Genetic variability of Taenia saginata inferred from mitochondrial DNA sequences

Sima Rostami • Reza Salavati • Robin N. Beech •
Zahra Babaei • Mitra Sharbatkhori -
Majid Fasihi Harandi

Received: 1 December 2014 / Accepted: 7 January 2015 /Published online: 17 February 2015
(C) Springer-Verlag Berlin Heidelberg 2015

Abstract

Taenia saginata is an important tapeworm, infecting humans in many parts of the world. The present study was undertaken to identify inter- and intraspecific variation of T. saginata isolated from cattle in different parts of Iran using two mitochondrial CO1 and 12S rRNA genes. Up to 105 bovine specimens of T. saginata were collected from 20 slaughterhouses in three provinces of Iran. DNA were extracted from the metacestode Cysticercus bovis. After PCR amplification, sequencing of CO 1 and 12S rRNA genes were carried out and two phylogenetic analyses of the sequence data were generated by Bayesian inference on CO1 and 12S rRNA sequences. Sequence analyses of CO1 and 12S rRNA genes showed 11 and 29 representative profiles respectively. The level of pairwise nucleotide variation between individual haplotypes of CO1 gene was $0.3-2.4 \%$ while the overall nucleotide variation among all 11 haplotypes was 4.6%. For 12 S rRNA sequence data, level of pairwise nucleotide variation was $0.2-2.5 \%$ and the overall

[^0]nucleotide variation was determined as 5.8% among 29 haplotypes of 12 S rRNA gene. Considerable genetic diversity was found in both mitochondrial genes particularly in 12 S rRNA gene.

Keywords Taenia saginata • Mitochondrial cox1 • 12S rRNA • Iran

Introduction

The beef tapeworm, Taenia saginata is an important taeniid species infecting humans in many parts of the globe. Taeniasis/cysticercosis are recognized by the World Health Organization (WHO) as neglected tropical diseases. Taeniasis caused by T. saginata is a cyclozoonosis in which the tapeworm uses human and cattle as definitive and intermediate hosts, respectively. The prevalence of T. saginatal Taenia solium infection in man ranged from 0.3 to 64.2 \%. Forty five to 77 million people have been estimated to be infected with T. saginata in the world (Abunna et al. 2008; Megersa et al. 2010; Roberts et al. 1994). In Iran, recent information indicates 0.5% prevalence of T. saginata in northern province of Mazandaran (Kia et al. 2005). Prevalence of taeniasis depends on the level of sanitation and food habits like consuming raw or undercooked infected beef. Low prevalence rates have been observed in developed countries and higher rates of infection occur in less-developed countries especially in African states (Cabaret et al. 2002). Furthermore, bovine cysticercosis causes considerable economic losses mainly due to the condemnation of infected organs and/or carcasses. Results of several studies in different parts of the

Fig. 1 Alignments of the 11 representative profiles of CO 1 sequences and 29 representative profiles of 12S rRNA sequences, among Taenia saginata isolates from Iran with key reference sequences (for other
taeniid species) from previous studies. Echinococcus granulosus sensu stricto was used as outgroup

IRTSSR6
IRTSSR7
IRTSSR8
IRTSSR9
IRTSSR10
IRTSSR11
IRTSSR12
IRTSSR13
IRTSSR14
IRTSSR15
IRTSSR16
IRTSSR17
IRTSSR18
IRTSSR19
IRTSSR20
IRTSSR21
IRTSSR21
IRTSSR22
IRTSSR23
IRTSSR24
IRTSSR25
IRTSSR26
IRTSSR27
IRTSSR28
IRTSSR29
T. hydatigena. GQ228819
T. hydatigena. GQ22881
T.saginata.AY684274
T.pisiformis.GU569096
T.pisiformis.GU569096
T.crassiceps.NC002547
T.solium. NC004022
T.multiceps. GQ228818
T.asiatica.AF445798
T.asiatica.NC_004826
E.granulosus. $\overline{\mathrm{N}} \mathrm{C} 008075$
T.saginata. NC009938

IRTSSR1
IRTSSR2
IRTSSR3
IRTSSR4
IRTSSR5
IRTSSR6
IRTSSR7
IRTSSR8
IRTSSR9
IRTSSR10
IRTSSR11
IRTSSR12
IRTSSR13
IRTSSR14
IRTSSR15
IRTSSR16
IRTSSR17
IRTSSR18
IRTSSR19
IRTSSR20
IRTSSR21
IRTSSR22
IRTSSR23
IRTSSR24
IRTSSR25
IRTSSR26
IRTSSR27
IRTSSR28
IRTSSR29
T.hydatigena.GQ228819
T.saginata.AY684274
T.pisiformis.GU569096
T.crassiceps.NC002547
T.solium.NC004022
T.multiceps.GQ228818
T.asiatica.AF445798
T.asiatica.NC_004826
E.granulosus.NC008075
T. saginata. NC009938

IRTSSR1
IRTSSR1
IRTSSR2
IRTSSR3
IRTSSR4
IRTSSR5
IRTSSR5
IRTSSR6
IRTSSR7
IRTSSR8
IRTSSR9
IRTSSR10
IRTSSR11
IRTSSR11
IRTSSR12
IRTSSR13

TATGTGCTGCTTATAAAAGTATACATGCGTTACATTGATAAAGTTTTAGTTGTAAGTGCTATTATATTCAGGACTTAAAA . A

Fig. 1 (continued)
IRTSSR14
IRTSSR15
IRTSSR16
IRTSSR17
IRTSSR18
IRTSSR19
IRTSSR20
IRTSSR21
IRTSSR22
IRTSSR23
IRTSSR24
IRTSSR25
IRTSSR26
IRTSSR27
IRTSSR28
IRTSSR29
T.hydatigena.GQ228819
T.saginata.AY684274
T.pisiformis.GU569096
T.crassiceps.NC002547
T.solium.NC004022
T.multiceps.GQ228818
T.asiatica.AF445798
T.asiatica.NC_004826
E.granulosus.NC008075

T.saginata.NC009938	GTAACGTTAAATTAGTTTGTTAATGTGAAGTAAGTTT
IRTSSR1	T. T.
IRTSSR2	T.........
IRTSSR3	T.
IRTSSR4	T.
IRTSSR5	T. T
IRTSSR6	.T.
IRTSSR7	T.
IRTSSR8	T.
IRTSSR9	T.
IRTSSR10	т.
IRTSSR11	T........
IRTSSR12	T........ ${ }^{\text {c }}$
IRTSSR13	T.
IRTSSR14	T........
IRTSSR15	T........
IRTSSR16	. T .
IRTSSR17	T.
IRTSSR18	T. A.
IRTSSR19	т........ T $^{\text {c }}$
IRTSSR20	т........
IRTSSR21	T. ${ }^{\text {T }}$
IRTSSR22	T.
IRTSSR23	T.
IRTSSR24	T.
IRTSSR25	т........ ${ }^{\text {T. }}$
IRTSSR26	.T........T.
IRTSSR27	. T .
IRTSSR28	T
IRTSSR29	.T.
T.hydatigena.GQ228819	.T. . C. . .A.G.G.
T.saginata.AY684274	
T.pisiformis.GU569096	T. . .t. . A.A. . . . AG AA.
T.crassiceps.NC002547	. T...T.......... A. TAT
T.solium.NC004022	. . TA.C. GG A
T.multiceps.GQ228818	T. A.
T.asiatica.AF445798	.G. A.
T.asiatica.NC_004826	.G. A.
E.granulosus. $\mathrm{N} C 008075$	AG

Fig. 1 (continued)

T.saginata. NC009938 IRTSCO1
IRTSCO2
IRTSCO3
IRTSCO4
IRTSCO5
IRTSCO6
IRTSCO8
IRTSCO8
IRTSCO10
IRTSCO11
T.saginata.AB465242
T.saginata.AB533168
T.saginata. AB4 65247 T.saginata.AB533169 T.asiatica.AB533170 T.asiatica.AB533170 T.saginata.AB533172 T.asiatica.AB608739 T.asiatica.NC004826 T.solium.NC004022.
T.multiceps.GQ228818
T.hydatigena.GQ228819 T.pisiformis.GU569096 T.crassiceps.NC002547
E.granulosus.NC008075
T.saginata. NC009938 IRTSCO1
IRTSCO2
IRTSCO3
IRTSCO3
IRTSCO4
IRTSCO4
IRTSCO5
IRTSCO5
IRTSCO6
IRTSCO7
IRTSCO8
IRTSCO9
IRTSCO10
T.saginata.AB465242
T.saginata.AB533168
T.saginata.AB465247
T.saginata.AB533169
T.asiatica.AB533170 T.saginata.AB533172 T.asiatica.AB533175 T.asiatica.AB608739 T.asiatica.NC004826 T. solium. NC004022 T.multiceps. GQ228818 T. hydatigena. GQ228819 T.pisiformis.GU569096 T. crassiceps.NC002547
E.granulosus.NC008075
T.saginata.NC009938

IRTSCO1
IRTSCO2
IRTSCO3
IRTSCO4
IRTSCO5
IRTSCO6
IRTSCO
IRTSCO7
IRTSCO8
IRTSCO9
IRTSCO10
IRTSCO11
T.saginata. AB4 65242
T.saginata.AB533168
T.saginata.AB465247
T.saginata.AB465247
T.saginata.AB533169
T.asiatica.AB533170
T.asiatica.AB533175
T.asiatica.AB608739
T.asiatica.NC004826
T. solium. NC004022.
T.multiceps.GQ228818

GTTTTCAATAGTGTGTTTGGGGAGAAGTGTGTGGGGTCATCATATGTTTACGGTTGGGTTAGATGTTAAGACTGCTGTGT

TTTTTAGTTCGGTTACTATGATAATAGGAGTACCAACAGGAATAAAGGTTTTTACTTGACTTTATATGCTTTTAAATTCT

				.			
. T.							
			G. . G				
		.T. .	T. T	G			
				. C .			
					. T.		
250	260	270	280	290	300	310	320
. . ${ }^{\text {. . . . }}$							

CGTGTAAATAAGAGTGATCCTATATTGTGGTGAATAGTTTCTTTTATAGTGTTGTTTACTTTTGGTGGTGTGACTGGTAT

Fig. 1 (continued)

Fig. 1 (continued)
world indicate 0.007-26.3 \% of cattle infected with Cysticercus bovis (Abunna et al. 2008; Dorny and Praet 2007). Annual monetary cost of human taeniasis is estimated at US\$ 263,000 in the USA mainly due to medical costs and wage losses. In England, annual losses due to bovine cysticercosis are estimated about $£ 4$ million (Roberts et al. 1994; Silva and Costa-Cruz 2010). Understanding the genetic identity of the parasite as well as the extent of genetic variation within T. saginata is essential for diagnosis and control of taeniasis.

Several studies have investigated genetic variation of human taeniid tapeworms, however, most of the research activity has been focused on T. solium and human cysticercosis. Relatively limited information is available on genetic variation within T. saginata from different parts of the world. The complete mitochondrial genome of T. saginata has been determined in 2007 (Jeon et al. 2007). Genetic characterization of T. saginata has been carried out in Ethiopia, Indonesia, and Thailand (Hailemariam et al. 2013; Okamoto et al. 2010). Molecular characterization in Iranian isolates of T. saginata has not been demonstrated so far. Comprehensive molecular studies in this area are required to increase our knowledge on the genetic diversity of this species and to provide effective vaccine against the parasite. Mitochondrial genes especially cytochrome c oxidase subunit 1 (CO1) are universally accepted markers for molecular identification of helminth parasites
(Gasser et al. 1999). The purpose of the present study was to identify inter- and intraspecific variation of T. saginata in a large number of cattle isolates from different parts of Iran using PCR sequencing of two mitochondrial genes, i.e., CO1 and 12S rRNA.

Materials and methods

One hundred and five specimens of T. saginata metacestode were collected from cattle in 20 slaughterhouses from Tehran, Alborz, and Kerman provinces of Iran from August 2010 to July 2011. The scolex was detached from the infected organs and each isolate was transferred to the Parasitology Lab of the School of Medicine, Kerman University of Medical Sciences. After three times rinsing with normal saline, the specimens were stored at $-20^{\circ} \mathrm{C}$ until used.

Genomic DNA of the isolates was extracted from each scolex by using High Pure PCR Template Preparation Kit (Roche, Mannheim, Germany) as described elsewhere (Rostami et al. 2013). The DNA was used for PCR amplification of cytochrome c oxidase subunit $\mathrm{I}(\mathrm{CO} 1)$ and 12 S ribosomal DNA (12S rRNA) genes. A 400-bp fragment of CO1 was amplified by PCR with the forward JB3 (5'-TTTTTTGGGCATCCTGAGGTTTAT-3') and reverse

Table 1 Frequency distribution of Taenia saginata haplotypes from Iranian cattle for two mitochondrial CO1 and 12S rRNA genes with the corresponding GenBank accession numbers

CO1	No. of isolates	Accession no.	12S rRNA	No. of isolates	Accession no.
IRTSCO1	70	JQ756969	JQ756970	IRTSSR1	56
IRTSCO2	16	JQ756971	JQ756972	IRTSSR2	10
IRTSCO3	8	JQ756973-JQ756979	Other haplotypes	30	KC344674
IRTSCO4	2	IRTSSR4	KC344676		
Other haplotypes	9			KC344677	

JB4.5 (5'-TAAAGAAAGAACATAATGAAAATG-3') primer (Bowles et al. 1992).

Polymerase chain reactions ($50 \mu \mathrm{~L}$) were performed using $3.5 \mathrm{mM} \mathrm{MgCl}_{2}, 250 \mathrm{mM}$ each of dNTPs, 25 pmol of each primer and 2 U Taq polymerase, and $4 \mu \mathrm{l}(50-100 \mathrm{ng} / \mathrm{ml})$ of DNA template, under the following thermal profile: 5 min at $94^{\circ} \mathrm{C}$ as an initial denaturation step, followed by 35 cycles of

30 sat $94^{\circ} \mathrm{C}, 45 \mathrm{~s}$ at $50^{\circ} \mathrm{C}, 35 \mathrm{~s}$ at $72^{\circ} \mathrm{C}$, and a final extension step of 10 min at $72^{\circ} \mathrm{C}$.

A taeniid-specific primer pair was designed for amplification of 12 S rRNA gene using Primer-BLAST (http://www.ncbi.nlm.nih.gov/tools/primer-blast/). PCR was carried out using 12SRF (5^{\prime}-AGGGGATAGGAC ACAGTGCCAGC- 3^{\prime}) as the forward and 12SRR (5^{\prime} -
a

Fig. 2 Genetic relationships of T. saginata isolated from cattle and other published for taeniid and E. granulosus as outgroup. The relationships were inferred based on phylogenetic analysis of cox1 and 12S rRNA data
using Bayesian inference. The accession numbers and sources of sequences are shown in Table 1. Nodal support is given as a pp value
b

Fig. 2 (continued)

CGGTGTGTACAT GAGCTAAAC-3') as reverse primers under the following thermal conditions: 5 min at $94{ }^{\circ} \mathrm{C}$ as a primary denaturation step, followed by 35 cycles of 30 s at $94{ }^{\circ} \mathrm{C}, 45 \mathrm{~s}$ at $57{ }^{\circ} \mathrm{C}, 35 \mathrm{~s}$ at $72{ }^{\circ} \mathrm{C}$, and a final extension of 10 min at $72{ }^{\circ} \mathrm{C}$. The primers amplified an approximately 450 -bp fragment of 12 S rRNA gene. Negative control (no DNA) was included in each experiment. The PCR products were electrophoresed on $1 \%(w / v)$ agarose gel containing ethidium bromide.

All amplicons were sequenced by an ABI-3730XL capillary machine (Macrogen Inc., South Korea). Sequence data were analyzed with Blast program while alignments were conducted using the softwares ClustalX and Bioedit (Fig. 1). CO1 and 12S rRNA nucleotide sequences of the representative isolates were submitted to NCBI

GenBank (Table 1). Two phylogenetic analyses of the sequence data were inferred by Bayesian inference on CO1 and 12S rDNA sequences (Fig. 2) using the program MrBayes v.3.1.2 (http://mrbayes.csit.fsu.edu/index.php). Posterior probabilities (pp) were designed for $2,000,000$ generations (ngen: $2,000,000$). The TreeviewX v.0.5.0 program (Page 1996) was used to depict the resulting trees. Two dendrograms were drawn by using the sequences obtained in this study as well as reference sequences available for T. saginata and representative Taenia species in GenBank. Echinococcus granulosus sensu stricto G1 genotype (Accession No. NC008075) was applied in the model as outgroup. Pairwise comparisons were made for the two mitochondrial gene sequences of T. saginata isolates of the present study as well as the other published studies.
Table 2 Pairwise comparison of nucleotide sequence differences (\%) in CO1 gene among T. saginata isolates and some other taeniids

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27
1. T. saginata. NC 009938																											
2. IRTSC01	0.000																										
3. IRTSC02	0.003	0.003																									
4. IRTSC03	0.003	0.003	0.005																								
5. IRTSC04	0.003	0.003	0.005	0.005																							
6. IRTSC 05	0.003	0.003	0.005	0.005	0.005																						
7. IRTSC06	0.003	0.003	0.005	0.005	0.005	0.005																					
8. IRTSC07	0.010	0.010	0.008	0.013	0.013	0.013	0.013																				
9. IRTSC08	0.005	0.005	0.008	0.008	0.008	0.008	0.008	0.016																			
10. IRTSC09	0.008	0.008	0.010	0.010	0.010	0.010	0.010	0.018	0.013																		
11. IRTSC010	0.013	0.013	0.016	0.016	0.016	0.016	0.016	0.024	0.018	0.018																	
12. IRTSC011	0.005	0.005	0.008	0.003	0.008	0.008	0.008	0.016	0.010	0.013	0.018																
13. T. saginata. AB 465242	0.003	0.003	0.005	0.005	0.005	0.005	0.005	0.013	0.008	0.010	0.016	0.008															
14. T. saginata. AB 533168	0.000	0.000	0.003	0.003	0.003	0.003	0.003	0.010	0.005	0.008	0.013	0.005	0.003														
15. T. saginata.AB465247	0.000	0.000	0.003	0.003	0.003	0.003	0.003	0.010	0.005	0.008	0.013	0.005	0.003	0.000													
16. T. saginata.AB533169	0.000	0.000	0.003	0.003	0.003	0.003	0.003	0.010	0.005	0.008	0.013	0.005	0.003	0.000	0.000												
17. T. saginata.AB533170	0.026	0.026	0.029	0.024	0.029	0.029	0.029	0.037	0.032	0.034	0.037	0.026	0.029	0.026	0.026	0.026											
18. T. saginata. AB 533172	0.000	0.000	0.003	0.003	0.003	0.003	0.003	0.010	0.005	0.008	0.013	0.005	0.003	0.000	0.000	0.000	0.026										
19. T. saginata. AB 533175	0.026	0.026	0.029	0.024	0.029	0.029	0.029	0.037	0.032	0.034	0.037	0.026	0.029	0.026	0.026	0.026	0.000	0.026									
20. T. asiatica. AB 608739	0.026	0.026	0.029	0.024	0.029	0.029	0.029	0.037	0.032	0.034	0.037	0.026	0.029	0.026	0.026	0.006	0.000	0.026	0.000								
21. T. asiatica. NC 004826	0.032	0.032	0.034	0.029	0.034	0.034	0.034	0.043	0.037	0.040	0.042	0.032	0.034	0.032	0.032	0.032	0.005	0.032	0.005	0.005							
22. T. solium. NC 004022	0.127	0.127	0.130	0.124	0.130	0.124	0.130	0.139	0.130	0.136	0.139	0.120	0.130	0.127	0.127	0.127	0.139	0.127	0.139	0.139	0.145						
23. T. multiceps.GQ228818	0.066	0.066	0.068	0.063	0.068	0.068	0.068	0.077	0.071	0.074	0.080	0.066	0.068	0.066	0.066	0.066	0.083	0.066	0.083	0.083	0.089	0.108					
24. T. hydatigena.GQ22881	90.129	0.129	0.132	0.126	0.132	0.129	0.0132	0.141	0.129	0.138	0.141	0.129	0.132	0.129	0.129	0.129	0.141	0.129	0.141	0.141	0.147	0.141	0.132				
25. T. pisiformis.GU569096	6.117	0.117	0.120	0.114	0.120	0.120	0.117	0.129	0.120	0.126	0.132	0.111	0.120	0.117	0.117	0.117	0.129	0.117	0.129	0.129	0.135	0.138	0.123	0.179			
26. T. crassiceps.NC00254	70.120	0.120	0.123	0.117	0.123	0.120	0.123	0.132	0.120	0.129	0.132	0.114	0.123	0.120	0.120	0.120	0.126	0.120	0.126	0.126	0.132	0.163	0.135	0.114	0.157		
27. E. granulosus.NC00807	75.206	0.206	0.209	0.202	0.209	0.206	0.206	2.220	0.209	0.209	0.220	0.199	0.202	0.206	0.206	0.206	0.220	0.206	0.220	0.220	0.226	0.199	0.234	0.176	0.227	0.179	

[^1]Table 3 Pairwise comparison of nucleotide sequence differences (\%) in 12S rRNA gene among T. saginata isolates and some other taeniids

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
1. T. saginata. N																													
2. IRTSSR1	0.005																												
3. IRTSSR2	0.007	0.002																											
4. IRTSSR3	0.005	0.005	0.007																										
5. IRTSSR4	0.014	0.014	0.016	0.014																									
6. IRTSSR5	0.007	0.002	0.005	0.007	0.012																								
7. IRTSSR6	0.007	0.007	0.009	0.007	0.016	0.009																							
8. IRTSSR7	0.012	0.012	0.014	0.004	0.004	0.014	0.014																						
9. IRTSSR8	0.005	0.005	0.007	0.005	0.014	0.007	0.007	0.012																					
10. IRTSSR9	0.005	0.005	0.007	0.000	0.014	0.007	0.007	0.007	0.005																				
11. IRTSSR10	0.009	0.009	0.012	0.009	0.009	0.007	0.012	0.016	0.009	0.009																			
12. IRTSSR11	0.006	0.005	0.007	0.005	0.019	0.007	0.012	0.012	0.009	0.005	0.014																		
13. IRTSSR12	0.009	0.005	0.007	0.009	0.014	0.002	0.012	0.016	0.009	0.009	0.009	0.005																	
14. IRTSSR13	0.012	0.012	0.014	0.012	0.012	0.009	0.014	0.019	0.012	0.012	0.007	0.016	0.012																
15. IRTSSR14	0.016	0.012	0.014	0.016	0.021	0.009	0.019	0.024	0.016	0.016	0.016	0.012	0.007	0.009															
16. IRTSSR15	0.016	0.012	0.014	0.012	0.026	0.014	0.009	0.019	0.016	0.012	0.021	0.007	0.012	0.019	0.014														
17. IRTSSR16	0.005	0.005	0.007	0.005	0.014	0.007	0.007	0.012	0.005	0.005	0.009	0.009	0.009	0.012	0.016	0.016													
18. IRTSSR17	0.009	0.009	0.007	0.009	0.019	0.012	0.012	0.016	0.009	0.009	0.014	0.014	0.014	0.016	0.021	0.021	0.005												
19. IRTSSR18	0.014	0.012	0.009	0.014	0.024	0.014	0.016	0.021	0.009	0.014	0.019	0.016	0.016	0.021	0.024	0.024	0.014	0.014											
20. IRTSSR19	0.012	0.007	0.009	0.007	0.021	0.009	0.014	0.014	0.012	0.007	0.016	0.007	0.012	0.014	0.014	0.014	0.012	0.016	0.019										
21. IRTSSR20	0.007	0.002	0.005	0.002	0.016	0.005	0.009	0.009	0.007	0.002	0.012	0.002	0.007	0.014	0.014	0.009	0.007	0.012	0.014	0.005									
22. IRTSSR21	0.007	0.002	0.005	0.007	0.016	0.005	0.009	0.014	0.007	0.007	0.012	0.007	0.007	0.014	0.014	0.014	0.007	0.007	0.014	0.009	0.005								
23. IRTSSR22	0.012	0.012	0.014	0.012	0.021	0.014	0.005	0.019	0.012	0.012	0.016	0.016	0.016	0.019	0.024	0.014	0.012	0.016	0.021	0.019	0.014	0.014							
24. IRTSSR23	0.009	0.009	0.012	0.009	0.019	0.012	0.002	0.016	0.009	0.009	0.014	0.014	0.014	0.016	0.021	0.012	0.009	0.014	0.019	0.016	0.021	0.012	0.002						
25. IRTSSR24	0.009	0.009	0.007	0.009	0.019	0.012	0.002	0.016	0.009	0.009	0.014	0.014	0.014	0.016	0.021	0.012	0.009	0.009	0.014	0.016	0.012	0.012	0.007	0.005					
26. IRTSSR25	0.012	0.007	0.009	0.012	0.021	0.009	0.005	0.019	0.012	0.012	0.016	0.012	0.012	0.019	0.019	0.009	0.012	0.016	0.019	0.014	0.009	0.009	0.009	0.007	0.007				
27. IRTSSR26	0.007	0.002	0.005	0.007	0.016	0.005	0.009	0.014	0.007	0.007	0.012	0.007	0.007	0.014	0.014	0.014	0.007	0.012	0.014	0.009	0.005	0.005	0.014	0.012	0.012	0.005			
28. IRTSSR 27	0.007	0.007	0.009	0.007	0.016	0.009	0.005	0.014	0.007	0.007	0.012	0.012	0.012	0.014	0.019	0.014	0.007	0.012	0.016	0.014	0.009	0.009	0.009	0.007	0.007	0.009	0.009		
29. IRTSSR28	0.005	0.005	0.007	0.005	0.014	0.007	0.007	0.012	0.005	0.005	0.009	0.009	0.009	0.012	0.016	0.016	0.005	0.009	0.014	0.012	0.007	0.007	0.012	0.009	0.009	0.007	0.002	0.007	
30. IRTSSR29	0.002	0.002	0.005	0.002	0.012	0.005	0.005	0.009	0.002	0.002	0.007	0.007	0.007	0.009	0.014	0.014	0.002	0.007	0.012	0.009	0.005	0.005	0.009	0.007	0.007	0.009	0.005	0.005	0.002

T. multiceps: GQ228818, FJ744755; T. saginata: NC009938, T. solium: NC004022, T. pisiformis: GU569096; T. hydatigena: GQ228819; T. crassiceps: NC002547; T. solium: NC004022; E. granulosus:
NC008075

Results

All 105 isolates were successfully amplified on both CO 1 and 12 S rRNA genes. Sequence analyses of CO 1 and 12 S rRNA genes showed 11 and 29 representative profiles respectively, designated as IRTSCO1 to IRTSCO11 for CO1 and IRTSSR1 to IRTSSR29 for 12 S rRNA (Table 1). The level of pairwise nucleotide variation between individual haplotypes of CO1 gene were determined to be $0.3-2.4 \%$ while the overall nucleotide variation among all 11 haplotypes was 4.6% (Table 2). For 12 S rRNA sequence data, the level of pairwise nucleotide variation was found $0.2-2.5 \%$ and the overall nucleotide variation was determined as 5.8% among 29 haplotypes (Table 3). Total mutations were 19 and 26 in CO1 and 12S rRNA that occurred in 18 and 25 segregation sites respectively. Figure 2 showed dendrograms based on COI and 12 S rRNA gene sequences using the Bayesian inference method.

Discussion

Molecular characterization of parasites of medical and veterinary importance is a crucial factor in understanding epidemiology and control of parasitic infections. T. saginata is a zoonotic parasite of human and cattle with a worldwide distribution. It constitutes considerable medical and economical losses in endemic countries including Iran. Annual monetary burden of bovine cysticercosis in Iran was estimated at about US\$ 410,000 (Jahed Khaniki et al. 2010).

Several genomic regions have been used for phylogenetic studies of different Taenia species including 18S and 28 S ribosomal RNA as well as mitochondrial genes (Yan et al. 2013; Hoberg 2006). In the present study, we investigated the mitochondrial CO 1 and 12 S rRNA genes diversity of 105 cattle isolates of T. saginata from Iran. CO1 is a universally accepted marker for the study of genetic variation and evolutionary biology of helminth parasites (Le et al. 2000). Intraspecific variation in T. saginata has been investigated in several studies (Hailemariam et al. 2013; Okamoto et al. 2010), however, more studies using larger sample size are required to improve our understanding on the significance of genetic variation within this important taeniid species.

Level of nucleotide variation in CO 1 and 12 S rRNA between T. saginata isolates from the present study and six other Taenia species was found to be 2.6-14.1 \% and 2.8-19.5 \%, respectively. This is in agreement with the expected level of nucleotide variations in CO1 in the genus Taenia that has been estimated to be 2.5-15.8 \% by McManus and Bowles (1994).

As shown in Table 2, the level of pairwise nucleotide difference among the isolates of the present study and other
T. saginata isolates is 2.4% whereas pairwise comparison of CO1 sequences between isolates of the present study and T. asiatica is 2.6%. Much higher pairwise differences have been observed between T. saginata and other Taenia species other than T. asiatica (6.3-15.8 \%). Taenia asiatica formerly known as Taiwan taenia or Asian taenia; had been recognized in southeast Asia in 1980s (Fan 1988). This tapeworm was classified as a subspecies of T. saginata namely, T. saginata asiatica. Eom and Rim (1993) described it as a new species; Taenia asiatica. However, recent findings indicate probable hybridization between T. saginata and T. asiatica (Okamoto et al. 2010; Yamane et al. 2012). Regarding Mayr's definition of species, a species is defined as a group of organisms that are capable of interbreeding (Mayr 1996). In light of the fact that the two Taenia species are not reproductively isolated and the relatively low level of nucleotide difference between the two species shown in this study, it may be speculated that T. saginata and T. asiatica are either very closely related species or basically they are two subspecies of a single species.

Further studies on the molecular characterization of the parasite are clearly required from other geographical localities in different parts of the world. The present study provided mitochondrial data on the cattle isolates of T. saginata in Iran. In-depth studies on nuclear genes are essential to provide a comprehensive picture on the extent and significance of genetic variation within different T. saginata populations.

Acknowledgments The authors wish to thank all veterinary staff of different abattoirs that helped in collecting parasite specimen for this study. This work is done as a part of a PhD thesis done by S.R. and was financially supported by the Vice-Chancellor for Research, Kerman University of Medical Sciences, grant No. 90-128.

References

Abunna F, Tilahun G, Megersa B, Regassa A, Kumsa B (2008) Bovine cysticercosis in cattle slaughtered at Awassa municipal abattoir, Ethiopia: prevalence, cyst viability, distribution and its public health implication. Zoonoses Public Health 55(2):82-88
Bowles J, Blair D, McManus DP (1992) Genetic variants within the genus Echinococcus identified by mitochondrial DNA sequencing. Mol Biochem Parasitol 54(2):165-173
Cabaret J, Geerts S, Madeline M, Cl B, Barbier D (2002) The use of urban sewage sludge on pastures: the cysticercosis threat. Vet Res 33(5): 575-597
Dorny P, Praet N (2007) Taenia saginata in Europe. Vet Parasitol 149(1): 22-24
Eom KS, Rim HJ (1993) Morphologic descriptions of Taenia asiatica sp. n. Korean J Parasitol 31(1):1-6

Fan PC (1988) Taiwan Taenia and taeniasis. Parasitol Today 4(3):86-88
Gasser RB, Zhu X, McManus DP (1999) NADH dehydrogenase subunit 1 and cytochrome c oxidase subunit I sequences compared for members of the genus Taenia (Cestoda). Int J Parasitol 29(12):1965-1970
Hailemariam Z et al (2013) Molecular identification of species of Taenia causing bovine cysticercosis in Ethiopia. J Helminthol 88(3):376-380

Hoberg EP (2006) Phylogeny of Taenia: species definitions and origins of human parasites. Parasitol Int 55:S23-S30
Jahed Khaniki GR, Raei M, Kia EB, Motevalli Haghi A, Selseleh M (2010) Prevalence of bovine cysticercosis in slaughtered cattle in Iran. Trop Anim Health Prod 42(2):141-143
Jeon H-K, Kim K-H, Eom KS (2007) Complete sequence of the mitochondrial genome of Taenia saginata: comparison with T. solium and T. asiatica. Parasitol Int 56(3):243-246
Kia EB, Masoud J, Yalda A, Mahmoudi M, Farahani H (2005) Study on human taeniasis by administring anti-taenia drug. Iran J Public Health 34(4)
Le TH, Blair D, McManus DP (2000) Mitochondrial genomes of human helminths and their use as markers in population genetics and phylogeny. Acta Trop 77(3):243-256
Mayr E (1996) What is a species, and what is not? Philos Sci: 262-277
McManus DP, Bowles J (1994) Asian (Taiwan) Taenia: species or strain? Parasitol Today 10(7):273-275
Megersa B, Tesfaye E, Regassa A, Abebe R, Abunna F (2010) Bovine cysticercosis in cattle slaughtered at Jimma Municipal Abattoir, South western Ethiopia: prevalence, cyst viability and its socioeconomic importance. Vet World 3(6):257-262

Okamoto M, Nakao M, Blair D, Anantaphruti MT, Waikagul J, Ito A (2010) Evidence of hybridization between Taenia saginata and Taenia asiatica. Parasitol Int 59(1):70-74
Page RDM (1996) Tree view: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357-358
Roberts T, Murrell KD, Marks S (1994) Economic losses caused by foodborne parasitic diseases. Parasitol Today 10(11):419423
Rostami S, Talebi S, Babaei Z, Sharbatkhori M, Ziaali N, Rostami H, Harandi MF (2013) High resolution melting technique for molecular epidemiological studies of cystic echinococcosis: differentiating G1, G3, and G6 genotypes of Echinococcus granulosus sensu lato. Parasitol Res 112:3441-3447
Silva CV, Costa-Cruz JM (2010) A glance at Taenia saginata infection, diagnosis, vaccine, biological control and treatment. Infect Disord Drug Targets 10:313-321
Yamane K et al (2012) Recent hybridization between Taenia asiatica and Taenia saginata. Parasitol Int 61(2):351-355
Yan H, Lou Z, Li L, Ni X, Guo A, Li H, Zheng Y, Dyachenko V, Jia W (2013) The nuclear 18S ribosomal RNA gene as a source of phylogenetic information in the genus Taenia. Parasitol Res 112:1343-1347

[^0]: S. Rostami \cdot Z. Babaei

 Department of Medical Parasitology, School of Medicine, Kerman University of Medical Sciences, Kerman 76169-14111, Iran
 R. Salavati • R. N. Beech

 Institute of Parasitology, McGill University, Ste. Anne de Bellevue, QC, Canada
 M. Sharbatkhori

 Department of Medical Parasitology and Mycology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
 S. Rostami • M. F. Harandi (\boxtimes)

 Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman 76169-14111, Iran
 e-mail: fasihi@kmu.ac.ir

[^1]: T. saginata: NC009938, AB465242, AB533168, AB465247, AB533169, AB533170, AB533172, T. multiceps: GQ228818, T. solium: NC004022, T. pisiformis: GU569096 and T. hydatigena: GQ228819. T. serialis: AM503319, T. crassiceps: NC002547, T. solium: NC004022, T.asiatica: NC004826, AB533175, AB608739, and E. granulosus: NC008075

