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Summary 

Background: This study was conducted to determine the effect of gestational diabetes on 
neuronal density in the dentate gyrus (DG) subfields of hippocampus in rats offspring. 
Methods: On day 1 of gestation, 10 dams randomly allocated into two control and diabetic 
groups. Five animals in diabetic group were received 40 mg/kg/BW of Streptozotocin 
(intraperitoneally) and control animals were received normal saline. Six offsprings of each 
gestational diabetes mellitus and controls were randomly selected at the day 7, 14 and 21. 
Infants were scarified and coronal sections were taken from the right dorsal hippocampus and 
stained with cresyl violet. The number of granular cells and thickness of layers of 
hippocampus in dentate gyrus lateral (DGl) and dentate gyrus media (DGm) were evaluated. 
Results: In P7, P14, P21, granular cells numbers of DGm were significantly reduced from 
(107.6±6.2, 131.6±4.6, 143.5±4.0) in controls to(84.96±2.1, 109.8±7.3, 121.05±5.6)(P<0.05) 
in cases, respectively and Granular cells of DGl were significantly reduced from (98.76±4.4, 
125.6±4.0, 149.9±4.2) in controls to (79.98±4.2, 107.07±8.5, 117.1±6.7 )(P<0.05) of cases, 
respectively. In DGm and DGl, the thickness of the granular and polymorph layers in P7,14 
and P21 significantly decreased in gestational diabetics in comparison with controls(p<0.05). 
Conclusion: This study showed that the uncontrolled gestational diabetes reduces granular 
neurons of hippocampus in rats offspring. 
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Gestasyonel Diabet Yavru Sıçanların Dentat Giruslarında Nöronal Yitime Yol Açar 
Özet 

Giriş: Bu çalışma gestasyonel diabetin sıçan yavrularının hipokampuslarındaki dentat girus 
(DG) alt-alanlarında nöronal yoğunluğa olan etkisini araştırmak üzere kurgulandı. 
Yöntem: Gebeliğin 1. günü 10 eş gelişigüzel olarak kontrol ve diabetik grup olarak ayrıldılar. 
Diabetik gruptaki 5 denek periton içine 40mg/Kg/Bw dozunda Streptozotocin, kontrol 
grubundaki hayvanlar ise normal tuzlu su aldılar. Hem gestasyonal diabetik gruptan hem de 
kontrol grubundan 6 yavru 7.,14. ve 21. günlerde gelişigüzel seçildiler. Yavrular sakrifiye 
edilerek sağ dorsal hipokampuslarının koroner kesitleri alınadı ve kresil moru ile boyandı. 
Hipokampus lateral (DGl) ve medial (DGm) dentat girus kalınlıkları ve granüler hücreleri 
değerlendirildi. 
Sonuç: DGm P7, P14 ve P21’de granüler hücre sayılarında kontrollere göre sırasıyla belirgin 
bir azalma (107.6±6.2, 131.6±4.6, 143.5±4.0) (84.96±2.1, 109.8±7.3, 121.05±5.6)(P<0.05) 
saptandı. DGl granüler hücrelerinde de (98.76±4.4, 125.6±4.0, 149.9±4.2) kontrollere göre 
(79.98±4.2, 107.07±8.5, 117.1±6.7 )(P<0.05) önemli ölçüde azalma gözlendi. Gestasyonel 
diabetik DGm ve DGl granüler ve polimorf katmanlarının kalınlıklarında da P7, 14 ve P21’de 
, kontrollere göre önemli ölçüde azalma saptandı (p<0.05). 
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Yargı: Bu çalışma kontrol edilmemiş gestasyonel diabetin sıçanların yavrularının 
hipokampusunda granüler nöronlarda azalmaya yol açtığını gösterdi. 
 

Anahtar Kelimeler: Gestasyonel diabet, Dentat girus, granülar hücre, Sıçan 
 
 

INTRODUCTION 

Diabetes mellitus is one of the most 
common endocrine disorders, affecting 
almost 6% of the world's population. More 
than 97% of diabetic patients have type II 
diabetes(23). 

It has been demonstrated that diabetes 
results in subtle cerebral disorders1) 
including alterations in neurotransmission, 
electrophysiological abnormalities, and 
structural changes(29). Diabetes mellitus, 
regardless of its type, is associated with 
cerebral alterations in both human and 
animal models of the disease(11,16,37). 

The hippocampus is an important structure 
for memory processing. It is a particularly 
vulnerable and sensitive region of the brain 
that is also very important for declarative 
and spatial learning and memory(8). 

Recent studies has reported that the 
process of neurogenesis including cell 
proliferation, survival, migration and 
differentiation continues in the 
hippocampal formation well into adulthood 
in a variety of species, including rodents, 
nonhuman primates as well as humans(12,17-

19,26). 

Diabetes mellitus is associated with 
cerebral alterations in both human and 
animal models of the disease(9,11,16). 
Hippocampal neurons are also sensitive to 
the effects of diabetes(16,36) and often show 
damage to presynaptic and postsynaptic 
structures, dysregulation of calcium 
homeostasis, neuronal loss, dendritic 
atrophy in CA3 neurons, reduced 
expression of insulin growth factors and 
their receptors, and decreased 
neurogenesis(26,30,34,36,50). Several studies 
have demonstrated that neural progenitors 
in the dentate gyrus proliferate, migrate, 
and differentiate into granule cells, which 

extend their axons and contact the CA3 
pyramidal neurons, becoming integrated 
into the hippocampal circuitry(23). 

In the dentate gyrus of the hippocampus of 
mammals, including humans, new neurons 
have been shown to be generated during 
postnatal and adult periods(27). Suggested 
that diabetes mellitus may induce 
functional and structural changes in the 
brain. In addition to the diabetic condition 
itself, secondary complications involving 
several organs, including the brain, 
occur(35). 

In addition, it has been demonstrated that 
streptozotocin (STZ)-induced diabetes 
significantly reduces the number of 
proliferating cells in the dentate gyrus of 
rats(26). New cell birth and neurogenesis 
have been demonstrated in the dentate 
gyrus of several adult mammals including 
humans. 

Neurogenesis in the dentate gyrus of the 
hippocampus has been associated with 
learning and memory formation. 

Previous studies have shown that several 
factors such as enriched environments, 
learning, seizure, N-methyl- D-aspartate 
(NMDA) receptor antagonists, serotonin, 
and physical exercise, and ischemia 
enhance the proliferation of granular cell 
precursors and/or neurogenesis in the 
dentate gyrus while adrenal steroids, 
opioid peptides, and stress inhibit it(29). 

Gestational diabetes mellitus (GDM) 
defined as impaired glucose tolerance 
affects approximately 4% of all pregnant 
women who have never before had 
diabetes, but who do have high blood 
glucose levels during pregnancy(44), and 
involves an interaction between diabetic 
susceptibility genes and diabetogenic 
effects of pregnancy(25). 
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Follow-up studies concerning the adverse 
effects of diabetic pregnancy on the 
developing brain have revealed 
neurobehavioral deficits in both sensory-
cognitive and psychomotor functions. 
These include altered auditory recognition 
memory processing at birth(51), reduce 
visual and memory performance at 8 and 
12 months(14), poorer performance on tests 
of general development in infants and 
toddlers(48) and inferior performance in 
elementary school children(42). While 
motor delay may be a sign of mild, 
nonspecific brain damage, the 
abnormalities in memory processing 
suggest alterations in hippocampal 
development and function(39). 

Although there are several studies 
regarding the adverse effects of type I and 
type II diabetes mellitus on CNS including 
hippocampus, hypothalamus, cerebellum 
and cerebrum(1,10,26,34,45), but there is no 
study about the effect of gestational 
diabetes on neuronal development of 
hippocampus which are important in 
spatial learning and memory. Therefore, 
this experimental study was design to 
assess the effect of gestational diabetes on 
neuronal density of dentate gyrus of 
subfield of hippocampus in the postnatal 
7,14 and 21 days of Wistar rats. 

MATERIAL AND METHODS 

This experimental study was performed at 
the Gorgan faculty of Medicine, Golestan 
University of medical sciences, Gorgan, 
Iran. Guidelines on the care and use of 
laboratory animals and approval of the 
ethic committee of Golestan University of 
medical sciences were obtained before 
study. 

Experimental animals 

Wistar rats, weighing 180-220 grams (12 
weeks old) were used in this study. The 
animals were maintained in a climate-
controlled room under a 12-hour 
alternating light/dark cycle, 20 °C to 22°C 
temperature, and 50% to 55% relative 

humidity. Dry food pellets and water were 
provided ad libitum. 

Drug 

Streptozotocin (STZ) (Sigma, St. Louis, 
MO, USA) dissolved in sterile saline 
solution (0.85%) to give 40 mg/kg dose 
intraperitoneally inject to female rats. 

Animal groups and treatment 

After 2 weeks of acclimation to the diet 
and the environment, female Wistar rats 
were placed with a proven breeder male 
overnight for breeding. Vaginal smears 
were done the next morning to check for 
the presence of sperm. Once sperm was 
detected that day was assigned as 
gestational day 1 (GD). On day 1 of 
gestation, pregnant females randomly 
divided into two control and diabetic 
groups. 

Five female rats in diabetic group 
receiving 40 mg/kg/body weight of 
streptozotocin (STZ) and control groups 
(five rats) receiving an equivalent volume 
normal saline injection intraperitoneally 
(IP). Blood was sampled from the tail at 1 
week after STZ injection. The mothers 
with blood glucose level 120-250 mg/dl 
known as gestational diabetic mothers. The 
pregnancy of dams was terminated 
physiologically. 

In postnatal days of 7,14 and 21, from each 
mother in control and cases one or two 
male infant randomly selected. Totally six 
offspring of gestational diabetic mothers 
and control mothers at the day 7,14 and 21 
were randomly selected and were scarified. 
For light microscope preparations brain 
was fixed in 10% neutral-buffered formalin 
for histological procedure. The coronal 
sections (6 micrometer) serially collected 
from bregma -3.30 mm to -6.04 mm of the 
hippocampal formation(43). The sections 
were stained with cresyl violet. 

Blood glucose measurements 

Blood glucose level of mothers (before 
mating and after STZ injection) and 
offspring was obtained via tail vein and 
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was estimated with a glucometer (ACCU-
CHEK® Active Glucometer, Roche 
Diagnostics, Mann-heim, Germany). 

Morphometric techniques 

For histomorphometric study, the sections 
were observed under the light microscope. 
In each postnatal pup, ten similar sections 
of anterior to posterior of hippocampal 
dentate gyrus subfield were selected and 
images by Olympus BX 51 microscope 
and DP12 digital camera attached to 
OLYSIA autobioreport software (Olympus 
Optical, Co. LTD, Tokyo, Japan). The 
number of granular cells was evaluated in 
10000 μm2 area of granular layer of 
dentate gyrus lateral and dentate gyrus 
Media subfield in 1000X magnification. 
The thickness (µm) of layers of 
hippocampus in dentate gyrus included 
granular, molecular, polymorph, were 
obtained from 200X magnification. 

Statistical analysis 

Morphometric data is expressed as the 
mean±SEM and analyzed by the Student's 
“t” test using SPSS 11.5 software. P < 0.05 
was considered significant. 

RESULTS 

Morphometric results 

The morphometric findings are depicted in 
Fig. 1,2 and Table 1. 

The number of granular cells in DGm 
and DGl 

The numbers of granular cells in 10000 
μm2 area of in DGm subfield of GDM 
significantly reduced from (107.6±6.2) in 
control group to 84.96±2.1. Neurons in 
GDM group in P7 (P < 0.001) and 
significantly decreased in control 
group(131.6±4.6) to GDM 
group(109.8±7.3) in P14 (P < 0.001) and 
significantly decreased in control 
group(143.5±4.0) to GDM 
group(121.05±5.6) in P21 (P < 0.001). 

Also, the number of granular cells in DGl 
subfield of treatment group significantly 
reduced from 98.76±4.4 to 79.98±4.2 in P7 

and from 125.6±4.0 to 107.07±8.5 in P14 
and from 149.9±4.2 to 117.1±6.7cells in 
10000 μm2 area in P21 (P < 0.001). 

Thickness of layers in granular 

The mean thickness (µm) of the granular 
layer in DGm subfield in P7,P14, P21 
significantly reduced in treatment group 
(40.47±2.0, 78.11±4.1, 94.14±2.9) 
comparing with the control group 
(33.83±1.2, 57.13±5.2, 71.78±3.6). 

Also, The mean thickness (µm) of granular 
layer in DGl subfield in P7,P14, P21 
significantly reduced in treatment group 
(48.11±2.8, 68.03±5.1, 82.35±5.7) 
comparing with the control group 
(41.60±1.3, 47.76±2.9, 64.10±4.1). 

Thickness of layers in molecular 

The mean thickness (µm) of the molecular 
layer in DGm subfield P7 significantly 
increased in GDM group (47.85±3.1) 
comparing with the control group 
(56.07±1.8). 

in P14 significantly reduced in GDM 
group (98.62±2.2) comparing with the 
control group (82.33±4.1) and in P21 non 
significantly reduced in GDM group 
(107.8±2.9) comparing with the control 
group (99.11±5.0). 

Also, The mean thickness (µm) of the 
molecular layer in DGl subfield P7 
significantly increased in GDM group 
(73.05±4.8) comparing with the control 
group (86.56±3.4).in P14 non significantly 
reduced in GDM group (92.16±3.2) 
comparing with the control group 
(85.34±2.3) and in P21 significantly 
reduced in GDM group (102.8±3.8) 
comparing with the control group 
(90.63±3.6). 

Dentate gyrus-media and dentate gyrus-
lateral molecular layer significantly 
increased in P7 in cases in comparison 
with controls (P < 0.05), whereas other 
layers in cases had significant and non 
significant decrease when compared with 
control rats. 
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Thickness of layers in polymorph 

The mean thickness (µm) of the polymorph 
layer in DGm subfield in P7, P14 and P21 
significantly reduced in treatment group 
(88.63±3.1, 103.4±2.6, 116.6±2.9) 
comparing with the control group 
(73.80±2.7, 83.53±4.1, 92.18±6.8). 

Also, the mean thickness (µm) of granular 
layer in DGl subfield in P7, P14, P21 
significantly reduced in treatment group 
(93.92±3.2, 95.17±4.5, 112.4±3.2) 
comparing with the control group 
(74.84±6.0, 81.10±1.8, 98.99±3.8). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2: Histological section of dentate gyrus in Wistar rat (P21) control animal. A: Dentate gyrus medial blade 
(DGm) and B: Dentate gyrus lateral blade (DGl) stained with cresyl violet (layers including: molecular layer 
(mo), granule cell layer (gc) and polymorph layer (po), ×1000 magnification) 

Fig 1: Overview of dentate gyrus areas used for quantitative measurements from Wistar rat (P21) control 
animal. Coronal sections stained with cresyl violet. Quantification areas are: DGm, dentate gyrus medial 
blade; DGl, dentate gyrus lateral blade (×100 magnification) 
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Table 1: The thickness of the various layers of dentate gyrus (μm) in  postnatal day (P7,P14,P21) of 
Gestational diabetes mothers and control Wistar rats 
 

P7 P14 P21 

Control  GD Control  GD Control  GD 

      

47.85±3.1 56.07±1.8* 98.62±2.2 82.33±4.1* 107.87±2.9 99.11±5.0 

40.47±2.0 33.83±1.2* 78.11±4.1 57.13±5.2* 94.14±2.9 71.78±3.6* 

88.63±3.1 73.80±2.7* 103.43±2.6 83.53±4.1* 116.62±2.9 92.18±6.8* 

      

73.05±4.8 86.56±3.4* 92.16±3.2 85.34±2.3 102.8±3.8 90.63±3.6* 

48.11±2.8 41.60±1.3* 68.03±5.1 47.76±2.9* 82.35±5.7 64.10±4.1* 

93.92±3.2 74.84±6.0* 95.17±4.5 81.10±1.8* 112.47±3.2 98.99±13.2* 

Results are expressed as Mean±SEM of the mean (*compared with control group, P<0.05, n=6) 

 

DISCUSSION 

The present study demonstrated that 
gestational diabetes produces a significant 
reduction in the granular cell density of 
DGm and DGl hippocampal subfields in 
the postnatal 7,14 and 21 days of Wistar 
rats. 

This reduction of neurons can be causes of 
disability of learning and memory which 
previously reported both in humans and 
animals newborns(55). 

Previous studies have shown reduce 
neuronal density of dentate gyrus in 
animals with type 1 and 2 diabetes 
mellitus(23,29,35). 

Also, animal model studies have shown 
that mothers with type 1 and 2 diabetes 
mellitus born offspring with low neuronal 
density in hippocampus(10,34,52), 
catecholaminergic systems of 
hypothalamus(46), granule layer of dentate 
gyrus(1) and cerebrum(28). 

Hwang study showed that type II diabetes 
reduced hippocampal cell differentiation in 
the subgranular zone of the dentate gyrus 
in a rat model(23). 

Also, Baek-Vin reported that 
streptozotocin-induced diabetes reduced 
neuronal density in in dentate gyrus of 
rats(35). Indeed, Hong et al have shown that 

ginseng radix increases cell proliferation in 
dentate gyrus of Rats with streptozotocin-
induced diabetes(29). 

In spite of several studies regarding the 
effects of in diabetes I and II on CNS 
including hippocampus, there is no 
investigation about the effect of gestational 
diabetes on dentate gyrus neurons in 
offspring. 

Our animal model study demonstrated that 
gestational diabetes similar to type I and II 
diabetes mellitus, has a neurotoxic effect 
on offspring dentate gyrus. 

The reduction of neuronal density of 
dentate gyrus can be due to program cell 
death or block of neurogenesis(26). 

Diabetes mellitus, regardless of its type, is 
associated with hyperglycemia. Several 
possible mechanisms are explained about 
cerebral alterations including neuronal loss 
due to hyperglycemia. Hyperglycemia 
induces multiple cellular responses. These 
can be considered to be neurologically 
passive or active cellular responses(30). 

Diabetes mellitus is a chronic endogenous 
stressor that is associated with increased 
oxidative stress in central nervous 
system(2,20). CNS complications of diabetes 
mellitus could be mediated through 
excessive free radicals generation(1,3,41,56). 
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These radicals contribute to increase 
neuronal death by oxidizing proteins, 
damaging DNA, and inducing the 
lipoperoxidation of cellular membranes(21). 

Indeed, Several studies has shown that 
offspring of diabetic mothers have lower 
arachidonic acid (AA:20:4n-6) and 
docosahexaenoic acid (DHA:22:6n-3) in 
cord blood(15,38,54). 

AA metabolite and prostaglandin E2 plays 
an important role in neurogenesis(53). Zhao 
et al (2009) have reported that maternal 
arachidonic acid supplementation improves 
neurodevelopment in young adult offspring 
from rat dams with and without 
diabetes(55). 

Also, other possible mechanism in cause of 
program cell deaths in diabetes 
mellitus(4,5,6,7,31,32,33,40) can be due to 
decrease insulin or insulin-like growth 
factor signaling(24), or an increase in 
cytokines such as TNFa(13). 

Moreover, insulin-like growth factor has a 
neuroprotective anti-apoptotic effect 48 
and down regulation of expression of 
insulin-like growth factor and its receptor 
in diabetes might also be expected to lead 
to neuronal loss(34,49). 

Other factors in active response in 
hyperglycemia, is down regulation of nitric 
oxide synthase (NOS) mRNA and protein 
concentrations are within hippocampal 
CA1 and CA3 neurons(47). 

This down regulation of NOS mRNA may 
provide a partial explanation for the 
impaired long-term potentiation that is 
seen in the diabetic hippocampus, because 
induction and maintenance of potentiation 
are dependent on NOS activity and 
experimental inhibition of NOS decreases 
long-term potentiation and impairs 
cognitive learning and memory(22). 

This study showed the uncontrolled 
gestational diabetes induces neurotoxic 
effects on hippocampal granular neurons in 
offspring, which remained persistent 
during postnatal period. Further studies are 

required for exploring the exact 
mechanism of CNS complications of 
gestational diabetes mellitus. 
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