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a b s t r a c t   

In this article, we discuss the technical and business risks associated with long-lasting functional digital 
twins, and describe different strategies for their alleviation. Functional digital twins are based on physics- 
based simulation models and are operated alongside the life cycle of their physical counterparts. These 
simulation-based digital twins are built using a simulation software. The problems with most of the 
commercial modeling and simulation tools are their black box nature and storing data in protective formats, 
leading to poor interoperability. Since the digital twins of certain assets need to be operated for a long 
period, even for several decades, there is a possibility that the computing infrastructure, i.e., the computing 
hardware and software, may not remain the same throughout the product or system life cycle. The com-
puter hardware and operating systems are usually third-party components with limited choices for their 
users, whereas the selection of simulation tools is more flexible and the designer can choose from, for 
example, commercial, open-source, or in-house solutions. To avoid substantial costs or business disruption, 
the digital twin providers must be able to reproduce the underlying simulation models with up-to-date 
tools and adopt alternative solutions whenever needed. The findings of the study are presented in the form 
of propositions throughout the article. 

© 2022 The Author(s). Published by Elsevier B.V. 
CC_BY_4.0   

1. Introduction 

The application of computational models in engineering design 
has proven its value in industry. Computer-aided design (CAD), 
computer-aided manufacturing (CAM), and computer-aided en-
gineering (CAE) are nowadays the mainstream approaches in in-
dustry, and numerous software applications and software systems 
are available for them, both for general design and for dedicated 
design domains and purposes. The computational models already 
offer insights into the performance and operation of a product or 
system—that is, the “design target”—in the early phase of the design 
process and even before any realization of the design target Boschert 
and Rosen (2016). They also enable efficient concurrent engineering 
and a fast overall engineering design process Monticolo et al. (2015). 

As depicted in Fig. 1, the latest development of the digital twin 
(DT) concept is extending the use of engineering design models, 
such as the computational fluid dynamics (CFD), finite element 

analysis (FEA) and system simulation models, to a longer part of the 
design target life cycle, enabling additional services Boschert and 
Rosen (2016); Grieves and Vickers (2017); Boschert et al. (2018); Lim 
et al. (2020); Wang (2020). Grieves and Vickers Grieves and Vickers 
(2017) described applications for DTs in all the main life cycle phases 
of a product. DTs can provide valuable information for the design 
and development of the product and, for example, reduce the need 
for physical prototypes. In the production phase, DTs provide col-
lected information about the as-built product. In the operational 
phase, DTs can be used for monitoring and maintenance, and for 
optimizing the operation of the product. At the end of the life cycle, 
DTs can help in disposing the product in an efficient and safe 
manner. 

In digital design and engineering, data exchange and data inter-
operability have been issues for a long time Wiesner et al. (2011); Xie 
et al. (2013); González et al. (2007); Frechette et al. (2011); Urban 
et al. (1993); Fowler (1995); Gallaher et al. (2004), and standardi-
zation has been one of the main solutions to tackle such challenges  
Eckert (2014). However, partially due to the nature of the develop-
ment of digital engineering tools, it seems that standardization 
cannot solve all the issues and it is lagging behind the development 
of digital engineering tools. The modeling and simulation tools 
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constantly have new features and functionalities, which may not be 
supported by the standards. The standardization processes are also 
typically time consuming and expensive, thus the standards do not 
cover the latest developments and do not include all the details of 
the software solutions. In addition, software vendors’ business rea-
sons and simply lack of motivation to support existing standards and 
open-data specifications have been influencing the situation  
Wiesner et al. (2011); Schneider and Marquardt (2002); Gargiulo 
et al. (2014). Furthermore, commercial software production and 
business, like many other business fields, is balancing between new 
potential business opportunities and the effort and resources their 
implementation require. Additional features in software applica-
tions, such as standards compliance, require resources both when 
implemented and in the maintenance of the software, so there must 
be a clear need and business motivation for the additional features in 
the software. All these factors negatively influence the reuse of si-
mulation information in organizations, both internally and ex-
ternally, especially during subcontracting engineering design tasks. 

DT simulation models may be data-driven models (e.g. based on 
machine learning) or simulation-based models (e.g. first principles- 
based simulation models); this work does not cover the former. The 
focus of this article is on the data management of physics-based 
simulation models—we call them “functional DT (FDT) mod-
els”—that serve as integral parts of the overall product or system 
together with the physical counterparts and need to be operational 
throughout their life cycles (see Fig. 1). 

The management and reuse of the simulation model data of a DT 
during the product’s or system’s operational life cycle phase differ 
from the data management and reuse during the engineering design 
phase, both in the length of the data life cycle and the amount of 
data that is maintained. While in the engineering design phase the 
active time period of producing and using the data typically ranges 
from a few months to a couple of years, the operational time span of 
complex products or systems—such as aircraft, ships, defense sys-
tems, and process plants—can be as long as fifty years. Within a 
relatively short time span, changes in computer hardware tech-
nology, computer operating systems, and digital engineering soft-
ware applications and systems do not usually need to be taken into 
account or the changes are manageable. On the other hand, when a 
DT is an integral part of the overall product or system and the ex-
pected life cycle for the system is several decades, the DT needs to be 
operational for a longer time than the technical design life cycle of 
the underlying systems (i.e., the computer hardware and operating 

system, and the software applications). In addition, engineering 
design phase models represent a whole fleet of products or systems 
of their kind, but by its nature, a DT is a digital representation of an 
individual product or system. This means that the number of DTs to 
be maintained is growing when new products or systems are de-
livered, and the overall amount of data to maintain can be re-
markably larger than for engineering design models. 

Many academic and industrial projects have focused on the long- 
term preservation of product data Brunsmann et al. (2012). However, 
less attention has been paid to the management of the data of DTs 
during their life cycles, both from technical and business points of 
view. The life cycle management of product data in general and DT 
data in particular share several common challenges. In this article, 
we focus on the challenges encountered in preserving the informa-
tion and data needed to keep FDTs—that is, simulation models that 
are data connected to their real-world counterparts—operational for 
especially long life cycles. In addition, we study and illustrate pos-
sible strategies to alleviate the risks associated with the long-term 
simulation model data management of FDTs. 

The article consists of several propositions and is organized as 
follows. In Section 2, we discuss the general concept of a DT and 
define an FDT, the modeling and simulation features of FDT, and the 
associated technical risks of long-lasting FDTs. In Section 3, some of 
the possible strategies for alleviating the technical risks of FDTs are 
discussed. In Section 4, the economic and business risks are dis-
cussed, and the means to prevent or minimize them are presented.  
Section 5 discusses the outcome of the work and summarizes the 
main findings. 

2. DTs and their data life cycle management 

2.1. The DT concept 

2.1.1. Definitions 
The concept of a DT has been actively developed in the past 

decade. Tuegel et al. (2011) illustrated a future DT being a detailed 
real-time digital model of the physical twin (i.e. the real-world 
system). In their vision, the DT of an airplane can simulate all the 
relevant phenomena, including material behavior from micro-
structure to the macro level, and fluid and structural dynamics. The 
DT is connected to the physical twin by the data measured from the 
physical system, and it can do prognostics of the physical twin. 
Grieves and Vickers Grieves and Vickers (2017) defined a “digital 

Fig. 1. Illustration of a product’s life cycle, including two system upgrades.  
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twin prototype” as a DT of a prototypical physical product or a 
system, a “digital twin instance” as an individual DT of an individual 
product or system and represents it throughout the whole life cycle, 
and a “digital twin environment” as “an integrated, multi-domain 
physics application space for operating on Digital Twins for a variety 
of purposes.” Such DTs have both interrogative and predictive cap-
abilities, i.e., they are able to represent the current state of the 
physical twin and also predict the function and behavior of it. Si-
milarly, Hartmann and Auweraer Hartmann et al. (2020) introduced 
the concept of an “executable digital twin” that, with its simulation 
tools, reuses the simulation models outside the system design and 
engineering tasks in the operation phase. Executable DTs would be 
used to integrate the simulation models originating from different 
parties and utilizing different types of computational solvers 
(system integration). However, many of the requirements (e.g., de-
ployability, synchronicity, security, usability, reliability, and inter-
activity) for the realization of such DTs cannot be addressed yet and 
need further research. 

Barricelli et al. (2019) have done a thorough study on the defi-
nition and main characteristics of DTs and the domains in which DTs 
and their technologies are actively developed. They define that DTs 
“are simulating, emulating, mirroring, or ‘twinning’ the life of a 
physical entity, which may be an object, a process, a human, or a 
human-related feature” and state that a DT has a single physical 
counterpart. The DT is more than a simulation model. It monitors, 
controls, and optimizes the function of its physical twin throughout 
its life cycle, i.e., the DT has descriptive, predictive, and prescriptive 
capabilities. Tao et al. (2019) illustrate that the main dimensions of 
the DT concept are the physical space, the virtual space, and the data 
and information connections between the two spaces. Their findings 
show that the definition of a DT is vague and depends on the context, 
purpose, and available technologies for its implementation, among 
other things. 

The definition of a DT is changing, and alternative definitions are 
introduced regularly. In addition, the interpretations of the defini-
tions are stretching the boundaries of earlier definitions. Some of the 
definitions are even unrealistically challenging while the marketing 
of digital solutions is especially using the ongoing hype of DTs 
without restraint, and in some cases, even a 3D model of the physical 
product or system is said to be a DT. Thus, we propose: 

Proposition: There is no clear consensus on a detailed defi-
nition of a DT, but the common elements of the definitions 
are the physical or real system, its digital representation, and 
a data connection between the two.  

2.1.2. Applications 
The application of a DT greatly affects the life cycle dependencies 

of the DT and, in fact, even the business that is done related to the 
product or system and its DT. When a DT is used for getting more 
information for engineering and design, the DT does not need to be 
an integral part of all the products or systems produced and deliv-
ered. The limited number of DTs can be managed, even though there 
may be changes in computing hardware, operating systems, and 
software. On the other hand, if the DT is an integral part of the 
overall system, the design and implementation of the DT should be 
done taking the possibly long life cycle into account. 

From the DT application point of view, the definitions and cate-
gorization do not have much value. Definitions and categorization 
are important for communication, in order to both illustrate new 
ideas and concepts, and to emphasize the characteristic features of 
the DT types under discussion. For DT data life cycle management, a 
useful categorization is to group the implementation of DTs based on 

numerical simulation or other means. Another categorization cri-
terion is the ability of a DT to describe the past and present state of 
the physical twin (“descriptive DT”); to predict the state, function, 
behavior, and dynamics of the physical twin (“predictive DT”); and to 
enable driving the physical twin to or towards a desired future state 
(“prescriptive DT”). 

In general, a descriptive DT would be based on the data gathered 
from the physical twin and the environment and on representing it 
in an informative way. This may include data analytics and other 
means of processing the data from the sensors and other sources 
into an intuitive form. A predictive DT would require the capabilities 
to estimate the future trajectories of the physical twin’s function and 
behavior based on the current information of the system and already 
collected historical data. Such a DT could be composed of physics- 
based models (a priori knowledge of the behavior and dynamics of 
the target) or it could be purely based on the knowledge of behavior 
history and its data-predictive model (e.g., based on an artificial 
neural network model of the physical twin). A prescriptive DT would 
extend the predictive DT with optimization or some other means of 
defining the controls and parameters of the physical twin in such a 
way that the physical twin will reach the desired state in a given 
time or get as close to it as possible. In the last two types of DT, the 
fundamental element of the DT is the ability to predict the future 
state and behavior of the physical twin. This is inherently to do with 
physics-based simulation. Within this article, we refer to this kind of 
a DT as an FDT. Thus, we propose: 

Proposition: The value of the concept of a DT comes from its 
applications, not from the concept definitions. On the other 
hand, the definitions enable improved communication about 
the needs, features, and implementation of DTs.  

2.2. FDTs 

A DT may consist of several simulation models based on en-
gineering data, operation data, and behavioral descriptions of the 
physical asset Boschert et al. (2018); Cameron et al. (2018). Fig. 2 
shows the DT of an asset obtained by combining the IoT, machine 
learning, and data analytics with simulation models. The IoT plat-
form brings together the physical asset data (e.g., sensor data, his-
torical information, maintenance reports, asset and operator 
features), cloud computing, and big data analytics in order to extract 
insights and knowledge that support decision-making. The simula-
tion platform of a DT contains the asset simulation models (e.g., FEA, 
CFD, and system simulation models), the simulation software for 
building and running the simulation models, and the computer 
system that operates the simulation software. 

The simulation models used in DTs can be divided into being 
either data-driven models (e.g., machine learning models) or com-
putational models (e.g., first principles simulation models) Erikstad 
(2017); Martínez et al. (2018); Liu et al. (2018). Data-driven DTs are 
based on black box models where the mathematical structures of the 
models are not explicitly available Pantelides and Renfro (2013). 
They are built to capture the relations between the input and output 
parameters of the asset and to predict its behavior or to detect 
anomalies to a certain extent. As these DT solutions are based on 
measured data from various sensors and the embedded systems of 
the physical counterpart, or data generated by other means, they 
cannot be used to predict the asset behavior that is not covered by 
the available collected data. Furthermore, since data-driven DTs 
mainly rely on data coming from the automation and monitoring 
systems of the physical asset, they cannot be used in situations 
where there is no access to the measured data (e.g., due to a 
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malfunction in the data generation systems) or it is difficult to take 
measurements. 

We define an FDT as being based on first principles simulation 
(physics-based simulation) and being able to predict the behavior of 
its physical counterpart, taking the target system and its parameters’ 
initial values into account Pantelides and Renfro (2013); Waltrich 
et al. (2010); Schluse and Rossmann (2016); Magargle et al. (2017). In 
this case, the system’s functional model can be disconnected from 
the physical asset and operated offline to provide inputs into the 
analytics systems for exploring the proposed operating conditions  
Magargle et al. (2017). In addition, in situations where the intended 
use of an asset may change, the existing functional models can be 
slightly modified to match the real asset conditions. These functional 
simulation models can be used to interpret the measurement data in 
different ways and, by generating different scenarios, several modes 
of failure can be simulated and applied for operation optimization or 
asset lifetime calculation Boschert and Rosen (2016); Boschert et al. 
(2018). Thus, we propose: 

Proposition: An FDT is based on physics-based simulation 
and the use of first principles models. The FDTs may be used 
for predicting the behavior of the real system.  

The simulation models used in FDTs are similar to those used in, 
for example, engineering design. This means that the same general 
challenges with, for example, data exchange and model data man-
agement apply to FDTs as they cause problems with the models used 
in engineering and design. 

2.3. Modeling and simulation in DTs 

The field of simulation methods in engineering design is wide 
and contains several general methods, and numerous mathematical 
and numerical methods and techniques, tailored for different kinds 

of purposes. Even in the simulation of physical phenomena and 
systems, based on physical and mathematical models, the variety of 
methods and implementation approaches is wide. One categoriza-
tion of physics-based simulation is to divide the simulation methods 
into the following: .  

1. systemic simulation, representing systems and their overall 
function, performance, and dynamics;  

2. continuum methods, representing continuous volumes of solids 
and fluids, and the phenomena involved;  

3. other simulation methods, for example, methods based on 
probability distributions when applying Monte Carlo simulation. 

The wide variety of applications and, on the other hand, simu-
lation methods and techniques point out the main challenges that 
are often faced in engineering design and in the use of FDTs. These 
challenges are “How can the modeling and simulation data be 
maintained?” and “How can models between different modeling and 
simulation tools be exchanged?”. 

Physics-based simulation requires successful mastering of the 
physical phenomena involved in the target of the simulation—such 
as fluid dynamics, material physics, or mechanical dynamics—and 
further, the implementation of the physics in a computer software 
application. The stack of required knowledge and expertise to im-
plement numerical physics-based simulation is shown in Fig. 3. 
Knowledge of physics lays the basis for modeling the relevant phe-
nomena and enables reliable computational predictions of the 
function, behavior, and operation of the target. Running a computer 
simulation requires mathematical representation of the physics, 
such as the mathematical formulation of the equations for the 
conservation of mass, momentum, and energy in CFD or the relation 
between loads, internal forces, stress and strain, and material 
properties in structural analysis. The mathematical formulation of 
the underlying physics is often represented in the form of partial 
differential equations, which cannot usually be solved and in-
tegrated as they are in a simulation software application—some 

Fig. 2. DT combining the IoT, machine learning, and data analytics with simulation models.  
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numerical or approximative approach must be used. This is the 
numeric representation of the mathematical description of the un-
derlying physics. To have a computer program that can run the si-
mulation, the numerical representation must be implemented into a 
software application by using an appropriate software development 
approach and some programming language. Depending on the case, 
to reproduce the numerical simulation, redoing one or more of these 
layers is required. Quite often, the knowledge of the numerical re-
presentation of the physics is adequate to reproduce the simulation 
with comparative results. The layers from the numerical re-
presentation of the underlying physics in the simulation model re-
presentation stacked in Fig. 3 fall within the scope of this work. 
Thus, we propose: 

Proposition: The implementation of physics-based simulation 
requires different kind of expertise and contains several 
layers, the physics of the phenomena involved, the mathe-
matical representation of the physics, the numerical re-
presentation of the mathematics, the software 
implementation of the numerics, and the model representa-
tion of the simulated system.  

2.4. Long-lasting FDTs, technical risks, and challenges 

FDTs, consisting of physics-based simulation models, rely on si-
mulation software to produce additional information about the 
physical part. As shown in Fig. 4, the main building blocks of an FDT 
are the physical twin (the green box), the digital twin (the yellow 
box), and their data exchange (the black arrows). The FDT consists of 
the simulation software that contains the mathematical re-
presentation of the physics involved, such as the dynamics of rigid 
body systems or the stress-strain behavior of solid materials, a 

description of the details of the case in hand (i.e., the simulation 
model of the particular case), and the computing system, including 
the operating system elements and the computer hardware. In the 
industrial engineering design, computer hardware and operating 
systems are usually third-party components and either commercial 
or open-source solutions are used. With simulation software and 
depending on the application area, the solution can be commercial, 
open-source, or in-house software. These three main elements (i.e. 
computer hardware, computer operating system, and simulation 
software) are general and can be used for different kinds of DTs, i.e., 
they can be purchased or stocked and shared with many kinds of 
DTs. On the other hand, the simulation model is dedicated to one 
type of DT and may even be individual dependent, i.e., the simula-
tion model is dedicated to one DT individual or instance. 

The life cycle risks concerning these elements relate to the 
changes in technology in general, the availability of the elements, 
and changes in the construction of the physical twin. If the tech-
nology development in computing hardware continues to be fast, 
the base computing hardware may change so much that the current 
up-to-date technology is not valid after several decades. As an ex-
ample, the workstation and desktop computers in the year 2000 
were using 32 bit processors with only one computing core. The 
dominant operating systems in industry were Microsoft Windows 
95, Windows NT, or proprietary UNIX systems (such as SunOS or 
Silicon Graphics IRIX). Since the year 2000, the mainstream 
Windows operating system has evolved from Windows NT 4.0 (re-
leased in 1996) to Windows XP (released in 2001), Windows Vista 
(released in 2006), Windows 7 (released in 2009), Windows 8 (re-
leased in 2012), Windows 8.1 (released in 2013), and Windows 10 
(released in 2015) Wikipedia (2022). At the same time, the Linux 
operating system kernel has evolved from Version 2.2 to the current 
version, Version 5.6, and the number of Linux distributions and 
variants is now about 266 Anon (2021). A similar kind of develop-
ment can be seen in simulation software. New companies and 

Fig. 3. The stack of required knowledge and expertise to implement numerical physics-based simulation.  

Fig. 4. The main building blocks of the FDT concept and the elements of the simulation-based DT.  
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software applications are coming to the market, companies are ac-
quired and merged, and new versions of software applications are 
introduced regularly. Estimating the same kind of development 
trend for the computer hardware, computer operating systems, and 
simulation software for the coming decades indicates that the 
computing infrastructure and simulation software will be re-
markably different from what we are using today. 

2.4.1. Case example of FDTs technical risks 
With the following example of a fictive water purification 

system, we illustrate two scenarios of managing FDT model data and 
how the scenarios may affect the life cycle preservation of the FDT 
model data. As shown in Fig. 5, the real water purification system is 
built into a cargo container (the gray box) and it only requires raw 
water supply, electricity for its power supply, and it communicates 
with the outer world either with a cable network connection or with 
satellite communication (the light blue box). The system has a built- 
in DT (the yellow box), which is based on thermodynamic and one- 
dimensional pipe flow system simulation, together with control and 
automation system simulation features. The system model of the 
water purification process contains all the process components, 
pipes, sensors, and instruments that the real system has and it re-
presents the function and behavior of the real process with rea-
sonable accuracy. In this case, the DT of the overall system is used for 
the real twin’s condition monitoring and model-based control of the 
water purification process. This means that the DT is an essential 
part of the overall system, and the system cannot be fully functional 
without the DT. In this case, the expected lifetime of the water 
purification system is 30 years and Company A, which is developing 
and producing such systems, sells 500 system units per year on 
average. 

In the first scenario, Company A decides to use an existing system 
simulation model of the system’s engineering design phase as the 
basis of the DT. The simulation model of the engineering design 
phase is created with a commercial system simulation software 
application, developed and maintained by Company B. The simula-
tion software application provides all the necessary simulation fea-
tures needed, it is easy and efficient to use, and the engineering 
personnel are familiar with it. The choice is natural and, at the de-
sign phase of the system, also obvious. The software is dedicated to 
the modeling and simulation of systems, which are similar to the 
water purification system, and the software contains several mod-
eling elements that are unique to it. The software has its own binary 
format for saving the simulation models and the simulation results 
data, and it does not support exporting the model to any other si-
milar modeling and simulation software application, which is quite 
common in the industrial domain. Ten years after launching the 

water purification system onto the market, the software company, 
Company B, which was developing and maintaining the modeling 
and simulation software, descends into financial problems and 
eventually goes bankrupt, and the maintenance of the software 
suddenly ends. Company A, producing the water purification system, 
has already sold about 5000 units worldwide and is responsible for 
providing support and maintenance for the systems, including the 
essential part of the system, the DT. Company A must replace the DT 
elements of all the sold units with a solution that can be maintained 
and supported. 

In the scenario above, the technical risk for Company A is in the 
aging of the simulation software necessary to run the DT. The si-
mulation software that is running the simulation model of the DT 
requires computing infrastructure. If the development in computing 
technology remains fast, for example, the next generations of the 
operating system may not be compatible with the simulation soft-
ware. This will then lead to freezing the operating system, which 
most likely has a limited service life. Furthermore, the operating 
system limits options for computing hardware as the operating 
system only supports hardware that was available at the time when 
the operating system was maintained. Any final fault in the com-
puting hardware or the operating system can break the system and 
disable the operation of the DT, and eventually, the whole water 
purification unit. The total number of 5000 sold units scales the 
technical risk. As the DT models are in a binary format (i.e., it is 
difficult to reverse engineer them) and the models cannot be ex-
ported to another format that is supported by another simulation 
software, Company A does not have any simple options for replacing 
the models of the DTs, but it must recreate them with another 
modeling and simulation software application. 

In the second scenario, Company A applies an open simulation 
language to develop and represent the simulation models for the DT 
and uses a commercial modeling and simulation software applica-
tion, developed and maintained by Company C, for the modeling and 
simulation work. The model data and the simulation results data are 
stored in an open and well-specified format. Again, 10 years later 
after the launch of the water purification system to the market, the 
software company developing and maintaining the modeling and 
simulation software, Company C, descends into financial problems 
and eventually goes bankrupt, and the maintenance of the software 
suddenly ends. As the simulation models of the DTs are represented 
with an open and well-specified simulation language and as there 
are several other commercial and even open-source implementa-
tions of the simulation language available, transferring the DTs into 
another simulation software is straightforward. 

In this second scenario, the technical risk for Company A is small 
compared to the first scenario. Possible technical problems with 

Fig. 5. Schematic illustration of the case example, a water purification system including a DT.  
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software details and possible problems with numerical solving de-
tails can cause additional work, with which the new software vendor 
may also be able to help. 

3. Strategies for DT data life cycle management 

Application software used along the product model evolution are 
not well integrated; different vendors use different proprietary or 
native file formats that lead to interoperability problems. As an ex-
ample, in the United States alone industries spend billions of dollars 
due to the lack of interoperability between CAD tools Szykman et al. 
(2001). One of the reasons behind this is the business aspect. Soft-
ware vendors keep product information in protective formats and do 
not publicly share specifications about them. The users of such ap-
plication software are not only deprived of important product in-
formation but also limited in their choices of adopting alternative 
tools and are hence unsecured in circumstances in which these 
vendors halt business Brunsmann et al. (2012); Wilkes et al. (2011). 
Developing standardized, neutral, and open data formats for such 
applications will not only reduce the interoperability costs González 
et al. (2007) but also assist software users to keep running their 
simulation models along the product life cycle. 

Considering that the data management of FDTs has life cycles of 
decades, information about the underlying simulation models needs 
to be preserved in formats that are independent of the original 
software tools. Thus, in situations where the original application 
software is incapable for opening or running a simulation model, the 
DT developer should be able to reproduce and run the corresponding 
model with alternative tools by utilizing the preserved information. 
Thus, we propose: 

Proposition: The black box proprietary file formats and the 
lack of interoperability among the application software in-
crease the risks of the incapability of the computing infra-
structure to keep the FDTs running throughout the physical 
asset’s life cycle.  

Fig. 6 shows a number of strategies (in green boxes) and example 
technologies (in white boxes) for alleviating the issues associated 
with the long-term data management of FDTs. For each main ele-
ment of the FDT (in yellow boxes), one or more approaches are 
needed, for example: the further development of the STEP standard 
would unify the simulation model description; the widely supported 
formats, such as NASTRAN and Ansys, would provide flexibility in 

terms of simulation software selection; the open format specifica-
tions (e.g., UFF and CGNS) and open modeling languages (e.g., 
Modelica and Julia) would, respectively, promote common data 
formats and bring interoperability among software tools; and the 
preservation of original IT infrastructure would be required in some 
cases (e.g. for mission-critical applications). These strategies are 
discussed in more detail in the following sections. 

3.1. Standardization of model description 

Standardization is an influential approach to improving information 
exchange and interoperability. When performed by a well-established 
standardization authority, it provides a solid basis for stable and long- 
lasting information preservation. In the case of CAD, for example, the 
role of ISO 10303 STEP Anon (1994) (especially its application protocols 
AP203, AP214, and AP242) as a neutral and widely accepted geometry 
representation technology enables the maintenance and exchange of 
geometry information between different parties using different CAD 
software applications throughout the product or system life cycle. 
Well-formed standards define the semantics and syntax in such a way 
that the information content is preserved. Thus, the representation of 
product information in a standardized data model helps to Johansson 
et al. (2004) do the following: .  

1. integrate existing and future software tools; 
2. communicate and share information easily among different do-

mains and applications without the need for customized inter-
faces;  

3. provide users the opportunity of adopting an application that 
best performs a given task, provided it exchanges data with other 
software in a standardized format. 

However, the process of developing and defining a standard is 
typically time consuming and demanding. For rapidly developing 
and evolving topics, the process of defining and agreeing upon a 
standard may be too laborious and slow; hence, other alternatives 
should also be considered. Thus, we propose: 

Proposition: Standardization improves interoperability 
among software applications and makes the exchange and 
understanding of information easier. It also improves data 
preservation for long product or system life cycles. However, 
standardization is a cumbersome process and requires re-
markable efforts.  

Fig. 6. Strategies for long-term data management of FDTs.  
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3.2. Open format specifications and open modeling languages 

In engineering simulation as well as experimental research and 
development, the need to exchange data between software appli-
cations has led to the creation of open and common specifications of 
data exchange formats. An example of such a format is the Universal 
File Format (UFF) Anon (2021). This de facto standard format was 
originally developed for data exchange between CAD and CAE sys-
tems and experimental test systems. It is also used for data exchange 
between structural analysis software applications using FEM. An-
other example of an open file format is the CFD General Notation 
System (CGNS) Anon (2015). Widely accepted and adopted open 
formats enable the users of engineering software applications to 
change the software tool, if needed, and to preserve the efforts done 
for the simulation models. Besides this, the wide acceptance of the 
open formats increases the possibility that the format will be sup-
ported for a long time by the software vendors. 

In a system simulation, the diversity of computational elements 
in the computations makes it difficult to use the similar kind of 
approach as that of the UFF. To preserve the information needed for 
reproducing the computation with the simulation model, the nu-
merical solving schema should also be involved. The numerical 
solving schema may differ between simulation software applica-
tions, including differing in regard to how the model components 
are described mathematically but also regarding the overall nu-
merical solving approach of a model. One approach to overcome this 
issue is the use of a modeling language. A modeling language in-
cludes the means to describe the simulation model components, 
their mathematical representation, and the overall approach to for-
mulating the system model independently of the application soft-
ware’s implementation. Examples of such languages are Modelica  
Association (2020) and Simscape MathWorks (2020). 

Modeling languages also enable describing a simulation or ana-
lysis case with a programming language that is designed for this 
purpose. A language approach enables separating the simulation 
model representation from the tools that are used for the modeling 
and simulation. The approach is similar to that of commonly used 
programming languages, such as C or Fortran. The specification of 
the language is open and independent from the implementations of 
the tools for the language. This gives the user, at least in principle, 
the freedom to choose the best tool, and even the opportunity to 
change the tools without losing the investments on the modeling 
and simulation work. Examples of open modeling languages are 
Modelica and Julia Anon (2021). 

A simulation-domain independent approach for describing 
model data is to use general data modeling and, for example, me-
tamodeling languages (such as Unified Modeling Language [UML] 
and its profiles mechanism) to define domain-specific concepts and 
features Anon (2019). 

The Functional Mock-up Interface (FMI) is an open and free 
standard for improving the reuse and exchange of system simulation 
models and model components Anon (2022). The standard covers 
two general use cases, model exchange and co-simulation. The 
model exchange with FMI enables the exchange of simulation 
models, partial models, or model components between various 
modelling and simulation tools, and the co-simulation is for the 
coupling of simulation tools during the simulation. The FMI standard 
is supported by more then 170 modelling and simulation tools and 
the standard is maintained and its development is coordinated by 
the Modelica Association. When using FMI for DT model data 
management, the black box nature of model exchange with FMI 

hinders any necessary modifications of the DT simulation models if 
the original simulation model is not available. 

Open data formats and open modeling languages are a valuable 
means to represent simulation model data and to exchange it be-
tween simulation software applications. Thus, we propose: 

Proposition: The DT solutions that are based on application 
software utilizing open formats and open modeling lan-
guages improve data exchange and ensure the information 
availability for reproducing the simulation models with al-
ternative tools whenever needed.  

3.3. Widely supported software application-specific formats 

In some computational engineering domains, widely used soft-
ware applications and their data formats can get a dominating role 
as the formats are increasingly supported by several software ven-
dors. This may especially happen when the documentation of the 
format is open and even publicly available. Examples of such formats 
are NASA Structure Analysis (NASTRAN) in structural analysis (e.g., 
Simcenter Nastran by Siemens and MSC Nastran by Hexagon) and 
Ansys Fluent in CFD. Similarly to the software-independent format 
specifications, widely accepted software-specific formats are also 
expected to be supported for a long time, and the users have the 
option to change the software application if needed. Thus, we 
propose: 

Proposition: The application of widely used simulation pro-
grams and their open data formats would help in keeping the 
FDTs running for a long time because such solutions are 
supported by multiple software vendors. In the case of a 
solution that is becoming outdated, the DT developers would 
be able to adopt another compatible solution.  

3.4. Software source code 

Another approach to guarantee simulation model data pre-
servation for long life cycles is to represent all the data in a source 
code format. This means that the simulation software needed to run 
the simulation is included in a source code format, such as the C++ or 
Fortran programming languages, and the additional data needed for 
the computation, such as possible model description or other input 
or accessory data, are provided in an accessible and editable format. 
Widely used and standardized programming languages are well 
preserved, even for very long life cycles. This approach is rather la-
borious to implement, but in long life cycles it provides the flexibility 
to, for example, update the simulation models. In addition, it does 
not include serious risks of third-party software or licensing 
changes. When using open-source software applications for simu-
lation, this approach is rather straightforward. However, one still has 
to take care of the possible changes in the underlying third-party 
components and libraries, and other possible dependencies of the DT 
software. In very long timespans, caution must be taken regarding 
the compatibility of the computing infrastructure (i.e., the com-
puting hardware and operating system). Thus, we propose: 
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Proposition: The preservation of simulation software in a 
source code format using a standardized programming lan-
guage would enable long-term operation of FDTs. This ap-
proach naturally requires that the source code is available. 
This is usually not the case with commercial simulation 
software.  

3.5. The preservation of the original IT infrastructure 

The challenges associated with storing digital product or system 
models in native formats have been widely documented. Most of the 
commercial software applications store model data in their dedi-
cated formats that are intended to only be read by the applications 
that originally produced them. Problems may occur when newer 
versions of software applications are used to open the design or 
engineering models for modifications. 

Native models are easily accessible if the original software and 
hardware systems are available. Thus, it is not only the data that 
must be archived, the means to make sense of the data must also be 
preserved. For long-term access to FDT models, it would be neces-
sary to archive the whole IT infrastructure (i.e., computer hardware, 
operating system, and simulation software) that was originally used 
for their development. However, this approach would limit the in-
tegration of the DT with other, e.g. more advanced, systems in the 
long term. Thus, we propose: 

Proposition: Preservation of the original software and hard-
ware systems could also be considered as an alternative in 
order to mitigate the risks of losing the IT infrastructure 
needed for FDTs’ operation. This approach is usually very 
demanding and could be used for mission critical cases.  

4. DT life cycle risks from the business point of view 

4.1. Dependency and servitization risks 

DTs are highlighted in servitization, where “servitization” refers 
to the process through which, for example, manufacturing compa-
nies complement their traditional offerings by integrating services 
into their business operations Rönnberg Sjödin et al. (2016). Litera-
ture reports a large variety of benefits that can be achieved with DTs, 
such as cost reduction and efficiency Jones et al. (2020). However, 
incorporating DTs into the service offerings also includes business- 
related uncertainties and risks, especially in a situation where DT is 
provided by a third party. First, there can be dramatic consequences 
if the third-party DT provider disappears from the market (for ex-
ample, because of bankruptcy). Second, the DT provider may have 
serious technical issues with its services, and the main system 
provider has no easy way to change the DT provider, for example, 
because of the software and technical debt related to the develop-
ment and updating of DTs Malakuti and Heuschkel (2021); Malakuti 
et al. (2021); Holvitie et al. (2018). In comparison to traditional in-
dustrial engineering that uses commercial, closed source tools with 
dedicated data models and formats, DTs are often designed to be 
open source for all the relevant stakeholders which increase their 
dependency on third-party provider. Thus, we propose: 

Proposition: Dependency on the third-party provider in-
creases the life cycle risks of a DT in the servitization 
business.  

The main reason behind the risks is a lack of standardization. For 
example, Fuller et al. (2020) concluded that challenges within all 
forms of a DT’s development relate to the modeling of such systems 
because there is no standardized approach to modeling. Standar-
dized approaches increase understanding among domain experts 
and users while ensuring information flow between each stage of 
the development and implementation of a DT. In order to mitigate 
the life cycle business risk of a DT, the main providers may need 
trusted and licensed third parties that are holding a source code in 
addition to the forthcoming standardization. Whereas the holding of 
the source code may reduce the risk of the disappearance of the 
service provider, the possible future standardization would mitigate 
the business risks related to the software debt Malakuti and 
Heuschkel (2021); Yli-Huumo et al. (2016), of DTs. During the life 
cycle of a DT, the underlying software may require constant devel-
opment and updating, the costs of which are usually covered by the 
service provider. However, if the software debt is based on the 
changes in the physical operation environment, it may also incur 
some costs for the DT utilizer. From the business perspective, the 
standardization of DTs may thus reduce the costs of software debt. 
However, it is not self-evident that a third-party provider is willing 
to share the source code and to use the standard modeling in all 
cases. High-level physical modeling is the third-party provider’s core 
business, and sharing it requires trust building and discussion about 
mutual benefits. Thus, based on the notions above, we propose: 

Proposition: In addition to standardization, trust building and 
mutual benefits mitigate the risks related to a third-party DT 
provider.  

4.2. Human capability-related risks 

Even though organizations increasingly utilize DTs to improve 
their competitive advantages, productivity, and efficiency through 
automating and digitalizing the processes of the physical counter-
part composed of, for example, mechanical and electrical compo-
nents as well as sensor technology for data gathering Malakuti and 
Heuschkel (2021), Lim et al. (2020), the human-related business 
risks of DTs still exist. Despite the fact that the design, construction, 
and implementation of the DTs require computation tools, and the 
fact that technology building blocks exist that reduce the develop-
ment costs of DTs Alam and Saddik (2017), their implementation 
also requires understanding about the business processes of the 
organizations. In addition to the above-mentioned software debt, 
the development and updating of DTs involve risks related to the 
technical debt, for example, in a situation where the physical 
counterpart may require modifications for proper data acquisition  
Malakuti et al. (2021); Holvitie et al. (2018); Malakuti (2021). If the 
organization does not have capable persons to understand the 
business perspective of DTs and to outline the cost efficiency of 
updating DTs, they may face the situation in which the developed 
solutions never achieve payback. Not only do the updating and fixing 
of DTs during their life cycle cause costs, but it is also challenging to 
recruit and keep employees who have both computational cap-
abilities and understanding of the computational algorithms and 
physical operational environment. Thus, we propose: 

Proposition: The lack of understanding (the lack of skills and 
competences) of how to maintain DTs increases the life cycle 
risks of a DT.  
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An important characteristic of a DT is that it generates data and 
information in order to both support the decision-making of an or-
ganization’s strategy and processes, and to forecast future business 
opportunities Liu et al. (2019). The interpretation and utilization of 
the data and information produced by DTs involve expertise that is 
strongly human related. If such human capabilities are lost from 
companies (for example, due to retirement or job changes), the 
people debt Malakuti (2021) related to DTs is caused that leads to 
challenges in interpreting and exploiting the data generated by the 
DTs. Based on the above, we propose: 

Proposition: Training and coordinating the personnel for data 
interpretation would ensure the efficient utilization of DTs 
through human capabilities and decrease the life cycle risk 
of DTs.  

4.3. Coordination-related risks 

Coordination complexity emerges if the relevant information 
about the implemented DT is not at hand for all the relevant persons 
of the utilizing entity. While DTs provide possibilities to generate 
and exchange data, for example, with suppliers, customers, and 
competitors, the operating of them requires coordination to ensure 
optimal and meaningful use. It is not only about understanding and 
minimizing the DT related software debt Yli-Huumo et al. (2016), 
technical debt Malakuti et al. (2021), and people debt Malakuti 
(2021) for the stakeholders, but the DT technology requires ex-
planations at the inter-functional level so that the benefits and 
functioning of the DT are evident for the users. This causes risks 
related to the coordination of the DT along the life cycle if the si-
mulation model is at risk of disappearing due to the aging of the 
required technologies caused by the technical debt, and if moving to 
a new modeling and simulation platform is not possible, e.g., be-
cause of the software debt or the lack of standardization. This gen-
erates possibilities to intentional or unintentional misconducts of 
DTs, for example to get and share data that is not intended to be 
shared. Thus, we propose: 

Proposition: The coordination complexity of the DT tech-
nology increases its life cycle risks.  

As DTs, at their best, are efficient ways to assist visualization, 
promote collaboration, and support decision-making Bao et al. 
(2019); Kaewunruen and Lian (2019), the coordination complexity 
related risks require active initiatives to be avoided. One solution to 
alleviate such risks is to put emphasis on inter-functional manage-
ment of the DT. After all, the efficient utilization of DTs requires 
different parties to share information with each other. The risk of 
coordination complexity can also be avoided by allowing parties 
from different departments/organizations to participate in the de-
velopment of the DT. In this way, it is possible to avoid bad technical 
choices during the solution development phase that may cause in-
creasing technical and software debts Holvitie et al. (2018) and risks 
later on. Coordination complexity risks are also likely to appear if the 
company invested massively in DTs in order to manage knowledge 
ownership but left the thoughtful introduction of their utilization to 
the later phase. Avoiding such a risk may require introducing DT 
technology gradually or being specific about the direct applications. 
Thus, to avoid the coordination complexity risk, we propose: 

Proposition: Inter-functional management and gradual im-
plementation of the DT technology may reduce coordination 
complexity-related life cycle risks of DTs.  

5. Discussion and conclusions 

The progress in the evolvement of the DT concept has been fast, 
especially due to the rapid development in enabling technologies, 
such as the IoT, data analytics, big data, and AI. This is due to the 
promising prospects that the concept is showing, both for the users 
of DTs and for the service and solution providers. DTs are estimated 
and reported to increase productivity, efficiency, and maintainability, 
among other benefits. Due to the reported benefits and because of 
the ongoing hype in developing and applying DTs, the fast progress 
can blind businesses to the potential long-term risks of DTs. These 
risks are associated with the complexity and dependencies of the 
implementation, the long life cycles of the physical products and 
systems, and their corresponding DTs. 

Our findings on the definition of a DT are: 1) there is no 
consensus on an explicit definition of a DT; 2) the definition of a 
DT is continuously changing; and 3) the definition itself does not 
add much value but improves the communication about DTs. One 
of the tasks for research is to define new concepts. Concerning the 
concept of a DT, there is no consensus about the definition, and the 
concept has been defined by many and the existing definitions have 
been improved continuously. What seems to be held in common is 
that the main elements of the concept are the physical or real 
system, its digital representation, and the data connection between 
the two. The concept of a DT is multifaceted and depends on the 
context, application, objectives, and needs, and also on many tech-
nical and business aspects. Due to this, there is not only one right 
way to apply DTs and there cannot be a clear set of steps to success. 
On the other hand, there are many things to be considered when 
applying DTs. The value of DTs comes from their applications, not 
from the concept’s definitions. 

In this work, we focused on the data management issues of 
FDTs that are used as integral parts of the corresponding physical 
asset, and FDTs have dependences on computing hardware and 
software technologies, which make their life cycle management 
challenging. To define the category of an FDT is to narrow the scope 
to applications where there are certain kinds of aspects involved, 
namely the numerical simulation of physics-based models and the 
long expected life cycle of the overall system. FDTs are developed 
and operated using specific platforms (i.e., computer hardware, 
software systems, and simulation tools) that evolve along with the 
technological progress. This trend could possibly affect the operation 
of FDTs, especially for long life cycle assets, and cannot be simply 
handled in the case of the unavailability of any of the three main 
elements that are required for computer simulations. As the com-
puter hardware and operating systems are continuously evolving, 
the selection of the simulation approach and software remains the 
only choice to make for DT providers at the very initial phase that 
affect the long-term operation of DTs. In addition, most of the 
commercial simulation software utilizes black box modeling tech-
niques; hence, the DT provider should consider simulation tools that 
provide detailed information about the DTs’ models, including the 
principles of the involved physics and the implementation of the 
physics in numerical computing. This information should be pre-
served in long-lasting formats and then be utilized, whenever 
needed, for reproducing the DTs’ simulation models by using up-to- 
date tools. 
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The information content and the required expertise related to 
physics-based simulation have multiple layers. The basis for the 
information needed is the physical phenomenon that must be si-
mulated. The language to describe the details of physics is mathe-
matics, and in the computational approach, that usually means 
ordinary or partial differential equations together with algebraic and 
other formulations. Solving the mathematical sets of equations with 
computers requires different kinds of numerical means in order to, 
for example, estimate differentials and efficiently solve the equa-
tions. Implementing this in a computer software application requires 
that the numerical representation is programmed into the software, 
including any other required functionalities. All this is still on a 
general level and does not describe any particular simulation case. 
To represent the function of a particular system, its features must be 
described for the simulation software (e.g., in a form of a model 
description). Within this chain of layers for representing the in-
formation needed for the simulation, the layers from the numerical 
representation to the particular simulation model description are 
needed for reproducing the simulation model whenever needed. 

In Section 3, we discussed different strategies for the life cycle 
management of the DT model data.Table 1 summarizes the scope, 
status, and flexibility of various strategies (see Section 2 for details) 
focusing on different simulation approaches. The added-value of 
these strategies requires further development as the technologies 
introduced in this study are still not fully mature. Moreover, the FEM 
and CFD are combined together because these domains rely on 
discretized geometry volume and applying partial different equa-
tions on the elements (FEM) or cells (CFD), whereas the system si-
mulation has quite different bases and its challenges require 
different strategies. 

In general: 1) standardization was found to be a strong and 
solid means to preserve the DT model data for long life cycles; but 
2) the lack of standards in some simulation domains, especially 
in system simulation, was found to be a problem. Standardization 
has been considered an important solution for improving inter-
operability among the CAx systems (i.e., the CAD, CAM, and CAE 
systems). It benefits both the user and the vendor communities by 
reducing the software development, maintenance, and support 
costs. The standardized data files of one tool can be processed by 
another similar tool and the problem of vendor lock-in can be alle-
viated. However, due to the rapid improvements in the services and 
business strategies of the software vendors, standardization would 
require remarkable efforts. The number of required resources com-
pared with the added value has to be evaluated from technical and 
business points of view. The authority requirements for information 
preservation are strong motivators to develop the required tech-
nologies and to enhance standardization efforts. This has been the 
case in the airplane industry and the development of the STEP 
standards family. The rising interest in DTs can serve as the tipping 
point for the standardization of simulation model representation. 
The expected active life cycle of DTs is longer than the one of en-
gineering models, and the number of stakeholders that are influ-
enced by the DTs can be large. These things together can have 
enough critical mass to initiate the effort for standardization. 

Compared with standardization, the open specification of 
data formats and their representation was found to be an agile 

and workable approach. As standardization is often seen a time- 
consuming and burdensome process, the open data format specifi-
cation is a lightweight approach to defining a standard kind of 
common definition. In contrast to black box modeling techniques, 
the application software utilizing open formats (e.g., UFF and CGNS) 
and open modeling languages (e.g., Modelica and Julia) provide de-
tailed information about the simulation models. This facilitates the 
software users in choosing the tool that best fulfills the required 
purpose. The open formats and open modeling languages are ex-
pected to be available for longer periods. Thus, if one software 
vendor has difficultly in maintaining the FDTs’ models, the user can 
easily adopt alternative solutions without any major business dis-
ruption. However, most software vendors may not encourage the use 
of open formats and open modeling languages because they want to 
sustain their core competences and businesses. 

In some cases, transforming data from one representation to 
another cannot be avoided beforehand and preparing for fluent 
data transformation instead of statically preserving the DT model 
data may be a more efficient approach. An alternative approach for 
standardization and open format specification is the use of meta- 
models and meta-modeling languages. Instead of focusing on de-
fining the information content and a common format to represent it, 
this approach focuses on the means to decrease the effort needed to 
transform the data from one representation to another. While 
adding a new layer of abstraction, this approach may provide im-
proved scalability and flexibility. The meta-modeling approach still 
requires definition of the information content and format. Thus, it 
does not completely solve the issue but provides tools for decreasing 
the effort. 

Widely supported proprietary data formats can be a cost-ef-
ficient way of preserving DT model data, but the approach has 
some drawbacks. Within some simulation domains, such as struc-
tural analysis and CFD, some widely used simulation tools and their 
file formats become commonly supported. For instance, the 
NASTRAN and Ansys file formats are supported by many different 
structural analysis tools and the disappearance of one tool can be 
compensated for by adopting an alternative tool that is available in 
the market. This may result in a certain amount of information loss; 
nevertheless, the files are conveniently imported and exported 
among the supported application software. The enabler for the 
cross-use of these formats is the sufficient documentation of the 
format and the vendor’s allowing attitude regarding others using 
these formats. 

For mission-critical applications of DTs, preserving the DT 
software development environment or, further, even the overall 
computing environment may be required. The above-discussed 
means may not be enough when the application of a DT is mission 
critical or when there is, for example, an authority requirement to 
have all the necessary elements preserved for DTs and no standar-
dization or open specifications are available. In these cases, the si-
mulation software required for running the DTs’ models can be 
preserved in source code format using the standardized program-
ming languages, such as C++ and Fortran. Although the standardized 
programming languages are expected to be supported for a long 
time, their compatibility with the available computer hardware and 
software systems cannot be fully guaranteed. In addition, the 

Table 1 
Comparison of strategies for life cycle management of DT data models.      

Strategy Applicable simulation approaches Effort Flexibility  

Standardization of model description FEM, CFD, system simulation High High 
Use of open format specifications FEM, CFD Medium High 
Use of open modeling languages System simulation High Medium 
Using tools with widely supported formats FEM, CFD Low Medium 
Preservation of original IT environment FEM, CFD, system simulation High Low 
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approach may prevent the potential risks of being involved in an 
agreement with third parties and their changing licensing policies. 
However, this approach seems to be cumbersome as well as re-
quiring in-house competences. The approach requires that all as-
pects of numerical simulation are covered. On the other hand, this 
approach fits together well with open-source software applications. 
Since FDTs are developed and operated using dedicated simulation 
software, computer hardware, and operating systems, preserving the 
required IT infrastructure could also help in the long-term operation 
of such DTs. This approach may seem straightforward, however, it 
would be quite difficult to manage the number of IT systems as more 
and more DTs are developed for every individual asset deployed in 
the real environment. 

From the business point of view, DT life cycle risks are de-
termined by the extent to which the DT utilizers: 1) are depen-
dent on third-party providers; 2) lack the human skills to manage 
DTs; and 3) are capable of managing the coordination complexity 
of DTs. The business risks of DTs are extensively caused by the in-
sufficient management of technical risks. Thus, focusing on stan-
dardization, trust building, and mutual benefits is likely to decrease 
the risks related to a third-party DT provider. Coordination and 
updating the capabilities of data interpretation decrease the risk of 
having insufficient human knowledge to manage the entire DT life 
cycle. Further, inter-functional management and gradual im-
plementation of the DT can mitigate the risk of insufficient co-
ordination of the DT data. Future research should investigate the 
extent to which in-depth ecosystem-level collaboration could assist 
in decreasing the life cycle risks of DTs. 

While the technical enablers for implementing and applying DTs 
are maturing and there are new technologies, such as virtualization, 
that widen the possibilities to manage DTs, the fundamental chal-
lenges remain. The applications of DTs that contain technically de-
manding elements, such as complex physics-based simulation and 
the implementation of numerical methods, require that enough in-
formation is preserved for any possible future problems. In mission- 
critical cases, even extreme means are required to guarantee that the 
whole stack of technologies is available, including computing 
hardware and the operating system. One of the main outcomes of 
this work is that when the overall complexity is increasing, a certain 
level of standardization and open specification is needed. Similarly, 
as the size of the group of stakeholders affected by the operation of 
DTs is increasing, the motivation for initiating and implementing 
standardization efforts may pass the threshold for the often labor-
ious process. In addition to standardization, other technical enablers 
are needed to enable the realization of the full potential of DTs. The 
application of DTs is not only a technical issue, it also has organi-
zational and business dimensions. 
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