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Abstract

Application of Machine Learning on Searches

at Large Hadron Collider

LEE, Dongsub
Department of Physics and Astronomy
The Graduate School

Seoul National University

In this thesis, we study the application of machine learning for searches at the
Large Hadron Collider without a sharp resonance peak. First, we use machine learn-
ing to find the best observables for the broad resonance search. A vector resonance
from the composite Higgs models in ¢t final state is considered as a benchmark. Var-
ious approaches are adopted to interpret the abstracted information by the machine,
and we conclude that the resonance energy is still important for the broad resonance
search, while the angular distributions and the transverse momenta of the decayed
products have also great importance. Second, we use machine learning to extract
information about the resonance from other than the final state. We show the corre-
lation between the kinematics of jets from initial state radiation and the resonance
particle. To demonstrate the experimental feasibility we perform the searching for
invisible decay of Higgs by using machine learning. As a result, we show that the
bound from gluon-fusion production mechanism can be improved even stronger than

the other production mechanisms due to the correlation.

Keywords: Large Hadron Collider, Machine Learning, Broad Resonance, Higgs, jet,
jet substructure, Initial State Radiation
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Chapter 1

Introduction

By the discover of Higgs particle [1-3] at the Large Hadron Collider(LHC) of Eu-
ropean Organisation for Nuclear Research(CERN) in 2012, all of the particle contents
of the standard model are found. The standard model of particle physics becomes the
most successful description of various interactions and phenomena of fundamental
particles in nature at scale larger than 107! m(~ 10 TeV). However, the standard
model cannot be the theory of everything because of problems which cannot be an-
swered by itself. One of the problems is the absence of dark matter candidate in the
standard model. To explain cosmological phenomena such as rotation of galaxy [4]
or collision of bullet-clusters [5/{7], non-luminous matters should be clustered around
those astrophysical structures. From recent observations [8], most of those additional
components are ‘cold’, i.e has no pressure and mass larger than the temperature
scale of the current universe. But there are no such particle contents in the standard
model; non-relativistic, electromagnetically neutral, and stable or at least having a

very long lifetime. Another problem is the so-called naturalness problem of Higgs



mass. Higgs field, ¥, is two complex scalar fields in a doublet of SU(2); with the
following potential

V() = —* | + Al (1.1)

at the classical level. If the ultra-violet(UV) cut-off of the standard model is at Ay,
then p receives quantum correction from the cut-off scale to electroweak scale as
Ap? = # <A%V +24°In (AMUV» +0(N?) (1.2)
at 1-loop order. The other fermionic field contents never gives quadratic correction,
while gauge bosons give similar quadratic corrections. Since there is no evidence of
new physics up to O(1) TeV and renormalised p is O(100) GeV, this correction should
yield at least < 1% cancellation between bare u? at the cut-off scale and the cut-off
scale itself. Unless we accept such finely tuned cancellation, it would be natural to
expect the dynamical origin of the hierarchy between the electroweak scale and cut-
off scale and their fine-tuning. There are many other problems, such as the absence
of neutrino mass terms in the standard model, naturalness problem of cosmological
constant and feebleness of #-term in quantum chromodynamics(QCD), but we would

not describe those problems here.

The solutions for two problems aforementioned, in many cases, include the exten-
sion of particle contents and internal symmetry group. Such new particles or extra
symmetry would provide additional scattering process in addition to those with stan-
dard model interactions of particle. Therefore the observation of new physics beyond
the standard model in collider experiment could be done by searching for an excess on
the data or finding deviation of parameters from the standard model prediction with
precision measurements. This may not be an easy task in hadron collider since the
collisions are initiated by particles with non-trivial colour charge. QCD is an asymp-
totically free theory at high energy, but at the same time, it has a non-perturbative

regime in the infra-red(IR) regime. The propagation of any particle with colour charge



across relatively long-range scale > 1/Aqcep(~ 107 2cm with Agep~ 300 MeV) can-
not be explained by the perturbative expansion of the standard model. Colour-charged
particles accompany a large amount of emission and confinement in a long-range scale
and become a bunch of baryons and mesons. Those fragmentation and hadronisation
processes make identification of a particle or an event hard, and we could not isolate

the scattering process of interest asides from the other scattering process exactly.

Yet there is a possibility to identify objects in the IR regime and reconstruct the
hard scattering processes occurred in the perturbative regime. The objects are called
as ‘jets’ which are bunches of hadrons clustered with specific algorithms. The under-
standing of jets is, therefore, one of the most important issues in collider physics to
understand QCD itself and to reconstruct the hard scattering process. Recent studies
using EFT [9H11] or Monte-Carlo simulation have lead progress in the understand-
ing of jets and the IR physics through many observables, such as jet substructure
variables |12/17] or event shape variables |18|. But a large number of the variables in-
creases the complexity of statistical analysis of the data, and utilisation of all variables

at once in a conventional way is nearly impossible in the practical sense.

On the other hand, machine learning(ML) has been acquired attention with its
great performance and is frequently used in many fields based on the accumulated
progress in computer science and hardware performance, and so as in the collider
physics. In collider physics, many machine learning architectures such as boosted de-
cision tree(BDT) or neural network(NN) have also been adopted for various analysis.
For the collider physics, machine learning is mainly used for building discrimination
models between signal and background events [19,20], and also for regression [21] and
event generation [22], too. Among various architecture and purpose of using, neural-
network-based discrimination model is one of the most frequently adopted tool for

the analysis. Also the limitation of the statistical analysis with a large number of



variables is alleviated with the machine learning since it has capability to express

various functions and to abstract the given data.

It is natural to apply machine learning technique for research in collider physics
if the final state contains a jet or jets in that sense. Jets are objects reconstructed
from more than one particle, and they have large complexity. Using the limited num-
ber of variables describing jets may not contain the full information for the event
reconstruction, and it is same for the shape of events with jets, too. For searches at
hadron collider, however, it remain answered that how much it would be improved
with machine learning, and which information has the largest impact for the machine
learning algorithm for each search. To get quantitative answers to the questions, we
studied two applications of machine learning in this thesis. The first one is an appli-
cation to searching for composite vector resonance expected from minimal composite
Higgs scenario. The hypothesised vector resonance in this example can have broad
width compared to its mass(I'/m 2 O(10)%), and conventional search strategy of a
narrow-width signal may not be the optimal one for the search of broad width signal.
We tried, thus, to expand the input features to cover more variables and checked
the enhancement of the sensitivity. Then two methods are used to understand what
had been learned by the machine. The first approach is using a certain measure to
assess the impact of each variable to the final output from the neural network and
the second one is planing away one information from the input data. The measure we
used in the first case is called ‘variable importance’ and defined as the square-sum of
weights between each input node to the nodes in the first hidden layer of the neural
network. There is an issue that whether this raking does properly appraise the impact
of respective input on the output from the neural network. The other hidden layers
may have a strong impact on the output of the neural network compared to the first
hidden layer, considering the complexity of the neural network. Thus it should be

addressed first, whether the impact of the first hidden layer is larger compared to



the impact of the other hidden layers on the output. We checked the gradient of the
loss function, which is the minimisation target of the ML algorithm, with respect to
internal parameters of respective hidden layers during the training stage. Resulted
gradient value at the first hidden layer was larger than the gradient values from the
other hidden layers in all training in this application example. This is indirect evi-
dence indicating that the impact of the first hidden layer on the output is stronger
compared to the impact of the other hidden layers. The second method is ‘planing’.
Respective events are weighted to have a flat distribution of certain input variable. By
this method, information corresponding to the variable planed away is intentionally
washed out. If the degradation from this planing is significant, then we could conclude
that the input variable planed away contains information crucial to the output from

the neural network.

The second application is on the search for the invisible decay of Higgs. We started
from the motivation that different event structure may produce different jets, quark
jet or gluon jet as the initial state radiation(ISR). The difference between signal
and background processes, such as the spin or interaction of the resonance particles,
could be imprinted other than the final state. Let’s consider the general searches
of Higgs decay as an example. The decay of Z boson becomes background process
in many decay channel of Higgs. However, there is no characteristic difference in
the final state between decay from Higgs and from Z boson. The masses of Higgs
and Z boson are similar to each other, and only the spins are different. But the
difference of spin-correlation in the final state does not yield enough separation in the
distribution of variables between signal and background processes. Even worse, there
is no available information at all in the invisible final state. At the LHC, however, the
leading(in transverse momentum ordering) ISR jet associated to Higgs production
via gluon-fusion is soft gluon jet in the central region, while Z boson production

carries relatively harder quark jet in the relatively forward region. So if we could



access to the further information of jets indicating that if the jet was originated from
quark or gluon, we could exploit the information from ISR jet to various searches.
We demonstrate this search strategy on the search for the invisible decay of Higgs.
As a result, we checked the current upper limit on the ratio between combination of
production cross section and production from standard model prediction with 95%

confidence level can be improved a lot, in gluon-fusion production channel.

This thesis is organised as follow. In Chapter [2] we review the standard model and
neural network first. In Chapter [3] we discuss the first example of an application of
machine learning on the searching for the composite vector resonance from composite
Higgs model. The second example with invisible decay of Higgs is demonstrated at

Chapter [l At last in Chapter [5] we conclude.



Chapter 2

Reviews on the Standard Model and
Neural Network

In this section we shortly review the standard model at Section and basic
concept of neural network at Section The mostly positive metric, i.e, Nmn =
diag(—1,1,1,1) is used, and alphabets m,n,--- indicate space-time indexes. If al-
phabetical indexes start from a,b,--- then those components correspond to spatial

indexes, only.

2.1 The Standard Model

In this section, we shortly review the standard model. The standard model is a
gauge theory with the gauge group, SU(3)c x SU(2)r, x U(1)y [23]. The subscripts
C, L and Y mean that respective group is internal symmetry group of colour(C), left-
handed fermions(L) and hyper-charge(Y'). Precisely, SU(2)y, is the symmetry group

of chiral spinor, rather than left-handed fermions. However, for the case of massless



representation of Poincaré group, of which P? = 0, the chirality coincides with the
helicity (or handedness) of spinors. It manifests in Weyl basis, in which y-matrices are

written as

m 0 o™
Y= (2.1)
g™ 0

with 6™ = (1ax2, ) and "™ = (1ax2, —&). In this basis, the representation of Lorentz

group generators are 7" = 7[y™,~"], and already diagonalised as
o™ 0
A = , (2.2)
0 5.mn
where,
o™ = L(g™5" — g"G™) and ™ = L(5Mo™ — 5"0™). (2.3)

4

Remind that chirality is defined whether the Weyl spinor, two-component spinor, is
transformed by ¢ or ™" ; one transformed by ¢™" is called chiral spinor, and the
other one is anti-chiral spinor. In this basis, therefore, a general Dirac spinor ¥ is

written with chiral spinor ¢ and anti-chiral spinor ¥ as,

T = (;é’g) . (2.4)

And we have chiral projection operators, Pr, g, which are,

1 1
P, = 5(1 —9°) and Pp= 5(1 +7°), (2.5)
with 7% = ¥ iﬁ’t" EmnioY ™" °. In Weyl-basis they are,
10 0 0
Pr — d Ppr= . 2.
= (5 o) P (f ) (2.

Now let’s consider the helicity of massless spinors. In massless case, each compo-

nent satisfies following respective free field equation of motion,
0 = pm (™) 1hq

0 = pun (0™)0s X (2.7)



For on-shell field ¥,

0=(po—p-0)p=—1pl(1+p- )¢ (2.8)

with p = p/|p] and it is clearly a left-handed spinor. At the same time, y is a right-

handed spinor, because
0 =[5l (~1+5- Fx. (2.9)

This shows that the chirality does coincide with the helicity as their eigenspaces
are the same. And, before the spontaneous electro-weak symmetry all spinors are

massless, so any terms can be used, helicity(handedness) or chirality.

Returning to the standard model, the particle contents should be clarified first
to construct the Lagrangian. There are 5 kinds of Weyl spinors, depending on the
charge under the internal symmetry group. Three from those five Weyl fermions have
colour charge as fundamental representation, and the other two are singlets under
SU(3)c. Among colour charged fermions, one is a doublet in SU(2)r,, and the other
two are singlets. The other two Weyl spinors without charge under SU(3)¢ are again
classified by the charge under SU(2); one is a doublet and the other one is a singlet.

And, each of them has 3 copies corresponding to three generations.

Note that the dimensionality of SU(N) is N2> — 1 and U(N) is N? dimensional
group. Therefore, from three gauge group(local symmetry group), we have (3% — 1) +
(22 — 1) + 12 massless dynamical gauge bosons. Among 12 gauge fields, 11 of them
come from non-Abelian groups, SU(3)c and SU(2)r and the left one comes from
Abelian group U(1)y. In addition to that, we have four more bosonic degrees of
freedom. Those are in a SU(2)r, doublet with two complex scalar fields. The full list

of fermionic field contents are summarised in the Table B.1] and bosonic fields are in

Table 2.2



Name Notation | Poincaré | SU(3)c | SU(2)r | U(1)y
left-handed quark Q' (2,1) 3 2 é
up-type quark uty (2,1) 3 1 —%
down-type quark diy (2,1 3 1 %
left-handed lepton Lt (2,1) 1 2 —3
right-handed lepton et (2,1) 1 1 1

Table 2.1 The particle contents of fermionic degrees of freedom of the standard model.
Indexes ¢ label the generation, and three generation of Weyl fermions had been dis-
covered for each fields. Here Q1 and Lj, consist with two Weyl spinors, so that Q% =

(dlL> and L

been discovered yet, the neutrino fields do not need labels to be specified. Here all

i
<€Vi > Since no right-handed components of neutrino fields have
L

fermions are written as they are left-handed Weyl spinors.

Name Notation | Poincaré | SU(3)c | SU(2)L | U(1)y
Higgs ) (1, 1) 1 2 —1
Gluon {G% Y a=1,.-8| (2,2) 8 1 0
Weak-gauge boson | {W}}ii23 | (2, 2) 1 3 0
Hyper-charge
B (2, 2) 1 1 0
gauge boson

Table 2.2 The particle contents of bosonic degrees of freedom of the standard model.

Here a and i labels the generators of respective symmetry group SU(3)c and SU(2)y,.

10



The full Lagrangian of the standard model, say Lgn, can be decomposed as follow.
ESM = £gauge + £fermion + EHiggs + £Yukawa + Eg.f. + ['ghost (2-10)

Each term represents the gauge kinetic terms, fermion kinetic terms, Higgs kinetic
term and its potential, Yukawa terms, gauge fixing terms(g.f.) and the terms from
associated ghosts to the gauge fixing. It contains all operators with dimension not

higher than 4 except three boundary terms from gauge sector.

Let’s discuss from the first term, the gauge kinetic term. We have two non-Abelian
gauge fields and one Abelian gauge field as in Table For the general non-Abelian
gauge field A? , the field strength tensor is defined as the commutation between

covariant derivatives,
Frun = i[Dp, D] = i[O, — 1A, On — 1Ay, (2.11)

where D, = 0, — ©A,, is covariant derivative, A,, = gA% T, with corresponding
coupling g and generators {74 },—1.... dimp|) Of Tepresentation p of gauge group G' for

coupled source. In component-wise expression for Fi,, = gF2, Tq,

Fpy = OmAf — 0n Al + g Ab AL . (2.12)

m

Here f3.® is fully anti-symmetric structure constant of the gauge group. The canoni-

cally normalised kinetic terms would be

1
— — trFp P, (2.13)

with Fy,, = gFy,, T, and Dynkin index D, of source field representation p. In standard
model, all matter fields are in fundamental representations, thus D, = % For each

components, therefore,

1 1
4 mn— a 2 n ( a a )
— 0 fabe O AG AL AT
2
T faeg Al A AT AT (2.14)

11 Sk



The only difference of Abelian gauge field B,, is triviality of the representation,

and
1 g3
— (BunB"" = ~L0,,B, (9" B" — 0" B"), (2.15)

with Bpn = g1(0mBn — 0nBm)-

Combining them all, the gauge kinetic terms in the standard model Lagrangian

are,

1 1 1
Lguage = —ngternGm” - Q—Q%ternWm” i

with couplings g3, g2 and g1 of respective SU(3)¢c, SU(2)r, and U(1)y.

Bun B™, (2.16)

The second term, Liermion, the kinetic terms of fermionic degrees of freedom as in
Table consists of 1 IP1 like terms. The covariant derivative depends on the charge

of given fermion field as,

QLiPQL = Qmm(am—i%ema—i%wgn—iﬂBm)QL (2.17)

6
urlPur = upo™(Om — i%an)\a — i%Bm)QR
dplpdr = dpo™ (O — z'%”am + i%Bm)JR
for quark sector, and
LiPL;, = Lpo™0m — @%Wm + i%Bm)LL (2.18)
erlPer = ero™(Om +1i91Bm)eR,

for the lepton sector. Here {\q}q=1,... 8 are Gell-Mann matrices and {7;};=1 23 are
Pauli matrices. Note that the all right-handed components can be written in left-

handed convention as, for example of ep,
eRlDéR = éRa'm(am — ingm)eR — am(éRa'meR). (2.19)

This can be easily checked that as follow.

epo™er = eHom e = —eé‘ﬁéRBa%eaﬁeRﬁ = —ero'eR. (2.20)

: SERSES,

'||



Remind that e is right-handed and eg is left-handed, so that er carries dotted index,

and here we used the identity,

edﬁeaﬁa% = gmae, (2.21)

Combining them all, the fermion kinetic terms Lfermion 18
Ltermion = QrPQr + uglPup + drlpdr + L DL + erDér, (2.22)

and covariant derivatives are as in eq. (2.17) and eq. (2.18).

The next term, Higgs sector Lagrangian Lyiggs is written as,
Liiggs = —D™®' Dy, @ + 12070 — \(279)?, (2.23)

with positive 2 and the covariant derivative,

Diy® = (3, — z'%ann +z’%Bm)<1>. (2.24)

The Higgs sector Lagrangian contains +u>®f® with positive ;2, hence its potential
around ® ~ 0 has negative curvature. Furthermore, the global minima of the poten-
tial is not at ® = 0, but |®|? = p?/(2)). This two characteristics, negative curvature
at the origin and global minima away from the origin, make theory expanded around
® = 0 unstable at the classical level. The tachyonic state is not regulated, but expo-
nentially decay or growth in on-shell solution. The global minima away from the origin
yield non-zero vacuum expectation value of the field ®. Non-zero vacuum expectation
value of given field makes creation operator to produce linear combination of single
particles and the ground, so that the Lehmann-Symanzik-Zimmermann(LSZ) reduc-
tion formula is not-well defined. Therefore, the field ® has to be redefined around the
true minima. After the redefinition of ® to have null expectation value from vacua,
the field excitation orthogonal to the ground state configuration seems not to re-
spect the full symmetry SU(2)z x U(1)y, but only has U(1) symmetry. This is called

spontaneous symmetry breaking.

3 =11 =1
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There are three real modulus for constant-|®| space. If we write, with v = p/v/X,

we can parametrise ® to manifest the modulus as,

P 1( + H)x(£,0, 0) 1( + H)e' cos 5 (2.25)
= —(v x(&,0,0) = —(v e ‘ .
V2 V2 —singew

Here only the H field can change the absolute value of ®, and 0, ¢, £ never change
neither |®| nor the potential value. In this parametrisation, the covariant derivatives
is,

1

V2
with abbreviates Agg), the summation of all gauge fields, and eq. 1' becomes,

D@ (8mH Y+ (0 + H)Onx — v+ H)Ag?x) , (2.26)

1 A A
Chiges = —50nHO™H — 7 (20H + H?)? + Ju (2.27)

1
—5 W HP20nxT0™x + (v + H)? XA A9y

+i(v + H)? (XTA%)(')’“X - 8mXTA£g)X> .

This is merely redefinition of fields, so that there still is SU(2)r, x U(1)y symmetry.
The only difference is that the gauge transform now becomes non-linear in fields due
to the redefinition, and this is the reason why it is called as ‘spontaneous’ symmetry

breaking.

Those angular fields £, 6 and ¢ are said to be Nambu-Goldstone bosons [24,25].
In certain gauge choice of SU(2)r x U(1)y, which is called, ‘unitary gauge’, those
Nambu-Goldstone bosons are absorbed by W% and one linear combination of w3
and B,,. For this, we rather re-parametrise ® in Cartesian-like form, rather than as
in eq. (2.25)), as
10+ H(z) + ip? ()

¢ (z)

with ¢~ (z) € C and H(x),p?(z) € R. Put aside the details until the discussion

P = , (2.28)

about the gauge fixing terms, let us assume that it is possible to fix the gauge in

) 3 =11 =1 —
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which ¢~ and ¢? do not appear, after the spontaneous symmetry breaking. Then the

covariant derivative eq. (2.24) becomes,

1 (0mH — 5(2W3 — g1Bm) (v + H)

Dppy® = NG W+ ) , (2.29)
and corresponding kinetic term would be as follow.
-D,®'D"® = —%(8H)2 - ffwmwm(v + H)? (2.30)
—%(92W5}L — 91B) (oW — g1 B™) (v + H)®
Here we defined W = %(W}n F W?2). From eq. 1’ it seems natural to redefine

gauge fields (W2, B,,) in to another basis, (Z,,, A, so that Z,, solely receives effect

of v2. The corresponding transform which keep unitarity is as follow,

Z, cos 6 —sinf w3
= v v m . (2.31)
A, sinfy  cos By B
where tan 6y = g1/g2. In this basis, eq. (2.30) becomes simple as,
1 2 2., 2
— 5(0H) ~ %WT;W“"(U +H)? - %ZmZm(v +H)? (2.32)

and induce the tree-level gauge boson masses,

2 2
V 1
19, _ (2.33)

920,

1
p——_ d = =
mw 2 J2vand mz 2 2 cos Oy

for respective W= and Z,,,.

Since we changed basis from (W3, By,) to (Zym, Am), it is natural to redefine the
corresponding couplings, too. Let’s consider a single component field ¢ with 3¢ =
T?:Z’ ¢ and Y¥ charge under U(1)y. The reason why we don’t need to know eigenvalue
of 71,2/2 is because that, the pattern of field redefinition only touches 73/2 component

and identity components. For this field 1,
TgpggWS’l +Y%0 B, = (Tg)gg cos Oy — YV gy sinOy) Z,, (2.34)

—i—(Tg)gg sin @y + Y¥g1 cos Oy ) Ap.

) 3 1] &=L —
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Note that, from tan 0y = g1/ge2, we have go sin Oy = g1 cos Oyy. If we set e =gs sin Oy

= g1 cos Oy, then the term corresponding to A,, and Z,, would be,

TS Wi+ Y g1 B = T (T = Q7 sin ) Zn + Qe A, (2.35)

where Q¥ = Tg’ +Y¥. After the spontaneous symmetry breaking with eq. , there
are Dirac spinors which consists of a pair of left- and right-handed Weyl spinors, rather
than respective two Weyl spinors. Those Dirac spinors are interaction eigenstates for
unbroken U(1)em gauge group with A,,, i.e, left- and right-handed Weyl spinors have
the same ). Therefore, the Dirac spinor ¥ with left-handed component 1 and right-

handed component Yy has following interaction withg Z,,,

m—22 (T — Q¥ sin2 Oy ) (™ + 0™Y) (2.36)
cos Oy
s T —L (T — Q¥ sin® Oy )y (PLV + PR0)
cos Oy

= Zn(giA™ — g4y )W

with
1

g2 . 92 g2
= =T3 — 6 d = ——-T5. 2.37
w cos Oy (2 3~ @sin W) ane ga 2cos by ° (2:37)

The other interaction terms with Wt are relevant only for left-handed fermions.
To discuss the picture, let’s denote upper component of the arbitrary left-handed
fermions as ¥4 and the lower component as 1)_. Then the following ‘charged-current

interaction’ terms, such that

. g2
L

ﬂ(dﬁ 7> 0 Wy o [+

W- 0 W

, (2.38)

could be written in terms of Dirac spinors W4 ="%(¢)+ 1)) corresponding to respective

Py as,

. 92 - Tm m
— zﬁ(WmJJr + W Eam) (2.39)

3 =11 =1
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with the current operators J*,
JI =Wy PV (2.40)

Now we discuss about Lyuiawa. Yukawa coupling terms include all possible charge-

neutral dimension-4 operators made by ® and fermions as follow.

Lyuawa = —Y WL (@NQp o) ruh — YD 1680 ,(Q1 5) rdf; (2.41)

—Y(Z)IJGQB(I)Q(LL 5)[6}{2 + (hC)

Here (h.c.) means Hermitian conjugates of all explicitly shown terms, and I, J are
generation indexes, while & and f are SU(2)r, indexes. Note that three Yukawa ma-
trices Y, Y@ and Y do not have to be neither unitary or Hermitian matrices.
The reality condition of Lagrangian is automatically respected by adding Hermitian
conjugates of explicitly shown terms as in eq. . Hence the Yukawa matrices
are general Ngey X Ngen complex matrices having 2Ng2, real degrees of freedom with
the number of generation, Ngen. Still the Yukawa matrices can be diagonalised via

bi-unitary transforms as, for example of up-type Yukawa matrix,
Y@ s Uly @ yp, (2.42)
by the following global transform,
ur, 1+ ug, 7(UL)?; and  agpr— ag s(Ur)’ ;. (2.43)

The similar things happen for Y@, the down-type Yukawa matrix with unitary ma-
trices Dy, and Dg for respective dy, and dg quarks. Among four unitary matrices, the
global transforms from Ui and Dg do not change anything. The two unitary matrices

rotate the kinetic terms of right-handed quarks ur and dg as because,

67 1Yho™ DR g (VR)NJ5JI(V1£)IM¢%UmDm1;R N, (2.44)

3 =11 =1
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and VRVézl, for g = ug or dg and V = U or D. Since there is no other term at
which right-handed quarks appear, the Ur and Dg only diagonalise respective Yukawa
matrices and cancelled in the kinetic terms of respective right-handed quarks. This
is not true for left-handed quarks. The left-handed quarks with different generation
labels(or flavours) are mixed through the charged current interaction which is eq.

(2.38)). For the generalised current operator (J7)! , such that,
/7
- _ =T
() = 9i0™ s g = V)" PV, (2.45)
the interaction terms in eq. (2.38) change as,

=B () 4 W () )8 (2.46)

- —zﬁwmm YL VI W™ vh ),

with V!; = (U LDE)I ;- The matrix V' is called Cabibbo-Kobayashi-Maskawa (CKM)
matrix [26,27]. Since the CKM matrix is also an unitary matrix, it includes %Ngen(]\fgen—
1) angles from SO(Ngen), and the others are complex phases with the number of
%Ngen(Ngen + 1) parameters. Among the complex phases, (2Ngen — 1) can be ab-
sorbed by relative phase difference between ui and di while the Yukawa matrices are

kept to be diagonal. Therefore, CKM matrix has total %Ngen(]\fgen — 1) angles and,

1 1

§Ngen(Ngen +1) — (2Ngen — 1) = 5(]\[gen —1)(Ngen — 2) (2.47)
complex phases relevant for observables. The standard model, there are 3 generations,
so that 3 angles and 1 complex phase parametrise the CKM matrix. There is no such
complication for the leptons, since there is only one Yukawa matrix, Y®. Since there

is no Yukawa with right-handed neutrinos, Y can be diagonalised without mixes

left-handed neutrinos and charged leptons.

Now, let’s discuss the gauge fixing terms, Ly ¢ and ghosts terms Lot together.

Without the gauge fixing terms, the path integral is not be well-defined since it sums

3 =11 =1
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up the infinitely many configuration which are equivalent via gauge transform. It
makes the propagator of the gauge field non-invertible. To make the path integral
well-defined, we need to normalise the total contribution from the equivalent field
configuration in path integral up-to gauge transform. It does not mean that the gauge
should be fixed strictly with a specific choice, but just the total the contribution from
physically equivalent configuration should be normalised. Hence, the following term

is inserted on the total action Sy of the standard model,
1
Sem > Ssm + @ Z/ddl‘gtrwgwg, (2.48)
G

where wg = wg T, is gauge fixing function of group G' with coupling g. The wg would
be eventually replaced by arbitrary gauge fixing functional F(A). For example, if
w is identified with F(a) = 0, A™ in £ — 0 limit, the resulted path integral only
allows field configuration in Lorentz gauge, in which 9,, A" = 0. For the general path

integral Z, this can be done by d-functional in path integral as,
Z= / DY DwDOS[F(A) — w]e™. (2.49)

Here D1 is abbreviation of the functional integration measure of all possible field
contents of the theory, and w is for gauge fixing terms as in eq. . 0 is a set of
gauge transform parameters. The functional integral over w will copy the gauge fixing
condition F(A) from the o-function, and the integral over § makes the gauge field
to satisfy the gauge fixing condition. This can be again generalised using J-function
identity as

oG

Z= / DyYyDwDOdet ((59> S[G(A)]e®, (2.50)

with G(A) = F(A) — w. The Jacobian determinant, which is called as the Faddeev-
Popov determinant, can be lifted up into the path integral by introducing two Grass-

mann fields ¢* and ¢* with in the same representation space where gauge fields belong.

det (‘;?) x /Dc De et/ d'ze5ie (2.51)

w=F(A)

3 =11 =1
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The factor ¢ in front of the exponential in the integrand only yields the normalisation
factor so it does not change the result. Note that here ¢ is not Hermitian conjugate

of ¢. They just share the similar labels for the field only for the notational simplicity.

The conventional choice would be Lorentz-like gauge, which is called R¢ gauge.
The gauge fixing terms in R¢-gauge for the symmetry generators are introduced in
the same manner with the Lorentz gauge. For the spontaneously broken symmetry
generators, however, it would carries additional terms to absorb the Nambu-Goldstone
boson. To manifest this picture, let’s consider the toy example with spontaneous
symmetry breaking of U(1) symmetry with following Lagrangian L.

2

2
EonF™ — Dyd* D™ — % <\¢>|2 — ”2> (2.52)

1

L=——
4e2

with complex scalar field ¢ and Abelian gauge field A,, and associated field strength
tensor, covariant derivative and charge e of ¢ under U(1). Then reparametrisation

o= %(v + h +ip) with gauge fixing term w = F(A) such that,
F(A) = 0 A™ — Eevyp (2.53)
yields £ as follow.

1 1
L= —An ((82 B <1 - g) ama"> A, (2.54)
_1 2_1 2_i 2 22_§222
2(811) 2(6(,0) 16(21}h—|—h + %) ¢ VP
(20 h Ay + hO™ A ) — %(52(21211 B2 4 ) A AT

—&(9* — getv(v 4+ h))e (2.55)
If the U(1) was not broken, then the ghost would be decoupled from the other fields,
but due to additional gauge fixing condition it is still coupled to h field. Furthermore,

even though the fields similar with ¢, the Nambu-Goldstone boson, never has the

mass term as in eq. 1D here it becomes massive with m?p = ¢e%0?. Tt is easy to

3 =11 =1
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find the origin, the gauge fixing term, as it has £. The gauge fixing term with non-zero
& accounts all contribution from field configuration which does not respect the strict
gauge fixing condition, w = 0. With £ — 0 limit, however, only the field configuration
which respect the gauge fixing condition contributes. This manifests as mi =0 in
this limit. We, therefore, call this specific case, R¢-gauge in & — 0 limit, as unitary
gauge.

The similar things happen in the standard model. As eq. (2.50)), the standard

model includes gauge fixing terms Ly ¢ as

1 1 1

Lys = trwcwe + EtMLwL + EUJYWY, (2.56)
where the auxiliary filed are exactly solved as w¢, = Fé, wiL = .7-"2 and wy = Fy with
FE(G) = 0nG*™ (2.57)

Fi(W) = 0,W'™ — ggzwi

Fy(B) = 0n,B™ - gglv()og'

Here ¢"’s are Nambu-Goldstone bosons, such that,
_ { .

o~ = —ﬁ(wl +ip?) and ¢° =7, (2.58)

and ¢~ and ¢ parametrise ® as in eq. . The gauge fixing terms for W}, and
By, can be re-written in terms of WX, Z,, and A, as,
FEW) = 0n.W=™ Fifmwe™ (2.59)
FAZ) = 0p2™ —tmyp?
FAA) = 9,A™,

where F* = 12 (FL FiF3?) and

S

FZ cos —sinf F3
- v T (2.60)
FA sinfy,  cos By Fy



For the masses of gauge bosons, please refer to eq. (2.33). The eq. (2.59)) more manifest
the symmetry breaking pattern of the standard model compared to eq. (2.59)). In this

basis, the gauge fixing terms Ly ¢ from eq. (2.56)) will be given by,

1 1 1 1
qa TEF b+ (T F T 4 g FIF 4 FAFL (2.61)

The Faddeev-Popov determinants from gauge fixing terms induce total 12 ghost

Eg.f. =

fields and 12 anti-ghost fields. 8 of each, say ¢, and ¢’, account to the SU(3)c sym-
metry, and the left correspond to SU(2)r x U(1)y. Following the basis used in eq.
(2-61), those ghost fields from SU(2);, x U(1)y are labelled as ¢, c—, ¢z and ca, and
similar for anti-ghost fields. Then the ghost terms are,

8.7:
ghost Z Ca (9(917 a 5 C‘j (262)

)

where a, b take values from 1,---,8 and ¢ and j run over {+, —, Z, A}. To evaluate
those terms, let’s first consider the gauge transform of arbitrary gauge field. The
gauge transform of general non-Abelian gauge field, A,, — U(G, + i0,)UT, gives

following infinitesimal transform with parameters 6,
SAY, = 0p0® — gfrc 0" AS, = (D), 6" (2.63)

Here D?,? J is the covariant derivative of the adjoint representation. Therefore, the func-
tional derivative of Lorentz-like gauge fixing terms with respect to group parameters

is

4]

g0 AT = s()ompadia, (2.64)
Therefore, the gauge fixing of SU(3)¢ have following ghost terms,
a]:'a(G) m yad]j a
Co——r—" 500 GO DEI . (2.65)

In electro-weak sector, we have additional gauge fixing terms from the subtraction
of Nambu-Goldstone bosons. At the same time, the basis used for eq. (2.61)) is non-

trivial. We have to know the infinitesimal gauge transform of SU(2)r x U(1)y gauge
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bosons and related Nambu-Goldstone bosons from ®. The suitable parameters would

be (a*,a”,az,a4), rather than @y & ay. The definitions are

1
+ _ 1 . 2
a = —(« 7)), 2.66
\/5( L Fiag) ( )
and
« cos —sin@ a3
7 = W W L (2.67)
aa sinfy,  cos Oy ay

The infinitesimal gauge transform of gauge fields Wt, Z,, and A,, with above pa-

rameters are,
5Wni1 = OpatF igzai(cos Ow Z, + sin Oy Ay, (2.68)
+iga(cos Oy az + sin 9WaA)an,
and
8 Zy, = Omaz —igacosy(a” W —atWy,) (2.69)
§An = Omaa —igesinOy (a” WE — oﬁWA}).

At the same time, corresponding infinitesimal transform of ® would be as follow.

92

SH — 92 Z _ ool +,- 2.70
2COSHWaZSD 92 m[a 4 } ( )
g2 -
67 = 2 H Re [a™
14 2(305«91/1/012(0+ )+ g2 e[a 4 ]
; 20
S = ¢;gza+(v+Hﬂsz)ii(WQZ+GO‘A> o

Now the gauge fixing terms from eq. (2.59) and infinitesimal transforms from eq.
(2.68)), eq. (2.69) and eq. (2.70]), determine the ghost terms.
Combining them all, gauge kinetic terms from eq. (2.16)), fermion kinetic terms

from eq. (2.22)), Higgs sector Lagrangian from eq. (2.23]), Yukawa terms from eq.
(2.41)), gauge fixing terms from eq. (2.61]) and ghost terms from eq. (2.62) complete

the standard model Lagrangian.
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There could be additional dimension-4 terms which are

0 0 Lo )
2 GG ot + g W W8y + o BB, (2.71)

To manipulate these terms, let’s consider a general non-Abelian gauge field A,, =
gA% T, with Hermitian generators T, under certain irreducible representation. Let
A?=A% dx™ be 1-form, and A=gA*T, be matrix-valued one-form. This notation sim-

plifies the field strength tensor as follow,

G

N

Grndx™ Ndz" = dA —iA N A. (2.72)

Now, with the oriented volume-form w = daz® A - - - A dz? in 4-dimensional Minkowski
space-time,

MU (G i G )w = 4tr(G A G). (2.73)

The trace G A G, then contains four terms as below.

dANdA = d(AAdA) —(—1)'AAdA (2.74)
tr(dAA (AN A)) = étr(d(A AAAA))
= (=1)*tr((A