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Abstract

This study consists of three chapters. Each chapter addresses independent issues. How-
ever they are connected in that they are analyzing economic phenomena using a network
structure and they investigate the distribution of benefits or costs arising from cooperation
using cooperative game theory. The first chapter investigate positional queueing problem
which is a generalized problem of the classical queueing problem. In this chapter, we ob-
tain generalized versions of the minimal transfer rule and of the maximal transfer rule. We
also investigate properties of each rules and axiomatically characterized them. The second
chapter investigate the minimum cost spanning tree problems with multiple sources. We
investigate the properties and axiomatic characterization of the Kar rule for the minimum
cost spanning tree problems with multiple sources. The final chapter investigate the profit
allocation in the Korean automotive industry using the buyer-supplier network among the
vehicle manufacturers and its first-tier vendors from the perspective of cooperative game
theory. Some models are constructed and the Shapley values of each models are calcu-
lated. We compare them with real profit allocation of the Korean automotive industry.

Keywords: Shapley value, network, cooperative game theory, queueing problems,
minimum cost spanning tree problems, Korean automotive industry.
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Introduction

Social networks are of great interest in economics. The network can be interpreted and
utilized in various ways through its properties, that is, the presence or absence of a con-
nection, the strength of the connection, and the direction of the connection. From an eco-
nomic perspective, various meanings such as the possibility of cooperation, the strength of
closeness, and structural relationship between economic agents can be modeled through
the network, and the characteristics of the network contribute a lot to the analysis and
understanding of economic phenomena.

Cooperative game theory is interested in maximizing the benefits of cooperation among
participants and allocating the benefits. As networks may model cooperation among par-
ticipants, it is naturally linked to cooperative game theory.

This study consists of three chapters. Each chapter addresses independent issues.
However they are connected in that they are analyzing economic phenomena using a
network structure and they investigate the distribution of benefits or costs arising from
cooperation using cooperative game theory. The first chapter investigate the allocation
problem of cost incurred when agents are forming a line to be served from a facility.
The second chapter investigate the allocation problem of cost incurred when agents are
forming a tree structure to be served from some facilities. In these two chapters, the Shap-
ley values were investigated using an axiomatic approach. The third chapter investigate
the profit allocation in the Korean automotive industry using the buyer-supplier network
among the vehicle manufacturers and its first-tier vendors.

The first chapter investigate positional queueing problem which is a generalized prob-
lem of the classical queueing problem. A group of agents are waiting to be served in a
facility. The facility can serve only one agent at a time and agents differ in their cost
types. We are interested in finding the order in which to serve agents and the correspond-
ing monetary transfers for the agents. In this chapter, we relax the assumption of classical
queueing problem that the waiting cost of an agent is linear function of her waiting order.
Instead, we assume that the cost function is non-decreasing and super-modular. We show
that our generalized problem, the positional queueing problem, can be regarded as a gen-
eralization of the classical queueing problem, queueing problem with multiple parallel
servers as well as the position allocation problem. By applying the Shapley value to the
problem, we obtain generalized versions of the minimal transfer rule and of the maximal
transfer rule. We also investigate properties of each rules and axiomatically characterized
them.

The second chapter investigate the minimum cost spanning tree problems with multi-
ple sources. There are a number of sources that provide services. A group of agents want
to connect to these sources. An agent does not care if her connection to the source is di-
rect or indirect, however she needs to connect to all of the sources. A connection entails a
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cost. We are interested in finding the efficient network and how to allocate the construc-
tion cost to each agents. The classical minimum cost spanning tree problem deals with
problems with one source, and the Kar rule (the Shapley value) as well as the folk rule is
investigated. As for the minimum cost spanning tree problems with multiple sources, the
Kar rule is not yet addressed. Objective of this chapter is to investigate the properties and
provide an axiomatic characterization of the Kar rule for the minimum cost spanning tree
problems with multiple sources.

The last chapter investigate the Korean automotive industry from the perspective of
cooperative game theory. An industry is a sector that produces a closely related goods or
services within an economy. Individual firms produce their own product such as materials,
intermediates and final products, and sell them to other firms (mostly) within the same
industry or consumers. Firms in an specific industry are connected with the buyer-supplier
relationships. In this point of view, an industry can be seen as a system consist of many
firms working together to produce the final goods and distribute the value of the products
among them. Therefore, we have possibility to investigate an industry with game theoretic
approach. The Korean automotive industry is one of the biggest industries in Korea. Many
researches have conducted on the Korean automotive industry, in particular, on the power
imbalance in the industry, however it is not easy to find research conducted using game
theoretic approach. We build models with network which reflect the relationships among
vehicle manufacturers and first-tier vendors and we estimate the Shapley value of the
game. We compare them with real profit allocation of the Korean automotive industry.
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Chapter 1

The Shapley Value in Positional
Queueing Problems and axiomatic

characterizations

1.1 Introduction

A group of agents are waiting to be served in a facility. Only one agent can be served at a
time, and a queue has to be organized to serve all agents. Agents differ in their cost types
and her waiting cost is determined by her position and her cost type. Each agent’s utility
is assumed to be equal to the amount of her monetary transfer minus her waiting costs.

We are interested in finding the order of the queue and the monetary transfer they
should receive. An allocation consist of each agents’ position in the queue and the mon-
etary transfer to her. An allocation rule, simply a rule, associates with each queueing
problem and an allocation.

In the standard formulation(Maniquet, 2003; Chun, 2006; Chun and Hokari, 2007;
van den Brink and Chun, 2012), an agent’s waiting cost is a linear function of the order.
The linear cost assumption of the classical queueing problem can be relaxed. For instance,
Chun and Heo(2008) extended the model by assuming the facility has two or more parallel
servers. They assumed that some agents are served at the same time.

In this paper, we relax the assumption further to the “positional queueing problems”
by allowing the cost of each agent to depend on the cost type and the position assigned.
The standard queueing problem is a special case of the positional queueing problem. In
addition, the positional queueing problem can be used as a tool for analyzing the queue-
ing problem with multiple parallel servers (Chun and Heo 2008) and position allocation
problem studied in Essen and Wooders (2018).

This chapter is organized as follows. Section 2 presents the positional queueing prob-
lem and two rules for the problem; the minimal and the maximal transfer rules. Section
3 shows that the minimal transfer rule is the Shapley value of the optimistic positional
queueing problem. Section 4 show that the maximal transfer rule is the Shapley value of
the pessimistic positional queueing problem. Section 5 provides axiomatic characteriza-
tions of the two rules. Concluding remarks follow in Section 6.
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1.2 The Positional Queueing Problem

Let N = {1, . . . , n} be a set of agents, who want to be served in a facility which serves
one agent at a time. Each agent i ∈ N is characterized by her (cost) type, θi ∈ R+. Let
θ = (θi)i∈N ∈ RN+ be the profile of types. For each S ⊆ N, let Σ(S) be the set of all
possible orderings of S.

Given a set of agents N , each agent i ∈ N is assigned to a position σi ∈ {1, . . . , n} in
a queue and a positive or negative monetary transfer ti. If the monetary transfer of agent i,
ti, is positive, she receives a compensation from others. If negative, she pays the amount
of money as a compensation to others. We are interested in finding the order in which to
serve agents and the corresponding monetary transfers for the agents.

A (positional) cost function C : R+ × N → R is a function that represent the cost
incurred by cost type and position. If an agent i of type θi is positioned at σi, then the
positional cost of agent i is C(θi, σi).1

For each θ′i, θi ∈ R+ and each σ′i, σi ∈ N, a cost function is non-decreasing in θ
if θ′i > θi implies C(θ′i, σi) ≥ C(θi, σi) and non-decreasing in σ if σ′i > σi implies
C(θi, σ

′
i) ≥ C(θi, σi). For each θi, θj ∈ R+ and each σi, σj ∈ N, a cost function C is

supermodular with respect to the type and the position if θi ≥ θj and σi ≤ σj imply
that C(θi, σi) +C(θj, σj) ≤ C(θi, σj) +C(θj, σi) and strictly supermodular with respect
to the type and the position if θi > θj and σi < σj imply that C(θi, σi) + C(θj, σj) <
C(θi, σj) + C(θj, σi).

Let C be a cost function which is supermodular with respect to the type and the posi-
tion and non-decreasing with respect to each argument. Let C be such family of all cost
functions. All agents have an identical cost function, however they are differ in types.
The utility of each agent is equal to the negative of her positional cost plus her monetary
transfer, that is, ui(σi, ti) = −C(θi, σi) + ti.

A positional queueing problem, or a problem, is a tuple (θ, C), where θ ∈ RN+ is the
profile of types and C ∈ C is the cost function. Let QN be the class of all problems for
N . An allocation is a pair (σ, t) where for each i ∈ N, σi denotes agent i’s position
in the queue and ti the monetary transfer assigned to her. An allocation is feasible if no
two agents are assigned the same position and the sum of all transfers is not positive. Let
Z(θ, C) be the set of all feasible allocations of (θ, C).

An allocation is queue-efficient if it minimizes sum of the waiting costs of all agents
among all feasible allocations. With a supermodular cost function, if agents are served
in the non-increasing order of their types, then it is queue-efficient. If the cost function
is strictly supermodular and all agents are of different types, then the efficient queue
is unique. However, the efficient queue may not be unique in other circumstances. For
each problem (θ, C), let E(θ, C) be the set of all efficient queues for the problem and
Ẽ(θ, C) ⊆ E(θ, C) be the subset of efficient queues which serves agents in the non-
increasing order of their types. Similarly, for each S ⊆ N, let E(θS, C) be the set of
efficient queues for S and Ẽ(θS, C) ⊆ E(θS, C) be the subset of efficient queues for S
which serves agents in the non-increasing order of their types. An allocation is budget-
balanced if

∑
i∈N ti = 0.

1The positional cost function of the standard queueing problem is given by: for each i ∈ N, each θi, and
each σi, C(θi, σi) = (σi − 1)θi.
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An allocation rule, or a rule, is a mapping ϕ which associates to each problem a non-
empty set of feasible allocations. An allocation rule is efficient if it is queue-efficient and
budget-balanced.

For each σ ∈ Σ(N) and each i ∈ N, let Pi(σ) be the set of agents preceding agent i,
that is, Pi(σ) = {j ∈ N | σj < σi} and Fi(σ) be the set of agents following agent i, that
is, Fi(σ) = {j ∈ N | σj > σi}.

For each θ0 ∈ R+, let P̂ (θ0) = {j ∈ N |θj > θ0} be the set of agents with types larger
than θ0, Ê(θ0) = {j ∈ N |θj = θ0} the set of agents with the type θ0, and F̂ (θ0) = {j ∈
N |θj < θ0} the set of agents with types smaller than θ0. Let p̂(θ0), ê(θ0), and f̂(θ0) be the
cardinality of each set. Let Θ(P̂ , i) be the set of distinct (cost) types in P̂ (θi) and Θ(F̂ , i)
be the set of distinct types of agents in F̂ (θi) with a generic element denoted by θ0. When
there is no danger of confusion, we use for i = 0, . . . , n, p̂i, êi, and f̂i instead of p̂(θi),
ê(θi), f̂(θi), respectively.

For the minimal transfer rule, after choosing an efficient queue inE(θ, C), the transfer
to agent i is calculated as if all agents are positioned in the non-increasing order of their
waiting costs so that agents with type θ0 are assigned with positions from p̂0 +1 to p̂0 + ê0;
from each agent with the type larger than or equal to θi, agent i receives the sum of the
cost difference between i’s position and each of these agent’s position divided by their
total number (this number is equal to p̂i + êi) with the cost being evaluated by θi; for
each agent with type θ0 ∈ Θ(F̂ , i) assigned with position k, we calculate the sum of cost
difference between the assigned position and each position starting from 1 to the assigned
position divided by the number of these positions (this number is equal to k) with the cost
being evaluated by θ0 and then, each precedent is equally responsible for this sum so that
the sum is divided equally among the precedents (this number is equal to k − 1); finally,
the transfer is determined by adding the amount paid to agent i and the amount agent i
is paying to each agent with a smaller type. Note that for the minimal transfer rule, the
cost of a smaller type is used to evaluate the cost difference. Moreover, if the efficient
queue belongs to Ẽ(θ, C), then the transfer to agent i can be explained in terms of her
precedents and followers similar to the standard queueing problem.

Minimal transfer rule, ϕM : For each (θ, C) ∈ QN ,

ϕM(θ, C) =
{

(σM , tM) ∈ Z(θ, C)| σM ∈ E(θ, C) and

∀i ∈ N, tMi =

p̂i+êi∑
k=1

C(θi, σ
M
i )− C(θi, k)

p̂i + êi
−

∑
θ0∈Θ(F̂ ,i)

p̂0+ê0∑
k=p̂0+1

1

k − 1

k∑
`=1

C(θ0, k)− C(θ0, `)

k

}
.

Moreover, if σM ∈ Ẽ(θ, C), then the transfer is simplified as: for each i ∈ N,

tMi =
∑

p∈Pi(σM )

C(θi, σ
M
i )− C(θi, σ

M
p )

σMi
−

∑
f∈Fi(σM )

1

σMf − 1

∑
`∈Pf (σM )

C(θf , σ
M
f )− C(θf , σ

M
` )

σMf
.

For the maximal transfer rule, after choosing an efficient queue inE(θ, C), once again,
the transfer to agent i is calculated as if all agents are positioned in the non-increasing
order of their waiting costs so that agents with type θ0 are assigned with positions from
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p̂0 + 1 to p̂0 + ê0; for each agent with type θ0 ∈ Θ(P̂ , i) assigned with position k, we
calculate the sum of the cost difference between each position starting from the assigned
position to the last position and the assigned position divided by the total number of these
positions (this number is equal to n − k + 1) with the cost being evaluated by θ0, and
then, agent i receives this amount shared equally among all agents position from k + 1
to n (this number is equal to n − k); to each agent with the type smaller than or equal
to θi, agent i pays the sum of the cost difference between each of these agent’s position
and i’s position divided by their total number including herself (this number is equal to
êi+f̂i) with the cost being evaluated by θi; finally, the transfer is determined by adding the
amount paid to agent i by each agent with a larger type and the amount agent i is paying
to each agent with a smaller or an equal type. Note that for the maximal transfer rule,
differently from the minimal transfer rule, the cost of a larger type is used to evaluate the
cost difference. Moreover, if the efficient queue belongs to Ẽ(θ, C), then the transfer to
agent i can be explained in terms of her precedents and followers similar to the standard
queueing problem.

Maximal transfer rule, ϕX: For each (θ, C) ∈ QN ,

ϕX(θ, C) =
{

(σX , tX) ∈ Z(θ, C)| σX ∈ E(θ, C) and

∀i ∈ N, tXi =
∑

θ0∈Θ(P̂ ,i)

p̂0+ê0∑
k=p̂0+1

1

n− k

n∑
`=k

C(θ0, `)− C(θ0, k)

n− k + 1
−

n∑
k=p̂i+1

C(θi, k)− C(θi, σ
X
i )

êi + f̂i

}
.

Moreover, if σX ∈ Ẽ(θ, C), then the transfer is simplified as: for each i ∈ N,

tXi =
∑

p∈Pi(σX)

1

n− σXp

∑
`∈Fp(σX)

C(θp, σ
X
` )− C(θp, σ

X
p )

n− σXp + 1
−

∑
f∈Fi(σX)

C(θi, σ
X
f )− C(θi, σ

X
i )

n− σXi + 1
.

To simplify notation, when there is no danger of confusion, we do not attach the super-
scripts M and X to σ and t.

Now we describe cooperative games with transferable utility, or simply games. Let
N = {1, . . . , n} be the set of agents and S ⊆ N be a coalition. A game is a real-valued
function v defined on S ⊆ N where v(S) is the worth of coalition S. Let ΓN be the set of
all games with the set of players N . A value is a function φ which associates with each
v ∈ ΓN a vector φ(v) = (φi(v))i∈N , which represents the payoff to each player in game
v.

The Shapley value (Shapley 1953) is the best-known value for games. It assigns to
each member her own marginal contributions regarding all possible orderings which is
calculated as below:

Shapley value: For each v ∈ ΓN and each i ∈ N,

φSVi (v) =
∑

S⊆N,i∈S

(|S| − 1)!|N \ S|!
|N |!

{
v(S)− v(S \ {i})

}
. (1.1)
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1.3 An optimistic approach and the minimal transfer rule
We solve the positional queueing problem using the Shapley value. We need to calculate
the worth of each coalitions corresponding to a positional queueing problems. We first
introduce the optimistic positional queueing game vo introduced by Maniquet (2003) for
the standard queueing problem. In this approach, the worth of each coalition is calculated
under the optimistic assumption that the coalitional members are served before the non-
coalitional members. The worth of a coalition S is defined as the negative of the minimum
cost incurred by its members when the coalitional members are assigned to the first |S|
positions. For each S ⊆ N and each σ̃(S) ∈ E(θS, C),

vo(S) = max
σ∈Σ(S)

[
−
∑
i∈S

C(θi, σi)
]

= −
∑
i∈S

C(θi, σ̃i(S)).

Our first theorem shows that the utility of each agents assigned by the Shapley value
under optimistic assumption can be reached using the minimal transfer rule.

Theorem 1.1. (Minimal transfer rule) Let (θ, C) ∈ QN , and (σM , tM) be a feasible
allocation such that agents’ utilities are equal to the payoff vector obtained by applying
the Shapley value to the optimistic positional queueing game vo. Then, σM ∈ E(θ, C)
and for each i ∈ N ,

tMi =

p̂i+êi∑
k=1

C(θi, σ
M
i )− C(θi, k)

p̂i + êi
−

∑
θ0∈Θ(F̂ ,i)

p̂0+ê0∑
k=p̂0+1

1

k − 1

k∑
`=1

C(θ0, k)− C(θ0, `)

k
. (1.2)

Proof. The proof is given in Appendix A.

If an efficient queue belongs to Ẽ(θ, C), then the transfer in Theorem 1.1 can be
simplified similarly to the transfer of the minimal transfer rule in the standard queueing
problem. Note that if C is strictly supermodular, then E(θ, C) = Ẽ(θ, C).

Corollary 1.1. Let (θ, C) ∈ QN and (σM , tM) be a feasible allocation such that agents’
utilities are equal to the payoff vector obtained by applying the Shapley value to vo. If
σM ∈ Ẽ(θ, C), then for each i ∈ N,

tMi =
∑

p∈Pi(σM )

C(θi, σ
M
i )− C(θi, σ

M
p )

σMi
−

∑
f∈Fi(σM )

1

σMf − 1

∑
`∈Pf (σM )

C(θf , σ
M
f )− C(θf , σ

M
` )

σMf
.

(1.3)

Proof. The proof is given in Appendix A.

Example 1.1. (The minimal transfer rule applied to a problem with 3 agents) Let N =
{1, 2, 3} and θ be such that θ1 > θ2 > θ3. Then, the minimal transfer rule is given by
setting for each i ∈ N, σMi = i and

tM1 = − 1

1× 2
[C(θ2, 2)− C(θ2, 1)]− 1

2× 3
[C(θ3, 3)− C(θ3, 1)]− 1

2× 3
[C(θ3, 3)− C(θ3, 2)],

tM2 =
1

2
[C(θ2, 2)− C(θ2, 1)]− 1

2× 3
[C(θ3, 3)− C(θ3, 1)]− 1

2× 3
[C(θ3, 3)− C(θ3, 2)],

tM3 =
1

3
[C(θ3, 3)− C(θ3, 1)] +

1

3
[C(θ3, 3)− C(θ3, 2)].
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Our theorem generalizes the results in Maniquet (2003) for the standard queueing
problem, Chun and Heo (2008) for the queueing problem with `-servers, and Essen and
Wooders (2018) for the position allocation problem.

1.3.1 The minimal transfer rule for the standard queueing problem
In the standard queueing problem (Maniquet 2003), if agent i is served at the σith position,
then her waiting cost is (σi−1)θi. By substituting the cost function C(θi, σi) = (σi−1)θi
into equation (1.3), we have:

tMi =
∑

p∈Pi(σ)

C(θi, σi)− C(θi, σp)

σi
−
∑

f∈Fi(σ)

1

σf − 1

∑
k∈Pf (σ)

C(θf , σf )− C(θf , σk)

σf

=
∑

p∈Pi(σ)

(σi − σp)θi
σi

−
∑

f∈Fi(σ)

1

σf − 1

∑
k∈Pf (σ)

(σf − σk)θf
σf

= {(σi − 1)− σi(σi − 1)

2σi
}θi −

∑
f∈Fi(σ)

1

σf − 1
{(σf − 1)− σf (σf − 1)

2σf
}θf

= (σi − 1)
θi
2
−
∑

f∈Fi(σ)

θf
2
,

which is the transfer for the minimal transfer rule of the standard queueing problem.

1.3.2 The minimal transfer rule for queueing problems with multiple
parallel servers

Chun and Heo (2008) introduced the queueing problem with multiple parallel servers.
Now we explain that how the queueing problem with multiple parallel servers can be
solved by our result. Assume that the facility has ` parallel servers, so that ` agents can
simultaneously be served. Let σ be a queue for the standard queueing problem (with 1-
server), that is, σ ∈ Σ(N). For each i ∈ N, let gi = dσi

`
e be the smallest integer larger

than or equal to σi
`

. If agent i is served at the gith position, then her utility is equal to
u(gi, ti; θi) = −(gi − 1)θi + ti.

For each S ⊆ N, its worth under the optimistic assumption is defined as:

vo(S) = −
∑
i∈S

(gSi − 1)θi,

where gSi is the service position of agent i in S, that is, for σ(S) ∈ Ẽ(θS, C), gSi = dσi(S)
`
e.

The minimal transfer rule chooses an efficient queue and then, determines transfers as
follows: for each i ∈ N,

tMi =

∑
gMj <gMi

gMj · `
σi

· θi −
∑

k∈Fi(σ)

( 1

σk − 1
·

∑
gMj <gMk

gMj · `
σk

· θk
)
,

and the Shapey value assigns to agent i the following utility:
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φSVi (vo) = −(gMi − 1)θi +

∑
gMj <gMi

gMj · `
σi

· θi−
∑

k∈Fi(σ)

( 1

σk − 1
·

∑
gMj <gMk

gMj · `
σk

· θk
)
.

This `-server queueing problem can be obtained from the positional queueing problem
by setting C(θi, σi) = (gi − 1)θi. By substituting this cost function into equation (1.3),
we have2:

tMi =
∑

p∈Pi(σ)

C(θi, σi)− C(θi, σp)

σi
−
∑

f∈Fi(σ)

1

σf − 1

∑
k∈Pf (σ)

C(θf , σf )− C(θf , σk)

σf

=
∑

p∈Pi(σ)

(gi − gp)θi
σi

−
∑

f∈Fi(σ)

1

σf − 1

∑
k∈Pf (σ)

(gf − gk)θf
σf

Since
∑

p∈Pi(σ)(gi−gp) = (1+· · ·+(gi−1))·` =
∑

gj<gi
gj·` and

∑
k∈Pi(σf )(gf−gk) =

(1 + · · ·+ (gf − 1)) · ` =
∑

gj<gf
gj · `, tMi can be expressed as:

tMi =
∑

p∈Pi(σ)

(gi − gp)θi
σi

−
∑

f∈Fi(σ)

1

σf − 1

∑
k∈Pf (σ)

(gf − gk)θf
σf

=

∑
gj<gi

gj · `
σi

· θi −
∑

f∈Fi(σ)

1

σf − 1

∑
gj<gf

gj · `
σf

· θf ,

which is the transfer for the minimal transfer rule of the `-server queueing problem (as
conjectured in Chun and Heo (2008)).

1.3.3 The minimal transfer rule for position allocation problems
Position allocation problem (Essen and Wooders 2018) is interested in allocating positions
to each agent. Let N = {1, . . . , n} be the set agents and there are |N | positions. Each
position i, 1 ≤ i ≤ |N |, has an inherent value αi which is known to agents. Without loss
of generality, let the positions are ordered so that α1 ≥ α2 ≥ · · · ≥ αn. Each position is
assigned to each agent so that if agent i with type θi receives position σi, then her payoff
is equal to ασi · θi.3 Let vPAo be an optimistic position allocation game obtained from the
position allocation problem under the optimistic assumption that the coalitional members
are served before the non-coalitional members. Assuming that θ1 ≥ θ2 ≥ · · · ≥ θn, Essen

2Strictly speaking, since queueing problems with multiple parallel servers are supermodular, but not
strictly supermodular, we have to apply Theorem 1.1 instead of Corollary 1.1. However, it is sufficient to
consider efficient queues in Ẽ(θ, C) from the following reason. Let two efficient queues σ1, σ2 ∈ E(θ, C)
are g-identical if for each i ∈ N, gi(σ1) = gi(σ2). First, note that if σ1, σ2 ∈ E(θ, C) are g-identical, then
the corresponding transfer is the same. In addition, for each σ ∈ E(θ, C), there is a g-identical queue σ̃
in Ẽ(θ.C). Therefore, by calculating the transfer for an efficient queue σ̃ ∈ Ẽ(θ.C), we can identify the
transfer for all efficient queues σ ∈ E(θ, C), which are g-identical to σ̃.

3Essen and Wooders(2018) uses xi ∈ R for the player value, where as we use θi ∈ R+ for the cost type.
We can also extend our problem by allowing a negative θi, which would not affect our results.
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and Wooders (2018, Proposition 1) shows that the assignment to agent i by the Shapley
value is equal to:

φSVi (vPAo ) =
1

i
(

i∑
m=1

αm)θi −
n−i∑
m=1

1

i+m− 1

[
i+m−1∑
r=1

r

i+m
(αr − αr+1)θi+m

]
.

Let σ be an efficient queue. Note that

φSVi (vPAo ) =
1

i
(

i∑
m=1

αm)θi −
n−i∑
m=1

1

i+m− 1

[ i+m−1∑
r=1

r

i+m
(αr − αr+1)θi+m

]
=

i∑
p=1

αpθi
i
−

n−i∑
m=1

1

i+m− 1

[ i+m−1∑
r=1

1

i+m

(
αr − αi+m

)
θi+m

]

=
i∑

p=1

αpθi
i
−

n∑
f=i+1

1

f − 1

[ f−1∑
r=1

1

f
(αr − αf )θf

]
=

∑
p∈Pi(σ)∪{i}

αpθi
i
−
∑

f∈Fi(σ)

1

f − 1

∑
k∈Pf (σ)

(αk − αf )θf
f

.

Now from the definition of ti,

ti = ϕSVi (vPAo ) + C(θi, σi)

=
∑

p∈Pi(σ)∪{i}

αpθi
i
−
∑

f∈Fi(σ)

1

f − 1

∑
k∈Pf (σ)

(αk − αf )θf
f

− αiθi

=
∑

p∈Pi(σ)

(ασp − ασi)θi
σi

−
∑

f∈Fi(σ)

1

σf − 1

∑
k∈Pf (σ)

(ασk − ασf )θf
σf

.

Now let the positional cost function be C(θi, σi) = −ασi · θi for all i ∈ N as the
position allocation problem. Then we have:

tMi =
∑

p∈Pi(σ)

C(θi, σi)− C(θi, σp)

σi
−
∑

f∈Fi(σ)

1

σf − 1

∑
k∈Pf (σ)

C(θf , σf )− C(θf , σk)

σf

=
∑

p∈Pi(σ)

(ασp − ασi)θi
σi

−
∑

f∈Fi(σ)

1

σf − 1

∑
k∈Pf (σ)

(ασk − ασf )θf
σf

,

which is the transfer for the minimal transfer rule of the positional allocation problem.

1.4 A pessimistic approach and the maximal transfer rule
Now we assume that all coalitional members are served after non-coalitional members
(Chun 2006). The worth of each coalition S ⊆ N is defined as the negative of the mini-
mum cost when the coalitional members are served in the last |S| positions. Formally, for
each S ⊆ N and each σ̃(S) ∈ Ẽ(θS, C), its worth vp(S) is defined as:
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vp(S) = max
σ∈Σ(S)

[
−
∑
i∈S

C(θi, n− s+ σi)
]

= −
∑
i∈S

C(θi, n− s+ σ̃i(S)).

Our second theorem shows that the utility of each agents assigned by the Shapley
value under pessimistic assumption can be reached using the maximal transfer rule.

Theorem 1.2. (Maximal transfer rule) Let (θ, C) ∈ QN and (σ, t) be a feasible allocation
such that agents’ utilities are equal to the payoff vector obtained by applying the Shapley
value to the pessimistic positional queueing game vp. Then, σX ∈ E(θ, C) and for each
i ∈ N ,

tXi =
∑

θ0∈Θ(P̂ ,i)

p̂0+ê0∑
k=p̂0+1

1

n− k

n∑
`=k

C(θ0, `)− C(θ0, k)

n− k + 1
−

n∑
k=p̂i+1

C(θi, k)− C(θi, σ
X
i )

êi + f̂i
.

(1.4)

Proof. The proof is given in Appendix B.

If an efficient queue belongs to Ẽ(θ, C), then the transfer in Theorem 1.2 can be
simplified similarly to the transfer of the maximal transfer rule in the standard queueing
problem.

Corollary 1.2. Let (θ, C) ∈ QN and (σX , tX) be a feasible allocation such that agents’
utilities are equal to the payoff vector obtained by applying the Shapley value to vp. If
σX ∈ Ẽ(θ, C), then for each i ∈ N,

tXi =
∑

p∈Pi(σX)

1

n− σXp

∑
k∈Fp(σX)

C(θp, σ
X
k )− C(θp, σ

X
p )

n− σXp + 1
−

∑
f∈Fi(σX)

C(θi, σ
X
f )− C(θi, σ

X
i )

n− σXi + 1
.

(1.5)

Proof. The proof is given in Appendix B.

Example 1.2. (The maximal transfer rule applied to a problem with 3 agents) Let N =
{1, 2, 3} and θ be such that θ1 > θ2 > θ3. Then, the maximal transfer rule is given by
setting for each i ∈ N, σXi = i and

tX1 = −1

3
[C(θ1, 2)− C(θ1, 1)]− 1

3
[C(θ1, 3)− C(θ1, 1)],

tX2 =
1

2× 3
[C(θ1, 2)− C(θ1, 1)] +

1

2× 3
[C(θ1, 3)− C(θ1, 1)]− 1

2
[C(θ2, 3)− C(θ2, 2)],

tX3 =
1

2× 3
[C(θ1, 2)− C(θ1, 1)] +

1

2× 3
[C(θ1, 3)− C(θ1, 1)] +

1

1× 2
[C(θ2, 3)− C(θ2, 2)].

Next, we show that how Theorem 1.2 is related to the results in Chun (2006) for the
standard queueing problem and Chun and Heo (2008) for the queueing problem with `-
servers, We also discuss how the maximal transfer rule can be defined for the position
allocation problem in Essen and Wooders (2018).
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1.4.1 The maximal transfer rule for the standard queueing problem
As in Subsection 1.3.1, the transfer for the maximal transfer rule of the standard queueing
problem (Chun 2006) can be obtained by setting for each i ∈ N, C(θi, σi) = (σi − 1)θi.
By substituting the cost function into equation (1.5), we have:

tXi =
∑

p∈Pi(σ)

1

n− σp

∑
k∈Fp(σ)

C(θp, σk)− C(θp, σp)

n− σp + 1
−
∑

f∈Fi(σ)

C(θi, σf )− C(θi, σi)

n− σi + 1

=
∑

p∈Pi(σ)

1

n− σp

∑
k∈Fp(σ)

(σk − σp)
n− σp + 1

θp −
∑

f∈Fi(σ)

(σf − σi)
n− σi + 1

θi

=
∑

p∈Pi(σ)

1

n− σp
(n− σp)(n− σp + 1)

2

1

n− σp + 1
θp −

(n− σi)(n− σi + 1)

2

1

n− σi + 1
θi

=
∑

p∈Pi(σ)

θp
2
− (n− σi)

θi
2
,

the desired expression.

1.4.2 The maximal transfer rule for the queueing problem with mul-
tiple parallel servers

As in Subsection 1.3.2, the transfer for the maximal transfer rule of the `-server queueing
problem can be obtained by setting for each i ∈ N, C(θi, σi) = (gi−1)θi where gi = dσi

`
e

and σ ∈ Ẽ(θ, C). By substituting the cost function into equation (1.5), we have:

tXi =
∑

p∈Pi(σ)

1

n− σp

∑
k∈Fp(σ)

C(θp, σk)− C(θp, σp)

n− σp + 1
−
∑

f∈Fi(σ)

C(θi, σf )− C(θi, σi)

n− σi + 1

=
∑

p∈Pi(σ)

1

n− σp

∑
k∈Fp(σ)

(gk − gp)θp
n− σp + 1

−
∑

f∈Fi(σ)

gf − gi
n− σi + 1

θi.

For each i ∈ N, let mi be defined as:

mi =
∑

f∈Fi(σ)

(gf − gi)
n− σi + 1

θi

=
1

n− σi + 1

[ ∑
f∈Fi(σ),gf=gi

(gf − gi) +
∑

f∈Fi(σ),gi<gf<gn

(gf − gi) +
∑

f∈Fi(σ),gf=gn

(gf − gi)
]
θi

=
1

n− σi + 1

[ ∑
gi<gf<gn

(gf − gi)`+ (gn − gi)
(
n− (gn − 1)`

)]
θi

=

∑
gi<gf<gn

(gf − gi)`
n− σi + 1

θi +
(gn − gi)[n− (gn − 1)`]

n− σi + 1
θi.

Therefore, tXi can be simplified by using mi as:

tXi =
∑

p∈Pi(σ)

mp

(n− σp)
−mi,
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and the corresponding utility φSVi (vp) is

φSVi (vp) = −(gi − 1)θi +
∑

p∈Pi(σ)

mp

(n− σp)
−mi.

Note that if ` = 2, then our formula is the same as the definition of the maximal transfer
rule given in Chun and Heo (2008).

1.4.3 The maximal transfer rule for position allocation problems
As in Subsection 1.3.3, the transfer for the maximal transfer rule of the position allocation
problem can be obtained by setting for each i ∈ N, C(θi, σi) = −ασi · θi. By substituting
the cost function into equation (1.5), we have:

tXi =
∑

p∈Pi(σ)

1

n− σp

∑
k∈Fp(σ)

C(θp, σk)− C(θp, σp)

n− σp + 1
−
∑

f∈Fi(σ)

C(θi, σf )− C(θi, σi)

n− σi + 1

=
∑

p∈Pi(σ)

1

n− σp

∑
k∈Fp(σ)

(ασp − ασk)
n− σp + 1

θp −
∑

f∈Fi(σ)

(ασi − ασf )
n− σi + 1

θi.

Therefore, the Shapley value assigns the following utility to agent i:

φSVi (vPAp ) = tXi − C(θi, σi)

=
∑

p∈Pi(σ)

1

n− σp

∑
k∈Fp(σ)

(ασp − ασk)
n− σp + 1

θp −
∑

f∈Fi(σ)

(ασi − ασf )
n− σi + 1

θi − ασiθi

=
∑

p∈Pi(σ)

1

n− σp

∑
k∈Fp(σ)

(ασp − ασk)
n− σp + 1

θp +
∑

f∈Fi(σ)∪{i}

ασf
n− σi + 1

θi.

1.5 Axioms and characterizations

1.5.1 Axioms
As for the classical queueing problems, Maniquet(2003), Chun(2006), and van den Brink
and Chun(2012) give us some axiomatic characterizations for the minimal transfer rule
and the maximal transfer rule.

Maniquet(2003) shows that the minimal transfer rule is characterized by efficiency,
anonymity, equal treatment of equals, independence of preceding agents’ impatience to-
gether and Pareto indifference, identical preferences lower bound, impatience monotonic-
ity, equal responsibility together.

Chun(2006) shows that the maximal transfer rule is characterized by efficiency, Pareto
indifference, equal treatment of equals, independence of following costs together and
Pareto indifference, identical preferences lower bound, positive cost monotonicity, first-
agent equal responsibility together. In his paper, some axioms of Maniquet(2003) are re-
named in order to compare the minimal transfer rule and the maximal transfer rule; inde-
pendence of preceding costs instead of independence of preceding agents’ impatience and
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negative cost monotonicity instead of impatience monotonicity. And he imposes Pareto
indifference instead of anonymity since the same result can be obtained.

van den Brink and Chun(2012) show that the minimal transfer rule is characterized
by efficiency, Pareto indifference, balanced consistency together and efficiency, Pareto
indifference, balanced cost reduction together.

Now we state axioms for the positional queueing problems. Some of them have the
same underlying idea as the axioms of classical queueing problems. In these cases, we
name them same as the classical queueing problem and just modify the expressions to
suitable for the positional queueing problem. However, some of them are similar but dif-
ferent from the original ones. Basically, the differences occur because the rules of posi-
tional queueing problems should consider the order of the cost types as well as the position
in an efficient queue. As for the classical queueing problem, an efficient queue selects the
ordering σ such that σi < σj if θi > θj , therefore the order of the cost types and the order
of the position in an efficient queue matches. However they do not have to match in the
positional queueing problems.

Efficiency requires that a rule should choose an allocation which is queue-efficient and
budget balanced. Pareto indifference requires that if a rule chooses an allocation, then it
also chooses all other feasible allocations which assign the same utilities as the chosen
one. Equal treatment of equals requires that a rule should assign the same utilities to the
agents with the same cost types. Identical preferences lower bound requires that all agent
are weakly better than the identical economy where all agents have the same cost type as
her. It is easy to check that the minimal transfer rule and the maximal transfer rule satisfy
all these axioms.

Axiom 1.1 (Efficiency). For all (θ, C) ∈ QN and all (σ, t) ∈ ϕ(θ, C) , σ ∈ E(θ, C) and∑
i∈N ti = 0.

Axiom 1.2 (Pareto indifference). For all (θ, C) ∈ QN , all (σ, t) ∈ ϕ(θ, C), and (σ′, t′) ∈
Z(θ, C), if for all i ∈ N , ui(σ′, t′; θ, C) = ui(σ, t; θ, C), then (σ′, t′) ∈ ϕ(θ, C).

Axiom 1.3 (Equal treatment of equals). For all (θ, C) ∈ QN , all (σ, t) ∈ ϕ(θ, C), for all
i, j ∈ N such that θi = θj , ui(σ, t; θ, C) = uj(σ, t; θ, C).

Axiom 1.4 (Identical preferences lower bound). For all (θ, C) ∈ QN , all (σ, t) ∈ ϕ(θ, C),
all i ∈ N ,

ui(σ, t; θ, C) ≥ −
n∑
k=1

C(θi, k)

n
.

Before we investigate further, we introduce Lemma 2 which is proved in Appendix A
and its modification.

Lemma 2. For each j ∈ N and any two positive integers p and q, we have

p∑
k=1

C(θj, k)

p
−

p+q∑
k=1

C(θj, k)

p+ q
= −

p+q∑
k=p+1

k∑
`=1

C(θj, k)− C(θj, `)

(k − 1)k
.

Lemma 2 calculate the difference between the average from the first p elements and
the average from the first p + q elements. Here the word first means we count from 1 to
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n. However if we count from n to 1 and use r = p + q, then the equation can be written
as below:
Lemma 2 (modified). For each j ∈ N and any two positive integers p and r such that
r > p, we have

n∑
k=n−p+1

C(θj, k)

p
−

n∑
k=n−r+1

C(θj, k)

r
= −

n−p∑
k=n−r+1

n∑
`=k

C(θj, k)− C(θj, `)

(n− k)(n− k + 1)
.

Proposition 1.1. Both of the minimal transfer rule and the maximal transfer rule satisfy
efficiency, Pareto indifference, equal treatment of equals, and identical preferences lower
bound.

Proof. First, we show that the rules satisfy efficiency. From the definition of the minimal
transfer rule and the maximal transfer rule,

∑
i∈N ui(σ, t; θ, C) = −

∑
i∈N C(θi, σi) if an

allocation (σ, t) is chosen by one of these rules.

∑
i∈N

ti =
∑
i∈N

(
ui(σ, t; θ, C) + C(θi, σi)

)
=
∑
i∈N

ui(σ, t; θ, C) +
∑
i∈N

C(θi, σi)

= −
∑
i∈N

C(θi, σi) +
∑
i∈N

C(θi, σi)

= 0.

Therefore, the rules satisfy efficiency.

The rules satisfy Pareto indifference by definition.

Next, we show that the rules satisfy equal treatment of equals. For all i ∈ N , the utility
of agent i under the minimal transfer rule is calculated as

uMi (σ, t; θ, C) = −
p̂i+êi∑
k=1

C(θi, k)

p̂i + êi
−

∑
θ0∈Θ(F̂ ,i)

p̂0+ê0∑
k=p̂0+1

1

k − 1

k∑
`=1

C(θ0, k)− C(θ0, `)

k
,

(1.6)

and the utility of agent i under the maximal transfer rule is calculated as

uXi (σ, t; θ, C) =
∑

θ0∈Θ(P̂ ,i)

p̂0+ê0∑
k=p̂0+1

1

n− k

n∑
`=k

C(θ0, `)− C(θ0, k)

n− k + 1
−

n∑
k=p̂i+1

C(θi, k)

êi + f̂i
.

(1.7)

Since they are functions of θ’s only, they ensures the same utilities for two agents with
the same cost types. Therefore the rules satisfy equal treatment of equals.

Finally, we show that the rules satisfy identical preferences lower bound. For all i ∈
N , the utility of agent i under the minimal transfer rule would be

13



uMi (σ, t; θ, C) =−
p̂i+êi∑
k=1

C(θi, k)

p̂i + êi
−

∑
θ0∈Θ(F̂ ,i)

p̂0+ê0∑
k=p̂0+1

k∑
`=1

C(θ0, k)− C(θ0, `)

(k − 1)k

=−
n∑
k=1

C(θi, k)

n
+

n∑
k=p̂i+êi+1

k∑
`=1

C(θi, k)− C(θi, `)

(k − 1)k

−
∑

θ0∈Θ(F̂ ,i)

p̂0+ê0∑
k=p̂0+1

k∑
`=1

C(θ0, k)− C(θ0, `)

(k − 1)k

=−
n∑
k=1

C(θi, k)

n
+

∑
θ0∈Θ(F̂ ,i)

p̂0+ê0∑
k=p̂0+1

k∑
`=1

C(θi, k)− C(θi, `)− C(θ0, k) + C(θ0, `)

(k − 1)k

≥−
n∑
k=1

C(θi, k)

n
.

The second equality holds by Lemma 2. The last inequality holds since θi > θ0, k ≥ `
and C is supermodular. Therefore, the minimal transfer rule satisfies identical preferences
lower bound. As for the maximal transfer rule, we have

uXi (σ, t; θ, C) =
∑

θ0∈Θ(P̂ ,i)

p̂0+ê0∑
k=p̂0+1

1

n− k

n∑
`=k

C(θ0, `)− C(θ0, k)

n− k + 1
−

n∑
k=p̂i+1

C(θi, k)

êi + f̂i

=
∑

θ0∈Θ(P̂ ,i)

p̂0+ê0∑
k=p̂0+1

1

n− k

n∑
`=k

C(θ0, `)− C(θ0, k)

n− k + 1
+

p̂i∑
k=1

n∑
`=k

C(θi, k)− C(θi, `)

(n− k)(n− k + 1)
−

n∑
k=1

C(θi, k)

n

=
∑

θ0∈Θ(P̂ ,i)

p̂0+ê0∑
k=p̂0+1

1

n− k

n∑
`=k

C(θ0, `)− C(θ0, k) + C(θi, k)− C(θi, `)

n− k + 1
−

n∑
k=1

C(θi, k)

n

≥−
n∑
k=1

C(θi, k)

n
.

The second equality hods by Lemma 2 (modified) with p = n − p̂i and r = n. The last
inequality holds since θi < θ0, k ≤ ` and C is supermodular. Therefore, the maximal
transfer rule satisfies identical preferences lower bound.

We now introduce axioms concerning changes in the cost types. Negative cost mono-
tonicity requires that an increase in a cost type of an agent makes all other agents weakly
lose. On the other hand, positive cost monotonicity requires that an increase in a cost type
of an agent makes all other agents weakly better. Independence of larger costs requires
that an increase in an agent’s cost type does not affect the utilities of agents with the
same or smaller cost types than her original cost type. On the other hand, independence of
smaller costs requires that an decrease in an agent’s cost type does not affect the utilities
of agents with the same or larger cost types than her original cost type.

Axiom 1.5 (Negative cost monotonicity). For all (θ, C) ∈ QN , all (θ′, C) ∈ QN , all
(σ, t) ∈ ϕ(θ, C), all (σ′, t′) ∈ ϕ(θ′, C), and all j ∈ N , if for all i ∈ N \ {k}, θi = θ′i and
θj < θ′j , then for all i ∈ N \ {j}, ui(σ, t; θ, C) ≥ ui(σ

′, t′; θ′, C).
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Axiom 1.6 (Positive cost monotonicity). For all (θ, C) ∈ QN , all (θ′, C) ∈ QN , all
(σ, t) ∈ ϕ(θ, C), all (σ′, t′) ∈ ϕ(θ′, C), and all j ∈ N , if for all i ∈ N \ {k}, θi = θ′i and
θj < θ′j , then for all i ∈ N \ {j}, ui(σ, t; θ, C) ≤ ui(σ

′, t′; θ′, C).

Axiom 1.7 (Independence of larger costs). For all (θ, C) ∈ QN , all (θ′, C) ∈ QN , all
(σ, t) ∈ ϕ(θ, C), all (σ′, t′) ∈ ϕ(θ′, C), and all k ∈ N , if for all j ∈ N \ {k}, θj = θ′j and
θk < θ′k, then for all i ∈ N such that θi ≤ θk, ui(σ, t; θ, C) = ui(σ

′, t′; θ′, C).

Axiom 1.8 (Independence of smaller costs). For all (θ, C) ∈ QN , all (θ′, C) ∈ QN , all
(σ, t) ∈ ϕ(θ, C), all (σ′, t′) ∈ ϕ(θ′, C), and all k ∈ N , if for all j ∈ N \ {k}, θj = θ′j and
θk > θ′k, then for all i ∈ N such that θi ≥ θk, ui(σ, t; θ, C) = ui(σ

′, t′; θ′, C).

Proposition 1.2. The minimal transfer rule satisfies negative cost monotonicity.

Proof. Let θ′ be such that for any j ∈ N , θi = θ′i for all i ∈ N \ {j}, and θj < θ′j .
We have 3 cases regarding relationships among θi, θj , and θ′j; Case 1: θi ≤ θj < θ′j ,
Case 2: θi ≥ θ′j > θj , Case 3: θj < θi ≤ θ′j . We show that for any cases, the utility of
agent i is weakly worse off. For simplicity, we use ui and u′i instead of ui(σ, t; θ, C) and
ui(σ

′, t′; θ′, C), respectively.

Case 1: θi ≤ θj < θ′j
ui = u′i by independence of larger costs.

Case 2: θi ≥ θ′j > θj

Let Θ(F̂ , i) = {θ̂1, . . . , θ̂m} such that θ̂1 > . . . > θ̂m. Let θj = θ̂q, q ≤ m and θi = θ̂0.
Check that the utility of agent i is as below before the cost type of agent j changes;

ui = −
p̂i+êi∑
k=1

C(θi, k)

p̂i + êi
−

∑
θ0∈Θ(F̂ ,i)

p̂0+ê0∑
k=p̂0+1

1

k − 1

k∑
`=1

C(θ0, k)− C(θ0, `)

k
.

We first claim that if θ′j ≤ θ̂q−1 then u′i ≤ ui. If the cost type of agent j changes
between θj(= θ̂q) and θ̂q−1, we have to consider the changes of cost type of θj and θ′j only
since p̂′0 = p̂0, ê′0 = ê0 for all θ0 ∈ Θ \ {θj, θ′j}. We have 2 cases; (1) θ′j ≤ θ̂q−1 < θi, and
(3) θ′j = θ̂q−1 = θi.

Case 2-1: θ′j ≤ θ̂q−1 < θi

u′i − ui =−
p̂j+1∑

k=p̂j+1

1

k − 1

k∑
`=1

C(θ′j, k)− C(θ′j, `)

k
+

p̂j+1∑
k=p̂j+1

1

k − 1

k∑
`=1

C(θj, k)− C(θj, `)

k

=−
p̂j+1∑

k=p̂j+1

1

k − 1

k∑
`=1

C(θ′j, k)− C(θ′j, `)− C(θj, k) + C(θj, `)

k

≤0,

where the last inequality holds since θ′j > θj , k ≥ `, and C is supermodular.
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Case 2-2: θ′j ≤ θ̂q−1 = θi

u′i − ui =−
p̂i+êi+1∑
k=1

C(θi, k)

p̂i + êi + 1
+

p̂i+êi∑
k=1

C(θi, k)

p̂i + êi
+

p̂j+1∑
k=p̂j+1

1

k − 1

k∑
`=1

C(θj, k)− C(θj, `)

k

=−
p̂i+êi+1∑

k=p̂i+êi+1

k∑
`=1

C(θi, k)− C(θi, `)

(k − 1)k
+

p̂j+1∑
k=p̂j+1

1

k − 1

k∑
`=1

C(θj, k)− C(θj, `)

k

=−
p̂j+1∑

k=p̂j+1

k∑
`=1

C(θi, k)− C(θi, `)

(k − 1)k
+

p̂j+1∑
k=p̂j+1

1

k − 1

k∑
`=1

C(θj, k)− C(θj, `)

k

=−
p̂j+1∑

k=p̂j+1

1

k − 1

k∑
`=1

C(θi, k)− C(θi, `)− C(θj, k) + C(θj, `)

k

≤0,

where the second equality holds by Lemma 2 (Han and Chun 2020) and the last inequality
holds since θi > θj , k ≥ `, and C is supermodular.

Altogether, if θ′j ≤ θ̂q−1 then u′i ≤ ui. Now applying this result recursively. Let θj = θ̂q

and θ̂r ≤ θ′j < θ̂r−1 such that q ≤ r. Raise the cost type of agent j from θj = θ̂q to θ̂q−1,
from θ̂q−1 to θ̂q−2, · · · , from θ̂r to θ′j . The utility of agent i is getting worse during the
sequence as long as the new cost type of agent j is less than or equal to θi.

Case 3: θj < θi ≤ θ′j
Combining the result of Case 1 and Case 2, u′i ≤ ui.

Therefore if θ′j > θj then for all i ∈ N \ {j}, u′i ≤ ui as desired.

Proposition 1.3. The minimal transfer rule satisfies independence of larger costs.

Proof. Let θ′ be such that for an agent k ∈ N , for all j ∈ N \ {k}, θj = θ′j and θk < θ′k.
For all i ∈ N , the utility of agent i of games (θ, C) and (θ′, C) under the minimal

transfer rule are calculated as:

ui(σ, t; θ, C) = −
p̂i+êi∑
k=1

C(θi, k)

p̂i + êi
−

∑
θ0∈Θ(F̂ ,i)

p̂0+ê0∑
k=p̂0+1

1

k − 1

k∑
`=1

C(θ0, k)− C(θ0, `)

k
,

ui(σ
′, t′; θ′, C) = −

p̂′i+ê
′
i∑

k=1

C(θi, k)

p̂′i + ê′i
−

∑
θ0∈Θ′(F̂ ,i)

p̂′0+ê′0∑
k=p̂′0+1

1

k − 1

k∑
`=1

C(θ0, k)− C(θ0, `)

k
.

Let θi ≤ θk. If θi = θk then P̂ ′i = P̂i∪{k}, Ê ′i\{k} = Êi, and F̂ ′i = F̂i. If θi < θk then
P̂ ′i = P̂i, Ê ′i = Êi, and F̂ ′i = F̂i. For any case, p̂′i + ê′i = p̂i + êi. Therefore the first term
of ui and u′i are same. The second term of ui and u′i are same since Θ(F̂ , i) = Θ′(F̂ , i)
and for all θ0 ∈ Θ(F̂ , i), p̂′0 = p̂0, ê′0 = ê0, f̂ ′0 = f̂0. Altogether if θi ≤ θk, then ui = u′i.
Therefore, the minimal transfer rule satisfies independence of larger costs.
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Remark 1.1. It can be shown that the maximal transfer rule satisfies positive cost mono-
tonicity and independence of smaller costs using similar proofs of proposition 1.2 and
proposition 1.3.

We now introduce axioms concerns with changes in the population. Smallest agent
equal responsibility requires that if an agent who has the smallest cost type leaves, then
all the transfer of remaining agents change by the same amount. On the other hand, largest
agent equal responsibility requires that if an agent who has the largest cost type leaves,
then all the transfer of remaining agents change by the same amount.

The last axioms we introduce are balanced consistency and balanced consistency with
external priority. Choose agent i, j ∈ N . Balanced consistency requires that the change
of agent j’s utility incurred by the departure of agent i from the queue should be the same
as the change of agent i’s utility incurred by the departure of agent j from the queue. In
the axiom, it is assumed that the leaving agent does not receive any services. On the other
hand, we may think of a situation that the leaving agent receives services earlier than any
other remaining agents. As she left from the queue, we do not consider her position or
her transfer any more. However, as she receives services, the remaining agents cannot use
the first position. Balanced consistency with external priority requires that the change of
agent j’s utility incurred by the departure of agent i should be the same as the change
of agent i’s utility incurred by the departure of agent j when the leaving agent receives
services earlier than the remaining agents.

Axiom 1.9 (Smallest cost agent equal responsibility). For all (θ, C) ∈ QN , and all
(σ, t) ∈ ϕ(θ, C), if agent m is such that θm ≤ θi for all i ∈ N , then for any (σ′, t′) ∈
ϕ(θN\{m}, C), ui(σ, t; θ, C)−ui(σ′, t′; θN\{m}, C) = uj(σ, t; θ, C)−uj(σ′, t′; θN\{m}, C)
for all i, j ∈ N \ {m}.

Axiom 1.10 (Largest cost agent equal responsibility). For all (θ, C) ∈ QN , and all
(σ, t) ∈ ϕ(θ, C), if agent m is such that θm ≥ θi for all i ∈ N , then for any (σ′, t′) ∈
ϕ(θN\{m}, C), ui(σ, t; θ, C)−ui(σ′, t′; θN\{m}, C) = uj(σ, t; θ, C)−uj(σ′, t′; θN\{m}, C)
for all i, j ∈ N \ {m}.

Axiom 1.11 (Balanced consistency). For all (θ, C) ∈ QN , all (σ, t) ∈ ϕ(θ, C), all i, j ∈
N , all (σ−i, t−i) ∈ ϕ(θN\{i}, C), all (σ−j, t−j) ∈ ϕ(θN\{j}, C),

ui(σ, t; θ, C)− ui(σ−j, t−j; θN\{j}, C) = uj(σ, t; θ, C)− uj(σ−i, t−i; θN\{i}, C).

Let Q̃N\{1} be a modified positional queueing problem such that the available posi-
tions are from 2 to |N | with |N | − 1 players.

Axiom 1.12 (Balanced consistency with external priority). For all (θ, C) ∈ QN , all
(σ, t) ∈ ϕ(θ, C), all i, j ∈ N , all (θ̃N\{i}, C), (θ̃N\{j}, C) ∈ Q̃N\{1}, all (σ−i, t−i) ∈
ϕ(θ̃N\{i}, C), and all (σ−j, t−j) ∈ ϕ(θ̃N\{j}, C),

ui(σ, t; θ, C)− ui(σ−j, t−j; θ̃N\{j}, C) = uj(σ, t; θ, C)− uj(σ−i, t−i; θ̃N\{i}, C).

Proposition 1.4. The minimal transfer rule satisfies smallest cost agent equal responsi-
bility.
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Proof. Let θm ≤ θi for all i ∈ N . We compare the utilities of agent i (i ∈ N \ {m})
with and without agent m in the economy. For simplicity, we use ui and u′i instead of
ui(σ, t; θ, C) and ui(σ′, t′; θN\{m}, C) respectively.

Case 1: θi = θm

u′i − ui = −
p̂m+êm−1∑

k=1

C(θm, k)

p̂m + êm − 1
+

p̂m+êm∑
k=1

C(θm, k)

p̂m + êm

= −
n−1∑
k=1

C(θm, k)

n− 1
+

n∑
k=1

C(θm, k)

n

=
n∑
`=1

C(θm, k)− C(θm, `)

(k − 1)k
,

(1.8)

where the last equality holds by Lemma 2.

Case 2: θi > θm

ui = −
p̂i+êi∑
k=1

C(θi, k)

p̂i + êi
−

∑
θ0∈Θ(F̂ ,i)

p̂0+ê0∑
k=p̂0+1

1

k − 1

k∑
`=1

C(θ0, k)− C(θ0, `)

k

= −
p̂i+êi∑
k=1

C(θi, k)

p̂i + êi
−

∑
θ0∈Θ(F̂ ,i)\{θm}

p̂0+ê0∑
k=p̂0+1

k∑
`=1

C(θ0, k)− C(θ0, `)

(k − 1)k
−

p̂m+êm∑
k=p̂m+1

k∑
`=1

C(θm, k)− C(θm, `)

(k − 1)k
.

u′i = −
p̂i+êi∑
k=1

C(θi, k)

p̂i + êi
−

∑
θ0∈Θ(F̂ ,i)

p̂0+ê0∑
k=p̂0+1

1

k − 1

k∑
`=1

C(θ0, k)− C(θ0, `)

k

= −
p̂i+êi∑
k=1

C(θi, k)

p̂i + êi
−

∑
θ0∈Θ(F̂ ,i)\{θm}

p̂0+ê0∑
k=p̂0+1

k∑
`=1

C(θ0, k)− C(θ0, `)

(k − 1)k
−
p̂m+êm−1∑
k=p̂m+1

k∑
`=1

C(θm, k)− C(θm, `)

(k − 1)k
.

u′i − ui =

p̂m+êm∑
`=1

C(θm, k)− C(θm, `)

(k − 1)k

=
n∑
`=1

C(θm, k)− C(θm, `)

(k − 1)k
.

(1.9)

Therefore for all i, j ∈ N \ {m}, u′i − ui = u′j − uj .

Proposition 1.5. The minimal transfer rule satisfies balanced consistency.

Proof. Let θi = θj . ui(σ−j, t−j; θN\{j}, C) = uj(σ
−i, t−i; θN\{i}, C) by equal treatment

of equals, so balanced consistency is satisfied.
Without loss of generality, let θi > θj .
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ui(σ, t; θ, C) = −
p̂i+êi∑
k=1

C(θi, k)

p̂i + êi
−

∑
θ0∈Θ(F̂ ,i)

p̂0+ê0∑
k=p̂0+1

1

k − 1

k∑
`=1

C(θ0, k)− C(θ0, `)

k
.

(1.10)

ui(σ
−j , t−j ; θN\{j}, C) =−

p̂i+êi∑
k=1

C(θi, k)

p̂i + êi
−

∑
θ0∈Θ(F̂ ,i),θ0>θj

p̂0+ê0∑
k=p̂0+1

k∑
`=1

C(θ0, k)− C(θ0, `)

(k − 1)k

−
∑

θ0∈Θ(F̂ ,i),θ0=θj

p̂0+ê0−1∑
k=p̂0+1

k∑
`=1

C(θ0, k)− C(θ0, `)

(k − 1)k

−
∑

θ0∈Θ(F̂ ,i),θ0<θj

p̂0+ê0−1∑
k=p̂0

k∑
`=1

C(θ0, k)− C(θ0, `)

(k − 1)k
.

(1.11)

uj(σ, t; θ, C) = −
p̂j+êj∑
k=1

C(θj, k)

p̂j + êj
−

∑
θ0∈Θ(F̂ ,j)

p̂0+ê0∑
k=p̂0+1

1

k − 1

k∑
`=1

C(θ0, k)− C(θ0, `)

k
.

(1.12)

uj(σ
−i, t−i; θN\{i}, C) = −

p̂j+êj−1∑
k=1

C(θj, k)

p̂j + êj − 1
−

∑
θ0∈Θ(F̂ ,j)

p̂0+ê0−1∑
k=p̂0

1

k − 1

k∑
`=1

C(θ0, k)− C(θ0, `)

k
.

(1.13)

ui(σ, t; θ, C)− uj(σ, t; θ, C)

=−
p̂i+êi∑
k=1

C(θi, k)

p̂i + êi
−

∑
θ0∈Θ(F̂ ,i)

p̂0+ê0∑
k=p̂0+1

1

k − 1

k∑
`=1

C(θ0, k)− C(θ0, `)

k

+

p̂j+êj∑
k=1

C(θj, k)

p̂j + êj
+

∑
θ0∈Θ(F̂ ,j)

p̂0+ê0∑
k=p̂0+1

1

k − 1

k∑
`=1

C(θ0, k)− C(θ0, `)

k

=−
p̂i+êi∑
k=1

C(θi, k)

p̂i + êi
+

p̂j+êj∑
k=1

C(θj, k)

p̂j + êj
−

∑
θ0∈Θ(F̂ ,i),θ0≥θj

p̂0+ê0∑
k=p̂0+1

k∑
`=1

C(θ0, k)− C(θ0, `)

(k − 1)k
.

(1.14)
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ui(σ
−j , t−j ; θN\{j}, C)− uj(σ−i, t−i; θN\{i}, C)

=−
p̂i+êi∑
k=1

C(θi, k)

p̂i + êi
−

∑
θ0∈Θ(F̂ ,i),θ0>θj

p̂0+ê0∑
k=p̂0+1

k∑
`=1

C(θ0, k)− C(θ0, `)

(k − 1)k

−
∑

θ0∈Θ(F̂ ,i),θ0=θj

p̂0+ê0−1∑
k=p̂0+1

k∑
`=1

C(θ0, k)− C(θ0, `)

(k − 1)k
−

∑
θ0∈Θ(F̂ ,i),θ0<θj

p̂0+ê0−1∑
k=p̂0

k∑
`=1

C(θ0, k)− C(θ0, `)

(k − 1)k

+

p̂j+êj−1∑
k=1

C(θj , k)

p̂j + êj − 1
+

∑
θ0∈Θ(F̂ ,j)

p̂0+ê0−1∑
k=p̂0

1

k − 1

k∑
`=1

C(θ0, k)− C(θ0, `)

k

=−
p̂i+êi∑
k=1

C(θi, k)

p̂i + êi
−

∑
θ0∈Θ(F̂ ,i),θ0>θj

p̂0+ê0∑
k=p̂0+1

k∑
`=1

C(θ0, k)− C(θ0, `)

(k − 1)k

−
∑

θ0∈Θ(F̂ ,i),θ0=θj

p̂0+ê0−1∑
k=p̂0+1

k∑
`=1

C(θ0, k)− C(θ0, `)

(k − 1)k
+

p̂j+êj−1∑
k=1

C(θj , k)

p̂j + êj − 1

=−
p̂i+êi∑
k=1

C(θi, k)

p̂i + êi
+

p̂j+êj−1∑
k=1

C(θj , k)

p̂j + êj − 1

−
∑

θ0∈Θ(F̂ ,i),θ0>θj

p̂0+ê0∑
k=p̂0+1

k∑
`=1

C(θ0, k)− C(θ0, `)

(k − 1)k
−

∑
θ0∈Θ(F̂ ,i),θ0=θj

p̂0+ê0−1∑
k=p̂0+1

k∑
`=1

C(θ0, k)− C(θ0, `)

(k − 1)k
.

(1.15)

Using equations (1.14), (1.15),

[ui(σ, t; θ, C)− uj(σ, t; θ, C)]− [ui(σ
−j , t−j ; θN\{j}, C)− uj(σ−i, t−i; θN\{i}, C)]

=

p̂j+êj∑
k=1

C(θj , k)

p̂j + êj
−
p̂j+êj−1∑
k=1

C(θj , k)

p̂j + êj − 1
−
∑
θ0=θj

p̂0+ê0∑
k=p̂0+1

k∑
`=1

C(θ0, k)− C(θ0, `)

(k − 1)k

+
∑
θ0=θj

p̂0+ê0−1∑
k=p̂0+1

k∑
`=1

C(θ0, k)− C(θ0, `)

(k − 1)k

=

p̂j+êj∑
k=1

C(θj , k)

p̂j + êj
−
p̂j+êj−1∑
k=1

C(θj , k)

p̂j + êj − 1
−
p̂j+êj∑
`=1

C(θj , k)− C(θj , `)

(p̂j + êj − 1)(p̂j + êj)

=0,

(1.16)

where the last equality holds by Lemma 2.

Remark 1.2. It can be shown that the maximal transfer rule satisfies largest cost agent
equal responsibility and balanced consistency with external priority using similar proofs
of proposition 1.4 and proposition 1.5.

20



1.5.2 Axiomatic characterizations

Now we show three axiomatic characterizations of the minimal transfer rule.

Theorem 1.3. The minimal transfer rule is the only rule satisfying efficiency, Pareto in-
difference, equal treatment of equals, and independence of larger costs together.

Proof. We show that there is only one solution satisfying all four axioms together. Let
ϕ be a solution satisfies the four axioms. Let (θ, C) ∈ QN , and (σ, t) ∈ ϕ(θ, C). Let
Θ̂ be the set of distinct cost types. Without loss of generality, let Θ̂ = {θ̂1, . . . , θ̂k} and
θ̂1 > · · · > θ̂k.

For q = 1, · · · , k, let (θq, C) be a problem that θqi = θ̂q if θi ≥ θ̂q, and θqi = θi other-
wise. Let (σq, tq) ∈ ϕ(θq, C). By efficiency and Pareto indifference,

∑
i∈N ui(σ

q, tq; θq, C) =

−
∑

i∈N C(θqi , σ̃i) where σ̃ ∈ Ẽ(θ, C). By independence of larger costs, ui(σq, tq; θq, C) =

ui(σ, t; θ, C) for all i such that θi ≤ θ̂q. By equal treatment of equals, ui(σq, tq; θq, C) =

uj(σ
q, tq; θq, C) for all i, j ∈ P̂q ∪ Êq. Altogether, the equation below holds for agent i

such that θi = θ̂q.

∑
`∈N

u`(σ
q, tq; θq, C) = −

∑
`∈N

C(θq` , σ̃`)∑
`∈P̂q∪Êq

u`(σ
q, tq; θq, C) +

∑
`∈F̂q

u`(σ
q, tq; θq, C) = −

∑
`∈P̂q∪Êq

C(θq` , σ̃`)−
∑
`∈F̂q

C(θq` , σ̃`)

(p̂i + êi)ui(σ
q, tq; θq, C) +

∑
`∈F̂i

u`(σ
q, tq; θq, C) = −

∑
1≤m≤p̂i+êi

C(θi,m)−
∑
`∈F̂i

C(θ`, σ̃`)

(p̂i + êi)ui(σ, t; θ, C) +
∑
`∈F̂i

u`(σ, t; θ, C) = −
∑

1≤m≤p̂i+êi

C(θi,m)−
∑
`∈F̂i

C(θ`, σ̃`)

(p̂i + êi)ui(σ, t; θ, C) = −
∑

1≤m≤p̂i+êi

C(θi,m)−
∑
`∈F̂i

C(θ`, σ̃`)−
∑
`∈F̂i

u`(σ, t; θ, C)

(p̂i + êi)ui(σ, t; θ, C) = −
∑

1≤m≤p̂i+êi

C(θi,m)−
∑
`∈F̂i

[
C(θ`, σ̃`) + u`(σ, t; θ, C)

]
.

Applying this equation to q = k. For all i such that θi = θ̂k,

(p̂i + êi)ui(σ, t; θ, C) = −
∑

1≤m≤p̂i+êi

C(θi,m)

n · ui(σ, t; θ, C) = −
∑

1≤m≤n
C(θi,m)

∴ ui(σ, t; θ, C) = −
∑

1≤m≤nC(θi,m)

n
.

Now we compare the utilities of agent i and j such that θi = θ̂q and θj = θ̂q+1 for all
q = 1, · · · , k − 1. By definition, P̂i ∪ Êi = P̂j and F̂i = Êj ∪ F̂j .
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(p̂i + êi)ui(σ, t; θ, C) =−
∑

1≤m≤p̂i+êi

C(θi,m)−
∑
`∈F̂i

[
C(θ`, σ̃`) + u`(σ, t; θ, C)

]
=−

∑
1≤m≤p̂i+êi

C(θi,m)−
∑
`∈Êj

[
C(θ`, σ̃`) + u`(σ, t; θ, C)

]
−
∑
`∈F̂j

[
C(θ`, σ̃`) + u`(σ, t; θ, C)

] (1.17)

(p̂j + êj)uj(σ, t; θ, C) = −
∑

1≤m≤p̂j+êj

C(θj ,m)−
∑
`∈F̂j

[
C(θ`, σ̃`) + u`(σ, t; θ, C)

]
(p̂i + êi + êj)uj(σ, t; θ, C) = −

∑
1≤m≤p̂i+êi+êj

C(θj ,m)−
∑
`∈F̂j

[
C(θ`, σ̃`) + u`(σ, t; θ, C)

]
(p̂i + êi)uj(σ, t; θ, C) = −

∑
1≤m≤p̂i+êi+êj

C(θj ,m)−
∑
`∈F̂j

[
C(θ`, σ̃`) + u`(σ, t; θ, C)

]
− êj · uj(σ, t; θ, C)

(1.18)

(1.17)− (1.18)

=(p̂i + êi)
(
ui(σ, t; θ, C)− uj(σ, t; θ, C)

)
=−

∑
1≤m≤p̂i+êi

C(θi,m) +
∑

1≤m≤p̂i+êi+êj

C(θj ,m)

−
∑
`∈Êj

[
C(θ`, σ̃`) + u`(σ, t; θ, C)

]
+ êj · uj(σ, t; θ, C)

=−
∑

1≤m≤p̂i+êi

C(θi,m) +
∑

1≤m≤p̂i+êi

C(θj ,m) +
∑

p̂i+êi+1≤m≤p̂i+êi+êj

C(θj ,m)

−
∑
`∈Êj

[
C(θ`, σ̃`) + u`(σ, t; θ, C)

]
+ êj · uj(σ, t; θ, C)

=−
∑

1≤m≤p̂i+êi

C(θi,m) +
∑

1≤m≤p̂i+êi

C(θj ,m)

=−
∑

1≤m≤p̂i+êi

C(θi,m) +
∑

1≤m≤p̂j

C(θj ,m).

Therefore, for all i, j ∈ N such that θi = θ̂q and θj = θ̂q+1, q = 1, · · · , k − 1,

ui(σ, t; θ, C) = −
∑

1≤m≤p̂i+êi

C(θi,m)

p̂i + êi
+

∑
1≤m≤p̂j

C(θj,m)

p̂j
+ uj(σ, t; θ, C)

= −
∑

1≤m≤p̂q+êq

C(θ̂q,m)

p̂q + êq
+

∑
1≤m≤p̂q+1

C(θ̂q+1,m)

p̂q+1

+ uj(σ, t; θ, C).
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Let θi = θ̂`. Applying this equation from q = ` to k, we have

ui(σ, t; θ, C) =−
∑

1≤m≤p̂i+êi

C(θi,m)

p̂i + êi
+

∑
1≤m≤p̂`+1)

C(θ̂`+1,m)

p̂`+1

−
∑

1≤m≤p̂`+1+ê`+1

C(θ̂`+1,m)

p̂`+1 + ê`+1

+
∑

1≤m≤p̂`+2

C(θ̂`+2,m)

p̂`+2

...

−
∑

1≤m≤p̂k+êk

C(θ̂k,m)

p̂k + êk

=−
∑

1≤m≤p̂i+êi

C(θi,m)

p̂i + êi
−

∑
θ0∈Θ(F̂ ,i)

[ p̂0+ê0∑
m=1

C(θ0, k)

p̂0 + ê0

−
p̂0∑
m=1

C(θ0, k)

p̂0

]
,

as desired.

Theorem 1.4. The minimal transfer rule is the only rule satisfying efficiency, Pareto indif-
ference, identical preferences lower bound, negative cost monotonicity, and the smallest
cost agent equal responsibility together.

Proof. We show that there exist only one solution satisfying all the axioms together.

Step 1: Let θj ≤ θi for all i ∈ N . We first claim that

uj(σ, t; θ, C) = −
n∑
k=1

C(θj, k)

n
.

By identical preferences lower bounds, u`(σ, t; θ, C) ≥ −
∑n

k=1
C(θj ,k)

n
. By way of con-

tradiction, Suppose that uj(σ, t; θ, C) > −
∑n

k=1
C(θj ,k)

n
. Let θ′ ∈ RN+ be the cost type

profile such that θ′i = θj for all i ∈ N . Let (σ′, t′) ∈ ϕ(θ′, C). Applying negative cost
monotonicity repeatedly, we get

uj(σ
′, t′; θ′, C) ≥ uj(σ, t; θ, C) > −

n∑
k=1

C(θj, k)

n
.

By identical preferences lower bounds, for all i ∈ N \ {j},

ui(σ
′, t′; θ′, C) ≥ −

n∑
k=1

C(θj, k)

n
.

Altogether, ∑
i∈N

ui(σ
′, t′; θ′, C) > −

n∑
k=1

C(θj, k)

∑
i∈N

ui(σ
′, t′; θ′, C) +

n∑
k=1

C(θj, k) > 0.

(1.19)
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On the other hand, efficiency requires that

∑
i∈N

t′i =
∑
i∈N

ui(σ
′, t′; θ′, C) +

n∑
k=1

C(θ`, k) = 0, (1.20)

a contradiction. Therefore if θj ≤ θi,

uj(σ, t; θ, C) = −
n∑
k=1

C(θj, k)

n
.

Step 2: We show that all agents should end up with the utilities assigned by the minimal
transfer rule.

Step 2-1: Let agent n be such that θn ≤ θi for all i ∈ N . By Step 1,

un(σ, t; θ, C) = −
n∑
`=1

C(θn, `)

n
. (1.21)

Step 2-2: Let θ−1 = θN\{n} and (σ−1, t−1) ∈ ϕ(θ−1, C). Let agent n− 1 be such that
θn−1 ≤ θi for all i ∈ N \ {n}. By Step 1,

un−1(σ−1, t−1; θ−1, C) = −
n−1∑
`=1

C(θn−1, `)

n− 1
. (1.22)

By efficiency and equation (1.21),∑
i∈N

ui(σ, t; θ, C) =−
∑
i∈N

C(θi, σi)

∑
i∈N\{n}

ui(σ, t; θ, C) =−
∑
i∈N

C(θi, σi) +
n∑
`=1

C(θn, `)

n
.

(1.23)

By efficiency, ∑
i∈N\{n}

ui(σ
−1, t−1; θ−1, C) =−

∑
i∈N\{n}

C(θi, σ
−1
i ). (1.24)

By smallest cost agent equal responsibility, there exist ∆1 ∈ R such that for all i ∈
N \ {n},

ui(σ, t; θ, C)− ui(σ−1, t−1; θ−1, C) = ∆1. (1.25)
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Using equations (1.23), (1.24) and (1.25),

∑
i∈N\{n}

(
ui(σ, t; θ, C)− ui(σ−1, t−1; θ−1, C)

)
=−

∑
i∈N

C(θi, σi) +
n∑
`=1

C(θn, `)

n
+

∑
i∈N\{n}

C(θi, σ
−1
i )

(n− 1)∆1 =−
∑

i∈N\{n}

C(θi, σ
−1
i )− C(θn, n) +

n∑
`=1

C(θn, `)

n

+
∑

i∈N\{n}

C(θi, σ
−1
i )

(n− 1)∆1 =− C(θn, n) +
n∑
`=1

C(θn, `)

n

∆1 =− C(θn, n)

n− 1
+

n∑
`=1

C(θn, `)

(n− 1)n

∆1 =−
n∑
`=1

C(θn, n)− C(θn, `)

(n− 1)n
.

(1.26)

By equations (1.22), (1.25), and (1.26),

un−1(σ, t; θ, C) =un−1(σ−1, t−1; θ−1, C) + ∆1

∴ un−1(σ, t; θ, C) =−
n−1∑
`=1

C(θn−1, `)

n− 1
−

n∑
`=1

C(θn, n)− C(θn, `)

(n− 1)n
.

(1.27)

Step 2-3: Let θ−2 = θN\{n,n−1} and (σ−2, t−2) ∈ ϕ(θ−2, C). Let agent n− 2 be such
that θn−2 ≤ θi for all i ∈ N \ {n,n− 1}. By Step 1,

un−2(σ−2, t−2; θ−2, C) = −
n−1∑
k=1

C(θn−2, k)

n− 2
. (1.28)

By efficiency and equation (1.22),∑
i∈N\{n}

ui(σ
−1, t−1; θ−1, C) =−

∑
i∈N\{n}

C(θi, σ
−1
i )

∑
i∈N\{n,n−1}

ui(σ
−1, t−1; θ−1, C) =−

∑
i∈N\{n}

C(θi, σ
−1
i ) +

n−1∑
`=1

C(θn−1, `)

n− 1
.

(1.29)

By efficiency, ∑
i∈N\{n,n−1}

ui(σ
−2, t−2; θ−2, C) = −

∑
i∈N\{n,n−1}

C(θi, σ
−2
i ). (1.30)

By smallest cost agent equal responsibility, there exist ∆2 ∈ R such that for all i ∈
N \ {n,n− 1},

ui(σ
−1, t−1; θ−1, C)− ui(σ−2, t−2; θ−2, C) = ∆2. (1.31)
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Using equations (1.28), (1.29), and (1.30),

∑
i∈N\{n,n−1}

(
ui(σ

−1, t−1; θ−1, C)− ui(σ−2, t−2; θ−2, C)
)

=−
∑

i∈N\{n}

C(θi, σ
−1
i ) +

n−1∑
`=1

C(θn−1, `)

n− 1

+
∑

i∈N\{n,n−1}

C(θi, σ
−2
i )

(n− 2)∆2 =−
∑

i∈N\{n,n−1}

C(θi, σ
−2
i )− C(θn−1, n− 1) +

n−1∑
`=1

C(θn−1, `)

n− 1
+

∑
i∈N\{n,n−1}

C(θi, σ
−2
i )

(n− 2)∆2 =− C(θn−1, n− 1) +

n−1∑
`=1

C(θn−1, `)

n− 1

∆2 =− C(θn−1, n− 1)

n− 2
+

n−1∑
`=1

C(θn−1, `)

(n− 2)(n− 1)

∆2 =−
n−1∑
`=1

C(θn−1, n− 1)− C(θn−1, `)

(n− 2)(n− 1)
.

(1.32)

By equations (1.25), (1.26), (1.28), (1.31), and (1.32),

un−2(σ, t; θ, C) =un−2(σ−1, t−1; θ−1, C) + ∆1

=un−2(σ−2, t−2; θ−2, C) + ∆2 + ∆1

∴ un−2(σ, t; θ, C) =−
n−2∑
`=1

C(θn−2, `)

n− 2
−
n−1∑
`=1

C(θn−1, n− 1)− C(θn−1, `)

(n− 2)(n− 1)
−

n∑
`=1

C(θn, n)− C(θn, `)

(n− 1)n
.

(1.33)

Step 2-m(1 ≤ m ≤ n): Let agent n− m + 1 be such that θn−m+1 ≤ θi for all
i ∈ N \ {n, · · · ,n− m + 2}. The utility of agent n− m + 1 is calculated as below:

un−m+1(σ, t; θ, C) =−
n−m+1∑
`=1

C(θn−m+1, `)

n−m+ 1
−

n∑
k=n−m+2

k∑
`=1

C(θk, k)− C(θk, `)

(k − 1)k
. (1.34)

Step 3: Let σ be an ordering such that σn−m+1 = n − m + 1(1 ≤ m ≤ n), then
σ ∈ Ẽ(θ, C). The equation (1.34) is same as the utility calculated by Corollary 1. By
Pareto indifference, we obtain the desired result.

Theorem 1.5. The minimal transfer rule is the only rule satisfying efficiency, Pareto in-
difference, and balanced consistency together.

Proof. We show that there exist only one rule that satisfies efficiency, Pareto indifference,
and balanced consistency together. Let (θ, C) ∈ QN and (σ, t) ∈ ϕ(θ, C) where ϕ is a
rule satisfies efficiency, Pareto indifference, and balanced consistency.
Case 1: If N = {i}, then efficiency implies σi = 1 and ti = 0.
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Case 2: Let N = {i, j}. Without loss generality let θi ≥ θj . Let (σ, t) ∈ ϕ(θ, C),
(σ−i, t−i) ∈ ϕ(θN\{i}, C), and (σ−j, t−j) ∈ ϕ(θN\{j}, C). By efficiency, ui(σ−j, t−j; θN\{j}, C) =
−C(θi, 1) and uj(σ−i, t−i; θN\{i}, C) = −C(θj, 1).

By balanced consistency,

ui(σ, t; θ, C)− uj(σ, t; θ, C) = ui(σ
−j , t−j ; θN\{j}, C)− uj(σ−i, t−i; θN\{i}, C) = −C(θi, 1) + C(θj , 1).

By efficiency,

ui(σ, t; θ, C) + uj(σ, t; θ, C) = −C(θi, 1)− C(θj, 2).

Altogether,

ui(σ, t; θ, C) =− C(θi, 1)− C(θj , 2)− C(θj , 1)

2
,

uj(σ, t; θ, C) =− C(θj , 2) + C(θj , 1)

2
,

and by Pareto indifference we may assume that σi = 1, σj = 2.
Case 3: We prove the case of n ≥ 3 by induction hypothesis. Suppose that the claim
holds for all games with n′ agents, 1 ≤ n′ ≤ n− 1. We want to show that it also holds for
a game with n agents.

By balanced consistency, ui(σ, t; θ, C) − ui(σ
−j, t−j; θN\{j}, C) = uj(σ, t; θ, C) −

uj(σ
−i, t−i; θN\{i}, C) for all i, j ∈ N . Fix agent i and change j for all j ∈ N \ {i}. If we

add up all equations,

(n− 1)ui(σ, t; θ, C)−
∑

j∈N\{i}

ui(σ
−j , t−j ; θN\{j}, C) =

∑
j∈N\{i}

(
uj(σ, t; θ, C)− uj(σ−i, t−i; θN\{i}, C)

)
n · ui(σ, t; θ, C) =

∑
j∈N

uj(σ, t; θ, C)−
∑

j∈N\{i}

uj(σ
−i, t−i; θN\{i}, C) +

∑
j∈N\{i}

ui(σ
−j , t−j ; θN\{j}, C).

(1.35)

Let σ̃ ∈ Ẽ(θ, C), σ̃−i ∈ Ẽ(θN\{i}, C) be such that σ̃−ik < σ̃−i` implies σ̃k < σ̃` for all
i, k, ` ∈ N . Let θ̃i be the cost type of agent j such that σ̃j = i, that is, the cost type of i-th
agent in σ̃. Let σ̃i = i.

By efficiency,
∑

j∈N uj(σ, t; θ, C) = −
∑

j∈N C(θj, σ̃j) = −
∑n

j=1 C(θ̃j, j). Simi-
larly by efficiency,

∑
j∈N\{i} uj(σ

−i, t−i; θN\{i}, C) = −
∑

j∈N\{i}C(θj, σ̃
−i
j ) = −

∑σ̃i−1
j=1 C(θ̃j, j)−∑n

j=σ̃i+1 C(θ̃j, j − 1). Therefore,

∑
j∈N

uj(σ, t; θ, C)−
∑

j∈N\{i}

uj(σ
−i, t−i; θN\{i}, C)

=−
n∑
j=1

C(θ̃j , j) +

σ̃i−1∑
j=1

C(θ̃j , j) +

n∑
j=σ̃i+1

C(θ̃j , j − 1)

=−
n∑

j=σ̃i

C(θ̃j , j) +

n∑
j=σ̃i+1

C(θ̃j , j − 1)

(1.36)

By induction hypothesis, ui(σ−j, t−j; θN\{j}, C) is the utility calculated by the mini-
mal transfer rule as below:
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ui(σ
−j , t−j ; θN\{j}, C) = −

∑
p∈Pi(σ̃−j)∪{i}

C(θi, σ̃
−j
p )

σ̃−ji
−

∑
f∈Fi(σ̃−j)

∑
`∈Pf (σ̃−j)

C(θf , σ̃
−j
f )− C(θf , σ̃

−j
` )

(σ̃−jf − 1)σ̃−jf
(1.37)

∑
j∈N\{i}

ui(σ
−j , t−j ; θN\{j}, C)

=−
∑

j∈N\{i}

∑
p∈Pi(σ̃−j)∪{i}

C(θi, σ̃
−j
p )

σ̃−ji
−

∑
j∈N\{i}

∑
f∈Fi(σ̃−j)

∑
`∈Pf (σ̃−j)

C(θf , σ̃
−j
f )− C(θf , σ̃

−j
` )

(σ̃−jf − 1)σ̃−jf

=−
∑

j∈Pi(σ̃)

∑
p∈Pi(σ̃−j)∪{i}

C(θi, σ̃
−j
p )

σ̃−ji
−

∑
j∈Fi(σ̃)

∑
p∈Pi(σ̃−j)∪{i}

C(θi, σ̃
−j
p )

σ̃−ji

−
∑

j∈Pi(σ̃)

∑
f∈Fi(σ̃−j)

∑
`∈Pf (σ̃−j)

C(θf , σ̃
−j
f )− C(θf , σ̃

−j
` )

(σ̃−jf − 1)σ̃−jf
−

∑
j∈Fi(σ̃)

∑
f∈Fi(σ̃−j)

∑
`∈Pf (σ̃−j)

C(θf , σ̃
−j
f )− C(θf , σ̃

−j
` )

(σ̃−jf − 1)σ̃−jf

=−
σ̃i−1∑
j=1

σ̃i−1∑
p=1

C(θi, p)

σ̃i − 1
−

n∑
j=σ̃i+1

σ̃i∑
p=1

C(θi, p)

σ̃i
−

∑
j∈Pi(σ̃)

n−1∑
f=σ̃i

f−1∑
`=1

C(θ̃f+1, f)− C(θ̃f+1, `)

(f − 1)f

−
∑

j∈Fi(σ̃)

[ σ̃j−1∑
f=σ̃i+1

f−1∑
`=1

C(θ̃f , f)− C(θ̃f , `)

(f − 1)f
+

n−1∑
f=σ̃j

f−1∑
`=1

C(θ̃f+1, f)− C(θ̃f+1, `)

(f − 1)f

]

=−
σ̃i−1∑
j=1

σ̃i−1∑
p=1

C(θi, p)

σ̃i − 1
−

n∑
j=σ̃i+1

σ̃i∑
p=1

C(θi, p)

σ̃i
−
σ̃i−1∑
j=1

n−1∑
f=σ̃i

f−1∑
`=1

C(θ̃f+1, f)− C(θ̃f+1, `)

(f − 1)f

−
n∑

j=σ̃i+1

[ σ̃j−1∑
f=σ̃i+1

f−1∑
`=1

C(θ̃f , f)− C(θ̃f , `)

(f − 1)f
+

n−1∑
f=σ̃j

f−1∑
`=1

C(θ̃f+1, f)− C(θ̃f+1, `)

(f − 1)f

]

=− (σ̃i − 1)

σ̃i−1∑
p=1

C(θi, p)

σ̃i − 1
− (n− σ̃i)

σ̃i∑
p=1

C(θi, p)

σ̃i
− (σ̃i − 1)

n−1∑
f=σ̃i

f−1∑
`=1

C(θ̃f+1, f)− C(θ̃f+1, `)

(f − 1)f

−
n∑

j=σ̃i+1

[ n∑
f=σ̃i+1

f−1∑
`=1

C(θ̃f , f)− C(θ̃f , `)

(f − 1)f
−

n∑
f=σ̃j

f−1∑
`=1

C(θ̃f , f)− C(θ̃f , `)

(f − 1)f
+

n−1∑
f=σ̃j

f−1∑
`=1

C(θ̃f+1, f)− C(θ̃f+1, `)

(f − 1)f

]

=−
σ̃i−1∑
p=1

C(θi, p)− n
σ̃i∑
p=1

C(θi, p)

σ̃i
+

σ̃i∑
p=1

C(θi, p)−
n∑

j=σ̃i+1

n∑
f=σ̃i+1

f−1∑
`=1

C(θ̃f , f)− C(θ̃f , `)

(f − 1)f

− (σ̃i − 1)

n−1∑
f=σ̃i

f−1∑
`=1

C(θ̃f+1, f)− C(θ̃f+1, `)

(f − 1)f
−

n∑
j=σ̃i+1

[
−

n∑
f=σ̃j

f−1∑
`=1

C(θ̃f , f)− C(θ̃f , `)

(f − 1)f
+

n−1∑
f=σ̃j

f−1∑
`=1

C(θ̃f+1, f)− C(θ̃f+1, `)

(f − 1)f

]

=− n
σ̃i∑
p=1

C(θi, p)

σ̃i
−
σ̃i−1∑
p=1

C(θi, p) +

σ̃i∑
p=1

C(θi, p)− (n− σ̃i)
n∑

f=σ̃i+1

f−1∑
`=1

C(θ̃f , f)− C(θ̃f , `)

(f − 1)f

− (σ̃i − 1)

n−1∑
f=σ̃i

f−1∑
`=1

C(θ̃f+1, f)− C(θ̃f+1, `)

(f − 1)f
−

n∑
j=σ̃i+1

[
−

n∑
f=σ̃j

f−1∑
`=1

C(θ̃f , f)− C(θ̃f , `)

(f − 1)f
+

n−1∑
f=σ̃j

f−1∑
`=1

C(θ̃f+1, f)− C(θ̃f+1, `)

(f − 1)f

]

=− n
σ̃i∑
p=1

C(θi, p)

σ̃i
− n

n∑
f=σ̃i+1

f−1∑
`=1

C(θ̃f , f)− C(θ̃f , `)

(f − 1)f
+ C(θi, σ̃i) + σ̃i

n∑
f=σ̃i+1

f−1∑
`=1

C(θ̃f , f)− C(θ̃f , `)

(f − 1)f

− (σ̃i − 1)

n−1∑
f=σ̃i

f−1∑
`=1

C(θ̃f+1, f)− C(θ̃f+1, `)

(f − 1)f
−

n∑
j=σ̃i+1

[
−

n∑
f=σ̃j

f−1∑
`=1

C(θ̃f , f)− C(θ̃f , `)

(f − 1)f
+

n−1∑
f=σ̃j

f−1∑
`=1

C(θ̃f+1, f)− C(θ̃f+1, `)

(f − 1)f

]
.

(1.38)
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(1.36) + (1.38)

=−
n∑

j=σ̃i

C(θ̃j , j) +

n∑
j=σ̃i+1

C(θ̃j , j − 1)

− n
σ̃i∑
p=1

C(θi, p)

σ̃i
− n

n∑
f=σ̃i+1

f−1∑
`=1

C(θ̃f , f)− C(θ̃f , `)

(f − 1)f
+ C(θi, σ̃i) + σ̃i

n∑
f=σ̃i+1

f−1∑
`=1

C(θ̃f , f)− C(θ̃f , `)

(f − 1)f

− (σ̃i − 1)

n−1∑
f=σ̃i

f−1∑
`=1

C(θ̃f+1, f)− C(θ̃f+1, `)

(f − 1)f
−

n∑
j=σ̃i+1

[
−

n∑
f=σ̃j

f−1∑
`=1

C(θ̃f , f)− C(θ̃f , `)

(f − 1)f
+

n−1∑
f=σ̃j

f−1∑
`=1

C(θ̃f+1, f)− C(θ̃f+1, `)

(f − 1)f

]

=− n
σ̃i∑
p=1

C(θi, p)

σ̃i
− n

n∑
f=σ̃i+1

f−1∑
`=1

C(θ̃f , f)− C(θ̃f , `)

(f − 1)f
−

n∑
j=σ̃i+1

C(θ̃j , j) +

n∑
j=σ̃i+1

C(θ̃j , j − 1) + σ̃i

n∑
f=σ̃i+1

f−1∑
`=1

C(θ̃f , f)− C(θ̃f , `)

(f − 1)f

− (σ̃i − 1)

n−1∑
f=σ̃i

f−1∑
`=1

C(θ̃f+1, f)− C(θ̃f+1, `)

(f − 1)f
−

n∑
j=σ̃i+1

[
−

n∑
f=σ̃j

f−1∑
`=1

C(θ̃f , f)− C(θ̃f , `)

(f − 1)f
+

n−1∑
f=σ̃j

f−1∑
`=1

C(θ̃f+1, f)− C(θ̃f+1, `)

(f − 1)f

]
.

(1.39)

Next we show that the equation from the third term is zero.

−
n∑

j=σ̃i+1

C(θ̃j , j) +

n∑
j=σ̃i+1

C(θ̃j , j − 1) + σ̃i

n∑
f=σ̃i+1

f−1∑
`=1

C(θ̃f , f)− C(θ̃f , `)

(f − 1)f

− (σ̃i − 1)

n−1∑
f=σ̃i

f−1∑
`=1

C(θ̃f+1, f)− C(θ̃f+1, `)

(f − 1)f
−

n∑
j=σ̃i+1

[
−

n∑
f=σ̃j

f−1∑
`=1

C(θ̃f , f)− C(θ̃f , `)

(f − 1)f
+

n−1∑
f=σ̃j

f−1∑
`=1

C(θ̃f+1, f)− C(θ̃f+1, `)

(f − 1)f

]

=−
n∑

j=σ̃i+1

C(θ̃j , j) +

n∑
j=σ̃i+1

C(θ̃j , j − 1) + σ̃i

n∑
f=σ̃i+1

f−1∑
`=1

C(θ̃f , f)− C(θ̃f , `)

(f − 1)f

− (σ̃i − 1)

n∑
f=σ̃i+1

f−1∑
`=1

C(θ̃f , f − 1)− C(θ̃f , `)

(f − 2)(f − 1)
+

n∑
j=σ̃i+1

n∑
f=σ̃j

f−1∑
`=1

C(θ̃f , f)− C(θ̃f , `)

(f − 1)f
−

n∑
j=σ̃i+1

n∑
f=σ̃j+1

f−1∑
`=1

C(θ̃f , f − 1)− C(θ̃f , `)

(f − 2)(f − 1)

=−
n∑

j=σ̃i+1

C(θ̃j , j) +

n∑
j=σ̃i+1

C(θ̃j , j − 1) + σ̃i

n∑
f=σ̃i+1

f−1∑
`=1

C(θ̃f , f)

(f − 1)f
− σ̃i

n∑
f=σ̃i+1

f−1∑
`=1

C(θ̃f , `)

(f − 1)f

− (σ̃i − 1)

n∑
f=σ̃i+1

f−1∑
`=1

C(θ̃f , f − 1)

(f − 2)(f − 1)
+ (σ̃i − 1)

n∑
f=σ̃i+1

f−1∑
`=1

C(θ̃f , `)

(f − 2)(f − 1)
+

n∑
j=σ̃i+1

n∑
f=σ̃j

f−1∑
`=1

C(θ̃f , f)

(f − 1)f

−
n∑

j=σ̃i+1

n∑
f=σ̃j

f−1∑
`=1

C(θ̃f , `)

(f − 1)f
−

n∑
j=σ̃i+1

n∑
f=σ̃j+1

f−1∑
`=1

C(θ̃f , f − 1)

(f − 2)(f − 1)
+

n∑
j=σ̃i+1

n∑
f=σ̃j+1

f−1∑
`=1

C(θ̃f , `)

(f − 2)(f − 1)

=−
n∑

j=σ̃i+1

C(θ̃j , j) +
n∑

j=σ̃i+1

C(θ̃j , j − 1) + σ̃i

n∑
f=σ̃i+1

C(θ̃f , f)

f
− σ̃i

n∑
f=σ̃i+1

f−1∑
`=1

C(θ̃f , `)

(f − 1)f

− (σ̃i − 1)
n∑

f=σ̃i+1

C(θ̃f , f − 1)

f − 2
+ (σ̃i − 1)

n∑
f=σ̃i+1

f−1∑
`=1

C(θ̃f , `)

(f − 2)(f − 1)
+

n∑
j=σ̃i+1

n∑
f=σ̃j

C(θ̃f , f)

f

−
n∑

j=σ̃i+1

n∑
f=σ̃j

f−1∑
`=1

C(θ̃f , `)

(f − 1)f
−

n∑
j=σ̃i+1

n∑
f=σ̃j+1

C(θ̃f , f − 1)

f − 2
+

n∑
j=σ̃i+1

n∑
f=σ̃j+1

f−1∑
`=1

C(θ̃f , `)

(f − 2)(f − 1)

=−
n∑

j=σ̃i+1

C(θ̃j , j) +
n∑

j=σ̃i+1

C(θ̃j , j − 1)

+ σ̃i

n∑
f=σ̃i+1

C(θ̃f , f)

f
+

n∑
j=σ̃i+1

n∑
f=σ̃j

C(θ̃f , f)

f
− (σ̃i − 1)

n∑
f=σ̃i+1

C(θ̃f , f − 1)

f − 2
−

n∑
j=σ̃i+1

n∑
f=σ̃j+1

C(θ̃f , f − 1)

f − 2

+ (σ̃i − 1)
n∑

f=σ̃i+1

f−1∑
`=1

C(θ̃f , `)

(f − 2)(f − 1)
+

n∑
j=σ̃i+1

n∑
f=σ̃j+1

f−1∑
`=1

C(θ̃f , `)

(f − 2)(f − 1)
− σ̃i

n∑
f=σ̃i+1

f−1∑
`=1

C(θ̃f , `)

(f − 1)f
−

n∑
j=σ̃i+1

n∑
f=σ̃j

f−1∑
`=1

C(θ̃f , `)

(f − 1)f
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=−
n∑

j=σ̃i+1

C(θ̃j , j) +
n∑

j=σ̃i+1

C(θ̃j , j − 1) +
n∑

f=σ̃i+1

C(θ̃f , f)−
n∑

f=σ̃i+1

C(θ̃f , f − 1) +
n∑

f=σ̃i+1

f−1∑
`=1

C(θ̃f , `)

f − 1
−

n∑
f=σ̃i+1

f−1∑
`=1

C(θ̃f , `)

f − 1

=0.

(1.40)

The second last equation holds since

σ̃i

n∑
f=σ̃i+1

C(θ̃f , f)

f
+

n∑
j=σ̃i+1

n∑
f=σ̃j

C(θ̃f , f)

f

=σ̃i
C(θ̃σ̃i+1, σ̃i + 1)

σ̃i + 1
+ σ̃i

C(θ̃σ̃i+2, σ̃i + 2)

σ̃i + 2
+ · · ·+ σ̃i

C(θ̃n, n)

n

+
C(θ̃σ̃i+1, σ̃i + 1)

σ̃i + 1
+ 2

C(θ̃σ̃i+2, σ̃i + 2)

σ̃i + 2
+ · · ·+ (n− σ̃i)

C(θ̃n, n)

n

=

n∑
f=σ̃i+1

f
C(θ̃f , f)

f

=

n∑
f=σ̃i+1

C(θ̃f , f),

(1.41)

and

(σ̃i − 1)
n∑

f=σ̃i+1

C(θ̃f , f − 1)

f − 2
+

n∑
j=σ̃i+1

n∑
f=σ̃j+1

C(θ̃f , f − 1)

f − 2

=(σ̃i − 1)
C(θ̃σ̃i+1, σ̃i)

σ̃i − 1
+ (σ̃i − 1)

C(θ̃σ̃i+2, σ̃i + 1)

σ̃i
+ · · ·+ (σ̃i − 1)

C(θ̃n, n− 1)

n− 2

+
C(θ̃σ̃i+2, σ̃i + 1)

σ̃i
+ · · ·+ (n− σ̃i − 1)

C(θ̃n, n− 1)

n− 2

=
n∑

f=σ̃i+1

(f − 2)
C(θ̃f , f − 1)

f − 2

=
n∑

f=σ̃i+1

C(θ̃f , f − 1).

(1.42)

Therefore, we have the desired result.

n · ui(σ, t; θ, C) = −n
σ̃i∑
p=1

C(θi, p)

σ̃i
− n

n∑
f=σ̃i+1

f−1∑
`=1

C(θ̃f , f)− C(θ̃f , `)

(f − 1)f

∴ ui(σ, t; θ, C) = −
σ̃i∑
p=1

C(θi, p)

σ̃i
−

n∑
f=σ̃i+1

f−1∑
`=1

C(θ̃f , f)− C(θ̃f , `)

(f − 1)f
,

(1.43)

By Pareto indifference, the result holds for all σ ∈ E(θ, C).

Remark 1.3. Similar to Theorems 1.3, 1.4 and 1.5, it can be shown that the maximal
transfer rule is the only rule satisfying efficiency, Pareto indifference, equal treatment of
equals, and independence of smaller costs together; the only rule satisfying efficiency,
Pareto indifference, identical preferences lower bound, positive cost monotonicity, and
the largest cost agent equal responsibility together; and the only rule satisfying efficiency,
Pareto indifference, and balanced consistency with external priority together.

30



1.6 Concluding remarks
We conclude the paper with a discussion on some properties.

As in the standard queueing game, the optimistic positional queueing game is concave,
and thus, the minimal transfer rule belongs to the anti-core of the game.

However, differently from the standard queueing game, the pessimistic positional
queueing game is balanced, but not convex. Let σ be such that θσ1 ≥ · · · ≥ θσn and for
each i ∈ N, ϕ1

i (θ, C) = −C(θi, σi). Since ϕ1(θ, C) belongs to the core, the pessimistic
positional queueing game is balanced.

Let N = {1, 2, 3} and θ be such that θ1 > θ2 > θ3. Let C(θ1, 3) = 1 and 0 otherwise.
It is easy to check that this cost function is supermodular with respect to the type and the
position and non-decreasing with respect to each argument. The worth of each coalition
is vp({1}) = −1 and vp(S) = 0 for all S ⊆ N , S 6= {1}. Now choose S = {1, 2, 3} and
T = {1, 2}. Then, vp(S)−vp(S\{2}) = 0 and vp(T )−vp(T \{2}) = 1,which proves that
this game is not convex. Moreover, the maximal transfer rule assigns ϕX1 (θ, C) = −1

3
and

ϕX2 (θ, C) = ϕX3 (θ, C) = 1
6

which is not in the core since vp({1, 2}) = 0 > ϕX1 (θ, C) +
ϕX2 (θ, C) = −1

6
.

For the standard queueing problem, Chun and Hokari (2007) and Kar, Mitra and Mu-
tuswami (2009) show the coincidence of the Shapley value and the prenucleolus (Schmei-
dler 1969) for the optimistic game and the coincidence of the Shapley value and the nu-
cleolus (Schmeidler 1969) for the pessimistic game. However, the coincidence of the two
solutions is not guaranteed for positional queueing problems. Note that these results are
based on the 2-additivity of the standard queueing game, that is, the worth of any coali-
tion with more than two agents can be expressed as a sum of the worths of all two-person
coalitions.

It is easy to check that 2-additivity is not satisfied even for three agent problem. Let
N = {1, 2, 3} and θ be such that θ1 > θ2 > θ3. Since vp(N) = −C(θ1, 1) − C(θ2, 2) −
C(θ3, 3) is not necessarily equal to vp({1, 2}) + vp({1, 3}) + vp({2, 3}) = −{C(θ1, 1) +
C(θ2, 2)}−{C(θ1, 1) +C(θ3, 2)}−{C(θ2, 1) +C(θ3, 2)}, the positional queueing game
does not satisfy 2-additivity.
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Appendix A: The minimal transfer rule

To prove the theorems, we use the following three lemmas.

Lemma 1. For any two positive integers i and k such that k ≤ i, we have

i∑
s=k

(−1)s+k+1 1

s

(
i− 1

s− 1

)(
s− 1

k − 1

)
= −1

i
.

Proof. Let i and k be two positive integers such that k ≤ i. We first show that the equality
holds for k = i. If k = i, then

i∑
s=k

(−1)s+k+1 1

s

(
i− 1

s− 1

)(
s− 1

k − 1

)
= (−1)2i+1 1

i

(
i− 1

i− 1

)(
i− 1

i− 1

)
= −1

i
,

as desired.
Next, as induction hypothesis, suppose that the equality holds for all k′ such that

k ≤ k′ ≤ i. We show that it also holds for k − 1. From the induction hypothesis,

i∑
s=k

(−1)s+k+1 1

s

(
i− 1

s− 1

)(
s− 1

k − 1

)
= −1

i
.

Now we consider the equation for k − 1, where the first equality is obtained from
Pascal’s formula.

i∑
s=k−1

(−1)s+k
1

s

(
i− 1

s− 1

)(
s− 1

k − 2

)

=
i∑

s=k−1

(−1)s+k
1

s

(
i− 1

s− 1

)[( s

k − 1

)
−
(
s− 1

k − 1

)]
=

i∑
s=k−1

(−1)s+k
1

s

(
i− 1

s− 1

)(
s

k − 1

)
+

i∑
s=k−1

(−1)s+k
1

s

(
i− 1

s− 1

)
(−1)

(
s− 1

k − 1

)

=
i∑

s=k−1

(−1)s+k
1

s

(
i− 1

s− 1

)(
s

k − 1

)
+

i∑
s=k

(−1)s+k+1 1

s

(
i− 1

s− 1

)(
s− 1

k − 1

)
.

From the induction hypothesis, the second term is equal to −1
i
. By using the binomial

theorem, the first term can be simplified to:
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i∑
s=k−1

(−1)s+k
1

s

(
i− 1

s− 1

)(
s

k − 1

)

=
i∑

s=k−1

(−1)s+k
(i− 1)!

(i− s)!(s− k + 1)!(k − 1)!

=
i∑

s=k−1

(−1)s+k
(i− k + 1)!

(i− s)!(s− k + 1)!

(i− 1)× · · · × (i− k + 2)

(k − 1)!

=
(i− 1)× · · · × (i− k + 2)

(k − 1)!

i∑
s=k−1

(−1)s+k
(
i− k + 1

s− k + 1

)

=
(i− 1)× · · · × (i− k + 2)

(k − 1)!

i−k+1∑
m=0

(−1)m+2k−1

(
i− k + 1

m

)
=

(i− 1)× · · · × (i− k + 2)

(k − 1)!
(−1)2k−1(1− 1)i−k+1

= 0.

Altogether, we obtain the desired conclusion.

Lemma 2. For each j ∈ N and any two positive integers p and q, we have

p∑
k=1

C(θj, k)

p
−

p+q∑
k=1

C(θj, k)

p+ q
= −

p+q∑
k=p+1

k∑
`=1

C(θj, k)− C(θj, `)

(k − 1)k
.

Proof. Let j ∈ N and p, q be two positive integers. We prove by induction. First, we
show that the equality holds when q = 1. If q = 1, then

p∑
k=1

C(θj , k)

p
−
p+1∑
k=1

C(θj , k)

p+ 1
+

p+1∑
`=1

C(θj , p+ 1)− C(θj , `)

p(p+ 1)

=
1

p(p+ 1)

[ p∑
k=1

C(θj , k)(p+ 1)−
p+1∑
k=1

C(θj , k)p+

p+1∑
`=1

C(θj , p+ 1)−
p+1∑
`=1

C(θj , `)
]

=
1

p(p+ 1)

[ p∑
k=1

C(θj , k)(p+ 1)−
p+1∑
k=1

C(θj , k)p+

p+1∑
`=1

C(θj , p+ 1)−
p∑
`=1

C(θj , `)− C(θj , p+ 1)
]

=
1

p(p+ 1)

[ p∑
k=1

C(θj , k)(p+ 1)−
p∑
`=1

C(θj , `)−
p+1∑
k=1

C(θj , k)p+

p+1∑
`=1

C(θj , p+ 1)− C(θj , p+ 1)
]

=
1

p(p+ 1)

[ p∑
k=1

C(θj , k)p−
p+1∑
k=1

C(θj , k)p+

p∑
`=1

C(θj , p+ 1)
]

=
1

p(p+ 1)

[
− C(θj , p+ 1)p+ pC(θj , p+ 1)

]
= 0.
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Next, as induction hypothesis, suppose the equation holds for all q̃ such that 1 ≤ q̃ ≤
q. Then, from the induction hypothesis,

p∑
k=1

C(θj, k)

p
−

p+q∑
k=1

C(θj, k)

p+ q
+

p+q∑
k=p+1

k∑
`=1

C(θj, k)− C(θj, `)

(k − 1)k
= 0. (1.44)

It is enough to show that the equation also holds for q + 1, that is,

p∑
k=1

C(θj, k)

p
−

p+q+1∑
k=1

C(θj, k)

p+ q + 1
+

p+q+1∑
k=p+1

k∑
`=1

C(θj, k)− C(θj, `)

(k − 1)k
= 0. (1.45)

Now we consider the following equation:

[(1.44)− (1.45)]× (p+ q)(p+ q + 1)

= −(p+ q + 1)

p+q∑
k=1

C(θj , k) + (p+ q)

p+q+1∑
k=1

C(θj , k)−
p+q+1∑
k=p+q+1

k∑
`=1

C(θj , k)− C(θj , `)

(k − 1)k
(p+ q)(p+ q + 1)

= −(p+ q + 1)

p+q∑
k=1

C(θj , k) + (p+ q)

p+q+1∑
k=1

C(θj , k)−
p+q+1∑
`=1

(
C(θj , p+ q + 1)− C(θj , `)

)
= −(p+ q + 1)

p+q∑
k=1

C(θj , k) + (p+ q)

p+q+1∑
k=1

C(θj , k)−
p+q+1∑
`=1

C(θj , p+ q + 1) +

p+q+1∑
`=1

C(θj , `)

= −(p+ q + 1)

p+q∑
k=1

C(θj , k) + (p+ q + 1)

p+q+1∑
k=1

C(θj , k)−
p+q+1∑
`=1

C(θj , p+ q + 1)

= (p+ q + 1)C(θj , p+ q + 1)− (p+ q + 1)C(θj , p+ q + 1)

= 0,

the desired conclusion.

Lemma 3. For each j ∈ N and any two positive integers p and q such that p + q ≤ n,
we have
p∑

k=1

C(θj, n− k + 1)

p
−

p+q∑
k=1

C(θj, n− k + 1)

p+ q
= −

n−p∑
k=n−p−q+1

n∑
`=k

C(θj, k)− C(θj, `)

(n− k)(n− k + 1)
.

Proof. Let j ∈ N and p and q be two positive integers such that p + q ≤ n. For each k,
let C̃(θj, k) = C(θj, n− k + 1). By Lemma 2,

p∑
k=1

C(θj, n− k + 1)

p
−

p+q∑
k=1

C(θj, n− k + 1)

p+ q

=

p∑
k=1

C̃(θj, k)

p
−

p+q∑
k=1

C̃(θj, k)

p+ q

= −
p+q∑

k=p+1

k∑
`=1

C̃(θj, k)− C̃(θj, `)

(k − 1)k

= −
p+q∑

k=p+1

k∑
`=1

C(θj, n− k + 1)− C(θj, n− `+ 1)

(k − 1)k
.
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Let m = n− k + 1. Then,

−
p+q∑

k=p+1

k∑
`=1

C(θj, n− k + 1)− C(θj, n− `+ 1)

(k − 1)k

= −
n−p∑

m=n−p−q+1

k∑
`=1

C(θj,m)− C(θj, n− `+ 1)

(n−m)(n−m+ 1)

= −
n−p∑

m=n−p−q+1

n∑
`=m

C(θj,m)− C(θj, `)

(n−m)(n−m+ 1)
,

as desired.

Next, we calculate the unanimity coefficient of the optimistic positional queueing
game.

Proposition 1.6. For the optimistic positional queueing game vo, the unanimity coeffi-
cient λvo is given by: for each S ⊆ N such that |S| = s,

λvo(S) =
s∑

k=1

(−1)s+k+1

(
s− 1

k − 1

)
C(θS, k),

where θS is the smallest type of agents in S.

Proof. For each game vo and each S ⊆ N, the unanimity coefficient can be calculated as
follows:

λvo(S) =
∑
T⊆S

(−1)s−tvo(T ),

where s = |S| and t = |T |.
For each S ⊆ N, let i ∈ S be such that θi = θS . Then, for each T ⊆ S with T 3 i,

vo(T ) = vo(T \ {i})− C(θS, t). Therefore,

λvo(S) =
∑
T⊆S

(−1)s−tvo(T )

=
∑

T⊆S,i/∈T

(−1)s−tvo(T ) +
∑

T⊆S,i∈T

(−1)s−tvo(T )

=
∑

T⊆S,i/∈T

(−1)s−tvo(T ) +
∑

T⊆S,i∈T

(−1)s−t[vo(T \ {i})− C(θS, t)]

=
∑

T⊆S,i/∈T

(−1)s−tvo(T ) +
∑

T⊆S,i/∈T

(−1)s−t−1vo(T )−
∑

T⊆S,i∈T

(−1)s−tC(θS, t)

=
∑

T⊆S,i∈T

(−1)s−t+1C(θS, t)

=
s∑
t=1

(
s− 1

t− 1

)
(−1)s−t+1C(θS, t)

=
s∑
t=1

(
s− 1

t− 1

)
(−1)s+t+1C(θS, t),
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as desired.

Proof of Theorem 1:

Proof. We show that for each i ∈ N,

φSVi (vo) = −
p̂i+êi∑
k=1

C(θi, k)

p̂i + êi
−

∑
θ0∈Θ(F̂ ,i)

p̂0+ê0∑
k=p̂0+1

1

k − 1

k∑
`=1

C(θ0, k)− C(θ0, `)

k
. (1.46)

It is well-known that the assignment of the Shapley value to agent i can be calculated
by using the unanimity coefficients as follows:

φSVi (vo) =
∑

S⊆N, S3i

λvo(S)

|S|
.

From Proposition 1.6,

∑
S⊆N, S3i

λvo(S)

|S|
=

∑
S⊆N, S3i

s∑
k=1

(−1)s+k+1 1

s

(
s− 1

k − 1

)
C(θS, k),

We partition the set of coalitions including agent i, Si, into two subsets: S1
i = {S ∈

Si|θS = θi} and S2
i = {S ∈ Si|θS < θi}. Also, for each θ0 ∈ Θ(F̂ , i), S1

0 = {S ⊆
N |θS = θ0}.

Case 1.1: S ∈ S1
i .

∑
S∈S1i

s∑
k=1

(−1)s+k+1 1

s

(
s− 1

k − 1

)
C(θS, k)

=

p̂i+êi∑
s=1

∑
S∈S1i ,|S|=s

s∑
k=1

(−1)s+k+1 1

s

(
s− 1

k − 1

)
C(θi, k)

=

p̂i+êi∑
s=1

(
p̂i + êi − 1

s− 1

) s∑
k=1

(−1)s+k+1 1

s

(
s− 1

k − 1

)
C(θi, k)

=

p̂i+êi∑
s=1

s∑
k=1

(−1)s+k+1 1

s

(
p̂i + êi − 1

s− 1

)(
s− 1

k − 1

)
C(θi, k)

=

p̂i+êi∑
k=1

p̂i+êi∑
s=k

(−1)s+k+1 1

s

(
p̂i + êi − 1

s− 1

)(
s− 1

k − 1

)
C(θi, k)

=

p̂i+êi∑
k=1

C(θi, k)

p̂i+êi∑
s=k

(−1)s+k+1 1

s

(
p̂i + êi − 1

s− 1

)(
s− 1

k − 1

)

= −
p̂i+êi∑
k=1

C(θi, k)

p̂i + êi
,
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where the last equality comes from Lemma 1.

Case 1.2: S ∈ S2
i .

∑
S∈S2i

s∑
k=1

(−1)s+k+1 1

s

(
s− 1

k − 1

)
C(θS, k)

=
∑

θ0∈Θ(F̂ ,i)

∑
S∈S10 ,S3i

s∑
k=1

(−1)s+k+1 1

s

(
s− 1

k − 1

)
C(θ0, k)

=
∑

θ0∈Θ(F̂ ,i)

p̂0+ê0∑
s=2

∑
S∈S10 ,S3i,|S|=s

s∑
k=1

(−1)s+k+1 1

s

(
s− 1

k − 1

)
C(θ0, k)

=
∑

θ0∈Θ(F̂ ,i)

p̂0+ê0∑
s=2

[(
p̂0 + ê0 − 1

s− 1

)
−
(
p̂0 − 1

s− 1

)] s∑
k=1

(−1)s+k+1 1

s

(
s− 1

k − 1

)
C(θ0, k)

=
∑

θ0∈Θ(F̂ ,i)

p̂0+ê0∑
s=2

s∑
k=1

(−1)s+k+1 1

s

[(
p̂0 + ê0 − 1

s− 1

)
−
(
p̂0 − 1

s− 1

)](
s− 1

k − 1

)
C(θ0, k)

=
∑

θ0∈Θ(F̂ ,i)

p̂0+ê0∑
k=1

p̂0+ê0∑
s=k

(−1)s+k+1 1

s

[(
p̂0 + ê0 − 1

s− 1

)
−
(
p̂0 − 1

s− 1

)](
s− 1

k − 1

)
C(θ0, k)

=
∑

θ0∈Θ(F̂ ,i)

p̂0+ê0∑
k=1

p̂0+ê0∑
s=k

(−1)s+k+1 1

s

(
p̂0 + ê0 − 1

s− 1

)(
s− 1

k − 1

)
C(θ0, k)

−
∑

θ0∈Θ(F̂ ,i)

p̂0∑
k=1

p̂0∑
s=k

(−1)s+k+1 1

s

(
p̂0 − 1

s− 1

)(
s− 1

k − 1

)
C(θ0, k)

=
∑

θ0∈Θ(F̂ ,i)

p̂0+ê0∑
k=1

C(θ0, k)

p̂0+ê0∑
s=k

(−1)s+k+1 1

s

(
p̂0 + ê0 − 1

s− 1

)(
s− 1

k − 1

)

−
∑

θ0∈Θ(F̂ ,i)

p̂0∑
k=1

C(θ0, k)

p̂0∑
s=k

(−1)s+k+1 1

s

(
p̂0 − 1

s− 1

)(
s− 1

k − 1

)

=
∑

θ0∈Θ(F̂ ,i)

p̂0+ê0∑
k=1

C(θ0, k)(− 1

p̂0 + ê0

)−
∑

θ0∈Θ(F̂ ,i)

p̂0∑
k=1

C(θ0, k)(− 1

p̂0

) (∗)

=
∑

θ0∈Θ(F̂ ,i)

[
p̂0∑
k=1

C(θ0, k)

p̂0

−
p̂0+ê0∑
k=1

C(θ0, k)

p̂0 + ê0

]
,

where the 8th equality (with (∗)) is obtained from Lemma 1.
Altogether,
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φSVi (vo) =
∑
i∈S⊆N

λS(v)

|S|

= −
p̂i+êi∑
k=1

C(θi, k)

p̂i + êi
−

∑
θ0∈Θ(F̂ ,i)

[
p̂0+ê0∑
k=1

C(θ0, k)

p̂0 + ê0

−
p̂0∑
k=1

C(θ0, k)

p̂0

]

= −
p̂i+êi∑
k=1

C(θi, k)

p̂i + êi
−

∑
θ0∈Θ(F̂ ,i)

p̂0+ê0∑
k=p̂0+1

1

k − 1

k∑
`=1

C(θ0, k)− C(θ0, `)

k
,

where the last equality holds by Lemma 2.
Therefore, the transfer to agent i in vo can be expressed as:

tMi = C(θi, σ
M
i ) + φSVi (vo)

= C(θi, σ
M
i )−

p̂i+êi∑
k=1

C(θi, k)

p̂i + êi
−

∑
θ0∈Θ(F̂ ,i)

p̂0+ê0∑
k=p̂0+1

1

k − 1

k∑
`=1

C(θ0, k)− C(θ0, `)

k

=

p̂i+êi∑
k=1

C(θi, σ
M
i )− C(θi, k)

p̂i + êi
−

∑
θ0∈Θ(F̂ ,i)

p̂0+ê0∑
k=p̂0+1

1

k − 1

k∑
`=1

C(θ0, k)− C(θ0, `)

k
,

the desired expression.

Proof of Corollary 1:

Proof. Let σM ∈ Ẽ(θ, C). By Theorem 1.1,

tMi =

p̂i+êi∑
k=1

C(θi, σ
M
i )− C(θi, k)

p̂i + êi
−

∑
θ0∈Θ(F̂ ,i)

p̂0+ê0∑
k=p̂0+1

1

k − 1

k∑
`=1

C(θ0, k)− C(θ0, `)

k
.

(1.47)
For each i ∈ N, by definition of p̂i and êi, p̂i < σMi ≤ p̂i + êi. Let e be a positive

integer such that σMi = p̂i + e. Then, 1 ≤ e ≤ êi.
Suppose that e < êi. By Lemma 2,

p̂i+êi∑
k=1

C(θi, k)

p̂i + êi
=

p̂i+e∑
k=1

C(θi, k)

p̂i + e
−

p̂i+e∑
k=1

C(θi, k)

p̂i + e
+

p̂i+êi∑
k=1

C(θi, k)

p̂i + êi

=

p̂i+e∑
k=1

C(θi, k)

p̂i + e
+

p̂i+êi∑
k=p̂i+e+1

k∑
`=1

C(θi, k)− C(θi, `)

(k − 1)k
. (1.48)

If e = êi, then we use equation (1.47) without any modification.
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By substituting equation (1.48) into equation (1.47), we have

tMi = C(θi, σ
M
i )−

p̂i+êi∑
k=1

C(θi, k)

p̂i + êi
−

∑
θ0∈Θ(F̂ ,i)

p̂0+ê0∑
k=p̂0+1

1

k − 1

k∑
`=1

C(θ0, k)− C(θ0, `)

k

= C(θi, σ
M
i )−

p̂i+e∑
k=1

C(θi, k)

p̂i + e
−

p̂i+êi∑
k=p̂i+e+1

k∑
`=1

C(θi, k)− C(θi, `)

(k − 1)k

−
∑

θ0∈Θ(F̂ ,i)

p̂0+ê0∑
k=p̂0+1

1

k − 1

k∑
`=1

C(θ0, k)− C(θ0, `)

k
. (1.49)

Note that if σM ∈ Ẽ(θ, C), then each j ∈ P̂ (θi) belongs to Pi(σM) and each j ∈
F̂ (θi) belongs to Fi(σM). In addition, each j ∈ Ê(θi) such that σMj = p̂i + 1, . . . , p̂i +

(e − 1) belongs to Pi(σM) and each j ∈ Ê(θi) such that σMj = p̂i + (e + 1), . . . , p̂i + êi
belongs to Fi(σM). Altogether, equation (1.49) can be rewritten as:

tMi

= C(θi, σ
M
i )−

p̂i+e∑
k=1

C(θi, k)

p̂i + e
−

p̂i+êi∑
k=p̂i+e+1

k∑
`=1

C(θi, k)− C(θi, `)

(k − 1)k

−
∑

θ0∈Θ(F̂ ,i)

p̂0+ê0∑
k=p̂0+1

k∑
`=1

C(θ0, k)− C(θ0, `)

(k − 1)k

= C(θi, σ
M
i )−

∑
p∈Pi(σM )∪{i}

C(θi, σ
M
p )

σMi
−

∑
f∈Fi(σM )

σMf∑
`=1

C(θf , σ
M
f )− C(θf , `)

(σMf − 1)σMf

=
∑

p∈Pi(σM )∪{i}

C(θi, σ
M
i )− C(θi, σ

M
p )

σMi
−

∑
f∈Fi(σM )

∑
`∈Pf (σM )∪{f}

C(θf , σ
M
f )− C(θf , σ

M
` )

(σMf − 1)σMf

=
∑

p∈Pi(σM )

C(θi, σ
M
i )− C(θi, σ

M
p )

σMi
−

∑
f∈Fi(σM )

1

σMf − 1

∑
`∈Pf (σM )

C(θf , σ
M
f )− C(θf , σ

M
` )

σMf
,

the desired expression.

Appendix B: The maximal transfer rule
Once again, we begin with calculating the unanimity coefficient of the pessimistic posi-
tional queueing game.

Proposition 1.7. For the pessimistic positional queueing game vp, the unanimity coeffi-
cient is given by: for each S ⊆ N such that |S| = s,

λvp(S) =
s∑

k=1

(−1)s+k+1

(
s− 1

k − 1

)
C(θS, n− k + 1),

where θS is the largest type of agents in S.
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Proof. For each game vp and each S ⊆ N, the unanimity coefficient can be calculated as
follows:

λvp(S) =
∑
T⊆S

(−1)s−tvp(T,

where s = |S| and t = |T |.
For each S ⊆ N, let i ∈ S be such that θi = θS . Then, for each T ⊆ S with T 3 i,

vp(T ) = vp(T \ {i})− C(θS, n− t+ 1). Therefore,

λvp(S) =
∑
T⊆S

(−1)s−tvp(T )

=
∑

T⊆S,i/∈T

(−1)s−tvp(T ) +
∑

T⊆S,i∈T

(−1)s−tvp(T )

=
∑

T⊆S,i/∈T

(−1)s−tvp(T ) +
∑

T⊆S,i∈T

(−1)s−t[vp(T \ {i})− C(θS, n− t+ 1)]

=
∑

T⊆S,i/∈T

(−1)s−tvp(T ) +
∑

T⊆S,i/∈T

(−1)s−t−1vp(T )−
∑

T⊆S,i∈T

(−1)s−tC(θS, n− t+ 1)

=
∑

T⊆S,i∈T

(−1)s−t+1C(θS, n− t+ 1)

=
s∑
t=1

(
s− 1

t− 1

)
(−1)s−t+1C(θS, n− t+ 1)

=
s∑
t=1

(
s− 1

t− 1

)
(−1)s+t+1C(θS, n− t+ 1),

as desired.

Proof of Theorem 2:

Proof. We show that for each i ∈ N ,

φSVi (vp) =
∑

θ0∈Θ(P̂ ,i)

p̂0+ê0∑
k=p̂0+1

1

n− k

n∑
`=k

C(θ0, `)− C(θ0, k)

n− k + 1
−

n∑
k=p̂i+1

C(θi, k)

êi + f̂i
.

It is well-known that the assignment of the Shapley value to agent i can be calculated
by using the unanimity coefficient as follows:

φSVi (vp) =
∑

S⊆N,S3i

λvp(S)

|S|
.

From Proposition 1.7,

∑
S⊆N,S3i

λvp(S)

|S|
=

∑
S⊆N,S3i

s∑
k=1

(−1)s+k+1 1

s

(
s− 1

k − 1

)
C(θS, n− k + 1),
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We partition the set of coalitions including agent i, Si, into two subsets: S3
i = {S ∈

Si|θS = θi} and S4
i = {S ∈ Si|θS > θi}. Also, for each θ0 ∈ Θ(P̂ , i), S3

0 = {S ⊆
N |θS = θ0}.

Case 2.1: S ∈ S3
i .

∑
S∈S3i

s∑
k=1

(−1)s+k+1 1

s

(
s− 1

k − 1

)
C(θS, n− k + 1)

=

êi+f̂i∑
s=1

∑
S∈S3i ,|S|=s

s∑
k=1

(−1)s+k+1 1

s

(
s− 1

k − 1

)
C(θi, n− k + 1)

=

êi+f̂i∑
s=1

(
êi + f̂i − 1

s− 1

) s∑
k=1

(−1)s+k+1 1

s

(
s− 1

k − 1

)
C(θi, n− k + 1)

=

êi+f̂i∑
s=1

s∑
k=1

(−1)s+k+1 1

s

(
êi + f̂i − 1

s− 1

)(
s− 1

k − 1

)
C(θi, n− k + 1)

=

êi+f̂i∑
k=1

êi+f̂i∑
s=k

(−1)s+k+1 1

s

(
êi + f̂i − 1

s− 1

)(
s− 1

k − 1

)
C(θi, n− k + 1)

=

êi+f̂i∑
k=1

C(θi, n− k + 1)

êi+f̂i∑
s=k

(−1)s+k+1 1

s

(
êi + f̂i − 1

s− 1

)(
s− 1

k − 1

)

= −
êi+f̂i∑
k=1

C(θi, n− k + 1)

êi + f̂i
(∗)

= −
n∑

k=p̂i+1

C(θi, k)

êi + f̂i
,

where the 6th equality (with (*)) is obtained from Lemma 1.

Case 2.2: S ∈ S4
i .
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∑
S∈S4i

s∑
k=1

(−1)s+k+1 1

s

(
s− 1

k − 1

)
C(θS, n− k + 1)

=
∑

θ0∈Θ(P̂ ,i)

∑
S∈S30 ,S3i

s∑
k=1

(−1)s+k+1 1

s

(
s− 1

k − 1

)
C(θ0, n− k + 1)

=
∑

θ0∈Θ(P̂ ,i)

ê0+f̂0∑
s=2

∑
S∈S30 ,S3i,|S|=s

s∑
k=1

(−1)s+k+1 1

s

(
s− 1

k − 1

)
C(θ0, n− k + 1)

=
∑

θ0∈Θ(P̂ ,i)

ê0+f̂0∑
s=2

[(
ê0 + f̂0 − 1

s− 1

)
−
(
f̂0 − 1

s− 1

)] s∑
k=1

(−1)s+k+1 1

s

(
s− 1

k − 1

)
C(θ0, n− k + 1)

=
∑

θ0∈Θ(P̂ ,i)

ê0+f̂0∑
s=2

s∑
k=1

(−1)s+k+1 1

s

[(
ê0 + f̂0 − 1

s− 1

)
−
(
f̂0 − 1

s− 1

)](
s− 1

k − 1

)
C(θ0, n− k + 1)

=
∑

θ0∈Θ(P̂ ,i)

ê0+f̂0∑
k=1

ê0+f̂0∑
s=k

(−1)s+k+1 1

s

[(
ê0 + f̂0 − 1

s− 1

)
−
(
f̂0 − 1

s− 1

)](
s− 1

k − 1

)
C(θ0, n− k + 1)

=
∑

θ0∈Θ(P̂ ,i)

ê0+f̂0∑
k=1

ê0+f̂0∑
s=k

(−1)s+k+1 1

s

(
ê0 + f̂0 − 1

s− 1

)(
s− 1

k − 1

)
C(θ0, n− k + 1)

−
∑

θ0∈Θ(P̂ ,i)

f̂0∑
k=1

f̂0∑
s=k

(−1)s+k+1 1

s

(
f̂0 − 1

s− 1

)(
s− 1

k − 1

)
C(θ0, n− k + 1)

=
∑

θ0∈Θ(P̂ ,i)

ê0+f̂0∑
k=1

C(θ0, n− k + 1)

ê0+f̂0∑
s=k

(−1)s+k+1 1

s

(
ê0 + f̂0 − 1

s− 1

)(
s− 1

k − 1

)

−
∑

θ0∈Θ(P̂ ,i)

f̂0∑
k=1

C(θ0, n− k + 1)

f̂0∑
s=k

(−1)s+k+1 1

s

(
f̂0 − 1

s− 1

)(
s− 1

k − 1

)

=
∑

θ0∈Θ(P̂ ,i)

ê0+f̂0∑
k=1

C(θ0, n− k + 1)(− 1

ê0 + f̂0

)−
∑

θ0∈Θ(P̂ ,i)

f̂0∑
k=1

C(θ0, n− k + 1)(− 1

f̂0

) (∗)

=
∑

θ0∈Θ(P̂ ,i)

 f̂0∑
k=1

C(θ0, n− k + 1)

f̂0

−
ê0+f̂0∑
k=1

C(θ0, n− k + 1)

ê0 + f̂0

 ,

where the 9th equality (with (∗)) is obtained from Lemma 1.
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Altogether,

φSVi (vp) =
∑

S⊆N,S3i

λvp(S)

|S|

=
∑

θ0∈Θ(P̂ ,i)

 f̂0∑
k=1

C(θ0, n− k + 1)

f̂0

−
ê0+f̂0∑
k=1

C(θ0, n− k + 1)

ê0 + f̂0

− n∑
k=p̂i+1

C(θi, k)

êi + f̂i

=
∑

θ0∈Θ(P̂ ,i)

p̂0+ê0∑
k=p̂0+1

1

n− k

n∑
`=k

C(θ0, `)− C(θ0, k)

n− k + 1
−

n∑
k=p̂i+1

C(θi, k)

êi + f̂i
,

where the last equality holds by Lemma 3.

Therefore, the transfer to agent i in vo can be expressed as:

tXi = C(θi, σ
X
i ) + φSVi (vp)

= C(θi, σ
X
i ) +

∑
θ0∈Θ(P̂ ,i)

p̂0+ê0∑
k=p̂0+1

1

n− k

n∑
`=k

C(θ0, `)− C(θ0, k)

n− k + 1
−

n∑
k=p̂i+1

C(θi, k)

êi + f̂i

=
∑

θ0∈Θ(P̂ ,i)

p̂0+ê0∑
k=p̂0+1

1

n− k

n∑
`=k

C(θ0, `)− C(θ0, k)

n− k + 1
−

n∑
k=p̂i+1

C(θi, k)− C(θi, σ
X
i )

êi + f̂i
,

the desired expression.

Proof of Corollary 2:

Proof. Let σX ∈ Ẽ(θ, C). By Theorem 1.2,

tXi = C(θi, σ
X
i ) +

∑
θ0∈Θ(P̂ ,i)

p̂0+ê0∑
k=p̂0+1

1

n− k

n∑
`=k

C(θ0, `)− C(θ0, k)

n− k + 1
−

n∑
k=p̂i+1

C(θi, k)

êi + f̂i
.

(1.50)
For each i ∈ N , by definition of p̂i and êi, p̂i < σXi ≤ p̂i + êi. Let e be a positive integer
such that σXi = p̂i + êi − e+ 1. Then, 1 ≤ e ≤ êi.
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Suppose that e < êi. By Lemma 3,

n∑
k=p̂i+1

C(θi, k)

êi + f̂i

=

êi+f̂i∑
m=1

C(θi, n−m+ 1)

êi + f̂i

=

e+f̂i∑
m=1

C(θi, n−m+ 1)

e+ f̂i
−

e+f̂i∑
m=1

C(θi, n−m+ 1)

e+ f̂i
+

êi+f̂i∑
m=1

C(θi, n−m+ 1)

êi + f̂i

=

e+f̂i∑
m=1

C(θi, n−m+ 1)

e+ f̂i
+

n−e−f̂i∑
m=n−êi−f̂i+1

n∑
`=m

C(θi,m)− C(θi, `)

(n−m)(n−m+ 1)

=

e+f̂i∑
m=1

C(θi, n−m+ 1)

e+ f̂i
+

n−e−f̂i∑
k=n−êi−f̂i+1

n∑
`=k

C(θi, k)− C(θi, `)

(n− k)(n− k + 1)

=
n∑

k=p̂i+êi−e+1

C(θi, k)

e+ f̂i
+

p̂i+êi−e∑
k=p̂i+1

n∑
`=k

C(θi, k)− C(θi, `)

(n− k)(n− k + 1)
. (1.51)

If e = êi, we use equation (1.50) without any modification.
By substituting equation (1.51) into equation (1.50), we have

tXi = C(θi, σ
X
i ) +

∑
θ0∈Θ(P̂ ,i)

p̂0+ê0∑
k=p̂0+1

n∑
`=k

C(θ0, `)− C(θ0, k)

(n− k)(n− k + 1)
−

n∑
k=p̂i+1

C(θi, k)

êi + f̂i

= C(θi, σ
X
i ) +

∑
θ0∈Θ(P̂ ,i)

p̂0+ê0∑
k=p̂0+1

n∑
`=k

C(θ0, `)− C(θ0, k)

(n− k)(n− k + 1)
−

p̂i+êi−e∑
k=p̂i+1

n∑
`=k

C(θi, k)− C(θi, `)

(n− k)(n− k + 1)

−
n∑

k=p̂i+êi−e+1

C(θi, k)

e+ f̂i

= C(θi, σ
X
i ) +

∑
θ0∈Θ(P̂ ,i)

p̂0+ê0∑
k=p̂0+1

n∑
`=k

C(θ0, `)− C(θ0, k)

(n− k)(n− k + 1)
+

p̂i+êi−e∑
k=p̂i+1

n∑
`=k

C(θi, `)− C(θi, k)

(n− k)(n− k + 1)

−
n∑

k=p̂i+êi−e+1

C(θi, k)

e+ f̂i
(1.52)

Note that if σX ∈ Ẽ(θ, C), then each j ∈ P̂ (θi) belongs to Pi(σX) and each j ∈ F̂ (θi)
belongs to Fi(σX). In addition, each j ∈ Ê(θi) such that σXj = p̂i + 1, . . . , p̂i + (e − 1)

belongs to Pi(σX) and each j ∈ Ê(θi) such that σXj = p̂i + (e + 1), . . . , p̂i + êi belongs
to Fi(σX). Altogether, equation (1.52) can be rewritten as:
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tXi = C(θi, σ
X
i ) +

∑
θ0∈Θ(P̂ ,i)

p̂0+ê0∑
k=p̂0+1

n∑
`=k

C(θ0, `)− C(θ0, k)

(n− k)(n− k + 1)
+

p̂i+êi−e∑
k=p̂i+1

n∑
`=k

C(θi, `)− C(θi, k)

(n− k)(n− k + 1)

−
n∑

k=p̂i+êi−e+1

C(θi, k)

e+ f̂i

= C(θi, σ
X
i ) +

∑
p∈Pi(σX)

n∑
`=σXp

C(θp, `)− C(θp, σ
X
p )

(n− σXp )(n− σXp + 1)
−

∑
f∈Fi(σX)∪{i}

C(θi, σ
X
f )

n− p̂i − êi + e

= C(θi, σ
X
i ) +

∑
p∈Pi(σX)

∑
`∈Fp(σX)

C(θp, σ
X
` )− C(θp, σ

X
p )

(n− σXp )(n− σXp + 1)
−

∑
f∈Fi(σX)∪{i}

C(θi, σ
X
f )

n− σXi + 1

=
∑

p∈Pi(σX)

∑
`∈Fp(σX)

C(θp, σ
X
` )− C(θp, σ

X
p )

(n− σXp )(n− σXp + 1)
−

∑
f∈Fi(σX)∪{i}

C(θi, σ
X
f )− C(θi, σ

X
i )

n− σXi + 1

=
∑

p∈Pi(σX)

1

n− σXp

∑
`∈Fp(σX)

C(θp, σ
X
` )− C(θp, σ

X
p )

n− σXp + 1
−

∑
f∈Fi(σX)

C(θi, σ
X
f )− C(θi, σ

X
i )

n− σXi + 1
,

the desired expression.
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Chapter 2

The Kar Solution for multi-source
minimum cost spanning tree problems

2.1 Introduction

We consider a minimum cost spanning tree problem with multiple sources (hereafter, m-
mcstp). There are a number of sources that provide services. A group of agents want to
connect to these sources. An agent does not care if her connection to the source is direct
or indirect, however she needs to connect to all of the sources. A connection entails a cost.

There are two objectives in such a problem: (1) how to construct a spanning network
over all agents and sources which entails a minimal cost and (2) how to allocate the cost
of the minimal network to each agent. There are many algorithms for the first problem,
for instance, the Kruskal and Prim algorithm (Kruskal (1956), Prim (1957)).

As for the classical (single source) minimum cost spanning tree problems, there are
many literatures regarding the allocation problem. The classical minimum cost spanning
tree problem was first introduced by Claus and Kleitman (1973). Bird (1976) found an
allocation rule which is at the core of the associated minimum cost spanning tree game.
Granot and Huberman (1984) investigated the nucleolus and Kar (2002) investigated the
Shapley value of the minimum cost spanning tree problem. Dutta and Kar (2004) in-
troduced the Dutta-Kar rule, which is cost monotonic. Chun and Lee (2009) introduced
the sequential contributions solution. Trudeau (2012) introduced the cycle-complete so-
lution. The most widely-known solution for classical minimum cost spanning tree prob-
lems is the folk rule, which is studied separately as the Shapley value of the irreducible
game (Bergantinos and Vidal-Puga (2007)), as an obligation rule (Tijs et al. (2006)), as
a partition rule (Bergantinos et al. (2010)), and as a cone-wise decomposition calculation
(Branzei et al. (2004)).

Bergantinos et al. (2019) introduced m-mcstp and studied the folk rule. We investigate
the Kar rule, the Shapley value of the stand alone cost game. The objective of this chapter
is to investigate the properties and provide an axiomatic characterization of the Kar rule
for the m-mcstp.

This chapter is organized as follows. Section 2 introduces the minimum cost span-
ning tree problem with multiple sources (m-mcstp) and introduces the Kar rule. Section 3
studies the properties of the Kar rule and characterizes it axiomatically. In Section 4, we
conclude this study with some remarks.
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2.2 Model

2.2.1 Minimum cost spanning tree problems with multiple sources
Let N = {1, · · · , n} be a set of agents and let M = {s1, · · · , sm} be a set of sources.
We call each element of N ∪M a node. Given a node set N ∪M , a cost matrix C =
(cij)i,j∈N∪M represents the cost of the direct link between any pair of nodes, with cij =
cji ≥ 0 and cii = 0, for all i, j ∈ N ∪M . The set of all cost matrices over N ∪M is
denoted by CN∪M .

A minimum cost spanning tree problem with multiple sources (m-mcstp) is a triple
(N,M,C) where N is a set of agents, M is a set of sources and C is a cost matrix over
N ∪M .

A graph g over N ∪M is a subset of a complete graph {(ij)|∀i, j ∈ N ∪M, i 6=
j}, whose element is a link. A path from i to j in g is a sequence of different links
{(ik−1ik)}Kk=1 such that (ik−1ik) ∈ g for all k ∈ {1, 2, · · · , K}, i0 = i and iK = j. A
cycle is a sequence of different links {(ik−1ik)}Kk=1 such that (ik−1ik) ∈ g for all k ∈
{1, 2, · · · , K}, i0 = iK . Two distinct nodes i, j are connected in g if there exists a path
from i to j in g, and a graph g is connected if all pairs of nodes are connected in g. A tree
is a connected graph with a unique path from any node to another node. For any tree t, let
tij be the unique path from i to j in t.

For any graph g overN∪M , the construction cost of g is c(N,M,C, g) =
∑

(i,j)∈g cij .
If there is no ambiguity, we use c(g) instead of c(N,M,C, g).

For any coalition S ⊆ N , let ΓS be the set of all connected graphs with node set
S ∪M . A minimum cost spanning tree (a minimal tree) over S ∪M , denoted by tS , has
the property

tS = argmin
g∈ΓS

[ ∑
(ij)∈g

cij
]
,

and let c(S,M,C) = c(S) = c(tS). According to the definition of tS , t∅ is the tree network
among the sources. However, we let t∅ = ∅ and c(∅) = 0 conventionally. Instead, we let
tM be the minimal tree over the sources only.

A minimum cost spanning tree game with multiple sources is a cost game (N, c)
associated with a problem (N,M,C).

2.2.2 Rule
A cost allocation rule ϕ is a map associated with each problem (N,M,C) a vector of a
cost shares ϕ(N,M,C) ∈ RN , where R is the set of real numbers. In a classical problem,
Kar (2002) defines the Kar rule as the Shapley value (Shapley (1953)) of a minimum cost
spanning tree game. Similarly we define the (modified) Kar rule as the Shapley value of
m-mcstp. Given m-mcstp (N,M,C), we define the Kar rule as below:

φi(N,M,C) =
n∑
s=1

(s− 1)!(n− s)!
n!

[ ∑
i∈S⊆N,|S|=s

(c(S,M,C)−c(S\{i},M,C))
]
∀i ∈ N.

Example 2.1. Let there are two agents {1, 2} and two sources {s1, s2}. Since c({1}) = 5,
c({2}) = 9, c({1, 2}) = 6, the Kar rule assigns 1 to agent 1 and 5 to agent 2.
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Figure 2.1: The Kar rule example

Here we introduce the definition of the folk rule to compare it with the Kar rule. There
are many ways to define the folk rule (see Bergantinos et al. (2019)), here we use the
definition the Shapley value regarding the irreducible matrix. Given an m-mcstp, let tN
be the minimal tree. The associated irreducible matrix of C is a cost matrix C∗ with the
cost c∗ij = max(k,l)∈tN,ij ckl where tN,ij denotes the unique path from i to j in tN . The m-
mcstp (N,M,C∗) is the irreducible problem of (N,M,C). Given an m-mcstp (N,M,C),
the folk rule is defined as the Shapley value of irreducible minimum cost spanning tree
problems with multiple sources. That is,

fi(N,M,C) = φi(N,M,C∗),

where C∗ is the associated irreducible matrix of C.
Figure 2.2 shows the irreducible network of figure 2.1. The links with double lines

comprise the unique minimal tree of the original game and each cost of the dotted lines are
reduced according to the definition of the irreducible matrix. Since c({1}) = 5, c({2}) =
5, c({1, 2}) = 6 in this case, the folk rule assigns 3 to agent 1 and 3 to agent 2.

s1
3

2

2

s2

3

3

1
1

2

Figure 2.2: The folk rule example

2.3 An axiomatic characterization

2.3.1 Axioms
Kar (2002) used four axioms (efficiency, absence of cross-subsidization, group indepen-
dence, and equal treatment) to characterize the Kar rule. We first look at those axioms and
modify them if required. Next, we compare the Kar rule with the folk rule by investigating
the axioms studied in Bergantinos et al. (2019).
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Efficiency requires that the sum of the allocations for all agents is same as the con-
struction cost of the network.

Axiom 2.1 (Efficiency).
∑

i∈N ϕi(N,M,C) = c(N)

Absence of cross-subsidization is similar to the definition of Kar (2002), however we
modify the definition so it can be applied to m-mcstp. As for the classical problem, ab-
sence of cross-subsidization requires that if the minimum cost spanning tree is a star-
graph with a source in the center, each agent pays her own connection cost to the source.
In other words, if there is no positive synergy when constructing the network coopera-
tively, each agent pays her own cost. For example, let figure 2.3 be a minimal tree, then
absence of cross-subsidization requires that ϕi = cis for all i ∈ N .

S

1

2

3 4

5

Figure 2.3: Star graph with a source in the center

If there are more than one source, a star-graph with a source in the center cannot
happen. Therefore, we have to modify the concept of star-graph as well as the definition
of absence of cross-subsidization axiom in order to apply it to m-mcstp.

Here we introduce the concept of source cluster. Suppose that given a minimum cost
spanning tree, t(N), the path from any source to another source, tsisj (si, sj ∈ M, si 6=
sj), consists of links of a complete graph over M . It means that the sources are close
enough so that the construction of the sources’ network does not benefit from any help
of agents. In this case, we name the efficient network of sources a source cluster. If there
exists a source cluster, no positive synergy generated when constructing the minimal cost
spanning tree. In this situation, total construction cost can be divided into two parts: (1)
the cost of source cluster and (2) the cost of agents connecting to the source cluster.

A star graph with a source cluster in the center (hereafter, modified star graph) is a
graph such that there exists a source cluster and all agents are directly linked to the source
cluster (see Figure 2.4).

Absence of cross-subsidization requires that if the minimal tree tN is a modified star
graph, then each agent pays the construction cost of the source cluster equally and pays
her own connection cost to the source cluster. Similar to the original definition of the
absence of cross-subsidization, modified absence of cross-subsidization rules out cross-
subsidization if there is no positive synergy to construct the spanning network coopera-
tively. Let c(M) be the construction cost of source cluster, tM , and let ciM = mins∈M cis.

Axiom 2.2 (Absence of cross-subsidization). If a star graph with a source cluster in the
center is a minimal tree, then ϕi(N,M,C) = c(M)

n
+ ciM for all i ∈ N .
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Figure 2.4: Star graph with a source cluster in the center

In order to introduce group independence, we define irrelevant link. For the classical
minimum cost spanning tree problem, Kar (2002) defined the link between two agents i
and j, (ij), is irrelevant if cij > max{cis, cjs}. It cannot be used when forming a minimal
tree. We define a link (ij) is irrelevant if cij > max{mins∈M cis,mins∈M cjs,max(pq)∈tM cpq}.
The first element gives agent i a better option of connecting directly to a source than con-
nect to j, the second element gives agent j a better option of connecting to a source than
connect to i, and the third element ensures the option of connecting to the source is better.
A link which is not irrelevant is a relevant link.

A relevant path from i to j in g is a path where all links forming the path are relevant
links. Suppose that the set of agents has partitions, N = [N1, · · · , Np], such that

(i) i ∈ Nk, j ∈ Nk ⇒ there is a relevant path from i to j in Nk,

(ii) i ∈ Nk, j /∈ Nk ⇒ there is no relevant path from i to j in N .

Then an element of the partition is called a group.
Group independence requires that a change in the cost of a link within a group does

not affect the cost allocation of an agent in another group.

Axiom 2.3 (Group independence). Given an m-mcstp (N,M,C), let N = [N1, · · · , Np]
where each Nk(1 ≤ k ≤ p) is a group. Let i, j ∈ Nl and C ′ is the cost matrix where
cij 6= c′ij and ckl = c′kl for all (kl) 6= (ij). Then,

ϕk(N,M,C) = ϕk(N,M,C ′) ∀k ∈ Nt,∀t 6= l.

Finally, balanced contribution, which was named as equal treatment in Kar (2002),
requires that if a cost of a link between agent i and j changes, the cost allocations assigned
to agent i and j change equally.

Axiom 2.4 (Balanced contribution). Given an m-mcstp (N,M,C), let i, j ∈ N . Let C ′ be
a cost matrix such that cij 6= c′ij and ckl = c′kl for all (kl) 6= (ij). Then,

ϕi(N,M,C)− ϕi(N,M,C ′) = ϕj(N,M,C)− ϕj(N,M,C ′).
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Proposition 2.1. The Kar rule satisfies efficiency, modified absence of cross-subsidization,
modified group independence, and balanced contribution.

Proof. First, it is trivial that the Kar rule satisfies efficiency.
Second, we show that the Kar rule satisfies modified absence of cross-subsidization.

Let π ∈ Π be an order of agents, where Π is the set of all permutations of N . Let Sπ(i) =
{k|π(k) < π(i)}. Suppose that given a problem (N,M,C), a modified star graph is a
minimal tree corresponding to the problem. Then,

c(Sπ(i) ∪ i)− c(Sπ(i)) =

{
c(M) + mins∈M cis, if Sπ(i) = ∅,
mins∈M cis, otherwise,

where c(M) is the construction cost of t(∅). Therefore, φi(N,M,C) = c(M)
n

+mins∈M cis ∀i ∈
N .

Third, we show that the Kar rule satisfies group independence. Given an m-mcstp
(N,M,C), letN = [N1, · · · , Np] be a partition. Let C ′ be a cost matrix cij 6= c′ij i, j ∈ Nl

and the other link costs are the same asC. We show that φk(N,M,C) = φk(N,M,C ′) ∀k ∈
Nt, t 6= l.

We will show that c(S) − c(S \ {k}) = c′(S) − c′(S \ {k}) for all S such that
k ∈ S ⊆ N . Without loss of generality, let c′ij = cij + ε, ε > 0.

According to Spira and Pan (1975), when the cost of a link changes the minimal tree
can be found as below:

(1) If the value of a tree link increases, consider all links running between the two sub-
trees formed by deleting the link whose weight has increased. The new tree will be
the union of the sub-trees and the connecting link of minimum weight.

(2) If the value of a non-tree link increases, the link of decreased weight appears in the
new tree if and only if it is no longer the maximum-weight link in the cycle it forms
when added to the old minimum spanning tree.

If i or j is not in S, t(S,M,C ′) = t(S,M,C) since there exists no cost change (Case
I). Consider a coalition S such that i, j, k ∈ S ⊆ N .

(1) If (ij) is a link of a minimum cost spanning tree for S ∪M , delete (ij) and find the
alternative connecting link. If (ij) is still the connecting link of minimum weight,
then t(S,M,C ′) = t(S,M,C) (Case II). If there exists an alternative link with a
weight less than cij + ε, t(S,M,C ′) 6= t(S,M,C) (Case III).

(2) If (ij) is not a link of a minimum cost spanning tree for S ∪ M , t(S,M,C ′) =
t(S,M,C) (Case IV).

For Case II and Case IV, the minimum cost spanning tree is the same as (S,M,C) and
(S,M,C ′). For Case III, from the definition of irrelevant link, the alternative link cannot
use the nodes in Nt.1 Therefore, in any cases the tree structure in Nt∪M does not change
between t(S,M,C) and t(S,M,C ′).

If a node in a minimum cost spanning tree deleted, the alternative minimum cost
spanning tree can be constructed by connecting the sub-trees with minimum weighted

1The alternative link connects two nodes in Nl or one node in Nl and one source.
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links which do not make cycle sequentially. For any coalition S, k ∈ S ⊆ N , consider
the relationship between two trees t(S,M,C) and t(S \{k},M,C). t(S \{k},M,C) can
be found by deleting node k from t(S,M,C) and connecting the sub-trees sequentially.
When connecting the sub-trees to each other, we never use the inter-group connecting
links from the definition of irrelevant link. Therefore deleting k makes changes only in the
network of Nt ∪M . As we have already shown that t(S,M,C) and t(S,M,C ′) have the
same tree structure within Nt ∪M and CNt∪M = C ′Nt∪M by definition, deleting k results
in the same cost changes for both t(S,M,C) and t(S,M,C ′). Thus, c(S)− c(S \ {k}) =
c′(S) − c′(S \ {k}) holds for any S, and therefore φk(N,M,C) = φk(N,M,C ′) ∀k ∈
Nt, t 6= l.

Finally, we show that the Kar rule satisfies balanced contribution. Given an m-mcstp
(N,M,C), let C ′ be a cost matrix cij 6= c′ij i, j ∈ Nl and the other link costs are the same
as C. From the definition of the Kar rule,

φi(N,M,C) =
n∑
s=1

(s− 1)!(n− s)!
n!

[ ∑
i∈S⊆N,|S|=s

(c(S,M,C)− c(S \ {i},M,C))
]
,

φi(N,M,C ′) =
n∑
s=1

(s− 1)!(n− s)!
n!

[ ∑
i∈S⊆N,|S|=s

(c(S,M,C ′)− c(S \ {i},M,C ′))
]
.

And,

φj(N,M,C) =
n∑
s=1

(s− 1)!(n− s)!
n!

[ ∑
j∈S⊆N,|S|=s

(c(S,M,C)− c(S \ {j},M,C))
]
,

φj(N,M,C ′) =
n∑
s=1

(s− 1)!(n− s)!
n!

[ ∑
j∈S⊆N,|S|=s

(c(S,M,C ′)− c(S \ {j},M,C ′))
]
.

We want to show that for any s, 1 ≤ s ≤ n,[ ∑
i∈S⊆N,|S|=s

(c(S,M,C)− c(S \ {i},M,C))
]
−
[ ∑
i∈S⊆N,|S|=s

(c(S,M,C ′)− c(S \ {i},M,C ′))
]

=
[ ∑
j∈S⊆N,|S|=s

(c(S,M,C)− c(S \ {j},M,C))
]
−
[ ∑
j∈S⊆N,|S|=s

(c(S,M,C ′)− c(S \ {j},M,C ′))
]
.

(2.1)

If i or j is not in S, c(S,M,C ′) = c(S,M,C) since there exists no cost changes.
Therefore, c(S \ {i},M,C ′) = c(S \ {i},M,C) for all S, i ∈ S ⊆ N . Similarly, c(S \
{j},M,C ′) = c(S \ {j},M,C) for all S, j ∈ S ⊆ N . Thus the equation (2.1) changes
as below:

∑
i∈S⊆N,|S|=s

c(S,M,C)−
∑

i∈S⊆N,|S|=s

c(S,M,C ′) =
∑

j∈S⊆N,|S|=s

c(S,M,C)−
∑

j∈S⊆N,|S|=s

c(S,M,C ′).

(2.2)
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Let Si∧j be coalition set such that i ∈ S and j ∈ S. Similarly, let S¬i∧j be coalition
set such that i /∈ S and j ∈ S, let Si∧¬j be coalition set such that i ∈ S and j /∈ S, and let
S¬i∧¬j be coalition set such that i /∈ S and j /∈ S. The equation (2.2) would be

∑
i∈S⊆N,|S|=s

c(S,M,C)−
∑

i∈S⊆N,|S|=s

c(S,M,C ′)−
∑

j∈S⊆N,|S|=s

c(S,M,C) +
∑

j∈S⊆N,|S|=s

c(S,M,C ′)

=
∑

S∈Si∧j ,|S|=s

c(S,M,C) +
∑

S∈Si∧¬j ,|S|=s

c(S,M,C)−
∑

S∈Si∧j ,|S|=s

c(S,M,C ′)−
∑

S∈Si∧¬j ,|S|=s

c(S,M,C ′)

−
∑

S∈Si∧j ,|S|=s

c(S,M,C)−
∑

S∈S¬i∧j ,|S|=s

c(S,M,C) +
∑

S∈Si∧j ,|S|=s

c(S,M,C ′) +
∑

S∈S¬i∧j ,|S|=s

c(S,M,C ′)

=0

The last equation holds since ∀ S ∈ Si∧¬j ∪S¬i∧j, c(S,M,C) = c(S,M,C ′). Therefore,
the Kar rule satisfies equal treatment.

Now we compare the Kar rule and the folk rule which is investigated in Bergantinos
et al. (2019). They investigated some axioms the folk rule satisfies.

Core selection requires that no coalition of agents has incentive to deviate. Population
monotonicity requires that if a new agent joins the problem, no agent in the original game
should be worse off. Independence of irrelevant trees requires a cost allocation rule should
depend only on the links which belong to a minimal tree.

Axiom 2.5 (Core selection). For each (N,M,C) and for all S ⊆ N ,
∑

i∈S ϕi(N,M,C) ≤
c(S,M,C).

Axiom 2.6 (Population monotonicity). For each (N,M,C), for all i ∈ N , and for all
i ∈ S ⊆ N , ϕj(S,M,C) ≤ ϕj(S \ {i},M,C) for all j ∈ S \ {i}.

Axiom 2.7 (Independence of irrelevant trees). For each (N,M,C) and (N,M,C ′), if they
have a common minimal tree t such that cij = c′ij for all (ij) ∈ t, then ϕi(N,M,C) =
ϕi(N,M,C ′) for all i ∈ N .

Cost monotonicity is related to cost change of a link. It is defined by two kind of dif-
ferent concepts under the same name. The first concept requires that the cost of a link
between two agent increases, the cost allocation for each of the two agent should not de-
crease. The first one can be found at Dutta and Kar (2004), Bergantinos and Vidal-Puga
(2007), Trudeau (2013). We name the first type of cost monotonicity as link cost mono-
tonicity. The second one requires that if some link costs increase then no agent should
not be better off. The second one can be found at Bergantinos et al. (2019), Bergantinos
and Navarro-Ramos (2019). We name the second type of cost monotonicity as matrix cost
monotonicity. It is easy to check that matrix cost monotonicity implies link cost mono-
tonicity.

Axiom 2.8 (Link cost monotonicity). For each (N,M,C) and (N,M,C ′) such that for
any i, j ∈ N , c′ij < cij and ckl = ckl for all (kl) 6= (ij). Then, ϕi(N,M,C ′) ≤
ϕi(N,M,C) and ϕj(N,M,C ′) ≤ ϕj(N,M,C).
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Axiom 2.9 (Matrix cost monotonicity). For each (N,M,C) and (N,M,C ′) if C ≤ C ′,
then ϕi(N,M,C) ≤ ϕi(N,M,C ′).

Equal treatment of source costs requires that if a cost between two sources increases,
then all agents should be affected by the same amount.

Axiom 2.10 (Equal treatment of source costs). For each (N,M,C) and (N,M,C ′) and
each a, b ∈M , if for each k, l ∈M ∪N such that {k, l} 6= {a, b}, ckl = c′kl, then for each
i, j ∈ N , ϕi(N,M,C)− ϕi(N,M,C ′) = ϕj(N,M,C)− ϕj(N,M,C ′).

Cone-wise additivity requires that if two cost matrices have the same orders of costs,
the cost allocation is an additive function of problems.

Axiom 2.11 (Cone-wise additivity). For each (N,M,C) and (N,M,C ′) and each order
σ : {{ij}}i,j∈N∪M,i<j → {1, 2, · · · , |N∪M |(|N∪M |+1)

2
}, if for each i, j, k, l ∈ N ∪M such

that σ{i, j} ≤ σ{k, l}, cij ≤ ckl and c′ij ≤ c′kl, then ϕi(N,M,C + C ′) = ϕj(N,M,C) +
ϕj(N,M,C ′).

Equal treatment of equals, which was named as symmetry in Bergantinos et al. (2019),
requires that if two agents have the same link costs to all other nodes of N ∪M , then they
must have the same cost allocation.

Axiom 2.12 (Equal treatment of equals). For each (N,M,C) and any i, j ∈ N , if cik =
cjk for all k ∈ N ∪M \ {i, j}, then ϕi(N,M,C) = ϕj(N,M,C).

Separability requires that if two coalitions S andN \S have no incentive to cooperate,
the allocation of each coalition can be made independently.

Axiom 2.13 (Separability). For each (N,M,C) and each S ∈ N , if c(N,M,C) =
c(S,M,C) + c(N \ S,M,C), then

ϕi(N,M,C) =

{
ϕi(S,M,C) if i ∈ S,
ϕi(N \ S,M,C) if i ∈ N \ S.

Since the classical minimum cost spanning tree problem is a special case of the mini-
mum cost spanning tree problem with multiple sources, if a rule does not satisfy an axiom
for the classical minimum cost spanning tree problem then the rule cannot satisfy the ax-
iom for m-mcstp. So we first check which axiom is not satisfied by a rule for the classical
minimum cost spanning tree problem. Trudeau (2013) compared the Kar rule and the folk
rule for the classical minimum cost spanning game, and we borrow his results only for
the negative cases. We prove the rest results required to compare the two rules.

Proposition 2.2. The folk rule satisfies absence of cross-subsidization.

Proof. Let C∗ be an irreducible matrix associated with C. From the definition of an irre-
ducible matrix, the minimal tree t(N,M,C) is also a minimal tree for the irreducible
problem (N,M,C∗). If t(N,M,C) is a star graph with a source cluster in the cen-
ter, the irreducible game (N,M,C∗) has a star graph with a source in the center as
the minimal tree which is t(N,M,C). Since (N,M,C∗) is a m-mcstp, the allocation is
ϕi(N,M,C∗) = c(M)

n
+ ciM for all i ∈ N the same in the original game.
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Proposition 2.3. The folk rule does not satisfy modified group independence.

Proof. We show a counter example. Let there be two sources {S1, S2}, three agents
{1, 2, 3}, and the cost matrix C and its irreducible matrix C∗ as below. Check that there
are two groups {1, 2} and {3}.

C =

S1 S2 1 2 3


S1 0 288 270 132 390
S2 288 0 72 306 114
1 270 72 0 156 372
2 132 306 156 0 348
3 390 114 372 348 0

, C∗ =

S1 S2 1 2 3


S1 0 156 156 132 156
S2 156 0 72 156 114
1 156 72 0 156 114
2 132 156 156 0 156
3 156 114 114 156 0

The characteristic function for (N,M,C∗) is c({1}) = 228, c({2}) = 288, c({3}) =
270, c({1, 2}) = 360, c({1, 3}) = 342, c({2, 3}) = 402, c({1, 2, 3}) = 474. Therefore,
the folk rule is {124, 184, 166}.

Now let the cost between agent 1 and agent 2 change from 156 to 216. The new cost
matrix and its irreducible matrix can be seen as below. There are still two groups, {1, 2}
and {3}.

Ĉ =

S1 S2 1 2 3


S1 0 288 270 132 390
S2 288 0 72 306 114
1 270 72 0 216 372
2 132 306 216 0 348
3 390 114 372 348 0

, Ĉ∗ =

S1 S2 1 2 3


S1 0 216 216 132 216
S2 216 0 72 216 114
1 216 72 0 216 114
2 132 216 216 0 216
3 216 114 114 216 0

The characteristic function for (N,M, Ĉ∗) is c({1}) = 288, c({2}) = 348, c({3}) =
330, c({1, 2}) = 420, c({1, 3}) = 402, c({2, 3}) = 462, c({1, 2, 3}) = 532. Therefore,
the folk rule is {144, 204, 186}. In this example, the allocation for agent 3 changes because
of the cost change between agent 1 and agent 2 who belong to another group.

For comparison, the Kar rule assigns {93, 171, 210} for the original game and {123, 201, 210}
after the cost changes therefore the allocation to agent 3 does not change.

Proposition 2.4. The Kar rule satisfies cone-wise additivity, equal treatment of equals.

Proof. First, given (N,M,C) and (N,M,C ′), let σ be an order such that for each i, j, k, l ∈
N ∪M , σ{i, j} ≤ σ{k, l} implies cij ≤ ckl and c′ij ≤ c′kl. The Kruskal algorithm con-
structs a minimal tree by sequentially adding the cheapest link without forming a cy-
cle. For any S ⊆ N , the Kruskal algorithm selects the same link at each step of C,
C ′, and C + C ′ since the order of the links of each cost matrix are the same. Therefore
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c(S,M,C+C ′) = c(S,M,C)+c(S,M,C ′) for all S ⊆ N , which implies ϕi(N,M,C+
C ′) = ϕj(N,M,C) + ϕj(N,M,C ′).

Second, let two agents i, j ∈ N be such that cik = cjk for all k ∈ N ∪M \{i, j}. Then
for all S ⊂ N \{i, j}, c(S∪{i},M,C) = c(S∪{j},M,C) which implies φi(N,M,C) =
φj(N,M,C).

Proposition 2.5. The Kar rule does not satisfy link cost monotonicity, matrix cost mono-
tonicity and equal treatment of source costs.

Proof. We show a counter examples. Let the cost be as figure 2.5. The left figure is the
cost before cost changes and right figure is the cost after the cost changes. Before the cost
changes, c({1}) = 4, c({1}) = 6, c({1, 2}) = 6 therefore the Kar rule assigns (2, 4).
Now let the cost between agent 2 and the source increased. After the cost changes, the
Kar rule assigns (1, 5), therefore the Kar rule violates link cost monotonicity as well as
matrix cost monotonicity.

s1

4
6

s1

4
8

1
2

2 1
2

2

Figure 2.5: Example of the Kar rule violates cost monotonicity

Let the cost be as figure 2.6. The left figure is the cost before cost changes and right
figure is the cost after the cost changes. Before the cost changes, the Kar rule assigns 1 to
agent 1 and 5 to agent 2. However if the cost between the two sources changes from 4 to
10, c({1}) = 5, c({2}) = 11, c({1, 2}) = 6, therefore the Kar rule assigns 0 to agent 1
and 6 to agent 2. Therefore the Kar rule violates equal treatment of source costs.
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Figure 2.6: Example of the Kar rule violates equal treatment of source costs

We summarize the properties of the Kar rule and the folk rule for m-mcstp as below.
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Kar Rule Folk Rule
Efficiency Yes Yes
Absence of cross-subsidization Yes Yes
Group independence Yes No
Balanced contribution Yes No2

Core selection No2 Yes1

Population monotonicity No2 Yes1

Independence of irrelevant trees No2 Yes1

Link cost monotonicity No Yes1

Matrix cost monotonicity No Yes1

Equal treatment of source costs No Yes1

Cone-wise additivity Yes Yes1

Equal treatment of equals Yes Yes1

Separability No2 Yes1

Source: 1: Bergantinos et al. (2019), 2: Trudeau (2013)

Table 2.1: Properties of the Kar and the folk rules for minimum cost spanning tree prob-
lems with multiple sources

Before we see the main result, we introduce the restricted domains of C which will
be used in the proof of the main result. Let a link between an agent and a source (ij) be
inefficient if cij ≥ max{mins∈M cis,max(pq)∈tM cpq} for any i ∈ N and j ∈M . Let a link
between an agent and a source is efficient if it is not inefficient. Let C be the domain of a
cost matrix C. Let C1 be a domain of cost matrix where each agent i ∈ N has at most one
efficient link, and let C2 = C \ C1.

Proposition 2.6. Given an m-mcstp (N,M,C) where C ∈ C2, a star graph with a source
cluster in the center cannot be a minimal tree.

Proof. Let agent i has two or more inefficient links, that is, at least two sources j, k such
that cij < max{mins∈M cis,max(pq)∈tM cpq} and cik < max{mins∈M cis,max(pq)∈tM cpq}

Case 1: max{mins∈M cis,max(pq)∈tM cpq} = mins∈M cis
If this holds, cij < mins∈M cis. This is impossible for both j and k.

Case 2: max{mins∈M cis,max(pq)∈tM cpq} = max(pq)∈tM cpq
In this case, cij < max(pq)∈tM cpq and cik < max(pq)∈tM cpq. Suppose that the minimal

tree is a star network with a source cluster in the center. It means at least one links of (ij)
or (ik) is not in the minimal tree. Without loss of generality, suppose that (ij) is not in the
minimal tree. Insert (ij) and check the cost of links forming the cycle made by inserting
(ij). From the assumption of (ij), there exists at least one link between sources which is
more expensive than (ij). We get a less expensive spanning tree by deleting the maximum
cost link of the cycle. This is a contradiction.

Lemma 4. Given an m-mcstp (N,M,C) where C ∈ C1, if there exists no relevant link,
a star network with a source cluster in the center is a minimum cost spanning tree of the
problem.
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Proof. Choose a network consisting of tM and (is) for all i ∈ N where (is) = argmins∈M cis.
This network forms a spanning tree overN∪M , and is a star network with a source cluster
in the center.

Choose any link outside this tree. If we insert the link into the tree then a cycle is
formed. If the link inserted is connecting an agent and a source, it is an inefficient link.
The definition of the inefficient link ensures that the link inserted has the maximum cost
among the links forming the cycle. If the link inserted is connecting two agents, it is a
irrelevant link. The definition of the relevant link ensures that the link inserted has the
maximum cost among the links forming the cycle. Therefore we have no way to find a
tree with a lower cost than the original tree.

Proposition 2.7. On the domain C1, there exist only one allocation rule that satisfies ef-
ficiency, absence of cross-subsidization, group independence, and balanced contribution
together.

Proof. We prove this by induction on the number of relevant links. If there is no rele-
vant link, the minimal tree is a modified star graph by lemma 4. The absence of cross-
subsidization axiom ensures that the cost allocation is unique.

Let the proposition be true for all cost problems with at most (k − 1) relevant links.
Then we show that the allocation is unique for the problem with k relevant links.

Let (N,M,Ck) be a m-mcstp with k relevant links. Suppose there exist two different
cost allocations φ(N,M,Ck) and ψ(N,M,Ck) those satisfy all four axioms.

Without loss of generality, let (mn) be a relevant link. Let N = [N1, · · · , Np], a
partition where each element is a group and suppose thatm,n ∈ Nt, 1 ≤ t ≤ p. Let Ck−1

be a cost matrix such that ck−1
mn = max{mins∈M cis,mins∈M cjs,max(pq)∈tM cpq}+ ε, ε >

0, and the other costs are the same as Ck.
From the induction hypothesis, φi(N,M,Ck−1) = ψi(N,M,Ck−1) ∀i ∈ N .
Given the group independence axiom,

φi(N,M,Ck) = φi(N,M,Ck−1) = ψi(N,M,Ck−1) = ψi(N,M,Ck), ∀i ∈ Nl, ∀l 6= t.
(2.3)

Now,

φm(N,M,Ck)− φn(N,M,Ck)

= φm(N,M,Ck−1)− φn(N,M,Ck−1) (by balanced contribution)

= ψm(N,M,Ck−1)− ψn(N,M,Ck−1) (by the induction hypothesis)

= ψm(N,M,Ck)− ψn(N,M,Ck) (by balanced contribution)

⇒ φm(N,M,Ck)− ψm(N,M,Ck) = φn(N,M,Ck)− φn(N,M,Ck).

(2.4)

Choose any i, j ∈ Nt. There exists a relevant path from i to j by the definition of a
group. We have

φi(N,M,Ck)− ψi(N,M,Ck) = φj(N,M,Ck)− ψj(N,M,Ck) for any i, j ∈ Nt.
(2.5)
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It means that for any node i ∈ Nt, φi(N,M,Ck)− ψi(N,M,Ck). Therefore,∑
i∈N

[
φi(N,M,Ck)− ψi(N,M,Ck)

]
= 0 (using efficiency)

⇒
∑
i∈Nt

[
φi(N,M,Ck)− ψi(N,M,Ck)

]
= 0 (using (2.3))

⇒ φi(N,M,Ck) = ψi(N,M,Ck) ∀i ∈ Nt (using (2.5))

⇒ φ(N,M,Ck) = ψ(N,M,Ck) (using (2.3))

This is a contradiction.

We omit the independence of each axioms. If |M | = 1, then the four axioms are the
same as the axioms of Kar (2002), and he showed the independence of each axioms.

Taking proposition 2.6 and proposition 2.7 together, there exist only one solution
that satisfies efficiency, absence of cross-subsidization, group independence, and balanced
contribution together. By proposition 2.1, the Kar rule is the only rule.

Theorem 2.1. Given an m-mcstp (N,M,C), the Kar rule is the only cost allocation rule
that satisfies efficiency, absence of cross-subsidization, group independence, and balanced
contribution.

2.4 Conclusion
In this chapter, we extend the definition of the Kar rule to suit the minimum cost spanning
tree problem with multiple sources and study the properties of the rule. Like the result of
the classical minimum cost spanning tree problem, the Kar rule is the only rule satisfying
efficiency, absence of cross-subsidization, group independence, and balanced contribu-
tion together. The result of Kar (2002) is still valid for the minimum cost spanning tree
problems with multiple sources.

We conclude this study with a remark. It is known that separability implies group
independence for the classical minimum cost spanning tree problem. However as we can
see in table 2.1, the folk rule satisfies separability however it does not satisfy group inde-
pendence. Therefore, separability does not imply group independence for the minimum
cost spanning tree problem with multiple sources.
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Chapter 3

A cooperative game theoretic approach
on the profit allocation of the Korean

automotive industry

3.1 Introduction

An industry is a sector that produces a closely related goods or services within an econ-
omy. Individual firms produce their own product such as materials, intermediates and
final products, and sell them to other firms (mostly) within the same industry or con-
sumers. Firms in an specific industry are connected with the buyer-supplier relationships.
In this point of view, an industry can be seen as a system consist of many firms working
together to produce the final goods and distribute the value of the products among them.
Therefore, we have possibility to investigate an industry with game theoretic approach.

Many researches have been conducted on economic distributions of a project or an
industry from the perspective of cooperative game theory. For example, Sung (2008) in-
vestigated the cost allocation of a quay construction, Bergantinos and Moreno-Ternero
(2018) investigated the revenue allocation from the broadcasting sport events, Her et al.
(2018) investigated the cost savings allocation of a power grid system, Teng et al. (2019)
investigated the profit allocation of IPD project. However, in many cases, due to data lim-
itations, research was mainly conducted using simulation method rather than using a real
data. Moreover, due to the difficulty of calculation, it is hard to find a study regarding
large number of firms.

In this chapter, we investigate the Korean automotive industry, one of the biggest
industries of Korea. We study it empirically from the perspective of cooperative game
theory. We collect various datum such as buyer-supplier relationships, financial statements
of each firms, and patents each firms has. We build economic models with network which
reflect the relationships and value of each coalitions. We estimate the Shapley value and
evaluate the profit allocation of the Korean automotive industry.

This chapter is organized as follows. Section 2 introduces models regarding relation-
ships among firms. Section 3 provides a detailed description of the datum and estimation
method. In section 4, we show the computational results. Section 5 conclude this chapter.
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3.2 Model
Owen (1975) introduced a linear production game model. In the linear production game
model, each agents has their own resources which can be used to produce goods. Goods
are sold in market prices and each goods needs pre-defined resources bundle to be pro-
duced. Agents in the economy has their own resources and work together to maximize the
value of the goods.

In this chapter, we use the linear production game model. LetN = {1, · · · , n} be a set
of agents, P = {1, · · · , p} be a set of types of products, R = {1, · · · , r} be a set of types
of resources. We assume that when we produce one unit of product j ∈ P , a resources
bundle (a1j, · · · , arj) is required. Each agent i has a vector of resources bi = (bi1, · · · , bir)
for all i ∈ N .

Product j can be sold at price cj in the market. Let zj be the production volume of
product j. The value of a production vector (zj)j∈P is

∑
j∈P cjzj .

For any coalition S ⊆ N , the amount of resources of the coalition is represented by

bk(S) =
∑
i∈S

bik, k = 1, · · · , r. (3.1)

The value of a coalition is represented by a maximized value of the production which
can be calculated by solving the following linear programming:

v(S) = max
∑
j∈P

cjzj

s.t.
∑
j∈P

akjzj ≤ bk(S), ∀k ∈ R,

zj ≥ 0, ∀j ∈ P.

(3.2)

The linear production game (N, v) is defined by the set of agents N and the value
function v(S) for all coalition S ⊆ N , where v(S) be the value of equation (3.2).

Modularized and specialized industry assumption

In this chapter, we investigate the Korean automotive industry. To simplify the model
and reflect the characteristics of the industry, we assume that it is modularized and special-
ized. In our model, modularized means that the role of firms in the industry can be divided
into two types; final goods maker and module producer. A module producer makes mod-
ules those are parts of the final goods. A final goods maker buys modules from module
producers and assembles them. Actually, in real world, a module produced need some ma-
terials or intermediate goods to produce a module. However, due to the limitation of data,
we do not consider the second or lower tier vendors and only consider the final goods
maker and its first-tier vendors. Specialized means that a module producer makes only
one type of module and there is only one type of final goods in this industry. As for the
Korean automotive industry, there are five major vehicle manufacturers, Hyundai motors,
Kia motors, Renault-Samsung motors, General-Motors Korea, Ssangyong motors, who
make vehicles and a lot of first-tier vendors who produce modules and supply to some of
the vehicle manufacturers.
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If we adopt the modularized and specialized industry assumptions, the value function
of a linear production model becomes a Leontief production function. Assume that there
is one type of final goods, and some resources required to make one unit of the final
goods including assembly capacity that a final goods maker owns. Let {N1, · · · , Nr} be
a partition of N such that N1 is the set of final goods makers, Nk, 2 ≤ k ≤ r, be the set of
module k producers. Given a coalition S ⊆ N , let Nk(S) = S ∩Nk. A linear production
model can be simplified as below:

v(S) = c1z1

s.t. ak1z1 ≤ bk(S), ∀k ∈ R,
z1 ≥ 0,

⇒ v(S) = min{b1(S)

a1

, · · · , br(S)

ar
} = min{b1(N1(S))

a1

, · · · , bk(Nr(S))

ar
}.

(3.3)

We omit the price of the product c1 in the last line of the equation. ak is the unit conversion
factor of resource k which means the amount of resource k needed to make one unit of
the final goods. Let b∗k(S) = bk(S)/ak. From now on we use b∗k(S) instead of bk so that
each resource is evaluated by the unit of final goods.

Buyer-supplier relationships

We observe buyer-supplier relationships among firms within an industry. In particu-
lar, there is a special transaction relationship in the Korean automotive industry called
exclusive transaction. We need to consider how to incorporate this particular relationship
into our model, that is, we need to consider what is the meaning of the buyer-supplier
relationship in the Korean automotive industry. See following example 3.1.

Example 3.1. There are one type of final goods and two types of modules. Let there are 8
agents. Agent 1 and 2 are final goods maker, agent 3, 4, 5 produce module 1, and agent 6,
7, 8 produce module 2. Suppose that we observe buyer-seller relationship in this industry
as figure 3.1.

Module 1 3

��

4

����

5

��
Final goods 1 2

Module 2 6

@@

7

OO @@

8

OO

Figure 3.1: Buyer-supplier relationships

Here we define some notations which reflect a permission structure investigated by
Gilles et al. (1992), van den Brink (1997), and Gilles and Owen (1999). If an agent i has
a power to control agent j, agent i is denoted as a superior of agent j while agent j is
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denoted as a subordinate of agent i. A directed network onN is a collection of permission
relation represented by a mapping H : N → 2N such that i /∈ H(i) for all i ∈ N .
An agent j ∈ H(i) is a subordinate of agent i. Conversely, an agent j ∈ H−1, where
H−1 = {j ∈ N |i ∈ H(j)}, is called a superior of agent i. For any coalition S ⊆ N , let
Hi(S) = H(i) ∩ S.

The final goods makers usually have more power over his suppliers in the Korean
automotive industry. Since we investigate the allocation among final goods maker and the
first-tier vendors in this paper, we assume that a supplier in a network is a subordinate
of his buyer. For the example above, we assume that H(1) = {3, 4, 6, 7} and H(2) =
{4, 5, 7, 8}. We introduce four approaches to incorporate the buyer-supplier relationships
into our model.

Complete cooperation(Model 1)
In the first approach, we assume that a superior does not have a power to his subor-

dinate. We assume that every firm can cooperate with each other without any restriction.
In this approach, the buyer-supplier relationships in the market is merely an ex-post ob-
served relationships among firms. In this approach, to calculate the value of a coalition,
all we have to check is the amount of resources in the coalition. The agent 3 of the ex-
ample 3.1 may sell his resources to agent 2 without any restriction. The characteristic
function v(S) can be calculated by solving the linear program equation (3.3), that is,
vNV P (S) = mink∈R bk(S).

Conjunctive approach(Model 2) and Disjunctive approach(Model 3)
The second approach is cooperation under hierarchical authority (permission struc-

ture) investigated by Gilles et al. (1992), van den Brink (1997), and Gilles and Owen
(1999). In this approach, we want to reflect the power imbalance in the Korean automo-
tive industry. We assume that a final goods maker has power to control her subordinates.
In other words, we assume that a module producer cannot cooperate (sell modules) if he
does not gain permission from his superiors. In the example above, agent 3 may cooperate
if agent 1 exists in the coalition. Conversely, agent 3 cannot cooperate without permission
of agent 1.

How about agent 4? Think of a coalition {1, 4}. Can we assume that agent 4 may
cooperate with agent 1? There are two approaches in the hierarchical authority model;
conjunctive approach and disjunctive approach. The conjunctive approach is developed
in Gilles et al. (1992). A firm needs to gain permissions from all of his superiors to coop-
erate under conjunctive approach. Whereas, the disjunctive approach developed in Gilles
and Owen (1999) assume that a firm needs to gain permission at least one of his superiors
to cooperate. In our example of coalition {1, 4}, agent 4 may cooperate with agent 1 un-
der disjunctive approach, whereas he cannot cooperate under conjunctive approach since
he cannot gain permission from agent 2. In other words, a superior has full veto power
to her subordinate in conjunctive approach, whereas she has limited veto power to her
subordinate in disjunctive approach.

The characteristic function can be calculated by solving the linear program equa-
tion (3.3) with an adjusted coalition. Given a coalition S ⊆ N , let SDH = N1(S) ∪
(∪i∈N1(S)Hi(S)) and SCH = [N1(S) ∪ (∪i∈N1(S)Hi(S))] \ (∪i∈N1\SHi(S)). The char-
acteristic function under disjunctive approach is vDH(S) = vCC(SDH) and conjunctive
approach is vCH(S) = vCC(SCH).
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Subcontracting (Model 4)
The last approach is subcontracting. We assume that if a buyer-supplier relationship is

not observed, the relationship cannot happen because of the compatibility. Each module
producer may sell his resources only to his observed direct superiors. In the example
above, for any coalition S ⊆ N , agent 3 may sell his resource to agent 1 only, and he
could not sell his resources if agent 1 is not in the coalition.

Subcontracting reflects a technological dependency between buyer and supplier. In re-
ality, subcontracting is done by on-demand production. The buyer requests a customized
product from the supplier. In this way, the product cannot be sold to other firms. Con-
versely, it is difficult for the buyer to purchase some product which is not ordered.

We have to modify the equation (3.3) to calculate the characteristic function of coali-
tion S under subcontracting assumption. The value of a coalition S is the maximized
value of final goods produced in the coalition under some constraints. The first line of
the constraint is the supplier resource feasibility constraint which means a module pro-
ducer sells to only his direct superiors in the coalition and the total amount sold cannot
exceed his own resources. The second and the third constraint are the production fea-
sibility constraints which means the production of a final goods production function is
Leontief function under his own resources and the resources she buys from her direct
subordinates in the coalition. The other constraints are non-negative constraints of final
goods and resources.

vsc(S) = max
∑

i∈N1(S)

zi

s.t.
∑

i∈H−1
j (S)

zji ≤ bj, ∀j ∈ S \N1(S),

zi ≤ bi, ∀i ∈ N1(S),

zi ≤
∑

j∈Nk(S)∩Hi(S)

zji, ∀k ∈ R \ {1}, ∀i ∈ N1(S),

zi ≥ 0, ∀i ∈ N1(S),

zji ≥ 0, ∀i ∈ N1(S),∀j ∈ Hi(S).

(3.4)

Each of the four models is extreme case and the reality exists may between them. We
use the distribution status in each models as an evaluation criterion. We evaluate the real
distribution by checking the closeness between the distribution states presented in each
case and the reality.

The Shapley value
An allocation rule is a mapping which associates to each problem a non empty set of

feasible allocations. Owen (1975) introduces a well-known solution for the linear produc-
tion model. However it is not appropriate for our model. The Owen value only admits the
contribution of the rarest resources in the industry under the modularized and specialized
industry assumption.

The Shapley value(Shapley (1953)) is one of the most well-known allocation rule
of cooperative game theory. The Shapley value assigns each member her own marginal
contribution which is calculated as below:
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Shapley value: For all v ∈ ΓN , and all i ∈ N

φi =
n∑
s=1

(s− 1)!(n− s)!
n!

[∑
i∈S

(v(S)− v(S \ {i})
]
,

(3.5)

where ΓN is a class of games with player set N , n is the number of agents of N , and s is
the number of agents of S ⊆ N . We use the Shapley value as our allocation rule. Example
3.2 shows results for each models.

Example 3.2. There are one type of final goods and two types of modules. Agent 1, 2
are final goods maker, agent 3, 4 produce module 1, and agent 5 produces module 2. The
resources of each agent from agent 1 to agent 5 are 5, 10, 8, 12, 20, respectively. The
observed flow is as figure 3.2. The numbers in the parentheses means the resources each
agent owns.

Module 1 3 (8)

��

4 (12)

��{{
Final goods 1 (5) 2 (10)

Module 2 5 (20)

OO ;;

Figure 3.2: Flow network of example 3.2

We can see the characteristic functions under each restricted cooperation model at
table 3.1 and the Shapley value at table 3.2.

complete cooperation conjunctive hierarchy disjunctive hierarchy subcontracting

{1, 3, 5} 5 0 5 5
{1, 4, 5} 5 0 5 5
{1, 3, 4, 5} 5 0 5 5
{2, 3, 5} 8 0 0 0
{2, 4, 5} 10 0 10 10
{2, 3, 4, 5} 10 0 10 10
{1, 2, 3, 5} 8 8 8 5
{1, 2, 4, 5} 12 12 12 12
{1, 2, 3, 4, 5} 15 15 15 15
others 0

Table 3.1: Characteristic functions of example 3.2
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complete cooperation conjunctive hierarchy disjunctive hierarchy subcontracting

Agent 1 101 /60 240 /60 125 /60 116 /60
Agent 2 216 /60 240 /60 200 /60 191 /60
Agent 3 86 /60 60 /60 70 /60 61 /60
Agent 4 156 /60 120 /60 180 /60 216 /60
Agent 5 341 /60 240 /60 325 /60 316 /60

Table 3.2: The Shapley values of example 3.2

3.3 Analysis method

3.3.1 Data and variable

In our model, we need resource type of each firm, resource amount of each firm, buyer-
supplier relationships among firms, and profit allocations. We use datum of (1) relation-
ships, (2) financial statements, (3) patents, and (4) number of employees. The financial
statements is used to determine profit allocation, patents to resource type, and number of
employees to resource amount. The source of the relationships data is KAICA(Korea auto
industries coop. association) and we get the rest of the datum from KED(Korea enterprise
data).

Relationships

We use a relationship data among vehicle manufacturers and first-tier vendors. Table
3.3 shows the example of the relationship data. It contains (1) information of firms such as
name, ID, address, numbers of employees, main items, and (2) information of buyer-seller
relationships of 421 first-tier vendors and 5 vehicle manufacturers.

Table 3.4 shows the distribution of the number of relationships. 148 firms supplied to
only one vehicle manufacturers, 131 firms supplied to two vehicle manufacturers.

Table 3.5 shows the correlation coefficient of relationship data columns from Hyundai
to Ssangyong. As we can see, there are many overlaps between vendors of Hyundai
motors and vendors of Kia motors. Among the 257 vendors of Hyundai Motors or Kia
Motors, 220 firms overlapped, 22 firms supplied only to Hyundai Motors, and 15 firms
supplied only to Kia Motors.

We visualize the relationship of all firms in figure 3.3.
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Firm employee main item Hyundai Kia GM- Renault- Ssangyong
(Firm 1) 4,328 Brake system O O O O O
(Firm 2) 3,213 Transmission O O O O
(Firm 3) 2,355 Wire Harness O O
(Firm 4) 2,200 Head lamp O O O
(Firm 5) 2,079 Air conditioner O O
(Firm 6) 1,678 Head lamp O O O

...
...

...
...

...
...

...
...

Total (N=421) 242 235 137 203 128

Table 3.3: Example of the relationship data

No. of relationships 1 2 3 4 5 mean
No. of firms 148 131 63 49 30 2.24

Table 3.4: Distribution of the number of relationships

Hyundai Kia GM- Renault- Ssangyong
Hyundai 1 0.82 -0.16 -0.07 0.01

Kia 0.82 1 -0.15 -0.08 0.02
GM- -0.16 -0.15 1 0.17 0.16

Renault- -0.07 -0.08 0.17 1 0.06
Ssangyong 0.01 0.02 0.16 0.06 1

Table 3.5: Correlation matrix of relationships

Figure 3.3: Relationship network of the Korean automotive industry
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Resource type
We need to classify what resources each firm produces. We use the patents data to

determine the type of each firms’ resources. We use the IPC(international patent classifi-
cation) when we classify each firms’ patents. KIPO(Korean Intellectual Property Office)
provides a linkage table between the industrial classification and the patent classifica-
tion. Automotive industry is related to B60 and some other codes.1 We count each firms’
patents number those are related to the automotive vehicle industry. We compare it with
firms’ main item written in the relationship data. If the most patent classification codes
and the main item of a firm match, we classify the firm according to the category of its
patent. However if they do not match, we classify by referring to the business report and
homepage. We classify first-tier vendors into 15 types. We assume that the same type of
firms produce the same type of resources. A firm which produces non-core parts such as
key, audio, mirror, wiper, lamp is classified as others of the resources category.

Type No. of firms
Frame 35

Bumper 12
Door 29
Chair 17

Interior parts 34
Piston 26

Vaporizer 33
Exhaust system 17
Chilling system 17
Transmission 29
Brake system 11

Steering system 26
Parts control 16

others 108
Total 421

Table 3.6: Resource category of first-tier vendors

Resource amount
Once the classification of resource is done, we have to determine the amount of re-

sources of each firm owns. We assume the resources (capacities to assemble) of vehicle
manufactures are estimated to be the number of domestic vehicles sold in 2018.2

1Automotive industry is related to IPC code B60B(wheels), B60C(tyres), B60D(connections; compo-
nents of brake system), B60F(vehicle for use both on rail and on road), B60G(suspension arrangements),
B60H(heating, cooling, ventilating, or the air-treating devices), B60J(windows), B60K(arrangement of
propulsion units), B60L(propulsion of electrically-propelled vehicles), B60N(seats), B60P(vehicles adapted
to comprise special loads or objects), B60R(not otherwise provided for), B60S(servicing), B60T(brake
control system), B60W(conjoint control of vehicle sub-units of different function), B62D(motor ve-
hicles), E05F(keys), F02M(supplying combustion engines), F02N(combustion engines), F02P(ignition),
F16J(pistons), G05G(control devices).

2In 2018, Hyundai motors’ domestic sales of vehicle were 721,078. In 2018, Kia motors sold 531,700
vehicles, GM-Korea sold 109,140 vehicles, Renault-samsung sold 90,369 vehicles, and Ssangyong motors
sold 93,317 vehicles.
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As for the first-tier vendors, we use the number of employees building size of a first-
tier vendor as a proxy variable of the resources amount of that firm. We assume that the
resource each firm owns is proportional to the number of employees among the same type
of firms. The unit conversion factor of resource k is calculated as the sum of effective
number of employees of firms of resource type k divided by the sum of the vehicles
sold in 2018. That is, we assume that the effective resources exactly support the vehicle
production. Here we use the word effective since we have to consider the flow of resources
of real world.

Example 3.3. There are one type of final goods and one type of module. Agent 1, 2 are
final goods maker, agent 3, 4 produce module. We observe that each final goods maker
produces one unit of final goods. Resources of agent 3 is 1 and agent 4 is 3. The rela-
tionship is as figure 3.4. The numbers in the parentheses means the resources each agent
owns.

If we do not consider the flow, the conversion factor a is 4
2

= 2, so agent 3 has 1
2

resources and agent 4 has 3
2

resources. However if we consider the flow, the conversion
factor is 1 since agent 1 buys module from agent 3 only and the ratio is 1. So the effective
resources of agent 3 and agent 4 are 1 and 1 respectively, and agent 4 has 2 redundant
resources.

Final goods 1 (1) 2 (1)

Module 3 (1)

OO

4 (3)

OO

Figure 3.4: Flow network of example 3.3

The unit conversion factor of resource k regarding the flow network can be calculated
using the linear programming below. The first constraints ensure that the adjusted amount
of resources sold by a module maker j do not exceed his own adjusted resources. The
second constraints ensure that each final goods maker i gets the amount of resources she
needs. Unit conversion factor of resource k, ak, is calculated by ak = 1

f∗k
where f ∗k is the

solution of following linear programming.

min fk

s.t.
∑

i∈H−1
j (N)

zji ≤ bjfk, ∀j ∈ Nk(N),

∑
j∈Hi(N)

zji ≥ bi, ∀i ∈ N1(N).

(3.6)
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Type No. of firms Total Mean
Frame 35 2,625,857 75,024

Bumper 12 1,949,209 162,434
Door 29 1,585,202 54,662
Chair 17 2,172,956 127,821

Interior parts 34 1,545,604 45,459
Piston 26 1,545,604 59,446

Vaporizer 33 1,545,604 46,836
Exhaust system 17 2,058,688 121,099
Chilling system 17 1,545,792 90,929
Transmission 29 1,545,604 53,297

Wheel 11 1,545,604 140,509
Brake system 11 1,727,408 157,037

Steering system 26 1,789,200 68,815
Parts control 16 1,545,604 96,600

others 108 1,758,905 16,286

Table 3.7: Amount of resources (first-tier vendors)

Profit allocation
Here we define allocations using financial statements. The allocation we focus on is

the distribution of the value from the sales of final goods. Therefore, we focus on value
added(V.A.). The value added is the difference between the value of a firm’s output and
the cost of the input materials. The market value of all final goods and services is same as
sum of all V.A. of every stage of production. So the V.A. means the distribution of a total
output to the firms in the production stage of the final goods. We use the latest financial
statements of each firm to calculate V.A. Since we fail to obtain the financial statements
of some firms, we cannot use some of the first-tier vendors.

There are many ways to define V.A. We use the definition of Bank of Korea (2019),
which is calculated by labour cost + operating surplus + tax processing + depreciation
cost + interest cost.3 The descriptive statistics of V.A. are shown at table 3.8.

No. of firms
mean std median

(bil. KRW) (bil. KRW) (bil. KRW)
All firms 416 39.8 294.5 8.6

First-tier vendors 411 18.2 28.5 8.4
Five firms were excluded due to the availability of financial statements

Table 3.8: Descriptive statistics of value added

3.3.2 Estimation method of the Shapley value
Shapley value is one of the most important solution concepts in cooperative game theory.
However it is challenging to compute the value if there are many agents since we have to

3Operating surplus = operating income + depreciation expenses - interest expense
Labour cost = (salary + retirement benefits)income statement + (labour cost + welfare
benefits)manufacturing cost statement
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consider 2n coalitions, except some special games such as airport games(Littlechild and
Owen (1973)), sequencing games(Curiel, Pederzoli, Tijs (1989)).

Castro, Gomez, Tejada (2009) introduced a method to estimate the Shapley value
based on sampling theory and many literatures tried to find more efficient method to cal-
culate the Shapley value(Maleki et al. (2013), Castro et al. (2017), Campen et al. (2018),
Le, Nguyen and Bektas (2020)).

The basic idea of the sampling method is as below. For each agent i ∈ N ,

φi =
n∑
s=1

(s− 1)!(n− s)!
n!

[∑
i∈S

(v(S)− v(S \ {i})
]
,

=
∑

σ∈Π(N)

1

n!

[
v(Prei(σ) ∪ {i})− v(Prei(σ))

]
,

(3.7)

where Π(N) is the set of all possible orderings with agent set N , Prei(σ) is the set of
predecessors of agent i in order σ. Therefore, the Shapley value is the expectation of each
agents’ marginal contribution. The sampling methods replace the expectation with the
sample average. Each literatures tried to find efficient ways to obtain better samples.

Here we use the structured random sampling method of Campen et al. (2018). The
procedure of the structured random sampling is as below:

Procedure of the structured random sampling(Campen et al. (2018))
Input: n-person cooperative game (N, v). (Hence, n is fixed and determines the number
of groups.)

1. Select a subset Πr orderings from all n! possible orderings, i.e., Πr ⊂ Π, with
r = t · n where n is a natural number. (Hence, the subset must be a multiple of n).

2. Divide the subset Πr in n groups of size t. (This ensures that each player can attain
each position in the ordering the same number of times.)

3. For each player i:

(a) Swap player i with the player at position j for each t orderings in group j,
where j ∈ {1, · · · , n}, resulting is a set Π′r of r new orderings. (This ensures
that each player will attain each position in the ordering the same number of
times.)

(b) Compute the marginal contributions mσ
v (i) of player i for all new orderings

σ ∈ Π′r.

(c) Approximate the Shapley value of player i by averaging the marginal contri-
butions obtained at step 3b, i.e., φ̂i = 1

r

∑
σ∈Π′r

mσ
v (i).

We first check the performance of this method for our 4 models with example 3.2. We
use average percentage error(APE) as the error measurement. Given a true Shapley value
φ(N, v) and its estimate φ̂, we define APE as below:
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(a) Complete cooperation (b) Conjunctive hierarchy

(c) Disjunctive hierarchy (d) Subcontracting

Figure 3.5: Convergence of estimated Shapley value

APE =
1

|N |
∑
i∈N

|φi(N, v)− φ̂i|
|φi(N, v)|

.

As mentioned in the procedure of the structured random sampling above, the sample
size is calculated as t times n. We change t from 1 to 100, and repeat this procedure for 10
times to calculate the mean and standard deviation of APE. APE tends to lower and the
width of confidence intervals tends to narrower as t grows. The average APE at t = 100
is around 5% for all cases.

3.3.3 Comparison among the estimated Shapley values

We estimate the Shapley value using the structured random sampling method with t =
100. We first check the convergence of each estimates. We calculate APE between two
consecutive sequences of estimated Shapley value from t = 1 to 100. As we can see, the
differences between two consecutive sequences is small around t = 100.

We compare each estimated Shapley values. See (a) of figure 3.6. We compare es-
timated Shapley values under complete cooperation assumption(φ̂CC) and conjunctive
hierarchy assumption(φ̂CH). The dotted line is the 45 degree line from the origin. A dot
means a firm. A dot below the dotted line means the allocation for a firm under φ̂CC is
larger than that of φ̂CH . Five dots are farther up the line, and the others are around or
below the line. The five dots means five vehicle manufacturers. Since we assume a strong
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(a) φ̂CC - φ̂CH (b) φ̂CC - φ̂DH

(c) φ̂CC - φ̂SC (d) φ̂CH - φ̂DH

(e) φ̂CH - φ̂SC (f) φ̂DH - φ̂SC

Figure 3.6: Comparison of estimated Shapley values

veto power of a vehicle manufacturer under conjunctive hierarchy assumption, the φ̂CH

allocates large amount to them compared to φ̂CC .
The Shapley value under complete cooperation assumption(φ̂CC) and under disjunc-

tive assumption(φ̂DH) are similar(See fig. (b)). Most of the dots did not deviate from the
45 degree line, and only a few were found deviate from the line. The weak veto does not
significantly affect the allocation.

The Shapley value under subcontracting assumption(φ̂SC) allocates to the vehicle
manufacturers more than φ̂CC , φ̂DH and less than φ̂CH .

3.4 Analysis result

Before we analyse, we remove outliers. We detect and remove them in the following way.
We calculate mean and standard deviation of value added for each resource categories.
We determine an observation as outlier if it lies outside of 3σ boundaries of value added
for each resource categories. We determine 10 observations as outliers and remove them.

Table 3.9 shows the basic descriptive statistics of value added and the estimated Shap-
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Figure 3.7: Average of V.A. of 5 vehicle manufacturers

V.A. φ̂CC φ̂CH φ̂DH φ̂SC

Count 401 401 401 401 401
mean (bil. KRW) 15.9 28.9 14.4 27.1 29.6
std (bil. KRW) 24.5 71.1 37.8 67.9 70.3

median (bil. KRW) 8.2 6.9 2.9 8.3 6.8

Table 3.9: Descriptive statistics of V.A. and the estimated Shapley values (first-tier ven-
dors)

ley values for the first vendors. As for the first vendors, the average of the allocation is
15.9 billion KRW, and that of φ̂CC , φ̂CH , φ̂DH , φ̂SC are 28.9 billion KRW, 14.4 billion
KRW, 27.1 billion KRW, 29.6 billion KRW, respectively. As we can see, the sum of the
allocation of the vehicle manufacturers are larger than φ̂CC , φ̂DH , φ̂SC , but smaller than
φ̂CH . The average of the φ̂CH is closer than any other estimates.

We analyse how close each estimated Shapley value to the real allocations. Here we
use two proximity measures; Average absolute error (AAE)4 and average percentage error
(APE)5. AAE calculate the average of absolute distance of each allocations whereas APE
calculate the average of relative distance of each allocations. Given a true allocation φ and
its estimate φ̂, AAE and APE are defined as below:

AAE =
1

|N |
∑
i∈N

|φi − φ̂i|,

APE =
1

|N |
∑
i∈N

|φi − φ̂i|
|φi|

.

We show the proximity indices at table 3.10. Among the estimated Shapley values,
φ̂CH is relatively closer to the real distribution.

We check resource-type based allocation distribution, that is, we compare the sum
of V.A. of a same type firms and the sum of the Shapley value of the firms. As we can

4AAE proximity measure is used in Maleki et al. (2013), Campen et al. (2018), Benati, Lopez-Blazquez
and Puerto (2019).

5AAE proximity measure is used in Fatima, Wooldridge and Jennings (2008), Campen et al. (2018), Le,
Nguyen and Bektas (2020).
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φ̂CC φ̂CH φ̂DH φ̂SC

AAE (×106) 23.81 23.25 23.35 25.07
APE 393 230 367 803

Table 3.10: Proximity index between true allocation and estimated Shapley values

see at figure 3.8, φ̂CH is relatively closer to the real distribution as firm-based allocation
distribution.

(a) φ̂CC - V.A. (b) φ̂CH - V.A.

(c) φ̂DH - V.A. (d) φ̂SC - V.A.

Figure 3.8: Scatter plot of V.A. and estimated Shapley values (first-tier vendors, resource
category based)

3.5 Conclusion

We study the profit distribution in the Korean vehicle industry based on the cooperative
game theory. Among the four models, distribution under conjunctive approach model
which allows full veto power to the vehicle manufacturers is closest to the real profit
distribution. From this result, we carefully talk about the power imbalance in the Korean
automotive industry.

However, we have many limitations, and much of them stem from the limitation of
data. First, measuring the type and the amount of each firms’ resources is the biggest
limitation of this study. Second, we only consider vehicle manufacturers and first-tier
vendor in the Korean vehicle industry cause of the data limitations. We need to consider
more firms. Third, we cannot separate domestic and overseas business of each firm. It
is known that a large portion of first-tier vendor exports are sold to the Korean vehicle
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manufacturers, so there is possibility that the result does not change drastically, however
we have to consider it explicitly.

It is obvious that we need more data and further study to fill the lack of limitations.
We hope to address it in our future research.
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국문초록

네트워크구조가있는비용배분문제에서의

샤플리밸류에관한연구

한창용

경제학부경제학전공

서울대학교대학원

본 연구는 3개의 장으로 구성되어 있다. 각 장은 독립적인 문제를 다루고 있지만,
경제학적현상을네트워크구조를활용하여분석하고있다는것과협력에서발생하는

이익 또는 비용의 배분 문제를 협조적 게임이론을 활용하여 분석하고 있다는 점에서

각 장은 상호 연결성을 갖는다. 첫 번째 장에서는 고전적인 대기열게임을 일반화한
문제(positional queueing problem)에서의 최소이전규칙(minimal transfer rule)과 최대
이전규칙(maximal transfer rule)의특성을밝힌다.두번째장에서는소스가여러개인
최소신장가지문제(minimum cost spanning tree problem with multiple sources)에서의
카규칙(Kar rule)의특성을밝힌다.마지막장에서는한국의자동차산업에서의완성차
기업과 1차벤더사이의이윤분배문제를협조적게임이론적접근법을통해서분석한
다. 4가지모형을구축하고각모형에서계산된이윤분배와현실의이윤분배를비교할
때,완성차기업의영향력을가장크게가정한모형의이윤분배결과가현실의이윤분
배와가장근접한것을확인하였다.

주요어: 샤플리 밸류, 네트워크, 협조적 게임이론, 대기열게임, 최소신장가지게임, 자
동차산업

학번: 2016-38319
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