 0 or 1

as in Figure 3.6(d), to compare with the actual matrix. Although phase dynamics of

all osillators exhibit irregular and complex behaviors, the prediction for the underlying

network topology is successfully achieved by the neural network as shown in Fig-

ure 3.6(b) and (d). We obtained the accuracy of 93.0% for all elements in adjacency

matrices of total 103 samples.

3.6 Summary

To summarize, we have demonstrated several machine learning tasks for the Kuramoto

model using various machine learning approaches. In spite of abundant properties of

the system such as phase transition and chaotic behaviors, little attention has been paid

to machine learning approaches for the Kuramoto system. As the strength of interac-

tion affects the dynamics of the system, the trained machine that observes the behavior

of the order parameter to evaluate the coupling strength is achieved. In subcritical re-

gion, especially, the neural network displays noteworthy performance by overcoming

the limit of the distinguishability using statistical figures. In addition, we observe that

a set of phases in the steady state can play a role for discriminating states and deter-

mining the critical behavior of the system.

Despite of the nonlinearity of the system, successful prediction for the future

behavior of the Kuramoto system is achieved by employing machine learning ap-

proaches. Furthermore, training the patterns of individuals on real brain network, un-

derlying connections between them can be identified by the well-trained machine.

As great performance is demonstrated for the Kuramoto model, which is a simple

and basic model for the synchronization phenomena, such machine learning methods

85

have extensive applicability to other nonlinear models or systems in nature. Conse-

quently, we believe that our work may shed light on the further studies of machine

learning on nonlinear and chaotic systems.

86

Chapter 4

Conclusion

With growing interest in the machine learning, recent works on physical systems has

demonstrated successful progresses by adopting the machine learning approaches for

tasks of classification and generation.

This study analyzed the quantum phase transition in a quantum contact process

through machine learning approaches based on the artificial neural network and dis-

covered an open quantum system’s critical phenomenon different from a classical sys-

tem. Also, we analyzed the critical phenomena of the synchronization transition of

the Kuramoto model with machine learning approaches and predicted the dynamic be-

havior of the model. It showed that the machine learning approached is an alternative

framework for numerical analysis for synchronization phenomena.

Phase transitions in dissipative quantum systems are intriguing, because they are

induced by the competition between coherent quantum and incoherent classical fluc-

tuations. We investigated the interplay of quantum and classical absorbing phase tran-

sitions arising in quantum contact process in one dimension. The Lindblad equation

contains two model parameters ω and κ that adjust the degrees of quantum and clas-

sical effects, respectively. We found a characteristic value κ∗ that separate a novel

class of the quantum contact process from the directed percolation class. In the region

[0, κ∗], the exponent α associated with the density of active sites is continuously vary-

ing, whereas for κ > κ∗. α has the directed percolation value. We used the neural

network machine learning technique to identify a transition point ωc(κ) and determine

the correlation length exponent. By performing extensive quantum jump Monte Carlo

87

simulations at ωc(κ), we successfully determined all the other critical exponents of

the one dimensional quantum contact process. Finally, we found that the continuously

varying exponent behaves similarly to the one in the tricritical contact process with

long-range interactions.

We performed various machine learning approaches for the Kuramoto system. As

the system displays rich properties such as synchronization transition and nonlinearity

with varying parameters, we applied machine learning for finding the value of the cou-

pling strength and the critical value. Considering the finite size scaling, we confirmed

that results follow the critical behavior of the Kuramoto system. By focusing on the

phase dynamics of all oscillators, we applied the performance of the neural network for

predicting future behaviors of all oscillators and detecting underlying network topol-

ogy. As the Kuramoto model offers support for the application on real-world systems

exhibiting synchronization phenomena or nonlinear behaviors, our work has potential

for utilizing the machine learning approaches for such systems.

As the quantum contact process is a typical model of the open quantum system, this

study shows that the machine learning approach can be applied to the open quantum

system beyond the classical and closed quantum systems. Though this study focuses

on the Kuramoto model as a typical nonlinear dynamics model exhibiting synchro-

nization transition, we expect that the artificial neural networks will be a significant

breakthrough in follow-up studies to predict the dynamical behavior of the chaotic

system and to illuminate synchronization phenomena.

88

Appendices

89

Appendix A

Feed-forward neural networks

This appendix introduces a feed-forward neural network (FNN), the basic model of

artificial neural networks, but is widely used in supervised learning. The main feature

of FNN is forwarding propagation and backpropagation. In forwarding propagation,

the neurons’ state is updated sequentially from the input layer to the output layer.

Oppositely, in backpropagation, the model parameters between the layers are updated

sequentially from the output layer to the input layer [146].

A.1 Forwarding propagation

A fully-connected neural network (FCN) is a basic FNN model that consisted of only

fully-connected layers. Figure A.1 shows a graphical representation of the FCN con-

sisting of k fully-connected layers. We assume that the input and the neurons’ state of

the ith layer are mi-dimensional vector x(i) and ni-dimensional vector y(i). Also, the

weight matrix and the bias vector are denoted asW (i) and b(i), respectively.

Figure A.1: Graphical representation of the forwarding propagation of FCN. The cir-
cle represents a fully-connected layer, including the neurons’ state. The arrow repre-
sents the weight matrix and the bias vector between layers. Forwarding propagation
progresses following the arrow’s direction, and the layer passes its neurons’ state to
the next layer.

90

An input layer is the first layer that does not have weight matrix and bias vector

and its states x(1) is an input of the FNN: x(1) = x. Here, we regard the data as vectors

x without losing generality because the input layer fully connects with the first hidden

layer. An output layer is the last layer and its states y(k) is an output of the FNN.

The rest of the layers except the input layer and the output layer are called the hidden

layers.

The main structure of the FNN is the sequential connections from the input layer to

the output layer through several hidden layers. The FNN may have multiple branches,

but branches should merge in one output layer. Additionally, a loop is not allowed.

The prototype that has no hidden layer is the brain model, so-called perceptrons

[147, 148]. On the other hand, a deep neural network has multiple hidden layers (k ≥
2), and the method for the deep neural network are called deep learning [110].

Generally, The FNN employs another layer type instead of a fully-connected layer.

For example, a convolutional neural network is the FNN built of convolutional layers,

pooling layers, and fully-connected layers [44].

In forwarding propagation, The current ith layer’s input is the previous (i − 1)th

layer’s output as follows

x(i) = y(i−1). (A.1)

We obtain the output for a given input, updating all layers’ states in the FNN sequen-

tially as above.

A.2 Backpropagation

Training data x of supervised learning has a label by a correct answer ŷ. Supervised

learning aims to train the model and obtain a result close to the correct answer. In

Section 1.2.1, the loss function E is set by the explicit analytic form with the correct

answer and the model’s output:E = E(y(k), ŷ). Again, the learning is to adjust model

91

Figure A.2: Graphical representation of the backpropagation of FCN. The structure
of FNN is the same as it of the FNN in Figure A.1. However, the backpropagation
following the direction of the arrow is reversed in Figure A.1.

parameters, including weight matrix and bias vector, so that the average value of the

loss function is minimized for the training dataset.

Since the loss function is a convex function near the correct answers for a given

input, tuning the model parameter to the opposite direction of the gradient vector min-

imizes the loss function’s value. This method is called the gradient descent method

(GDM), or the steepest descent method:

θnew − θ = −α∂θE (θ ∈ θ),

θnew − θ = −α∇θE (θ ∈W , b), (A.2)

where θ is a model parameter, W = {W (1), · · · ,W (k)}, and b = {b(1), · · · , b(k)},
and α is a learning parameter. The learning rate is a hyperparameter in the model

tuning the training speed and is lower than one, for example, 10−3 and 10−4.

As changing data, adjusting the model parameter by GDM is repeated until the

average value of the loss function reaches the minimum point (threshold). As above,

tuning the model parameter for each data is called the method of stochastic gradient

descent [149, 150], but tuning the model parameter for grouped data is the mini-batch

algorithm: Refer Appendix C.2.

The core of GDM is calculating the gradient of the loss function for each model

parameter. Although each model parameter’s gradient vector is calculated in parallel, it

is too expensive to compute them. In the mind of dynamic programming, the gradient

is calculated sequentially from the output layer to the input layer, such as in Figure A.2,

92

to avoid repeated calculations. This algorithm is backpropagation.

Here, we derive the backpropagation algorithm for the FCN in Figure A.2. Note

that the inactivated neurons’ state of the ith fully-connected layers is

z(i) = W (i)x(i) + b(i), (A.3)

and

y
′(i)
j = f ′

(i)
(
z

(i)
j

)
, j ∈ Zni , (A.4)

where f ′(i)(x) is the derivative function of the ith layer’s activation function f (i)(x)

and z(i)
j is the (j + 1)th element of the z(i). We denote ith layer’s an error vector as

η(i), which is the differential change of the loss function for the bias vector on the ith

layer. The output layer’s error is

η(k) ≡ ∇b(k)E = y′(k) ◦ ∇y(k)E. (A.5)

where and ◦ is a coefficient-wise product (the Hadamard product).

The differential chain rule induces the relation of the errors between two neighbor-

ing layers:

η(i) = y′(i) ◦ T (i+1)η(i+1) (1 ≤ i < k), (A.6)

where T (i) is the transpose of W (i); T (i) =
(
W (i)

)T
. For each layer, the differential

change of the loss function for the weight matrix is obtained by the error vector as

follows

∇W (i)E = η(i) ⊗ x(i) (1 ≤ i ≤ k), (A.7)

where ⊗ is a tensor product.

93

Finally, we calculate the differential change of all layers’ model parameters se-

quentially from the output layer to the input layer, such as in Figure A.2. Furthermore,

we update the model parameters following the GDM.

It is practically useful to keep the inactivated neurons’ state z(i) for each layer

when implementing a backpropagation algorithm in a programming language. Other-

wise, keeping only the neurons’ state y(i), the forwarding propagation is performed

in backpropagation to obtain y′(i) is required to calculate errors η(i). To avoid re-

dundant calculations, we store the inactivated neurons’ state calculated in forwarding

propagation, and we reuse z(i) to calculate errors in backpropagation. This technique

considerably improves calculation speed for deep neural networks, which has many

hidden layers.

94

Appendix B

Recurrent neural networks

As deep learning model for dealing with the sequential data, recurrent neural network

has recurrent layers with cyclic connection topology, which leads to distinction from

the fully-connected neural networks. This structure of recurrent neural network resem-

bles biological brain modules which also exhibits recurrent connection pathways.

B.1 Reservoir computer

Reservoir computing [126, 127], a class of recurrent neural networks, is composed of

an input layer, an output layer and a reservoir layer which connects between input

and output layers. And neurons in the reservoir layer has internal links including the

self-loop as in the recurrent layer.

In this section, as the input vector u(t) goes in, the state vector r is updated ac-

Figure B.1: A graphical representation of a reservoir computer.

95

cording to the equation

r(t+ 1) = (1− λ)r(t) + λ tanh(Ar(t) +Winu(t) + bin) (B.1)

whereA is the weighted adjacency matrix of the reservoir network,Win is the random

matrix which maps an input vector u(t) into a state vector r(t), λ is the leaking rate,

and bin is the bias. And the output vector y(t) is determined by a linear function

y(t) = Woutx(t), xT (t) =
[
1|uT (t)|rT (t)

]
(B.2)

whereWout denotes the output matrix which maps a reservoir state into a output vector.

In the case of reservoir cumputering, when the updated state vector r of the reser-

voir is given through Eq. (B.1), the output weights Wout are determined by the equa-

tion [28, 127]

Wout = Ŷ X>(XX> + γI)−1 (B.3)

where λ is the ridge regularization parameter and I is an identity matrix. And X and

Ŷ are the collecting matrix of state vector x and the desired output vector ŷ(t) in the

training process, respectively.

X = [x(1)| · · · |x(tmax)] , Ŷ = [ŷ(1)| · · · |ŷ(tmax)] (B.4)

While the classical recurrent neural network adopts the back-propagation through

time which is based on a gradient descent method for recurrent layers, for reservoir

computer, A, Win, and bin are randomly created and unchanged during training, and

only the output weightsWout are computed using the Moore–Penrose pseudo inverse.

96

Appendix C

Techniques for deep learning

In deep learning, the mains are which layer to employ to build an artificial neural net-

work and connect between layers to implement the structure. Whereas artificial neural

networks’ architecture depends on the problem, algorithms for optimizing artificial

neural networks continue to be suggested and developed. This appendix includes the

know-how to manage datasets for preparing optimization, advanced algorithms based

on the gradient descent method, and other technical remarks.

C.1 Data management

Splitting dataset

Artificial neural networks have two types of parameters. One is a model parameter that

is components of the model, such as weight matrix, bias vector. The other is a hyper-

parameter that is a parameter related to the structure of the model such as the number

of layer and neuron, type of layer, and connection between layers and is a parameter

related to the learning algorithm such as loss function, learning rate, regularization

rate, momentum rate. In many cases, the designer tunes hyperparameters outside the

model, and the model parameter is internally determined by the learning method after

the hyperparameters are fixed.

Because the artificial neural network parameters are divided into model parameters

and hyperparameters, we need to separate the total dataset into two d for each parame-

ter. So, we split the dataset into the training dataset for adjusting the model parameters

97

and the validation dataset for tuning the hyperparameters.

The process of consuming the training dataset and the validation dataset is as fol-

lows. First, we make a baseline model for arbitrary hyperparameters, and we optimize

a baseline model using a training dataset, then we obtain the trained baseline model.

We measure the performance of a trained baseline model for the validation dataset.

The model performance is usually quantified with the average loss or average accu-

racy for a given dataset. Of course, the trained baseline model’s model parameter is

not changed when the trained baseline model deals with the validation dataset. Then,

we make a new model perturbing a baseline model’s hyperparameters, the model learns

the training dataset, and we evaluate the model performance for the validation dataset.

We compare the model performance with the baseline model and the previous models.

We repeat the above process until we find the model showing the best performance for

the validation dataset.

What ratio should we divide a given dataset into a training dataset and validation

dataset? In various tutorials, it is recommended to divide the training dataset and val-

idation dataset among the total datasets given in the design into a specific ratio: 10:1,

20:1. However, the above ratios of the two datasets are just a guideline, not an uncondi-

tional one. Instead, a ratio between the two datasets depends on the data’s complexity

and the entire dataset’s size. The main factor in dividing the dataset is the size of the

validation dataset. The larger the validation dataset, we obtain the model’s average

values with the smaller standard errors. Furthermore, we estimate precisely the perfor-

mance of the model when the model is verified. Besides, there is a limit to enhancing

a fixed model’s performance by increasing the training dataset’s size. Therefore, the

designer retains the minimum number of validation datasets to ensure confidence inter-

vals for the model’s performance among the entire dataset, then allocates the remaining

dataset as the training dataset.

98

C.2 Advanced optimization

Mini-batch algorithm

The gradient descent method is a numerical algorithm to find a global minimum on

the parameter space, adjusting model parameters to reduce the loss function’s value

infinitesimally. Appendix A.2 establishes the model parameter change for single data

using the gradient descent method following Eq. (A.2). How we perform the gradient

descent method for a given datasetX consisting of N data?

We first suggest calculating the model parameter change for each data and updating

the model parameters as an average of them. We revise Eq.(A.2) and obtain the model

parameter change for the dataset as follows

θnew − θ = −αEx [∂θE] , x ∈X, (C.1)

where θ is a model parameter, α is a learning rate, and E is the loss function. This

method is an ordinary gradient descent method.

A model optimized with the ordinary gradient descent method is affected by the

model parameters’ initial condition. The crucial problem is that the model parameter is

trapped in the local minimum on the parameter space, leading to a failure to optimize

it.

To solve the problem of being trapped in the local minimum, we introduce the

stochastic process into the ordinary gradient descent method. We select one data from

the dataset randomly, calculate the model parameter change, and update it. This method

is the method of stochastic gradient descent (SGD) or online learning.

The number of data used to update model parameters divided by the number of

total data in the dataset indicates how much the model parameters are updated where

the unit is an epoch. When the model is optimized with the SGD for one epoch, the

model parameters are updated the number of the total data N times.

99

Here, we encounter a technical problem when implementing artificial neural net-

works on the Turing machine. The artificial neural network’s model parameters are

maintained through computer storage devices such as memory or disk drives, so it is

necessary to physically update model parameters. Moreover, the physical time increase

with the number of model parameters. Since artificial neural networks consist of many

model parameters, it is very time-consuming to update the model parameters for data

by data.

To resolve this problem, we expand the SGD to select multiple data from datasets

and update model parameters all at once. This algorithm is called a mini-batch algo-

rithm. We choose dataB times randomly from the dataset, where the group of selected

data is called a batchXBatch.

XBatch = {x0, · · · ,xB−1} ⊂X. (C.2)

We calculate the model parameter change for each data in a batch and update the

model parameters as an average of them. We revise Eq. (C.1) for a batch as follows

θnew − θ = −αEx [∂θE] , x ∈XBatch. (C.3)

If the batch size is one, the mini-batch learning reverts to online learning. If the

batch size is the dataset’s size, the mini-batch learning reverts to the ordinary gradient

descent method, sometimes called full-batch learning.

When the model is optimized with mini-batch learning for one epoch, the model

parameter is updated N/B times, Then computational time to update the model pa-

rameter is reduced by B times compared to online learning.

Another advantage of the mini-batch algorithm is calculating the model parameter

change for each data in parallel. In other words, we employ efficient methods of par-

allel computing, such as multiprocessing and distributed computing, to implement the

mini-batch algorithm.

100

The weakness of the mini-batch algorithm is difficult to find a suitable batch size.

Many tutorials often set the batch size as a power of two, such as 16, 32, and 64, which

is the numbers usually related to the method of parallel computing. Increasing the

batch size decreases the calculation time, but it needs a better computer specification to

calculate the model parameter change for the batch, and it may induce the cumulative

error. Even if the model and optimization methods are the same, the appropriate batch

size may differ depending on the computer which performs the calculation.

Accelerating the gradient descent method

The momentum method [151, 152] is an algorithm modifying the gradient descent

method to accelerate convergence and reduce iterations. Let us introduce a momentum

mi for each model parameter θi. Before updating model parameters, we first renew

momentums with the loss function’s gradient for the model parameters, as follows

mnew = µm+∇θE, (C.4)

where µ denotes the momentum rate determining how long the momentum is main-

tained and usually is less than one, and E denotes the loss function. We set the initial

value of the momentums zero. Then, we modify the updating rule of the gradient de-

scent method as above Eq. (A.2) to

θnew = θ − αmnew, (C.5)

where α is the learning rate. If the momentum rate is zero, the momentum method

retrieves the original gradient descent method. Nesterov’s method [153] is the variation

of the momentum method.

Another algorithm for accelerating the gradient descent method is the adaptive

method. The adaptive method normalizes the change of model parameters for each up-

dating step. There are various adaptive methods such as AdaGrad [154], RMSprop [121],

101

and Adam [120,155], depending on how to normalize the changes. Here, we introduce

RMSprop. Similar to the momentum method, we first consider history ni for each

model parameter θi. Before updating the model parameters, we renew the history with

the square of the loss function’s gradient for the model parameter, as follows

nnew = νn+ (1− ν)g2, g = ∇θE,
(
g2
)
i

= (gi)
2 (C.6)

where ν denotes the discounting factor (0 < ν < 1). We set the initial value of the

histories zero. Then, we modify the updating rule of the gradient descent method to

θnew = θ − α g√
nnew + ε

,
√
nnew =

√∑
i

ni;new (C.7)

where ε is a small constant for numerical stability to prevent the denominator be zero

(ε � 1). Histories suppress the model parameters to be updated slowly along the

previous direction but promote the model parameter updated along the new direction.

We usually employ both the momentum and adaptive methods and update the

model parameters with the momentum and history.

Overfitting

When we train the model with the gradient descent method repeatedly, the average loss

for the given training dataset decreases gradually for the epochs.

Figure C.1(a) shows that the baseline model’s average losses for a training dataset

and a validation dataset decrease and converge to each value. The baseline model, such

as the linear fitting model or the perceptron model, has a relatively small number of

model parameters than the deep learning model. The baseline model’s average loss for

even the training dataset converges to a value greater than 0.

On the other hand, deep learning models’ average loss for the training dataset

decreases continuously over the epoch. However, the average loss for the validation

dataset decreases initially, then increases after the point in which the average loss for

102

Figure C.1: Schematic plots of the baseline and deep learning models’ average loss for
a training dataset and a validation dataset. (a) Plots of the average loss of the baseline
and deep learning models over epoch. The baseline model’s average loss for the train-
ing dataset and the validation dataset denotes a red dotted line and a solid red line. The
deep learning model’s average loss for the training dataset and the validation dataset
denotes a blue dotted line and a solid blue line. We denote the point of the minimum
average loss of the deep learning model for the validation dataset as T ∗. (b) Plots of
the average loss of the several deep learning models over epoch. We depict the average
loss for the training dataset as a dotted line and the validation dataset as a solid line.

the validation dataset is minimum. Since we evaluate the model’s performance by the

average loss for the validation dataset, the optimal model is in the epoch T ∗. The

model, which has a bigger average loss than the optimal model after the epoch T ∗, is

called an overfitted model.

Theoretically, the model is overfitting when the model parameter space is larger

than the training dataset space depending on the data space and the number of training

data points.

Classical fitting methods appropriate to the baseline model have a restricted num-

ber of model parameters and do not face the overfitting problem. However, deep learn-

ing encounters the overfitting problem frequently because the deep learning model has

numerous model parameters even close to the dataset space’s dimension.

Although an optimizer may overfit a deep learning model, the optimal deep learn-

ing model performs better than the baseline model. So, we stop training the model

before the model is overfitted and take the optimal model.

103

As shown in Figure C.1(a), the training and validation datasets’ average losses tem-

porarily increase and decrease again to deviate from the local minimum. Meanwhile,

only the average loss for the validation dataset decreases with up and down repeatedly.

When the model is at the point of a minimum average loss, it is hard to know whether

the model is in a local minimum or a global minimum of the average loss for the vali-

dation dataset, practically. Therefore, the methods are developed as possible to prevent

and restrain overfitting in the gradient descent method.

We first consider increasing the number of training dast. Sampling additional data

makes the training dataset space larger and solves the overfitting problem. However,

it is often difficult to obtain additional training data in practice, and enlarging the

training dataset with noise and bootstrapping brings another problem. Keeping in this

mind, controversially, we reduce the model parameters such as removing the layer and

decreasing the number of neurons to prevent overfitting. However, reducing the model

affects the optimal model performance to decrease: No free lunch.

Regularization Another way to prevent overfitting is regularization. When the gra-

dient descent method is overfitting a model, the particular model parameters’ value

grows extremely. Therefore, the overfitted model only memorizes the training dataset

but does not learn about the data population.

Therefore, to prevent an inhomogeneous change of model parameters, we add a

penalty for increasing the weight’s value to the average loss. This penalty is called

regularization.

For example, L1 regularization adds an absolute value of the weights to the average

loss Ē, such as

Ē1 = Ē + λ
∑
i

|θi|, (C.8)

104

and L2 regularization adds a squared value of the weights to the average loss, such as

Ē2 = Ē +
λ

2

∑
i

θ2
i , (C.9)

where the λ denotes the regularization rate and the θi denotes the model paramter,

including the weights and biases.

We apply the gradient descent method for the average loss with L1 regularization

and revise the updating rule as above Eq. (A.2) to

θnew − θ = −α∂θĒ − αλ sgn(θ), θ ∈ θ, (C.10)

where α denotes a learning rate and sgn(x) denote a sign of a real number x. Likewise,

we obtain the updating rule for L2 regularization as follows

θnew − θ = −α∂θĒ − αλθ, θ ∈ θ. (C.11)

We remark that increasing the regularization rate to restrain the overfitting, but a

large regularization rate may disturb training the model. Thus, we tune the regulariza-

tion rate comparing a learning rate.

Dropout The heart of regularization is to prevent the inhomogeneous rapid growth

of some weights’ value. In this mind, the dropout [54] is developed to select updat-

ing weights stochastically, comparing the original gradient descent method updates all

weights concurrently.

Here, we introduce an adjacency factor for weights called a mask A, such as

Eq. (1.68) in a sparsely-connected layer. If weight θi participates in the updating rule,

then the mask for weight, Ai is 1. Otherwise, the mask Ai is zero. The probability of

the mask is 0 is p, the probability of the mask is 1 is 1 − p, and p is called a dropout

rate.

105

Each updating, we first sampling the mask for the weight from the probability

distribution. We perform the gradient descent method for modified weights θ′i, masked

weights, and update the original weights with changes in the masked weights.

θi;new − θi = −α∂θ′iĒ(θ′i), θ′i = Aiθi (C.12)

Like the regularization rate, we note that increasing the dropout rate affects regu-

larization but interrupts training a model.

106

Appendix D

Kasteleyn-Fortuin formalism

Owing to Kasteleyn-Fortuin formalism [38] that connects the percolation model [39]

to the Potts model [40], though there is no free energy governing the percolation tran-

sition, we can analyze the percolation transition following the phase transition theory.

Nevertheless, there is no review including calculations of the Kasteleyn-Fortuin for-

malism on complex networks, so we contain the details here.

Percolation on networks

Let us consider a network consisting of N sites and B bonds. A bond links between

two sites, and we represent the connectivity of the network as the adjacency matrix A

or the graph G(N,B) in the graph theory. If the adjacency matrix is a constant for the

time, the network is quenched.

Here, we introduce the bond percolation model on the quenched networks. In the

bond percolation model, the bond has two states, occupied state or vacant state; Mean-

while, the site percolation has two-state sites. Under the bond percolation, each bond

is occupied with the occupation probability p or becomes a vacant state with the prob-

ability (1− p), independently. Once determining all bond’s state, we obtain a graph G′

consisting of N sites and the B′ occupied bonds, which is the subgraph of the graph

G. So, the probability that we take the subgraph G′ by percolating the graph G is as

follows

P (G′) = pB
′
(1− p)B−B′

. (D.1)

107

We can measure the physical or mathematical quantity A(G′) on the subgraph G′,
and then the average value of the 〈A〉 for percolating the graph G follows as

〈A〉 =
∑
G′∈G

P (G′)A(G′). (D.2)

We obtain the average of the 〈A〉 in the thermodynamic limit (N →∞) such that

〈A〉∞ = lim
N→∞

N−1 〈A〉 (D.3)

We are interested in the emergence of the giant (infinite) cluster after percolating

the network, depending on the occupation probability p in the percolation model. Here,

a cluster is a set of sites connected through occupied bonds, and the cluster’s size is

the number of sites belonging to the cluster. We first look up the order parameter P∞,

the probability that a site belongs to the giant clusters such that

P∞ = 1−
〈∑

c

′
sc

〉
∞

, (D.4)

where
∑

c
′ denotes the summation for only finite clusters, and sc denotes the cluster

c’s size.

Next, the mean cluster size S is as follows,

S =

〈∑
c

′
s2
c

〉
∞

. (D.5)

Potts model on networks

The Potts model is a generalized model of the Ising model for extending the spin’s

state. In the Potts model on the network, a spin i is put on each site and can have

q states; σi = 1, · · · , q. A spin interacts with the other spin through the (occupied)

bond, and J denotes the coupling constant, determining the strength of an interaction

108

between two spins. The Hamiltonian is defined as follows,

H = −J
∑
〈i,j〉

δσiσj − h
∑
i

δσiσ0 , (D.6)

where
∑
〈i,j〉 is the summation for pairs of neighboring two spins i and j, h is the

external field along the direction of σ0, and δσiσj is the Kronecker delta such that

δσiσj =

 1 (σi = σj)

0 (σi 6= σj)
. (D.7)

When q = 2, the Potts model retrieves the Ising model.

We calculate the partition function of the Potts model as follows

Z =
∑
{σ}

exp(−βH) =
∑
{σ}

∏
〈i,j〉

exp(Kδσiσj)
∏
i

exp(Hδσiσ0), (D.8)

where K = βJ , H = βh, β = 1/(kBT), T denotes temperature, and kB is the

Boltzmann constant.

To compute the partition function for the Potts model on a network consisting

of N spins, we first focus on two spins to understand the problem. We introduce a

mathematical trick such that

eKδσiσj = 1 + (eK − 1)δσiσj = 1 + uδσiσj ,

eHδσiσ0 = 1 + (eH − 1)δσiσ0 = 1 + vδσiσ0 , (D.9)

where u = eK − 1, and v = eH − 1. Then, we obtain partition function for two spins,

109

such as

Z2 =
∑
{σ1,σ2}

exp(Kδσ1σ2 +Hδσ1σ0 +Hδσ2σ0)

=
∑
{σ1,σ2}

(1 + uδσ1σ2)(1 + vδσ1σ0)(1 + vδσ2σ0)

= q2 + q(u+ 2v) + 2uv + uv2 + v2

= u0(q + (1 + v)1 − 1)2 + u(q + (1 + v)2 − 1) (D.10)

Here, we use the following calculations,

∑
{σ}

(1) = q2, (D.11)

∑
{σ}

δσ1σ2 = q, (D.12)

∑
{σ}

δσ1σ0 =
∑
{σ}

δσ2σ0 = q, (D.13)

∑
{σ}

δσ1σ2δσ1σ0 =
∑
{σ}

δσ1σ2δσ2σ0 =
∑
{σ}

δσ1σ0δσ2σ0

=
∑
{σ}

δσ1σ2δσ1σ0δσ2σ0 = 1. (D.14)

Let us consider the meaning of Eq. (D.10). The first term of the equation means

the number of cases where two spins can have a state independently; q2. However, the

correction (1 + v) − 1 comes from the interaction between the external field σ0 and

the single spin. The second term of the equation means the number of cases where

two spins have the same state; q. The correction (1 + v)2 − 1 and also from the in-

teraction between the external field σ0 and the spin cluster consisting of two spins,

and the weight u comes from the interaction between the external field and the bond

connecting two spins.

Following this interpretation, we can obtain the partition function for the graph G

110

as follows

Z =
∑
G′∈G

uB
′∏
c

(q + (1 + v)sc − 1) . (D.15)

Kasteleyn-Fortuin mapping

To connect the Potts model with the Bond percolation model, let us parameterize the

Potts model in terms of the percolation model. So, we assume the relation between the

two models, such as

u =
p

1− p, p = 1− e−K . (D.16)

We can rewrite the partition function of Eq. (D.15) as the following expectation

value in the percolation model,

Z = eBK
∑
G′∈G

pB
′
(1− p)B−B′∏

c

(
q + eHsc − 1

)
= eBK

〈∏
c

(
q + eHsc − 1

)〉
. (D.17)

Furthermore, in the thermodynamic limit, free energy per site f is as follows,

f(q,K,H) = lim
N→∞

N−1 lnZ. (D.18)

Using free energy f , we analyze the phase transition for the Potts model, not the per-

colation model.

Here, we introduce a new free energy g, the first derivative of the free energy f for

111

q in the limit q → 1.

g(K,H) ≡ ∂

∂q
f(q,K,H)

∣∣∣∣
q→1

(D.19)

= lim
q→1

lim
N→∞

1

NZ

∂Z

∂q

= lim
N→∞

1

N

〈∑
c

e−Hsc

〉

=


〈∑

c e
−Hsc

〉
∞ , (H = 0)〈∑

c
′e−Hsc

〉
∞ , (H > 0)

(D.20)

The Potts model’s order parameter is defined as the first derivative of the free

energy f for the effective external field H as follows

m ≡ ∂f

∂H

∣∣∣∣
H→0+

. (D.21)

Following the above formalism, we can consider the order parameter for a spin model

governed by the free energy g, such as

mp ≡
∂g

∂H

∣∣∣∣
H→0+

. (D.22)

Here, we find the order parameter mp corresponding to the order parameter of the

percolation model;

P∞ = 1−mp. (D.23)

Furthermore, the magnetic susceptibility χ is defined as the second derivative of the

free energy f ;

χ ≡ ∂2f

∂H2

∣∣∣∣
H→0+

. (D.24)

112

Then, susceptibility for the free energy g, χp is the same as the mean cluster size of

the percolation model,

χp ≡
∂2g

∂H2

∣∣∣∣
H→0+

= S. (D.25)

Therefore, even though the percolation model does not have the Hamiltonian,

Kasteleyn-Fortuin formalism maps the percolation model to a spin model governed

by free energy g and analyzes the percolation transition by following phase transition

theory. Moreover, the formalism provides physical quantities such as heat capacity,

hardly to be imaged mathematically for the percolation model, thereby enriches the

understanding of percolation transition.

113

Bibliography

[1] G. Carleo, I. Cirac, K. Cranmer, L. Daudet, M. Schuld, N. Tishby, L. Vogt-

Maranto, and L. Zdeborová, “Machine learning and the physical sciences,” Rev.

Mod. Phys., vol. 91, p. 045002, Dec 2019.

[2] B. S. Rem, N. Käming, M. Tarnowski, L. Asteria, N. Fläschner, C. Becker,

K. Sengstock, and C. Weitenberg, “Identifying quantum phase transitions using

artificial neural networks on experimental data,” Nature Physics, vol. 15, no. 9,

pp. 917–920, 2019.

[3] A. Bohrdt, C. S. Chiu, G. Ji, M. Xu, D. Greif, M. Greiner, E. Demler, F. Grusdt,

and M. Knap, “Classifying snapshots of the doped hubbard model with machine

learning,” Nature Physics, vol. 15, no. 9, pp. 921–924, 2019.

[4] W. Yang, X. Zhang, Y. Tian, W. Wang, J. Xue, and Q. Liao, “Deep learning for

single image super-resolution: A brief review,” IEEE Transactions on Multime-

dia, vol. 21, no. 12, pp. 3106–3121, 2019.

[5] J. Schmidt, M. R. G. Marques, S. Botti, and M. A. L. Marques, “Recent ad-

vances and applications of machine learning in solid-state materials science,”

npj Computational Materials, vol. 5, p. 83, dec 2019.

[6] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd,

“Quantum machine learning,” Nature, vol. 549, pp. 195–202, sep 2017.

[7] D. H. Ackley, G. E. Hinton, and T. J. Sejnowski, “A learning algorithm for

boltzmann machines,” Cognitive Science, vol. 9, no. 1, pp. 147 – 169, 1985.

[8] G. E. Hinton and R. R. Salakhutdinov, “A better way to pretrain deep boltzmann

machines,” in Advances in Neural Information Processing Systems (F. Pereira,

C. J. C. Burges, L. Bottou, and K. Q. Weinberger, eds.), vol. 25, pp. 2447–2455,

Curran Associates, Inc., 2012.

[9] J. Carrasquilla and R. G. Melko, “Machine learning phases of matter,” Nature

Physics, vol. 13, no. 5, pp. 431–434, 2017.

114

[10] A. Canabarro, F. F. Fanchini, A. L. Malvezzi, R. Pereira, and R. Chaves,

“Unveiling phase transitions with machine learning,” Phys. Rev. B, vol. 100,

p. 045129, Jul 2019.

[11] W. Zhang, J. Liu, and T. C. Wei, “Machine learning of phase transitions in the

percolation and XY models,” Physical Review E, vol. 99, no. 3, pp. 1–14, 2019.

[12] J. Venderley, V. Khemani, and E. A. Kim, “Machine learning out-of-equilibrium

phases of matter,” Physical Review Letters, vol. 120, no. 25, p. 257204, 2018.

[13] S. J. Wetzel, “Unsupervised learning of phase transitions: From principal com-

ponent analysis to variational autoencoders,” Physical Review E, 2017.

[14] K.-I. Aoki and T. Kobayashi, “Restricted Boltzmann machines for the long

range Ising models,” Modern Physics Letters B, vol. 30, no. 34, p. 1650401,

2016.

[15] W. Hu, R. R. Singh, and R. T. Scalettar, “Discovering phases, phase transitions,

and crossovers through unsupervised machine learning: A critical examination,”

Physical Review E, vol. 95, no. 6, pp. 1–14, 2017.

[16] L. Wang, “Discovering phase transitions with unsupervised learning,” Physical

Review B, vol. 94, no. 19, pp. 2–6, 2016.

[17] H.-P. Breuer, The Theory of Open Quantum Systems. Oxford University Press,

2007.

[18] R. Gutiérrez, C. Simonelli, M. Archimi, F. Castellucci, E. Arimondo,

D. Ciampini, M. Marcuzzi, I. Lesanovsky, and O. Morsch, “Experimental signa-

tures of an absorbing-state phase transition in an open driven many-body quan-

tum system,” Phys. Rev. A, vol. 96, p. 041602(R), Oct 2017.

[19] F. Mormann, T. Kreuz, C. Rieke, R. G. Andrzejak, A. Kraskov, P. David, C. E.

Elger, and K. Lehnertz, “On the predictability of epileptic seizures,” Clinical

neurophysiology, vol. 116, no. 3, pp. 569–587, 2005.

[20] P. Mirowski, D. Madhavan, Y. LeCun, and R. Kuzniecky, “Classification of pat-

terns of eeg synchronization for seizure prediction,” Clinical neurophysiology,

vol. 120, no. 11, pp. 1927–1940, 2009.

115

[21] S. Chandaka, A. Chatterjee, and S. Munshi, “Cross-correlation aided support

vector machine classifier for classification of eeg signals,” Expert Systems with

Applications, vol. 36, no. 2, pp. 1329–1336, 2009.

[22] J. R. Williamson, D. W. Bliss, D. W. Browne, and J. T. Narayanan, “Seizure

prediction using eeg spatiotemporal correlation structure,” Epilepsy & behavior,

vol. 25, no. 2, pp. 230–238, 2012.

[23] Z. Lu, J. Pathak, B. Hunt, M. Girvan, R. Brockett, and E. Ott, “Reservoir

observers: Model-free inference of unmeasured variables in chaotic systems,”

Chaos, vol. 27, no. 4, 2017.

[24] T. L. Carroll, “Using reservoir computers to distinguish chaotic signals,” Phys-

ical Review E, vol. 98, no. 5, p. 52209, 2018.

[25] Z. Lu, B. R. Hunt, and E. Ott, “Attractor reconstruction by machine learning,”

Chaos, vol. 28, no. 6, 2018.

[26] J. Pathak, Z. Lu, B. R. Hunt, M. Girvan, and E. Ott, “Using machine learning

to replicate chaotic attractors and calculate Lyapunov exponents from data,”

Chaos, vol. 27, no. 12, 2017.

[27] J. Pathak, B. Hunt, M. Girvan, Z. Lu, and E. Ott, “Model-Free Prediction of

Large Spatiotemporally Chaotic Systems from Data: A Reservoir Computing

Approach,” Physical Review Letters, vol. 120, no. 2, p. 24102, 2018.

[28] T. Weng, H. Yang, C. Gu, J. Zhang, and M. Small, “Synchronization of chaotic

systems and their machine-learning models,” Physical Review E, vol. 99, no. 4,

pp. 1–7, 2019.

[29] J. Jiang and Y.-C. Lai, “Model-free prediction of spatiotemporal dynamical sys-

tems with recurrent neural networks: Role of network spectral radius,” Physical

Review Research, vol. 1, no. 3, p. 33056, 2019.

[30] H. Fan, J. Jiang, C. Zhang, X. Wang, and Y.-C. Lai, “Long-term prediction

of chaotic systems with machine learning,” Physical Review Research, vol. 2,

p. 012080, mar 2020.

116

[31] G. Filatrella, A. H. Nielsen, and N. F. Pedersen, “Analysis of a power grid using

a Kuramoto-like model,” The European Physical Journal B, vol. 61, pp. 485–

491, feb 2008.

[32] J. M. V. Grzybowski, E. E. N. Macau, and T. Yoneyama, “On synchronization

in power-grids modelled as networks of second-order Kuramoto oscillators,”

Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 26, p. 113113,

nov 2016.

[33] M. Breakspear, S. Heitmann, and A. Daffertshofer, “Generative Models of Cor-

tical Oscillations: Neurobiological Implications of the Kuramoto Model,” Fron-

tiers in Human Neuroscience, vol. 4, p. 190, nov 2010.

[34] H. Nishimori and G. Ortiz, Elements of Phase Transitions and Critical Phenom-

ena. Oxford Graduate Texts, OUP Oxford, 2011.

[35] 김두철,相轉移와臨界現象. 민음사, 1983.

[36] K. Christensen and N. Moloney, Complexity and Criticality. Advanced physics

texts, Imperial College Press, 2005.

[37] N. Goldenfeld, Lectures On Phase Transitions And The Renormalization Group.

CRC Press, 2018.

[38] P. W. Kasteleyn and C. M. Fortuin, “Phase Transitions in Lattice Systems

with Random Local Properties,” Physical Society of Japan Journal Supplement,

vol. 26, p. 11, jan 1969.

[39] A. Aharony and D. Stauffer, Introduction To Percolation Theory. Taylor &

Francis, 2003.

[40] F. Y. Wu, “The potts model,” Rev. Mod. Phys., vol. 54, pp. 235–268, Jan 1982.

[41] J. U. Song, J. Um, J. Park, and B. Kahng, “Effective-potential approach to hy-

brid synchronization transitions,” Phys. Rev. E, vol. 101, p. 052313, May 2020.

[42] P. Erdös and A. Rényi, “On random graphs i,” Publicationes Mathematicae De-

brecen, vol. 6, pp. 290–297, 1959.

[43] J. D. Kelleher and B. Tierney, Data science. MIT Press essential knowledge

series, 2018.

117

[44] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning ap-

plied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,

pp. 2278–2324, 1998.

[45] J. Zhou, G. Cui, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and M. Sun, “Graph

neural networks: A review of methods and applications,” 2019.

[46] P. J. Werbos, “Backpropagation through time: what it does and how to do it,”

Proceedings of the IEEE, vol. 78, no. 10, pp. 1550–1560, 1990.

[47] P. J. Huber, “Robust estimation of a location parameter,” Ann. Math. Statist.,

vol. 35, pp. 73–101, 03 1964.

[48] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” 2013.

[49] J. J. Hopfield, “Neural networks and physical systems with emergent collec-

tive computational abilities,” Proceedings of the National Academy of Sciences,

vol. 79, no. 8, pp. 2554–2558, 1982.

[50] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradient meth-

ods for reinforcement learning with function approximation,” in Advances in

Neural Information Processing Systems (S. Solla, T. Leen, and K. Müller, eds.),

vol. 12, pp. 1057–1063, MIT Press, 2000.

[51] C. Szepesvári, Algorithms for Reinforcement Learning, vol. 4. 01 2010.

[52] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and

M. Riedmiller, “Playing atari with deep reinforcement learning,” 2013.

[53] M. A. Aizerman, E. A. Braverman, and L. Rozonoer, “Theoretical foundations

of the potential function method in pattern recognition learning.,” in Automation

and Remote Control,, no. 25 in Automation and Remote Control,, pp. 821–837,

1964.

[54] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,

“Dropout: A simple way to prevent neural networks from overfitting,” Journal

of Machine Learning Research, vol. 15, no. 56, pp. 1929–1958, 2014.

[55] S. Kiranyaz, T. Ince, R. Hamila, and M. Gabbouj, “Convolutional neural net-

works for patient-specific ecg classification,” in 2015 37th Annual International

118

Conference of the IEEE Engineering in Medicine and Biology Society (EMBC),

pp. 2608–2611, 8 2015.

[56] I. Carusotto and C. Ciuti, “Quantum fluids of light,” Rev. Mod. Phys., vol. 85,

pp. 299–366, Feb 2013.

[57] C. Noh and D. G. Angelakis, “Quantum simulations and many-body physics

with light,” Reports on Progress in Physics, vol. 80, p. 016401, nov 2016.

[58] H. J. Carmichael, “Breakdown of photon blockade: A dissipative quantum

phase transition in zero dimensions,” Phys. Rev. X, vol. 5, p. 031028, Sep 2015.

[59] M. Müller, S. Diehl, G. Pupillo, and P. Zoller, “Engineered open systems and

quantum simulations with atoms and ions,” in Advances in Atomic, Molecular,

and Optical Physics, vol. 61, pp. 1–80, Elsevier, 2012.

[60] K. Baumann, C. Guerlin, F. Brennecke, and T. Esslinger, “Dicke quantum phase

transition with a superfluid gas in an optical cavity,” Nature, vol. 464, no. 7293,

pp. 1301–1306, 2010.

[61] K. Baumann, R. Mottl, F. Brennecke, and T. Esslinger, “Exploring symmetry

breaking at the dicke quantum phase transition,” Phys. Rev. Lett., vol. 107,

p. 140402, Sep 2011.

[62] I. Bloch, “Ultracold quantum gases in optical lattices,” Nature physics, vol. 1,

no. 1, pp. 23–30, 2005.

[63] J. M. Fink, A. Dombi, A. Vukics, A. Wallraff, and P. Domokos, “Observa-

tion of the photon-blockade breakdown phase transition,” Phys. Rev. X, vol. 7,

p. 011012, Jan 2017.

[64] T. Fink, A. Schade, S. Höfling, C. Schneider, and A. Imamoglu, “Signatures

of a dissipative phase transition in photon correlation measurements,” Nature

Physics, vol. 14, no. 4, pp. 365–369, 2018.

[65] M. Fitzpatrick, N. M. Sundaresan, A. C. Y. Li, J. Koch, and A. A. Houck, “Ob-

servation of a dissipative phase transition in a one-dimensional circuit qed lat-

tice,” Phys. Rev. X, vol. 7, p. 011016, Feb 2017.

119

[66] S. Helmrich, A. Arias, G. Lochead, T. Wintermantel, M. Buchhold, S. Diehl,

and S. Whitlock, “Signatures of self-organized criticality in an ultracold atomic

gas,” Nature, vol. 577, no. 7791, pp. 481–486, 2020.

[67] T. E. Lee, S. Gopalakrishnan, and M. D. Lukin, “Unconventional magnetism

via optical pumping of interacting spin systems,” Phys. Rev. Lett., vol. 110,

p. 257204, Jun 2013.

[68] J. Jin, A. Biella, O. Viyuela, L. Mazza, J. Keeling, R. Fazio, and D. Rossini,

“Cluster mean-field approach to the steady-state phase diagram of dissipative

spin systems,” Phys. Rev. X, vol. 6, p. 031011, Jul 2016.

[69] A. Le Boité, G. Orso, and C. Ciuti, “Steady-state phases and tunneling-induced

instabilities in the driven dissipative bose-hubbard model,” Phys. Rev. Lett.,

vol. 110, p. 233601, Jun 2013.

[70] J. Klinder, H. Keßler, M. Wolke, L. Mathey, and A. Hemmerich, “Dynamical

phase transition in the open dicke model,” Proceedings of the National Academy

of Sciences, vol. 112, no. 11, pp. 3290–3295, 2015.

[71] L. J. Zou, D. Marcos, S. Diehl, S. Putz, J. Schmiedmayer, J. Majer, and P. Rabl,

“Implementation of the dicke lattice model in hybrid quantum system arrays,”

Phys. Rev. Lett., vol. 113, p. 023603, Jul 2014.

[72] D. Nagy and P. Domokos, “Nonequilibrium quantum criticality and non-

markovian environment: Critical exponent of a quantum phase transition,” Phys.

Rev. Lett., vol. 115, p. 043601, Jul 2015.

[73] A. A. Houck, H. E. Türeci, and J. Koch, “On-chip quantum simulation with

superconducting circuits,” Nature Physics, vol. 8, no. 4, pp. 292–299, 2012.

[74] J. Marino and S. Diehl, “Driven markovian quantum criticality,” Phys. Rev. Lett.,

vol. 116, p. 070407, Feb 2016.

[75] C. Pérez-Espigares, M. Marcuzzi, R. Gutiérrez, and I. Lesanovsky, “Epidemic

dynamics in open quantum spin systems,” Phys. Rev. Lett., vol. 119, p. 140401,

Oct 2017.

120

[76] E. G. Dalla Torre, E. Demler, T. Giamarchi, and E. Altman, “Quantum critical

states and phase transitions in the presence of non-equilibrium noise,” Nature

Physics, vol. 6, no. 10, pp. 806–810, 2010.

[77] L. M. Sieberer, S. D. Huber, E. Altman, and S. Diehl, “Dynamical critical phe-

nomena in driven-dissipative systems,” Phys. Rev. Lett., vol. 110, p. 195301,

May 2013.

[78] L. M. Sieberer, S. D. Huber, E. Altman, and S. Diehl, “Nonequilibrium func-

tional renormalization for driven-dissipative bose-einstein condensation,” Phys.

Rev. B, vol. 89, p. 134310, Apr 2014.

[79] J. Lang and F. Piazza, “Critical relaxation with overdamped quasiparticles in

open quantum systems,” Phys. Rev. A, vol. 94, p. 033628, Sep 2016.

[80] S. Diehl, A. Tomadin, A. Micheli, R. Fazio, and P. Zoller, “Dynamical phase

transitions and instabilities in open atomic many-body systems,” Phys. Rev.

Lett., vol. 105, p. 015702, Jul 2010.

[81] E. G. Dalla Torre, E. Demler, T. Giamarchi, and E. Altman, “Dynamics and uni-

versality in noise-driven dissipative systems,” Phys. Rev. B, vol. 85, p. 184302,

May 2012.

[82] U. C. Täuber and S. Diehl, “Perturbative field-theoretical renormalization group

approach to driven-dissipative bose-einstein criticality,” Phys. Rev. X, vol. 4,

p. 021010, Apr 2014.

[83] A. Mitra, S. Takei, Y. B. Kim, and A. J. Millis, “Nonequilibrium quantum crit-

icality in open electronic systems,” Phys. Rev. Lett., vol. 97, p. 236808, Dec

2006.

[84] E. G. D. Torre, S. Diehl, M. D. Lukin, S. Sachdev, and P. Strack, “Keldysh

approach for nonequilibrium phase transitions in quantum optics: Beyond the

dicke model in optical cavities,” Phys. Rev. A, vol. 87, p. 023831, Feb 2013.

[85] R. Rota, F. Storme, N. Bartolo, R. Fazio, and C. Ciuti, “Critical behavior of

dissipative two-dimensional spin lattices,” Phys. Rev. B, vol. 95, p. 134431, Apr

2017.

121

[86] R. Rota, F. Minganti, C. Ciuti, and V. Savona, “Quantum critical regime in

a quadratically driven nonlinear photonic lattice,” Phys. Rev. Lett., vol. 122,

p. 110405, Mar 2019.

[87] W. Verstraelen, R. Rota, V. Savona, and M. Wouters, “Gaussian trajectory ap-

proach to dissipative phase transitions: The case of quadratically driven pho-

tonic lattices,” Phys. Rev. Research, vol. 2, p. 022037, May 2020.

[88] M. Marcuzzi, M. Buchhold, S. Diehl, and I. Lesanovsky, “Absorbing state phase

transition with competing quantum and classical fluctuations,” Phys. Rev. Lett.,

vol. 116, p. 245701, Jun 2016.

[89] M. Buchhold, B. Everest, M. Marcuzzi, I. Lesanovsky, and S. Diehl, “Nonequi-

librium effective field theory for absorbing state phase transitions in driven open

quantum spin systems,” Phys. Rev. B, vol. 95, p. 014308, Jan 2017.

[90] M. Jo, J. Um, and B. Kahng, “Nonequilibrium phase transition in an open quan-

tum spin system with long-range interaction,” Phys. Rev. E, vol. 99, p. 032131,

Mar 2019.

[91] D. Roscher, S. Diehl, and M. Buchhold, “Phenomenology of first-order dark-

state phase transitions,” Phys. Rev. A, vol. 98, p. 062117, Dec 2018.

[92] F. Carollo, E. Gillman, H. Weimer, and I. Lesanovsky, “Critical behavior of

the quantum contact process in one dimension,” Phys. Rev. Lett., vol. 123,

p. 100604, Sep 2019.

[93] E. Gillman, F. Carollo, and I. Lesanovsky, “Numerical simulation of critical dis-

sipative non-equilibrium quantum systems with an absorbing state,” New Jour-

nal of Physics, vol. 21, p. 093064, sep 2019.

[94] E. Gillman, F. Carollo, and I. Lesanovsky, “Numerical simulation of critical

quantum dynamics without finite size effects,” arXiv:2010.10954, 2020.

[95] R. Dum, P. Zoller, and H. Ritsch, “Monte carlo simulation of the atomic master

equation for spontaneous emission,” Phys. Rev. A, vol. 45, pp. 4879–4887, Apr

1992.

122

[96] N. Gisin and I. C. Percival, “The quantum-state diffusion model applied to open

systems,” Journal of Physics A: Mathematical and General, vol. 25, pp. 5677–

5691, nov 1992.

[97] J. Dalibard, Y. Castin, and K. Mølmer, “Wave-function approach to dissipative

processes in quantum optics,” Phys. Rev. Lett., vol. 68, pp. 580–583, Feb 1992.

[98] K. Mølmer, Y. Castin, and J. Dalibard, “Monte carlo wave-function method in

quantum optics,” J. Opt. Soc. Am. B, vol. 10, pp. 524–538, Mar 1993.

[99] H.-P. Breuer and F. Petruccione, “Dissipative quantum systems in strong laser

fields: Stochastic wave-function method and floquet theory,” Phys. Rev. A,

vol. 55, pp. 3101–3116, Apr 1997.

[100] M. B. Plenio and P. L. Knight, “The quantum-jump approach to dissipative dy-

namics in quantum optics,” Rev. Mod. Phys., vol. 70, pp. 101–144, Jan 1998.

[101] A. J. Daley, “Quantum trajectories and open many-body quantum systems,” Ad-

vances in Physics, vol. 63, no. 2, pp. 77–149, 2014.

[102] H. Hinrichsen, “Non-equilibrium critical phenomena and phase transitions into

absorbing states,” Advances in Physics, vol. 49, no. 7, pp. 815–958, 2000.

[103] M. Jo and B. Kahng, “Tricritical directed percolation with long-range interac-

tion in one and two dimensions,” Phys. Rev. E, vol. 101, p. 022121, Feb 2020.

[104] J. Marro and R. Dickman, Nonequilibrium phase transitions in lattice models.

Cambridge University Press, 2005.

[105] T. E. Harris, “Contact interactions on a lattice,” Ann. Probab., vol. 2, pp. 969–

988, 12 1974.

[106] G. Ódor, “Universality classes in nonequilibrium lattice systems,” Rev. Mod.

Phys., vol. 76, pp. 663–724, Aug 2004.

[107] R. M. Ziff, E. Gulari, and Y. Barshad, “Kinetic phase transitions in an irre-

versible surface-reaction model,” Phys. Rev. Lett., vol. 56, pp. 2553–2556, Jun

1986.

[108] R. Dickman and I. Jensen, “Time-dependent perturbation theory for nonequi-

librium lattice models,” Phys. Rev. Lett., vol. 67, pp. 2391–2394, Oct 1991.

123

[109] M. Henkel, H. Hinrichsen, S. Lübeck, and M. Pleimling, Non-equilibrium phase

transitions, vol. 1. Springer, 2008.

[110] Y. Lecun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,

no. 7553, pp. 436–444, 2015.

[111] P. Broecker, J. Carrasquilla, R. G. Melko, and S. Trebst, “Machine learning

quantum phases of matter beyond the fermion sign problem,” Scientific Reports,

vol. 7, no. 1, pp. 1–10, 2017.

[112] K. Ch’ng, J. Carrasquilla, R. G. Melko, and E. Khatami, “Machine learning

phases of strongly correlated fermions,” Phys. Rev. X, vol. 7, p. 031038, Aug

2017.

[113] M. Schuld, I. Sinayskiy, and F. Petruccione, “Neural networks take on open

quantum systems,” Physics, vol. 12, p. 74, 2019.

[114] N. Yoshioka and R. Hamazaki, “Constructing neural stationary states for open

quantum many-body systems,” Phys. Rev. B, vol. 99, p. 214306, Jun 2019.

[115] M. J. Hartmann and G. Carleo, “Neural-network approach to dissipative quan-

tum many-body dynamics,” Phys. Rev. Lett., vol. 122, p. 250502, Jun 2019.

[116] A. Nagy and V. Savona, “Variational quantum monte carlo method with a

neural-network ansatz for open quantum systems,” Phys. Rev. Lett., vol. 122,

p. 250501, Jun 2019.

[117] F. Vicentini, A. Biella, N. Regnault, and C. Ciuti, “Variational neural-network

ansatz for steady states in open quantum systems,” Phys. Rev. Lett., vol. 122,

p. 250503, Jun 2019.

[118] D. Harris and S. Harris, Digital Design and Computer Architecture, Second

Edition. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2nd ed.,

2012.

[119] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,

A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving,

M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,

R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,

I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas,

124

O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “Tensor-

Flow: Large-scale machine learning on heterogeneous systems,” 2015. Software

available from tensorflow.org.

[120] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” 2014.

[121] G. Hinton, “‘neural networks for machine learning - lecture 6a - overview of

mini-batch gradient descentn,” 2012.

[122] J. F. F. Mendes, R. Dickman, M. Henkel, and M. C. Marques, “Generalized

scaling for models with multiple absorbing states,” Journal of Physics A: Math-

ematical and General, vol. 27, pp. 3019–3028, may 1994.

[123] M. J. Beach, A. Golubeva, and R. G. Melko, “Machine learning vortices at the

Kosterlitz-Thouless transition,” Physical Review B, vol. 97, no. 4, pp. 1–8, 2018.

[124] Q. Ni, M. Tang, Y. Liu, and Y. C. Lai, “Machine learning dynamical phase

transitions in complex networks,” Physical Review E, vol. 100, no. 5, pp. 1–11,

2019.

[125] W. Maass, T. Natschläger, and H. Markram, “Real-time computing without sta-

ble states: A new framework for neural computation based on perturbations,”

Neural computation, vol. 14, no. 11, pp. 2531–2560, 2002.

[126] H. Jaeger and H. Haas, “Harnessing Nonlinearity: Predicting Chaotic Systems

and Saving Energy in Wireless Communication,” Science, vol. 304, no. 5667,

pp. 78–80, 2004.

[127] M. Lukoševičius and H. Jaeger, “Reservoir computing approaches to recurrent

neural network training,” Computer Science Review, vol. 3, no. 3, pp. 127–149,

2009.

[128] M. Nitzan, J. Casadiego, and M. Timme, “Revealing physical interaction net-

works from statistics of collective dynamics,” Science Advances, vol. 3, no. 2,

2017.

[129] W.-X. Wang, Y.-C. Lai, and C. Grebogi, “Data based identification and predic-

tion of nonlinear and complex dynamical systems,” Physics Reports, vol. 644,

pp. 1–76, 2016.

125

[130] D. Eroglu, M. Tanzi, S. van Strien, and T. Pereira, “Revealing dynamics, com-

munities, and criticality from data,” Physical Review X, vol. 10, no. 2, p. 021047,

2020.

[131] Y. Kuramoto, Self-entrainment of a population of coupled non-linear oscilla-

tors. Berlin/Heidelberg: Springer-Verlag.

[132] Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence, vol. 19 of

Springer Series in Synergetics. Berlin, Heidelberg: Springer Berlin Heidelberg,

1984.

[133] D. Pazó, “Thermodynamic limit of the first-order phase transition in the Ku-

ramoto model,” Physical Review E - Statistical, Nonlinear, and Soft Matter

Physics, vol. 72, no. 4, pp. 1–6, 2005.

[134] L. Basnarkov and V. Urumov, “Phase transitions in the Kuramoto model,” Phys-

ical Review E - Statistical, Nonlinear, and Soft Matter Physics, vol. 76, no. 5,

pp. 1–4, 2007.

[135] L. H. Tang, “To synchronize or not to synchronize, that is the question: Finite-

size scaling and fluctuation effects in the Kuramoto model,” Journal of Statisti-

cal Mechanics: Theory and Experiment, vol. 2011, no. 1, 2011.

[136] B. C. Coutinho, A. V. Goltsev, S. N. Dorogovtsev, and J. F. Mendes, “Kuramoto

model with frequency-degree correlations on complex networks,” Physical Re-

view E - Statistical, Nonlinear, and Soft Matter Physics, vol. 87, no. 3, pp. 1–11,

2013.

[137] C. Choi, M. Ha, and B. Kahng, “Extended finite-size scaling of synchronized

coupled oscillators,” vol. 032126, pp. 1–7, 2013.

[138] S. Yoon, M. Sorbaro Sindaci, A. V. Goltsev, and J. F. Mendes, “Critical behav-

ior of the relaxation rate, the susceptibility, and a pair correlation function in

the Kuramoto model on scale-free networks,” Physical Review E - Statistical,

Nonlinear, and Soft Matter Physics, vol. 91, no. 3, pp. 1–10, 2015.

[139] F. A. Rodrigues, T. K. Peron, P. Ji, and J. Kurths, “The Kuramoto model in

complex networks,” Physics Reports, vol. 610, pp. 1–98, 2016.

126

[140] H. Hong, H. Park, and M. Y. Choi, “Collective synchronization in spatially ex-

tended systems of coupled oscillators with random frequencies,” Physical Re-

view E - Statistical, Nonlinear, and Soft Matter Physics, vol. 72, no. 3, pp. 1–18,

2005.

[141] H. Hong, H. Chaté, H. Park, and L. H. Tang, “Entrainment transition in popula-

tions of random frequency oscillators,” Physical Review Letters, vol. 99, no. 18,

pp. 1–4, 2007.

[142] J. Um, H. Hong, and H. Park, “Nature of synchronization transitions in random

networks of coupled oscillators,” Physical Review E - Statistical, Nonlinear, and

Soft Matter Physics, vol. 89, no. 1, pp. 1–8, 2014.

[143] H. Hong, H. Chat, L.-h. Tang, and H. Park, “Finite-size scaling , dynamic fluctu-

ations , and hyperscaling relation in the Kuramoto model,” vol. 022122, pp. 1–8,

2015.

[144] A. Arenas, A. Dı́az-Guilera, and C. J. Pérez-Vicente Phys. Rev. Lett., vol. 96,

p. 114102, Mar 2006.

[145] R. A. Rossi and N. K. Ahmed, “The network data repository with interactive

graph analytics and visualization,” in AAAI, 2015.

[146] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.

http://www.deeplearningbook.org.

[147] F. Rosenblatt, “The perceptron: A probabilistic model for information storage

and organization in the brain.,” 1958.

[148] A. A. Mullin and F. Rosenblatt, “Principles of Neurodynamics.,” The American

Mathematical Monthly, vol. 70, p. 586, may 1963.

[149] H. Robbins and S. Monro, “A stochastic approximation method,” Ann. Math.

Statist., vol. 22, pp. 400–407, 09 1951.

[150] F. Bach and E. Moulines, “Non-strongly-convex smooth stochastic approxima-

tion with convergence rate o(1/n),” in Advances in Neural Information Process-

ing Systems 26 (C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and

K. Q. Weinberger, eds.), pp. 773–781, Curran Associates, Inc., 2013.

127

http://www.deeplearningbook.org

[151] B. Polyak, “Some methods of speeding up the convergence of iteration meth-

ods,” USSR Computational Mathematics and Mathematical Physics, vol. 4,

no. 5, pp. 1 – 17, 1964.

[152] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the importance of initial-

ization and momentum in deep learning,” in Proceedings of the 30th Interna-

tional Conference on Machine Learning (S. Dasgupta and D. McAllester, eds.),

vol. 28 of Proceedings of Machine Learning Research, (Atlanta, Georgia, USA),

pp. 1139–1147, PMLR, 17–19 Jun 2013.

[153] Y. Nesterov, “A method for solving the convex programming problem with

convergence rate O(1/k2),” Proceedings of the USSR Academy of Sciences,

vol. 269, pp. 543–547, 1983.

[154] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for on-

line learning and stochastic optimization,” J. Mach. Learn. Res., vol. 12,

p. 2121–2159, July 2011.

[155] S. J. Reddi, S. Kale, and S. Kumar, “On the convergence of adam and beyond,”

in International Conference on Learning Representations, 2018.

128

초록

본 연구는 양자 접촉 모형의 양자 상전이를 인공신경망에 대한 기반 기계 학

습 방법론을 통해 분석하였고 열린 양자계의 새로운 보편성을 가지는 임계현상이

있음을 밝혀내었다. 또한 기계 학습 방법론으로 구라모토 모형의 동기화 상전이의

임계현상을분석하고동역학거동을예측하므로써동기화현상에대한기계학습을

대안적인수치분석의틀거리로활용할수있음을보였다.

제1장은 임계 현상에 대한 상전이 이론과 기계 학습 방법론에 대한 일반적인

개념들을 개괄한다. 전통적인 상전이 이론은 통계물리학을 기반으로 전개되며 임

계점근방에서발현하는임계현상과그보편성을다룬다.기계학습방법론은기계

학습의 주요 요소들을 정의하고 모형의 형태와 모형의 최적화 과정에 대한 수학

적인 기술을 제공한다. 더불어서 기계 학습 방법론 가운데서 유망한 인공신경망을

구현하는방법을소개하였다.

제2장은양자접촉과정의양자상전이에대한기계학습방법론을다룬다.우리

는양자도약몬테카를로를이용하여양자접촉과정을따르는 1차원스핀사슬을

시뮬레이션하였고관측된활성밀도에따라시스템이활성상태인지흡수상태인지

를 판단할 수 있도록 합성곱 신경망과 완전결합 신경망과 같은 인공신경망을 지도

학습시켰다. 유한 크기 축적법만을 이용해서는 찾기 어려웠던 양자 상전이의 임계

점을인공신경망의학습결과에외삽법을적용하여정교하게측정할수있었다.기

계 학습을 통해서 얻어진 임계점에서 관측되는 임계 동역학을 유한 크기 축척법을

적용하여 1차원에서 양자 접촉 과정의 임계지수들을 구할 수 있었다. 1차원 양자

접촉 과정의 임계지수들 가운데서 스핀 체인의 활성 밀도에 관한 임계지수가 고전

적인단방향스미기모형에서얻어지는임계지수와다르다는것을확인하였고양자

상전이가새로운보편성을보임을밝혀내었다.

제3장은 쿠라모토 모형의 동기화 상전이에 대한 기계 학습 방법론을 다룬다.

구라모토 모형을 따라 움직이는 진동자들의 위상 거동을 관측하고 진동자들 간의

129

상호작용의 세기인 결합 상수를 예측할 수 있도록 순환 신경망과 전방향 신경망과

같은인공신경망에지도학습시켰다.학습된인공신경망은동기화된상태의진동자

들의상호작용의세기를측정할수있었을뿐만아니라기존의구라모토의질서맺음

매개변수로는추정할수없었던비동기상태에놓여진진동자들의상호작용의세기

도 측정할 수 있었다. 이 결과는 인공신경망이 동기 상태에 대한 순서 매개변수와

비동기상태에대한잠복매개변수를포착한다는것을나타낸다.또한우리는진동

자들의 위상 조합을 보고 시스템이 동기화 상태에 있는지 비동기 상태에 있는지를

판단할수있도록합성곱신경망과완전결합신경망과같은인공신경망을지도학습

시켰다. 데이터 중첩법으로 측정되지 않았던 진동자 간의 상호작용의 거리에 관한

임계지수를인공신경망으로측정한결과를외삽법으로얻어냈다.기계학습방법론

이동기화상전이의임계점과임계지수를분석하기위한수치적인틀거리로데이터

중첩법을포함한유한크기축척법에대한대안이될수있다.더나아가진동자들의

시간에따른위상변화를저수지컴퓨터와순환신경망에학습시켜구라모토모형의

동역학을재현하거나진동자들간의상호작용하는연결망을추적하기도하였다.

제4장에서 본 연구의 결과에 의의를 정리해보았다. 양자 접촉 모형은 열린 양

자계의 대표적인 모형으로 본 연구는 기계 학습 방법론이 고전적인 물리계와 닫힌

양자계를넘어서열린양자계에도적용될수있음을보여준다.또한본연구는동기

화상전이를보이는대표적인비선형동역학모형으로쿠라모토모형을다루었지만

혼돈계의거동을예측하고동기화현상을규명하기위한후속연구에서인공신경망

기법이중요한역할을할것으로기대된다.

주요어:기계학습,지도학습,딥러닝,인공신경망,순환신경망,열린양자계,

양자접촉과정,양자상전이,비선형동역학,구라모토모형,동기화상전이

학번: 2014-22378

130

	1 Introduction
	1.1 Theory of phase transitions
	1.2 Machine learning
	1.2.1 Data-driven optimization of multivariate functional
	1.2.2 Artificial neural networks

	2 Machine learning approach for open quantum systems
	2.1 Quantum contact process
	2.2 Finding the quantum phase transition
	2.3 Finite-size scaling on quantum jump Monte Carlo
	2.3.1 The pure quantum limit
	2.3.2 The classcial limit

	2.4 Discussion and Summary

	3 Machine learning approach for non-linear dynamics systems
	3.1 The Kuramoto model
	3.2 Finding the coupling strength
	3.3 Finding the synchronized state
	3.4 Prediction of the phase dynamics
	3.5 Reconstructing the network structure
	3.6 Summary

	4 Conclusion
	Appendices
	Appendix A Feed-forward neural networks
	A.1 Forwarding propagation
	A.2 Backpropagation

	Appendix B Recurrent neural networks
	B.1 Reservoir computer

	Appendix C Techniques for deep learning
	C.1 Data management
	C.2 Advanced optimization

	Appendix D Kasteleyn-Fortuin formalism

	Bibliography
	Abstract in Korean

<startpage>13
1 Introduction 1
 1.1 Theory of phase transitions 5
 1.2 Machine learning 18
 1.2.1 Data-driven optimization of multivariate functional 21
 1.2.2 Artificial neural networks 41
2 Machine learning approach for open quantum systems 56
 2.1 Quantum contact process 58
 2.2 Finding the quantum phase transition 61
 2.3 Finite-size scaling on quantum jump Monte Carlo 64
 2.3.1 The pure quantum limit 64
 2.3.2 The classcial limit 67
 2.4 Discussion and Summary 69
3 Machine learning approach for non-linear dynamics systems 73
 3.1 The Kuramoto model 74
 3.2 Finding the coupling strength 76
 3.3 Finding the synchronized state 78
 3.4 Prediction of the phase dynamics 80
 3.5 Reconstructing the network structure 83
 3.6 Summary 85
4 Conclusion 87
Appendices 89
 Appendix A Feed-forward neural networks 90
 A.1 Forwarding propagation 90
 A.2 Backpropagation 91
 Appendix B Recurrent neural networks 95
 B.1 Reservoir computer 95
 Appendix C Techniques for deep learning 97
 C.1 Data management 97
 C.2 Advanced optimization 99
 Appendix D Kasteleyn-Fortuin formalism 107
Bibliography 114
Abstract in Korean 129
</body>

