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Abstract 

Background:  Rivoceranib, a novel tyrosine kinase inhibitor, exhibits anti-tumour effects by selectively blocking 
vascular endothelial growth factor receptor-2 (VEGFR2) in cancer cells. Recently, the therapeutic effects of rivoceranib 
on solid tumours have been elucidated in human patients. However, the anti-tumour effects of rivoceranib against 
canine cancer remain unclear. Here, we investigated the anti-tumour effects of rivoceranib using in vitro and in vivo 
mouse xenograft models.

Methods:  We performed cell proliferation, cell cycle, and migration assays to determine the effects of rivoceranib 
on canine solid tumour cell lines in vitro. Furthermore, apoptosis and angiogenesis in tumour tissues were exam‑
ined using a TUNEL assay and immunohistochemistry methods with an anti-cluster of differentiation-31 antibody, 
respectively. Additionally, the expression levels of cyclin-D1 and VEGFR2 activity were determined using western blot 
analysis.

Results:  Rivoceranib treatment showed anti-proliferative effects and mediated cell cycle arrest in the canine mela‑
noma cell line (LMeC) and the mammary gland tumour (MGT) cell line (CHMp). In animal experiments, rivoceranib 
decreased the average volume of LMeC cells compared to that following control treatment, and similar results were 
observed in CHMp cells. Histologically, rivoceranib induced apoptosis and exerted an anti-angiogenic effect in 
tumour tissues. It also downregulated the expression of cyclin-D1 and inhibited VEGFR2 activity.

Conclusion:  Our results show that rivoceranib inhibits proliferation and migration of tumour cells. These findings 
support the potential application of rivoceranib as a novel chemotherapeutic strategy for canine melanoma and 
MGTs.
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Background
Cancer is one of the leading causes of death in dogs, and 
more than 50% of dogs older than 10 years of age develop 
at least one malignant tumour [1]. One of the most com-
mon malignant tumours in female dogs is the mammary 
gland tumour (MGT) [2]. In addition, a relatively com-
mon cancer in dogs is melanoma, which can occur in the 
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oral cavity, eye, mucocutaneous junction, nail bed, foot 
pad, or gastrointestinal tract [3, 4]. Conventional alkylat-
ing agents for adjuvant chemotherapy (pulse or metro-
nomic) have been used for MGT or melanoma dogs [5, 
6]. Furthermore, recently, recombinant tyrosine kinase 
inhibitors such as toceranib and masitinib have been pre-
scribed for clinical trials for dogs with solid tumours [1, 
7, 8]. However, further clinical studies with large popula-
tion, and research studies demonstrating their underlying 
mechanisms are needed.

Angiogenesis has been identified to play a crucial role 
in solid tumour malignancies and is essential for tumour 
proliferation, survival, and metastasis [8–10]. The vas-
cular endothelial growth factor (VEGF) family and its 
receptors (VEGFRs) are considered to comprise the core 
components in tumour angiogenesis-related molecu-
lar mechanisms [11]. Recently, the possibility of inhib-
iting tumour cell signals arising from the activation of 
VEGFR2 has been demonstrated through several phar-
macodynamic approaches, including receptor blockade 
(ramucirumab), seizure of the ligand (bevacizumab), and 
use of small-molecule inhibitors (sorafenib, sunitinib, 
apatinib, cediranib, and telatinib) [12].

Rivoceranib (also known as apatinib), a novel oral 
small-molecule selective tyrosine kinase inhibitor of 
VEGFR2, blocks endothelial and tumour cell prolifera-
tion and migration, thus inhibiting tumour growth [13, 
14]. Previous studies have demonstrated its improved 
therapeutic efficacy against various types of carcinoma 
in humans [15–17]. Furthermore, our group previously 
reported that rivoceranib showed in  vitro anti-tumor 
activity in canine MGT (CIPp and CIPm; derived from 
primary site and metastatic lymph node, respectively, 
with mammary adenocarcinoma) cell lines [18]. How-
ever, it is unknown whether rivoceranib plays a similar 
role in canine melanoma (LMeC; derived from metastatic 
lymph node with oral mucosa melanoma) and MGT 
(CHMp; derived from primary site with inflammatory 
mammary adenocarcinoma) cell lines [19, 20].

In this study, we aimed to investigate the anti-tumour 
effects of rivoceranib in in vitro and in vivo mouse xen-
ograft models of canine melanoma (LMeC) and MGT 
(CHMp). The results provide novel insights into the inhi-
bition of VEGFR2 by rivoceranib in canine cancer cells.

Results
Rivoceranib inhibits the proliferation and migration 
of canine melanoma and MGT cell lines in vitro
To assess the effects of rivoceranib on the proliferation 
of LMeC and CHMp cells, they were treated with dif-
ferent concentrations of the anti-cancer drug for 24, 48, 
and 72 h. Results of the cell counting kit (CCK)-8 assay 
showed that rivoceranib elicited inhibitory effects in a 

dose-dependent manner in both cell lines (Fig.  1A, B). 
Cell proliferation was significantly reduced at 25  μM 
after 24, 48, and 72  h of treatment compared to that in 
the control groups of both cell lines. Cell proliferation 
was also significantly reduced following treatment with 
6.25  μM (LMeC) and 12.5  μM (CHMp) of rivoceranib 
after 48 h compared to that in the control group. How-
ever, no significant reduction in cell proliferation was 
observed at 3.125 μM (LMeC) and 12.5 μM (CHMp) of 
rivoceranib after 72  h. Therefore, for subsequent exper-
iments, we treated the cells with 0, 12.5, and 25  μM of 
rivoceranib for 48 h.

Rivoceranib promotes cell cycle arrest in canine tumour 
cell lines in vitro
The effect of rivoceranib on the cell cycle progres-
sion of LMeC and CHMp cells was investigated using 
fluorescence-activated cell sorting (FACS). The cells 
were treated with different concentrations (0, 12.5, and 
25  μM) of rivoceranib for 48  h. These cells were har-
vested and analysed to determine their distribution 
among the G0/G1, S, and G2/M phases of the cell cycle. 
As shown in Fig.  2A, the G0/G1 ratio in the rivocer-
anib-treated groups was significantly higher than that 
in the control group (0  μM) in both cell lines, whereas 
the distribution of cells in the G2/M phase was sig-
nificantly reduced in both the 12.5-and 25  μM-treated 
groups compared to that in the untreated control group. 
In addition, the S phase distribution of LMeC cells was 
significantly reduced in both the 12.5-and 25 μM-treated 
groups compared to that in the control group. In con-
trast, the S phase distributions of CHMp cells were 
similar in the rivoceranib-treated and untreated control 
groups.

The proteins extracted from the collected LMeC and 
CHMp cells were analysed by western blotting. A com-
parison of relative band intensities confirmed that the 
expression of cyclin-D1 was significantly lower in the 
rivoceranib-treated groups than in the untreated con-
trol group, and the difference between the 12.5-and 
25  μM-treated groups was also significant in both cell 
lines (Fig.  2B). These results suggest that rivoceranib 
induces G0/G1 cell cycle arrest through the downregu-
lation of cyclin-D1, thereby inhibiting cell cycle progres-
sion in LMeC and CHMp cells.

Rivoceranib inhibits migration and induces apoptosis 
in canine tumour cell lines in vitro
The effect of rivoceranib on the migration abilities of 
LMeC and CHMp cells was evaluated using a wound-
healing assay. As shown in Fig.  3, migration was sig-
nificantly reduced in cells treated with rivoceranib in 
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a concentration-dependent manner in both cell lines. 
These results showed the ability of rivoceranib to inhibit 
the mobility of canine tumour cell lines in vitro.

To evaluate apoptosis, LMeC and CHMp cells treated 
with rivoceranib for 48 h were harvested and analysed by 
FACS after Annexin V/ propidium iodide (PI) dual stain-
ing. The percentage of apoptotic cells was significantly 
increased in the cells treated with 12.5 and 25 μM rivo-
ceranib compared to that in the untreated control group 
in both cell lines (Fig. 4). These results showed that riv-
oceranib also induces apoptosis in canine tumour cell 
lines in vitro.

Rivoceranib suppresses tumour growth in xenograft 
mouse models
To further determine the anti-tumour activity of rivo-
ceranib in vivo, LMeC and CHMp cell-xenografted mice 
were orally administered various concentrations of rivo-
ceranib daily. The tumour volume in the control group 
(vehicle) rapidly increased compared to that in the treated 
groups. In the LMeC cell line, after 29  days of treat-
ment, the tumour growth curve showed that there was a 

significant reduction in the tumour volume in the rivo-
ceranib (150 and 300 mg/kg)-treated groups compared to 
that in the control group (Fig. 5A). In the CHMp cell line, 
after 16  days of treatment, the 150 and 300  mg/kg rivo-
ceranib-treated groups exhibited a more significant inhi-
bition of tumour volume growth (Fig. 5B) than the control 
group.

Furthermore, tumour weight was also measured after 
the mice were sacrificed; the results showed that the 
tumour weight significantly decreased in the mice treated 
with rivoceranib in a dose-dependent manner (Fig. 5C) in 
both cell lines. To detect severe side effects of rivoceranib 
in mouse models, body weight was also measured. The 
body weights of mice in the treatment and control groups 
were similar, with no significant differences observed 
(Fig. 5D) in both cell lines.

Rivoceranib downregulates VEGFR2 phosphorylation 
and cyclin‑D1 expression in vivo
We further investigated the effects of rivoceranib on 
VEGFR2 phosphorylation and cyclin-D1 expression. 
The results revealed that cyclin-D1 expression and 

Fig. 1  Effects of rivoceranib on the proliferation of canine solid tumour cell lines in vitro. A, B Viability of LMeC and CHMp cells after treatment 
with different concentrations of rivoceranib at 24, 48, and 72 h of treatment. All experiments were performed in triplicate. The data represent the 
mean ± standard deviation obtained from three independent experiments. * p < 0.05, ** p < 0.01 versus the control group (0.5% dimethyl sulfoxide) 
at the same time point
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VEGFR2 phosphorylation were significantly decreased 
in the rivoceranib-treated groups in a dose-dependent 
manner (Fig. 6A). These results suggested that rivocer-
anib probably inhibited cyclin-D1 and downregulated 
VEGFR2 phosphorylation to reduce canine cell line 
viability in vivo.

Rivoceranib induces cell apoptosis and inhibits 
angiogenesis in vivo
Five tumour tissues per group that were selected ran-
domly were sectioned and stained with TUNEL and 
anti-CD31 to evaluate the effects of rivoceranib on cell 
apoptosis and angiogenesis, respectively. We found 

Fig. 2  Effects of rivoceranib on cell cycle arrest in vitro. A Cell cycle distribution of LMeC and CHMp cells treated with rivoceranib was analysed 
by flow cytometry at 48 h. B The expression levels of cyclin-D1 were measured using western blot analysis. The intensity of the band on the films 
is presented as the relative ratio of cyclin-D1 to the band intensity of β-actin. Cropped blots are displayed. Samples were derived from same 
experiment, and blots were processed in parallel. The data represent the mean ± standard deviation obtained from three independent experiments. 
* p < 0.05, ** p < 0.01
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that rivoceranib treatment increased TUNEL-positive 
cells more than that observed with vehicle treatment 
in a dose-dependent manner in both cell lines (Fig. 6B). 
However, fewer CD31-positive cells were observed in 
the rivoceranib-treated tumour sections than in the 
control sections in both cell lines (Fig.  6C). Overall, 
these results indicated that rivoceranib showed apop-
totic and anti-angiogenic activity in vivo.

Discussion
Rivoceranib is a highly selective VEGFR2 inhibitor and is 
a second-generation anti-angiogenic drug that has been 
approved for the treatment of solid tumours in humans 
[13, 21, 22]. Several studies have also shown that VEGFR2 
is highly expressed in canine malignant tumours [23–27]. 
In addition, Prado et  al. and Inteeworn et  al. attempted 
to evaluate the anti-tumour effects of sorafenib, a VEGFR 

Fig. 3  Effects of rivoceranib on the migration of canine solid tumour cell lines in vitro. A Cell migration abilities of LMeC and CHMp were measured 
at 0, 12, and 24 h of rivoceranib treatment. B Histograms showing the relative gap size of the control group at 0 h after rivoceranib treatment. The 
data represent the mean ± standard deviation obtained from three independent experiments. * p < 0.05, ** p < 0.01
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inhibitor, in canine tumour cells [28, 29]. In this study, 
we evaluated the anti-tumour effects of rivoceranib in 
mouse xenograft models of canine melanoma and MGT.

Recent studies have demonstrated that rivoceranib is 
effective against diverse types of human cell lines such 
as hepatocarcinoma, non-small cell lung cancer, mela-
noma, and breast cancer [30–33]. Consistent with the 
results of previous studies, our results indicate that the 
cytotoxic and anti-tumour effects of rivoceranib can be 

attributed to the enhancement of apoptosis, cell cycle 
arrest, and inhibition of migration in canine tumour cell 
lines in  vitro. We also demonstrated that the expres-
sion levels of cyclin-D1 which are well known for play-
ing a key role in tumour growth and proliferation [34, 
35] were significantly reduced by rivoceranib treat-
ment in a dose-dependent manner in both cell lines. 
Although rivoceranib showed anti-proliferative effects 
against canine tumour cell lines (LMeC and CHMp) 

Fig. 4  Effects of rivoceranib on the apoptosis of canine solid tumour cell lines. The percentage of apoptotic cells was measured by flow cytometry. 
Total apoptotic cells were quantified using Annexin V (FITC) and propidium iodide (PI) dual staining. Annexin V+/PI− cells were considered to reflect 
early apoptosis, and Annexin V+/PI+ cells were considered to reflect late apoptosis. The data represent the mean ± standard deviation obtained 
from three independent experiments. * p < 0.05, ** p < 0.01

Fig. 5  In vivo effects of rivoceranib in the xenograft model. A The mean LMeC tumour volumes in the four groups (vehicle and 75 mg/kg, 150 mg/
kg, and 300 mg/kg rivoceranib-treated; n = 10 in each group), and images of the collected tumours from the xenograft models after 29 days of 
treatment. B The mean CHMp tumour volumes in the four groups (vehicle and 75 mg/kg, 150 mg/kg, and 300 mg/kg rivoceranib-treated; n = 10 
in each group), and images of the collected tumours from the xenograft models after 16 days of treatment. C The tumour weights and D body 
weights of mice were monitored twice a week during rivoceranib treatment in both cell lines. The data represent the mean ± standard deviation * 
p < 0.05, ** p < 0.01

(See figure on next page.)
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Fig. 5  (See legend on previous page.)
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in vitro, it was difficult to evaluate whether these effects 
were associated with the VEGFR2 pathway because 
the canine tumour cell lines used in this study showed 
minimal expression of VEGFR2 in vitro (Supplementary 
Figure S1).

Therefore, we also determined the anti-tumour activity 
of rivoceranib in  vivo with two xenograft mouse mod-
els of canine tumours: LMeC and CHMp. Interestingly, 
VEGFR2 was highly expressed in the tumours of xeno-
graft mouse models containing LMeC and CHMp. After 
oral administration of rivoceranib at doses of 0, 75, 150, 
and 300  mg/kg in mice with LMeC or CHMp cells, the 
average tumour volume and weight were significantly 
reduced in a dose-dependent manner. Our western blot 
analysis results showed that rivoceranib significantly 
reduced the activity of VEGFR2 in  vivo. Furthermore, 
evidence of the rivoceranib-induced increase in TUNEL-
positive cells and fewer CD31-positive cells in treated 
tumour sections than in untreated tumour sections 
in both cell lines led us to hypothesise that rivoceranib 
reduced cell viability and tumour angiogenesis by inhibit-
ing VEGF/VEGFR2 signalling.

The VEGFR family consists of VEGFR-1/Flt-1, VEGFR-2/
KDR/Flk-1, and VEGFR-3/Flt-4 [33, 36, 37]. VEGFR2 exerts 
its biological function by coupling with VEGF cytokines to 
activate the VEGF/VEGFR2 signalling pathway, which is 
closely related to tumour angiogenesis and plays a crucial 
role in tumour cell adaptation to hostile environments [30, 
38]. VEGF/VEGFR2 is well established to promote neigh-
bouring vessel formation, thereby facilitating the delivery of 
nutrients for cancer cell survival, and previous reports have 
suggested that the expression of VEGFR2 correlates with 
poor prognosis [39, 40]. Rivoceranib is an oral anti-angio-
genic drug that highly selectively inhibits VEGFR2 with a 
binding affinity 10 times higher than that of anti-angiogenic 
drugs sorafenib or vantalanib [14, 15].

There are some limitations in this study. First, we used 
a single cell line for canine melanoma and MGT. Second, 
as there are other anti-tumour underlying mechanisms, 
further studies using rivoceranib with other anti-tumour 
agents for synergic effects are needed. However, these 
results may provide a reference in veterinary medi-
cine because this study was the first attempt to demon-
strate the anti-tumour effects of rivoceranib in mouse 

xenograft models of canine tumours. Also, our data 
might provide scientific evidence for conducting clinical 
trials in canine patients.

Conclusions
Our results showed that rivoceranib inhibits prolifera-
tion, migration, and cell cycle progression in two canine 
tumour cell lines (LMeC for melanoma, and CHMp for 
MGT) in vitro. In addition, we showed that rivoceranib 
inhibits tumour growth in xenograft mouse models 
through the enhancement of apoptosis and anti-angio-
genic effects by inhibiting the VEGFR2 pathway. These 
results suggest that rivoceranib, a selective VEGFR2 
inhibitor, might be a novel anti-angiogenic therapy for 
dogs with melanoma or MGTs.

Methods
Cell culture
The canine MGT cell line (CHMp) and the canine mela-
noma cell line (LMeC) was kindly provided by Professor 
Nobuo Sasaki [19, 20]. LMeC and CHMp cells were incu-
bated in Roswell Park Memorial Institute-1640 medium 
and supplemented with 10% foetal bovine serum (FBS) 
and 100 U/mL of penicillin/streptomycin at 37  °C in a 
humidified atmosphere with 5% CO2. The medium was 
replaced every 2–3 days, and the cells were sub-cultured 
at 90% confluency.

Cell proliferation assay
Rivoceranib powder was provided by HLB Life Science 
Co., Ltd. (Gangnam-gu, Republic of Korea) and stored at 
room temperature (20–25 °C). To determine the concen-
tration of rivoceranib that affects canine cell line viability 
and proliferation, a cell proliferation assay was performed 
as described previously [18]. Briefly, a density of 1 × 103 
cells were plated onto 96-well cell culture plates (SPL Life 
Science, Pocheon, Korea) with 100 μL of culture medium 
containing rivoceranib (0, 3.125, 6.25, 12.5, 25, 50, or 
100  μM). After culturing for 24, 48, and 72  h, the cell 
number was determined using the D-plustm CCK-8 assay 
(Dong-in Biotech, Seoul, Korea) according to the manu-
facturer’s instructions. Wells containing culture medium 
or 0.5% dimethyl sulfoxide with culture medium were 
used as the control group.

(See figure on next page.)
Fig. 6  Effects of rivoceranib on tumour tissue in vivo. A The collected tumour tissues were subjected to western blot analysis for the evaluation 
of VEGFR2 activity and the expression levels of cyclin-D1. The intensity of the bands on the films was evaluated as the relative ratio of 
phosphorylated-VEGFR2 (P-VEGFR2) to the band intensity of VEGFR2 and the ratio of cyclin-D1 to the band intensity of β-actin. Cropped bands are 
displayed. Samples were derived from same experiment, and blots were processed in parallel. B, C TUNEL and anti-CD31 staining images of tumour 
sections in each group (vehicle and 75 mg/kg, 150 mg/kg, and 300 mg/kg rivoceranib-treated). TUNEL- and CD31-positive cells were counted in five 
random fields per group under a microscope. The data represent the mean ± standard deviation. * p < 0.05, ** p < 0.01 versus control group (vehicle 
group)
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Fig. 6  (See legend on previous page.)
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Cell cycle assay
For cell cycle assay, as described previously [41], LMeC 
and CHMp cells were cultured in 6-well cell culture plates, 
allowed to adhere, and further cultured with increasing 
concentrations of rivoceranib (0, 12.5, and 25 μM). After 
48  h, 1 × 105 cells were collected, washed with cold PBS, 
and fixed with 70% cold alcohol at -20 °C for 2 h. The cells 
were then collected, washed again with PBS, and incu-
bated with 500 μL of PI/RNase buffer (BD Biosciences, 
San Diego, CA, USA) for 30 min at room temperature. The 
samples were analysed using flow cytometry FACS (AriaII 
flow cytometer; BD Bioscience, San Jose, CA, USA).

Wound‑healing assay
The migration abilities of the cell lines were determined 
using a wound-healing assay as described previously [18]. 
Briefly, the cells were seeded in a 12-well culture plate at 
a density of 1 × 105 cells/well. After reaching 100% conflu-
ence, the cells were induced using 2 μg/mL of mitomycin 
(EnzoLife Science, Farmingdale, NY, USA) for 2 h. The cells 
were manually scratched using a sterile 1000-μL pipette 
tip, and suspended cells were removed using phosphate-
buffered saline (PBS). The various groups of adherent cells 
were cultured in serum-reduced complete medium (2% 
FBS) with rivoceranib (0, 12.5, and 25 μM). Cell migration 
was observed and captured under a microscope using the 
T Capture program (Tucsen Photonics, Fuzhou, China) at 
0, 12, and 24 h. The migration ability was calculated rela-
tive to the gap size of the control group at 0 h.

Apoptosis analysis
LMeC and CHMp cells were seeded in 6-well cell cul-
ture plates at a density of 1 × 105 cells, allowed to adhere, 
and treated with different concentrations of rivocer-
anib (0, 12.5, and 25  μM) for 48  h. The cells were then 
dual-stained with annexin V and PI using the Annexin V 
Apoptosis Detection Kit I (BD Pharmingen, San Diego, 
CA, USA) as described previously [18]. The apoptosis 
rate of CHMp cells was analysed using a FACS cytometer 
(BD Bioscience, San Diego, CA, USA).

Mouse xenograft model
Female NOD.CB17-PrkdcSCID/Acr mice aged 6  weeks 
and weighing 18–22  g were purchased from Raon Bio 
(Yongin, Korea). All mice were housed in a specific 
pathogen-free standard room under controlled tem-
perature (19–23 °C) and humidity (50 ± 20%) conditions 
and a 12-h light–dark cycle. The study and all experi-
mental procedures involving animals were approved by 
the Institutional Animal Care and Use Committee of 
KPC (P194007),  and the experiments were performed 
in compliance with the guidelines for animal experi-
ments.  The study was also carried out in compliance 

with the ARRIVE guidelines. To induce tumours in the 
mice, 5 × 106 CHMp cells or 1 × 107 LMeC cells were 
suspended in 100 μL of PBS, mixed with 100 μL of Corn-
ing® Matrigel® Matrix (1:1 dilution, Corning Inc., New 
York, NY, USA), and then injected subcutaneously into 
the right flank of each mouse, as described previously 
[5]. After the predetermined inoculation and treat-
ment periods, tumour dimensions were measured, and 
the volume was calculated using the following formula: 
0.5 × width2 × length. The weight and tumour volume of 
the mice were monitored every 3–4 days. Mice were sac-
rificed on day 16 for the canine melanoma model and day 
29 for the canine MGT model. Tissue samples of tumour 
were collected for further processing.

Rivoceranib treatment
For rivoceranib administration, the reagent powder was 
dissolved in 0.5% carboxymethylcellulose (CMC; Sigma-
Aldrich, St. Louis, MO, USA) solution. As described 
previously [42], when the tumours reached an average 
volume of 150–200 mm3, the mice were randomised into 
the following four groups (n = 10 each) and were orally 
treated as indicated: Group 1, 10 mL/kg 0.5% CMC solu-
tion (vehicle); and Groups 2, 3, and 4 were administered 
75, 150, and 300  mg/kg rivoceranib, respectively, in 
10 mL/kg of the vehicle. Rivoceranib and the vehicle were 
administered daily for 15 (CHMp) or 28 (LMeC) con-
secutive days, after which all mice were euthanized and 
tumour tissue samples were collected for further analysis.

Western blot analysis
Total protein from the  collected  cell lines and tis-
sue  was extracted  in  PRO-PREP Protein Extraction 
Solution (Intron Biotechnology,  Seongnam, Korea)  on 
ice according to the manufacturer’s instructions. The 
protein concentration was measured  using  the Bio-Rad 
DC Protein Assay Kit (Bio-Rad, Hercules, CA, USA) as 
described previously [43]. The collected proteins (30 μg) 
were separated using sodium dodecyl sulphate gel elec-
trophoresis, and the protein bands were transferred 
onto  polyvinylidene  difluoride membranes (EMD Mil-
lipore, Billerica, MA, USA). The membranes were  incu-
bated  in  5% non-fat dry milk in  Tris-buffered saline 
containing 0.1% Tween 20  for 1  h and incubated with 
antibodies against anti-cyclin-D1 (1:1000;  LSBio, Seat-
tle, WA, USA) and anti-phospho-VEGFR2  (1:1000;  Cell 
Signaling Technology, Beverly, MA, USA)  at 4  °C over-
night.  The membranes were incubated with anti-mouse 
or anti-rabbit immunoglobulin G (Santa Cruz Biotech-
nology, Dallas, Texas, USA) as the secondary antibodies 
(1:2000) for 1 h. Immunoreactive bands were normalised 
to β-actin (1:1000; Santa Cruz) or VEGFR2 (1:1000; Cell 
Signaling Technology)  and visualised using SuperSignal 



Page 11 of 12Li et al. BMC Vet Res          (2021) 17:338 	

West Pico PLUS Chemiluminescent substrate (Advansta, 
Menlo Park, CA, USA).

Immunofluorescence analysis
Xenograft tumour tissues obtained from mice were fixed 
in 10% formalin, and paraffin-embedded 4-μm-thick tis-
sue sections were deparaffinised in xylene and rehydrated 
with ethanol. The tumour apoptosis rates were determined 
based on TUNEL staining (Apo-BrdU DNA Fragmenta-
tion Assay Kit; BioVision, San Francisco, USA), as described 
previously [5]. For the analysis of angiogenesis ability in the 
tumour tissue, the slides were incubated overnight at 4  °C 
with antibodies against CD31 (1:100; Thermo Fisher Sci-
entific, Waltham, MA, USA). After washing three times, 
the tumour sections were incubated with the secondary 
antibody (1:200; sc-516251; Santa Cruz Biotechnology) for 
1 h at room temperature (protected from light). Finally, the 
slides were mounted in Vectashield mounting medium con-
taining 4,6-diamidino-2-phenylindole (Vector Laboratories, 
Burlingame, CA, USA). The immunoreactive cells were 
counted in six random fields per group using an EVOS FL 
microscope (Life Technologies, Darmstadt, Germany).

Statistical analysis
Data are shown as mean ± standard error. Differences 
between the groups were compared by one-way analy-
sis of variance or Student’s  t-test using GraphPad Prism 
v.6.01 software (GraphPad Inc., La Jolla, CA, USA).  A 
value of P < 0.05 was considered statistically significant.
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