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Abstract: Organizational neuroscience is recognized in organizational behavior literature as offering
an interpretive framework that can shed new light on existing organizational challenges. In this
paper, findings from neuroscience studies concerned with adaptive behavior for ecological fitness are
applied to explore industrial adaptive behavior. This is important because many companies are not
able to manage dynamics between adaptability and stability. The reported analysis relates business-
to-business signaling in competitive environments to three levels of inference. In accordance with
neuroscience studies concerned with adaptive behavior, trade-offs between complexity and accuracy
in business-to-business signaling and inference are explained. In addition, signaling and inference
are related to risks and ambiguities in competitive industrial markets. Overall, the paper provides a
comprehensive analysis of industrial adaptive behavior in terms of relevant neuroscience constructs.
In doing so, the paper makes a contribution to the field of organizational neuroscience, and to research
concerned with industrial adaptive behavior. The reported analysis is relevant to organizational
adaptive behavior that involves combining human intelligence and artificial intelligence.

Keywords: adaptive behavior; competition; ecological fitness; entropy; environment; inference;
lock-ins; organizational behavior; organizational neuroscience; signaling

1. Introduction

In neuroscience research, it has been argued that access to a higher number of neural
states can better facilitate adaptation with changing environments. It has been argued that
access to a higher number of neural states can be described as higher brain entropy [1].
This is a latent entropy, as it refers to the number of neural states that could be accessed.
Apropos, brain entropy is associated with potential for divergent thinking [2]. Yet, it is also
recognized that neurological functioning needs to be efficient [3], and that actual entropy
needs to be minimized [4].

For example, if an industrial organization offers too many product variations, its
production operatives may experience information-theoretic entropy from information
uncertainty about how to carry out production processes. This information uncertainty can
lead to the statistical mechanics entropy of physical disorder in production as operatives
attempt several different ways to carry out the work. For example, if there is an information-
theoretical entropy of 2.58 bits, there are six equiprobable but different ways in which a
task could be carried out. If only one of those six different ways of carrying out the work is
correct, there will be thermodynamic entropy when the production operatives’ potentially
useful thermodynamic energy becomes practically useless thermodynamic energy as it
is lost in failed actions to carry out work [5]. Accordingly, the balancing of adaptability
and stability depends upon balancing latent organizational entropy for adaptability, and
actual process entropy for stability. This balancing of adaptability and stability is necessary
for an organization to be viable [6]. In this paper, comprehensive analysis is provided of
industrial adaptive behavior in competitive markets. The analysis draws upon studies
founded upon theoretical neuroscience concerned with adaptive behavior for ecological
fitness. Within these studies, living things have internal generative models that need to be
synchronized with external generative processes in the environment. External generative
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processes and internal generative models should have reciprocal exchanges of signals and
inferences that inform reciprocal learning and development. Synchronization needs to
balance trade-offs between complexity and accuracy to achieve futures that are minimally
risky and minimally ambiguous [4,7–11].

Organizational neuroscience is recognized in the organizational behavior literature
as offering an interpretive framework that sheds new light on existing problems [12]. The
analysis presented in this paper is novel in that it provides three interrelated contributions
to organizational behavior research. First, it extends the application of organizational
neuroscience in the analysis of interactions between organizations. By contrast, other
organizational neuroscience studies have focused on behavior within organizations, for
example leadership within organizations [13], and management decision-making within
organizations [14]. The second contribution is to relate organizational neuroscience to
management literature concerned with organizational adaptive behavior [6,15]. The third
contribution is to relate organizational neuroscience concerned with adaptive behavior to
industrial practice. This is important as most industrial organizations continue to be either
agile through focusing on adaptability or lean through focusing on stability [16].

The analysis of industrial adaptive behavior is presented in six further sections. In
Section 2, neuroscience studies are related to efforts in industry to balance adaptability and
stability. In Section 3, analysis of signaling and inference between industrial companies is
provided. In Section 4, trade-offs between complexity and accuracy in industrial adaptive
behavior are explained. In Section 5, industrial adaptive behavior is related to risks and
ambiguities in competitive environments. In Section 6, principal contributions are stated,
practical implications are discussed, and directions for future research are proposed. In
Section 7, conclusions are stated.

2. Adaptability/Stability Dynamics

In practice, industrial software systems, such as product configurators, can contribute
to mediating between adaptability and stability. Product configurators can be described as
online brochures, which enable potential end-users to select and configure sub-assemblies
into their preferred products [17]. In terms of signaling, product configurators signal
fittest offers by displaying product options and receive signals of end-user preferences by
receiving orders for product options. To continue with this framing, product configurators
generate patterns of interaction with the world based on an organization’s generative
model. For practical purposes, the generative models of industrial organizations are their
business models [18]. In the short-term, internal stability can be facilitated by not updating
the variety of signaling with product configurators. However, not updating signaling
variety can lead to insufficient adaptation to environmental changes in competitive markets.
This can be framed as under-fitting an organization’s generative model to the competitive
environment. Conversely, continually updating signaling variety in response to every
market signal can lead to over-fitting an organization’s generative model to the competitive
environment [19]. This can undermine internal stability as different parts have to be
bought in and work processes have to be modified for every contract. Thus, industrial
organizations seek to find balance between being as open as possible to market signals while
maintaining internal stability by not being too open. This involves common initiatives,
such as organizations attempting to transition from engineering-to-order whatever each
individual customer may have in mind to mass customization of predetermined sub-
assemblies and configuration options. Yet, despite such initiatives to balance adaptability
and stability being common, they are seldom entirely successful [20].

In neuroscience research, it has been argued that access to a higher number of neural
states can better facilitate adaptive behavior [1,2]. In industrial practice, a company’s
number of accessible states can be related to so-called value constellations [21]. For exam-
ple, value constellations can comprise an original equipment manufacturer’s long list of
potential suppliers. Original equipment manufacturer (OEM) is a term used to describe
organizations that develop and market manufactured goods [22]. The larger the number
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of suppliers on the list, the larger the number of supply states that an OEM could access.
Nonetheless, when organizational latent entropy is a list of suppliers, organizational latent
entropy can be maximized by the company with minimal actual entropy and so with
least action [5]. For example, suppliers could submit their details to the OEM via the
OEM’s website. Such procedures are consistent with the principle of least effort in the
management of information [23,24]. Thus, the value constellation does not entail actual
information uncertainty that leads to physical disorder that involves useless expenditure
of thermodynamic energy in unproductive actions. Rather, the value constellation has
latent entropy, i.e., entropy that is not manifesting but has the potential to do so. From a
long list of suppliers, individual project-specific arrangements of suppliers can be made.
Project-specific arrangements involve carrying out work to change inter-organizational
connections from weak network ties to strong project ties [21]. Such work can involve
carrying out negotiations and signing a project contract. If project work proceeds to contin-
uous work, such as when a relationship in product development becomes a relationship
in product supply, further work will be carried out to minimize entropy. This can begin
with the rationalization of supply chains. Thus, there can be an expansion of the number of
latent states through the exploration of potential suppliers, followed by reduction to a few
actual supply states that exploit strong ties between OEM and selected suppliers. Yet, the
entrenching of supply chain relationships can lead to increasing stability at the expense of
adaptability to environmental change [25].

More generally, increasing stability at the expensive of adaptability can involve organi-
zational lock-ins to existing paths of action. The development of organizational lock-ins can
involve some paths of actions becoming deeply entrenched until all of the organization’s
actions are path-dependent. This can lead to organizations experiencing so-called counter-
factual stability due to the organization having what has been described as a rationality
shift [26–28]. This can involve organizations stubbornly continuing to use old beliefs to
try to navigate in new environments [11,29,30]. Organizational commitment to out-of-date
paths of action can increase even through there is increasing evidence that doing so is not
successful [31–33]. Especially when considering itself under threat, an organization can
become rigid in its persistence with ineffective actions [34]. Although counterproductive,
such commitment to failing courses of action can be seen as a way to manage trade-offs be-
tween complexity and accuracy in order to minimize risk and ambiguity. This can happen
if organizations seek to reduce complexity by paying more attention to out-of-date beliefs
than to signals that indicate the course of action is counterproductive. As a consequence,
an organization can cease to be viable because it focuses on internal stability at the expense
of its adaptability to environmental change [5].

In terms of neuroscience concerned with adaptive behavior [4,7–11], insufficient adap-
tation involves an organization’s internal generative model not maintaining synchrony
with generative processes in the external states of the world. This could begin with one gen-
erative model parameter not maintaining synchrony, which can lead to an organization’s
overall generative model losing synchrony. For example, one business model parameter
can be product development, and organizations can continue with new versions of old
products. This can then lead to loss of synchrony on the product development parameter,
which leads to loss of synchrony on the marketing parameter, and so on. Overall, lock-ins
can prevent organizations’ generative models from going through necessary cycles of
expansion for strategic adaptation, and reduction for operating efficiency [35]. In particular,
this may involve expansion to encompass new hypotheses for explaining new signals
from the environment, and subsequent reduction by merging several hypotheses into one
generalizable new explanation for many new signals. Organizational lock-ins, for example,
in terms of products and/or suppliers, can be conceptualized as open slots in a generative
model being replaced permanently by fixed chunks. For example, a frame and slot for
product development in a generative model can be as follows: a good production vehicle
for the market today is X, where X is the open slot. By contrast, a fixed chunk for product
development in a generative model can be as follows: a good production vehicle for the
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market today is always our old production vehicle that was the market leader for many
years. If this happens, organizations can confuse what they imagine based on memories
with the operating realities of current situations [36]. In such cases, generative models
can be scored internally based on the past rather than on synchrony with present environ-
mental conditions. This could contribute to organizations persisting with the signaling of
out-of-date products, for example with product configurators and traditional brochures,
and suffering reduced customer loyalty due to a lack of innovation [37–40].

3. Signaling and Inference

Figure 1 shows exchanges between generative processes in the external states of the
world and generative models in internal states of an organization. In this example, an
OEM is the source of the generative processes in the external state of the world, and
the generative model is that of an end-user company. Figure 1 is an original diagram.
However, distinguishing between external states and internal states is fundamental in
neuroscience research concerned with adaptive behavior for ecological fitness [7–11], and is
consistent with well-established conceptualizations in organizational studies. For example,
interactions between internal states and external states are important in Kurt Lewin’s
field theory [41]. Additionally, interactions between internal states and external states
are important in Ronald Coase’s article “The Nature of the Firm”. In particular, where
companies position their boundaries can depend upon a comparison of differences between
the transaction costs of doing work internally or buying in work done in the market [15].
Here, end-users are the users of the manufactured goods.
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Figure 1. Inter-organizational signaling. (a) The developer/vendor (OEM) of a production vehicle
intends that its signal of best ecological fitness will be implied, implicit, and explicit. (b) User organi-
zation observes that the production vehicle does provide explicit, implicit, and implied best fitness.

Generative processes in external states can cause the sensory inputs of agents. For
example, the sensory inputs of agents can be caused by product signals [42,43]. In Figure 1,
the agent is the end-user. Agents’ generative models provide the basis for inferences and
for generating patterns of interaction with external states. Sensing and actions take place in
the interface state. The greater the synchronicity in exchanges between generative processes
and generative models, the greater the ecological fitness of the agent and the potential
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for long-term survival. Here, synchronicity refers to back-and-forth reciprocal exchanges
of learning and development [11,44]. In the example summarized in Figure 1, the OEM
develops and markets large industrial production vehicles, while the end-user leases and
operates one of the OEM’s large industrial production vehicles. As summarized in Figure 1,
the OEM begins its product development process from what is intended to be implied
and works towards what is intended to be explicit. In particular, the starting point for the
product design is the developer’s brand. From this basis, product design proceeds from
concept design through to detail design of product shape and features [45–47]. This is done
with the intention of the shapes of product features signaling meanings to end-users that
differentiate them positively from competitors’ offerings [48,49].

The use of the production vehicle takes place in the interface state between what is
the external state from the point of view of the end-user, and the end-user organization’s
own internal state. Here, for practical purposes, the interface state can be thought of as a
work site situated somewhere between the OEM’s premises and the end-user’s premises.
Figure 2 illustrates a situation where the OEM’s intended signaling of implied, implicit,
and explicit fitness offer to the end-user is matched by the actual fitness provided to the
end-user from its operation of the production vehicle. In particular, the production vehicle
offers the best fitness by enabling the organization to be more successful than its rivals in
the competitive environment in which it intends to survive.

Figure 2 is an original diagram that shows a hierarchical arrangement of perceptual
inference, instrumental inference, and epistemic inference. This is consistent with hier-
archical schemes of inference in neuroscience [13], and with the ladder of inference in
organizational studies [50]. In Figure 2a, perceptual inference refers to the ability to infer
sensory stimuli from predictions that result from internal representations built through
prior experience [51,52], which can begin with observation of a product’s physical features
as they come into view, or as it is brought into view. For example, this might include
perceptual inference of an industrial production vehicle’s physical features. In Figure 2b,
instrumental inference refers to inference about actions in a competitive environment.
For example, this might mean that an industrial production vehicle’s physical features
are indicative of its capabilities to carry out actions needed to survive in the competitive
environment. In Figure 2c, epistemic inference refers to inference concerned with beliefs
about how to survive in a competitive environment. For example, an industrial production
vehicle’s features can imply that it is probably the most versatile production vehicle, and
can best enable survival amidst competition [53,54].

In addition, the diagram in Figure 2 illustrates that there can be observations of many
product signals, and product signals that are not separated from other product signals
by explicit, implicit, and implied offers of the best fitness will be pooled together rather
than providing a basis for action [55]. Consider, for example, that the end-user shown in
Figure 1 receives many brochures for production vehicles from different OEMs. Following
perceptual, instrumental, and epistemic inference, the end-user takes the action of leasing
the production vehicle shown in Figure 1 OEM’s brochure. The end user’s generative
model, e.g., its business model [18], now incorporates the end-user taking action with the
production vehicle. The other brochures from the other OEMs are put together for future
reference if necessary (i.e., the other brochures and the signals that they entail are in a
pooling equilibrium). In other words, observers pay more attention to differentiated signals
than to those that are not easily differentiated from each other. As summarized in Figure 1,
the end-user’s ecological fitness in its competitive environment is facilitated by leasing
and operating the selected OEM’s production vehicle. Consequently, it is not pooled with
the production vehicles described in other OEM’s brochures. Rather, it stays positively
separated from them. Hence, the production vehicle continues to be leased and operated.
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Figure 2. Multi-level inference of signals. (a) Perceptual inference of whether or not there is an
explicit offer of best ecological fitness: if yes, inference proceeds; if no, the signal is pooled with
other signals. (b) Instrumental inference of whether or not there is an implicit offer of best ecological
fitness: if yes, inference proceeds; if no, signal is pooled with other signals. (c) Epistemic inference of
whether or not there is an implied offer of best ecological fitness: if yes, signal is separated positively
from other signals; if no, signal is pooled with other signals.

4. Complexity versus Accuracy

In the example summarized in Figure 1, the OEM is in the external state from the
point of view of the end-user. However, from the point of view of a parts supplier to the
OEM, the OEM is in the internal state. Interactions between the three organizations can be
summarized linearly as follows: parts supplier–OEM–end-user. In this next example, the
focus is as follows: parts supplier–OEM. The OEM has a generative model that encompasses
parts suppliers, which provide its basis for interpreting signals from parts suppliers and
for generating patterns of interaction with parts suppliers. The OEM wants its predictions
about what will happen during interactions with parts suppliers to be as accurate as
possible. For example, it wants it predictions of supplier performance to be accurate.
Yet, at the same time, the OEM does not want its generative model to be very complex.
Here, complexity can be considered in terms of the number of inferential steps that the
OEM needs to take to update its generative model based on signals from parts suppliers.
Generative synchronicity depends upon back-and-forth reciprocal exchanges of learning
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and development. However, this may not be straightforward for parts suppliers. This is
because part suppliers often do not develop the machines that they use to manufacture
the parts that they supply. Additionally, they often do not design the parts that they
manufacture. One option is for parts suppliers to try to signal the best fitness offer to the
OEM by increasing the size of their premises and buying in more machines in order to
set up sector-specific production areas. These are investments that can enable the parts
supplier to offer better parts more quickly to OEMs in different sectors, which in turn
can enable the OEMs to be more competitive. As summarized in the original diagram
in Figure 3, there can be two scenarios involving different levels of financial investment
for the parts supplier. In scenario (a) the company uses its newly developed capabilities
from its investments in premises and machines as the basis of its signaling to OEMs.
However, scenario (a) leaves the parts supplier in an unfavorable pooling equilibrium with
other parts suppliers. Therefore, in scenario (b) the company uses its newly developed
production capabilities to manufacture at its own cost samples that are typical of the
types of parts required by the OEM. These samples are exemplary of part features that are
both performance-critical and difficult to manufacture. In scenario (b), the parts supplier
uses exemplary parts as the basis of its signaling. This practical investment in exemplary
physical samples extends the bases for signaling [55] and provides maximum relevant
information [56]. Importantly, scenario (b) reduces the number of inferential steps required
by the OEM to update its generative model of parts suppliers. Hence, the OEM can more
easily update its generative model to include the parts supplier. This is because the parts
supplier demonstrates production samples that are both performance-critical and difficult
to manufacture, rather than just premises and machines as in scenario (a).
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Figure 3. Complexity/accuracy trade-off. (a) The OEM’s model is too complex because the OEM has
multiple inferential steps in trying to relate manufacturing facilities to the parts to be manufactured.
Hence, the OEM’s prediction accuracy about the parts supplier is not well enabled. (b) The OEM’s
model is less complex because the OEM has fewer inferential steps due to the parts supplier having
made explicit what was implicit and implied in (a) by investing in sector-specific component samples
as well as premises and machines. Hence, the OEM’s prediction accuracy is facilitated.

Scenario (b) involves the parts supplier making explicit in exemplary samples what
was implicit and implied, by increasing the size of its premises and in buying more ma-
chines. Thus, in scenario (b), the parts supplier’s behavior is consistent with the optimal
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signaling strategy of presenting its most favorable trait for sensing by the OEM in its first
signaling [56,57]. This example illustrates that adaptations in generative processes can
decrease the complexity of generative models and increase the accuracy of predictions
from generative models. In nature, such adaptations can take millennia. By contrast, as
illustrated by the parts supplier example, human organizations in the generative process
of the external state can adapt rapidly, for example in a few months, to develop clear
positive signaling of best fitness that decreases the complexity and increases the accuracy
of generative models in the internal state. This is consistent with the cognitive niche theory
that combinations of human cognitive adaptive behavioral traits have evolved in order to
facilitate competitive adaptation on faster time scales than in natural evolution [58,59].

From the point of view of the OEM, the parts supplier’s action in scenario (b) conforms
to the principle of least effort [23,24]. In particular, it conforms to the preference for least
effort in instrumental inference for particular supplier contracts, and least effort in epistemic
inference to update its beliefs about suppliers. However, in accordance with the principle of
least collaborative effort in pragmatics [60,61], signalers with high fitness may seek to incur
the least cost in separating themselves from signalers with lower fitness. Yet, high-fitness
signalers want to avoid being in a pooling equilibrium with low-fitness signalers. Moreover,
signalers with lower fitness may choose to incur higher signaling costs in order to put
themselves in a pooling equilibrium with high-fitness signalers [62–64]. Thus, there can be
dynamic motivations for organizations to sometimes make explicit what could be implicit
and implied, but at other times to seek to gain competitive advantage from leaving much
implicit and implied. For example, some organizations can choose to be very understated
in signaling unobservable product qualities when being very subtle in communicating their
brand identity [65,66]. Thus, reducing complexity and increasing accuracy in generative
synchronicity can be a dynamic challenge as adaptations in the competitive environment
adapt organizations, and then organizations adapt the competitive environment in back-
and forth-reciprocal exchanges of learning and development [11,44].

5. Risk and Ambiguity

Generative synchronicity can entail coupling between generative processes in external
states and generative models in internals states. However, environmental perturbations
can disturb coupling and undermine generative synchronicity. In this case, agents need
to focus on minimizing risks to their survival from their interactions with the external
state and minimize the ambiguity of observations that could lead them to overestimate or
underestimate risks. Consider that, as illustrated in the original diagram in Figure 4 below,
the OEM in the examples above is in a global oligopoly of large production vehicle OEMs.
Each of the three OEMs in the oligopoly, E, P, and V, signals different fitness to end-users
through primarily emphasizing the economy (E), or the power (P), or the versatility (V) of
their production vehicles in accordance with the preferences of end-users. The OEM in the
examples above and in the following example is OEM V. An oligopoly can be described as
a market in which sellers are so few that the actions of any one of them will affect price
and impact on competitors. Figure 4 includes indifference curves (IC), as in [67]. These
indicate the scope of potential interactions between signals and actions in the opinion of
the respective OEMs E, P, and V. In other words, ICE for OEM E, ICP for OEM P, and ICV
for OEM V. To begin with, all potential interactions that lie on the indifference curve are
considered to be equally useful by OEMs. This is because it is possible that any point on
the indifference curve could provide separating equilibrium. However, signal S*E attracts
action A*E from end-users with preference for economy, signal S*P attracts action A*P from
end-users with preference for power, and signal S*V attracts action A*V from end-users
with preference for versatility. Hence, a separating equilibrium emerges.
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Figure 4. Generative synchronicity in an oligopoly. Three OEMs, E, P, and V, signal different fitness
offers to end-users through primarily emphasizing the economy (E) or the power (P) or the versatility
(V) of their production vehicles in accordance with the preferences of end-users.

However, the oligopoly can be disturbed when global recession leads to a reduced
global demand for production vehicles. This leads to the OEMs in the oligopoly having
to try to increase their shares of a shrinking global market. One or all of the three OEMs
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may seek to increase market share through adaptation involving developing a vehicle
that is innovative in that it enables planting as well as harvesting. Thus, the production
vehicle is visibly different from all other previous and existing production vehicles in that
sector of production. As summarized in the original diagram in Figure 5 below, this can
lead to two initial scenarios, which can be summarized as (a) unsuccessful scenario, and
(b) successful scenario. In the unsuccessful scenario (a), the new harvester-planter vehicle
is not symmetrical and it does not have visual features of OEM V‘s previous production
vehicles. Hence, the signal from the generative process of external state is ambiguous
when observed by end-users. Conversely, in the successful scenario (b), the new harvester-
planter vehicle is symmetrical and has many physical features of the company’s previous
production vehicles. Hence, the signal from the generative process of external state is not
ambiguous when observed by end-users. The unambiguous signal involves end-users
undertaking fewer inferential steps because it is congruent with the human preference for
symmetrical signals [68] and for the familiar [69,70]. Both of which are congruent with the
human preference for making least effort to obtain information [23,24].
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Figure 5. Risk and ambiguity. (a) The end-user assesses the risk to be higher because the end-user
has many inferential steps due to the OEM developing a new harvester/planter vehicle that is not
symmetrical and does not have the easily recognizable features of the OEM’s previous product
vehicles. (b) The end-user assesses the risk to be low because the end-user has fewer inferential steps
due to the OEM developing a new harvester-planter vehicle that is symmetrical and does have easily
recognizable features of the OEM’s previous product vehicles.

In the unsuccessful scenario (a), end-users infer that the company’s offer of best fitness
for environments requiring versatility is reduced. This is because the asymmetrical new
vehicle has the unintended negative consequence of making OEM V’s established products
seem worse [71]. In other words, through the end-users’ instrumental inference, the
vehicle’s asymmetry entails the implicit signal that the machine’s physical features are not
appropriate for its intended use. Furthermore, through the end-users’ epistemic inference,
the vehicle’s asymmetry entails the implied signal that it is not the most versatile production
machine of its type, which can best enable fitness. Thus, end-users infer that there would
be greatly increased risk from continuing to operate OEM V’s production vehicles.

By contrast, in the successful scenario (b), OEM V changes what end-users believe is
required for fitness in the business environment from a harvester vehicle to a combined
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harvester-planter vehicle. Thus, through their epistemic inference, end-users change their
belief from the production vehicles of OEM E and OEM P offering the best fitness to them no
longer offering the best fitness. In other words, the explicit physical features of competitors’
vehicles now entail the implicit observation that they are still appropriate for their intended
use, but the implied observation that they can no longer enable the best fitness because
there is now a combined harvester-planter available. Thus, end-users infer that there would
be increased risk from continuing to operate OEM E’s production vehicles or OEM P’s
production vehicles.

Hence, in the successful scenario (b), OEM V could expand its market share of the
shrinking market sufficiently to maintain turnover and profits, despite having incurred
extra product development costs in order to increase fitness. However, hostile responses
can be expected from competitors in an oligopoly if they believe that others are taking
a disproportionate market share. Thus, OEM E and OEM P will seek to re-establish
their typical share as the previous status quo [72]. Here, the so-called quick reaction
hypothesis is relevant [67]. This is the assumption that at least one other signaler will try to
exploit the opportunity arising from its competitor’s new offering before all possible sales
from such a new offering are made. Thus, in accordance with the extended evolutionary
synthesis [73], adaptations in the competitive environment adapt the OEM, and then
the OEM adapts the competitive environment in back-and-forth reciprocal exchanges of
learning and development [11,44]. Importantly, the actions of one signaler, such as OEM V,
can change what is explicit, implicit, and implied in its own offering of fitness, and adapt
what is implied by the offerings of competing signalers.

6. Discussion
6.1. Principal Contributions

As summarized in Table 1 below, the paper provides a comprehensive analysis of
industrial adaptive behavior in terms of neuroscience studies referred to in the preceding
sections. The comprehensive analysis goes beyond previous studies [74] in providing
three interrelated contributions to the field of organizational behavior. First, it extends
the application of organizational neuroscience in the analysis of interactions between
organizations. Second, the analysis brings together organizational neuroscience with
relevant management literature concerned with organizational adaptive behavior. The
third contribution is to relate organizational neuroscience concerned with adaptive behavior
to industrial practice. This is important as many industrial organizations have difficulties
in managing adaptability/stability dynamics.

Interplay between adaptability and stability have been related to generative model
expansion and reduction. As summarized in Figure 1, signals arise from external generative
processes and inferences arise from internal generative models. Explicit signaling is related
to perceptual inference, implicit signaling to instrumental inference, and implied signaling
to epistemic inference. As illustrated by the examples, the same one organization can
provide signals to another organization, such as an end-user, and making inferences about
another organization, such as a supplier. The need for signaling to decrease the complexity
and increase the accuracy of organizations’ inference has been related to the need for
organizations to reduce risks and ambiguities in competitive markets.

Overall, the comprehensive analysis summarized in Table 1 has scientific implications
for research concerned with inter-organizational behavior that involves both human intel-
ligence and artificial intelligence. For example, generative models, generative processes,
and the interplay between them are directly relevant to increasingly commonplace cyber-
physical systems that are managed by so-called digital twins. These are digital models of
physical processes that are connected to physical processes through sensors and actuators.
Digital twins are intended to carry out analyses of physical processes in order to improve
their performance [75–77]. Importantly, model complexity versus model accuracy, process
risk and process ambiguity are applicable to digital twins and to physical processes that
exchange signals and inferences to improve performance. Moreover, neuroscience studies
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of generative model expansion and reduction are relevant to organizations that may need
to avoid human lock-ins to out-of-date practices, which could be even more challenging to
overcome if they are embedded within digital twins.

Table 1. Constructs and Examples.

Construct Description Examples

Generative process
Causes observations of agents through

generation of signals that can be explicit,
implicit, and/or implied

OEM generates signals to end-users through
explicit product features based on implied

brand characteristics

Generative model
Provides basis for interpreting signals and

generating patterns of interaction with
external states

End-users have generative models for OEMs
that encompass the explicit, the implicit, and

the implied

Synchronicity
Reciprocal back-and-forth exchanges of

learning and development between
organization and environment

OEMs’ different offers of fitness to end-users
is based on different end-users’

different preferences

Generative model expansion
Generative models can expand to encompass

new hypotheses about new causes of
new signals

Business models need to expand to enable
adaptation to changing markets, but

expansion can be restricted by
organizational lock-ins

Generative model
reduction

Generative models can reduce by
merging many hypotheses about causes of

many new signals into one hypothesis

Business models need to be rationalized for
to enable operating efficiency, while still

allowing for future business
model expansion

Explicit signals

Sensory stimuli from explicit signals are
related by perceptual inference to internal

representations built through
prior experience

Sensory stimuli, such as light reflecting off
vehicle features are related to internal

representations of vehicles

Implicit signals
Instrumental inference about what actions to

take in the world based can be based on
implicit signals

Inference that a production vehicle is
appropriate to carry out actions needed to
survive in the competitive environment.

Implied signals
Epistemic inference concerned with updating

beliefs about the world can be based on
implied signals

Inference that a production vehicle is the
most versatile production vehicle and can
best enable survival amidst competition.

Pooling/Separating
A signal can be pooled with other signals

and not acted upon, or a signal can be
separated from other signals and acted upon

New signals from OEM V lead to AE and AP
to pool signals from OEM E and OEM P

Actions
Actions follow from signals that are

positively differentiated from other signals
and relate to pre-existing preferences

Different end-users have different
preferences for actions with production

vehicles: economy, power, versatility

Complexity
The complexity of generative models needs
to be minimized to facilitate their efficient

reliable updating

Supplier manufactures exemplary parts to
make its implicit capabilities explicit and so

reduce inferential steps required by OEM

Accuracy

Predictions of interactions with external
states from generative model need accuracy

to enable synchronicity for
long-term survival

OEM cannot make accurate predictions of
parts supplier’s performance based on sight
of its new premises and production machines

Risk
Agents seek to minimize risk of not being

synchronized with external state in order to
facilitate long-term survival

During global recession, OEM V seeks to
reduce risk for itself and for end-users by

introducing planter-harvester vehicle

Ambiguity
Agents seek to minimize the ambiguity of

observations that could lead them to
underestimate or overestimate risks

Implicit potential of OEM V’s new vehicle to
reduce risk is underestimated due to its

asymmetrical and unfamiliar explicit design
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6.2. Practical Implications

A practical implication is that organizations can benefit from conceptualizing their
offerings in terms of functional fitness components and signaling fitness components [78].
For example, as summarized in Figure 3, a parts supplier company investing in improving
functional fitness components, such as production premises and production machines,
is not sufficient for OEMs to infer easily an offer of best fitness from the parts supplier.
Rather, investment in signaling components may be necessary. For example, this might
involve investment in the manufacture and presentation of exemplary samples. However,
the parts supplier’s signaling components need to be aligned with the OEM’s internal
generative model by which OEM generates its inferences and patterns of interaction with
the world. Similarly, OEMs need to align their signaling with the generative models of
end-user organizations. As summarized in Figure 5, failure to do so can lead to end-user
organizations inferring that an OEM’s former offer of best fitness has been lost instead of a
new best fitness being offered. Furthermore, organizations need to maintain the potential
for the expansion of their generative models. This is necessary to enable long-term survival
through adaptive behavior in competitive environments.

6.3. Directions for Future Research

One direction for further research is to relate findings from neuroscience research
concerned with generative model expansion [35] to organizational research concerned
with contingency planning in times of success for potential challenges in the future [79].
This could involve making reference to neuroscience studies concerned with thinking
about potential future actions and how they could affect future beliefs [80]. More broadly,
further research could address interrelationships between generative model expansion and
so-called organizational intelligence [81]. As the loss of signaling capabilities is associated
with a loss of potential for adaptive behavior [82], such research could investigate potential
contributions to organizational intelligence from improving signaling capabilities from or-
ganizations’ generative models [83–85]. This research could encompass industrial software
systems, such as product configurators. Apropos, one application of neuroscience research
would be to investigate to what extent, if any, research into generative model expansion
and reduction in synchronization within competitive environments can inform improved
implementation of product configurators [86], which can mediate between companies’
adaptability and stability using artificial intelligence [87,88]. This research could include
relating previous management studies inspired by neuroscience [6,89] to new findings from
neuroscience studies of adaptive behavior as they become available.

7. Conclusions

Organizational neuroscience is recognized in the organizational behavior literature
as offering an interpretive framework that sheds new light on existing problems. The
analysis presented in this paper extends the application of organizational neuroscience in
the analysis of interactions between organizations. In addition, organizational neuroscience
is related to management literature concerned with organizational adaptive behavior.
Furthermore, organizational neuroscience concerned with adaptive behavior is related
to industrial practice. Moreover, the main constructs set out in Table 1 with examples
are applicable to cyber-physical systems that combine human intelligence and artificial
intelligence. This is important because human-artificial intelligence systems are becoming
increasingly commonplace and introduce new challenges for organizational behavior.
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