-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by HAL Descartes

HAL

archives-ouvertes

Questioning some paradigms of signal processing via
concrete examples
Michel Fliess, Mamadou Mboup, Hugues Mounier, Hebertt Sira-Ramirez

» To cite this version:

Michel Fliess, Mamadou Mboup, Hugues Mounier, Hebertt Sira-Ramirez. Questioning some
paradigms of signal processing via concrete examples. H. Sira-Ramirez, G. Silva-Navarro.
Algebraic Methods in Flatness, Signal Processing and State Estimation, Nov 2003, Mexico,
Editorial Lagares, pp. 1-21, 2003, Algebraic Methods in Flatness, Signal Processing and State
Estimation. <inria-00001059>

HAL Id: inria-00001059
https://hal.inria.fr /inria-00001059
Submitted on 26 Jan 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francgais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://core.ac.uk/display/52200998?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.inria.fr/inria-00001059

Chapter 1

Questioning some paradigms
of signal processing via
concrete examples

Michel Fliess
Laboratoire STIX, Ecole polytechnique, 91128 Palaiseau, France

michel.fliess@stix.polytechnique.fr

Mamadou Mboup

UFR de Mathématiques et Informatique, Université René-Descartes (Paris V),
45 rue des Saints-Peéres, 75270 Paris cedex 06, France

mboup®@math-info.univ-paris5.fr

Hugues Mounier

Institut d’Electronique Fondamentale, Bat. 220,
Université Paris-Sud, 91405 Orsay, France

hugues.mounier@ief.u-psud.fr

Hebertt Sira-Ramirez

CINVESTAV-IPN, Dept. Ingenieria Eléctrica, Seccion Mecatrénica, Avenida IPN,
# 2508, Col. San Pedro Zacatenco, A.P. 14740, 07300 México, D.F., Mézxico.

hsira@mail.cinvestav.mx



2 CHAPTER 1. QUESTIONING SOME PARADIGMS

Abstract We are proposing an algebraic estimation theory of noisy signals. This
approach which is bypassing probabilistic techniques does not necessi-
tate any a priori sampling of the signals. Several examples are illustrat-
ing the efficiency of our techniques, which yield very fast computations.

Keywords: Linear systems, identifiability, parametric identification,
module theory, differential algebra, operational calculus.

1.1 Introduction

Some of the underlying methods of modern signal processing (see, e.g., [28])
may be summarised as follows:

e An extensive use of highly developed probabilistic tools has become
quite universal.

e Shannon’s information theory and digital computers have imposed an
almost exclusive analysis of discrete-time signals.

Our algebraic standpoint (see also [13]), which is based on differential fields?,
ring theory, and operational calculus, leads to the following facts:

e No precise statistical knowledge of the noise is required?.

e We are keeping the “true” physical nature of the continuous-time sig-
nals, which might be forgotten when sampling?.

e There is no distinction between stationary and non-stationary signals.
e The computations of the estimates can be done on-line.

Mikusitiski’s approach to operational calculus® (see [23, 24] and [31]) permits
a straightforward introduction of the field theoretic language, which is most

!Differential fields [3, 18] are already playing some réle in non-linear control (see, e.g.,
1, 9).

2 Unknown but Bounded and Interval Analysis are other ways of a complete different
nature for avoiding probability and statistics in estimation. See, e.g., [16], [29] and the
references therein.

3Note that the differentially flat systems [9], which are so useful in practice (see, e.g.,
[30]), have also shed a new light on sampling in control.

4This setting ignores the Laplace transform (see, e.g., [7, 26] for an introduction to op-
erational calculus via the Laplace transform). What matters are the convolution product
and the operational properties.
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convenient. After a brief review of differential algebra, of non-commutative
differential operators and of operational calculus, section 1.2 defines various
types of identifiability, which are often encountered in practice (compare
with [12]). We are able to handle perturbations, which are structured, i.e.,
which, like a constant perturbation of unknown amplitude, are solutions of
a given homogeneous linear differential equation. By annihilating them via
a suitable differential operator, we are avoiding any bias due, for instance,
to a random noise of unknown constant mean. Unstructured noises, which
are understood as high frequency perturbations, are attenuated via low pass
filters.

Section 1.6.1 is providing the determination of A, w, ¢ in Asin(wt +
¢), which under various guises is crucial in signal analysis®. For the non-
stationary piecewise polynomial signal in section 1.6.2, borrowed from [21],
we are able to calculate the coefficients of the various polynomials in the
presence of a non-classic random noise, and to determine quite precisely
the discontinuities. These results seem to be new. Parameter estimation
in non-stationary context is presented further through section 1.6.3 with a
chirp signal and section 1.6.4 with a polynomial phase signal with time-
varying amplitude. Computer simulations are indicating the efficiency of
our approach.

The algebraic approach presented here has also proved to be successful
in other estimation problems [12, 14]

Acknowledgement.

This work was partially supported by the action spécifique “Méthodes algébriques
pour les systémes de communications numériques”, RTP 24 - CNRS and by
Conacyt Research Project 42231-Y.

1.2 Basic mathematical notions

1.2.1 Differential algebra®
Basic definitions

A differential ring, or, more precisely, an ordinary differential ring, R is a
commutative ring which is equipped with a single derivation, written here

%, i.e, a map R — R such that, V z,y € R,

SWe are thus solving an engineering problem which is largely open when the random
noise is not Gaussian and/or with poorly known statistics.
6See [3, 18] for more details.



4 CHAPTER 1. QUESTIONING SOME PARADIGMS

d d d

o Sty =5+,
d,

o Llxy)=Fy+aE

A differential field, or, more precisely, an ordinary differential field, is a
differential ring which is a field”. A constant ¢ € R is such that % = 0. The
set of all constants of a given differential ring (resp. field) is a differential
subring (resp. subfield), called the subring (resp. subfield) of constants. A
(differential) ring (resp. field) of constants is a differential ring (resp. field)
whose elements are constant.

Example 1.2.1. Let k be a differential field of constants. The field k(s)
of rational functions in the indeterminate s, with coefficients in k, possesses
an obvious structure of differential field with respect to dis. Its subfield of
constants is k.

A differential morphism ¢ : R1 — Ry between two differential rings is
a ring morphism such that, Vo € Ry, £(¢(z)) = ¢(%£). A differential
specialisation R — K is a differential morphism where R is differential ring
and K a differential field.

Differential field extension

A differential field extension L/K is given by two differential fields K, L
such that

« KCIL,
e the restriction to K of the derivation of L is the derivation of K.

An element x € L is said to be differentially algebraic over K if, and only if, x
satisfies an algebraic differential equation over K, i.e., P(x, 3—;”, e ﬁ_ff) =0,
where P is a polynomial over K. The extension L/K is said to be differ-
entially algebraic if, and only if, any element of L is differentially algebraic
over K.

An element of L which is not differentially algebraic over K is said to be
differentially transcendental. A differentially transcendental extension L/K

is an extension which is not differentially algebraic.

Notation Let S beasubset of L. The differential overfield (resp. overring)
of K generated by S is written K < S > (resp. K{S}).

TAll fields are assumed here to be of characteristic 0. See [1] for basic notions in
commutative algebra.
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1.2.2 Linear differential operators

Let K be a differential field. The ring K [ <] of linear differential operators of
the form Zﬁnlte G ddsw aq € K, is commutative if, and only if, K is a field
of constants. For seeing it, take an element a € K. Then, %a = fl—‘; + ad%.
Eveél in the general non-commutative case, it is known (see, e.g., [22]) that

K[%] is a principal left and right ideal ring: any left or right ideal may be

generated by a single element.

1.2.3 The differential field of Mikusinski’s operators®
Mikusinski’s field of operators

Endow the set C of continuous functions [0,4+00) — C with a structure of
commutative ring with respect to the addition (f + g)(t ) f( ) + ¢g(t) and
to the convolution (product) (f % g)(t) = (g% f)(t fo g(t —m)dr =
fo f(t —7)dr. According to a famous theorem due to Tltchmarsh (see
23, 24 31]), C does not possess zero divisors. Any element of the Mikusiniski
field M, i.e., the quotient field of C, is called an operator. Any function
f : R — C, which belongs to M, may also be written {f}. Note that in
general the product of two elements a,b € M will be written ab and not
a*b. Some examples are in order:

1. The neutral element 1 € M with respect to the convolution is the
analogue of the Dirac measure at ¢ = 0 in Schwartz’s distribution
theory.

2. Any locally Lebesgue-integrable function R — C with a left bounded
support belongs to M.

3. The inverse in M of the Heaviside function

0 if ¢t<0
1(t)_{1 if t>0

is the derivation operator s. Let f : R — C be a C'-function with a
left bounded support. Then s{f} = {f’}. Let g : R — C be a locally

Lebesgue integrable function with a left bounded support. Then {g -

{ f o)do} has also a left bounded support. The meaning of the
Subﬁeld C(s) € M of rational functions over C in the indeterminate s
is the usual one in operational calculus (see, e.g., [7, 23, 24, 26, 31]).

8See [23, 24] and [31] where the notion of differential field is of course absent.
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4. The meaning of the delay operator e~%*, I € R, is the usual one in
operational calculus (see, e.g., [7, 23, 24, 26, 31]). It is the analogue
of the Dirac measure at ¢ = L in the theory of distributions.

The algebraic derivative

For any f € C, it is known (see [23, 24, 31]) that the mapping f — % =
{—tf} satisfies the properties of a derivation, i.e.,

d _df | dg

ds(f+g)_ds ds
and p i p
_9 49
G r9) = xgt fro

It can be trivially extended to a derivation, called the algebraic derivative,
of M by setting, if g # 0,
df d
xg—frxG

d -1\ _ ds
%({f}*{g} )_ d {9}2

Endowed with the algebraic derivative, M becomes a differential field, whose
subfield of constants is C.

1.3 Identifiability

All fields are subfields of a differential field which is a universal extension
[18] of the field Q of rational numbers.

1.3.1 The mathematical framework

Let ko be a given ground field, which is assumed to be a differential field
of constants. Let k be a finite algebraic extension of ko(®) where ® =
(01,...,60,) is a finite set of unknown parameters. Thus the transcendence
degree of the extension k/kg is < r. Moreover we give to k a canonical struc-
ture of a differential field of constants. Let K/k(s) be a finitely generated
differentially algebraic extension. A signal is an element of K. Take a finite
set € = (r1,...,x,) of signals. The parameters ® are said to be

e algebraically (resp. rationally) identifiable® with respect to @ if, and
only if, 81,...,0, are algebraic over (belong to) ko < s, >;

9Those definitions are borrowed from [5, 6].
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e linearly identifiable!® with respect to x if, and only if,

61
P

I
O
—~

=
—
~—

0,
where

— P and @ are respectively r x r and r x 1 matrices,

— the entries of P and @ belong to Spanko(s)[i}(l, x),
ds

— det(P) # 0.
e projectively linearly identifiable with respect to « if, and only if, there
exists 0. # 0 such that (;—1, e 669:1, 63?,...,3—: are linearly identifi-
able.

o weakly linearly identifiable with respect to x if, and only if, there exists
a finite set ®' = (61,...,0/,) such that

— the components of ® (resp. ©®) are algebraic over ko(®) (resp.
ko(©")),

— @' is linearly identifiable.
The following result is clear:

Proposition 1.3.1. Linear (resp. rational) identifiability implies rational
(resp. algebraic) identifiability. Linear (resp. weak linear) identifiability
implies weak linear (resp. algebraic) identifiability.

1.3.2 Rational signals

A rational signal is an element of k(s).
Proposition 1.3.2. Assume that the numerator and the denominator of

bo +bis+ -4 b,_18"7!
x = (1.2)
ap+a1s+ -+ ap_1s" 1+ 57

are coprime. Then, the coefficients ag,...,an_1,bg,...,bn_1 are linearly
identifiable! with respect to .

10This definition as well as the two below are adapted from [12].
llko = Q, k= ko(ao, ceey n—1, bo, ey bnfl).
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Proof. Equation (1.2) yields the linear system of equations of type (1.1):

L Tbo+ - 4 byo18" ' = (ag + - + a5 Ha] = L)
(1.3)

v=0,1,...,2n—1
O

1.3.3 Introducing exponentials
Lemma 1.3.3. The expression

M v M (2)

=3l | X e |
v svtl N! gv—u+l gvt1
v=0 n=0 v=0

where

L4 kO = Q; k= kO(Cl(/l)acl(/Q)aL)7

o ¢~ 1% satisfies the differential equation (% — L)e ks =0,
is differentially algebraic over k(s).
Proof. 1t follows from the fact that finite sums and products of differentially
algebraic elements over k(s) are again differentially algebraic over k(s). O
Proposition 1.3.4. The parameters L, c,(f), v=1....,N, =12, are

algebraically identifiable with respect to the signal x.

Proof. Take as in the proof of theorem 1.3.2 sufficiently many derivatives of

sMz with respect to s. The conclusion follows from the transcendence!? of

e L over k(s). O
1.3.4 Differentially rational signals

A signal z is said to be differentially rational if, and only if, L(x) = p, where
Le k(s)[d%], p € k(s). Set

B
Z aaﬁsa% x = Z bys? (1.4)

finite finite

ko = Q, k = ko(aas, by). The next result, which is a direct generalisation of
proposition 1.3.2, may be proved in the same way.

28ee [11] for a direct proof without having recourse to analytic functions.



1.4. STRUCTURED NOISES AND LINEAR ESTIMATORS 9

Proposition 1.3.5. Assume that in Equation 1.4 the polynomials »_  aa3s”
and ZV bys7 are coprime. Then, the coefficients aqg, b, are projectively
linearly identifiable with respect to x.

1.4 Structured noises and linear estimators

1.4.1 Noises

Let k1/ko be a differential field extension such that
e ki is a differential field of constants,
e k and kp are linearly disjoint over k.

A noise w is an element of a differential overfield N of k;(s) such that K
and N are linearly disjoint over ko(s). It is said to be structured'? if, and
only if, it is annihilated by IT € k‘o(s)[d%], IT # 0.

Example 1.4.1. Consider the noise 2, v € k;. It is annihilated by vs” -
sV 4 € ko(s)[<£], which does not depend on .

1.4.2 Noisy signals

A signal with an additive noise is a sum x + w, where z € K is a signal and
w € N a noise. Let y = (y1,...,ys), where y, = x, + w, be a finite set of
such noisy signals. If the parameters ® are linearly identifiable, Equation
(1.1) becomes

01
Pl : |=Q+Q (1.5)
0,

where
e the matrices P and @) are obtained from (1.1) by substituting y to «,

e the entries of the r x 1 matrix Q" belong to spank,(s)[i}(w), where £’
ds

is the quotient field of k ®y, k1, and @ = (wy, ..., wk).

3This definition might also be expressed in terms of Picard- Vessiot extensions. See,
e.g., [17, 18].
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1.4.3 Linear estimators

Assume that the components of zo are structured. The next fundamental
theorem follows at once from the fact that ko(s)[2£] is a principal left ideal
ring.

Theorem 1.4.2. There exists A € ko(s)[-L], such that Equation (1.5) be-
comes
0
AP| = AQ (1.6)
Or

Equation (1.6), which is independent of the noises, is called a linear estimator
of the unknown parameters if, and only if, det(AP) # 0.

Let ¢ be a differential field of constants. A differential operator in £(s)[-4%]
is said to be proper (resp. strictly proper) if, and only if, the coefficients
of js—aa are proper (resp. strictly proper) rational functions in £(s). The
estimator (1.6) is said to be proper (resp. strictly proper) if, and only if,
the entries of AP and AQ are proper (resp. strictly proper) differential
operators. Multiplying both sides of equation (1.6) by a suitable proper

element of ko(s) yields the

Proposition 1.4.3. Any linear estimator may be replaced by a proper (resp.
strictly proper) one.

1.4.4 Linear estimator of a noisy rational signal

Set

yz;v-l—z
s

where z is given by equation (1.2). The analogue of equation (1.5) is ob-
tained by substituting y — % to z in equation (1.3). The next result is
adapted from section 1.4.3:

Proposition 1.4.4. The system of linear equations

n-+v v _ — dav(s™
jsw_u |:SI/+1 (js_” (b0+“‘+bn_18" 1_ (ag+ -+ + ap—18" l)y) _ c(lzny))] =0

v=20,1,...,2n -1

is a linear identifier if, and only if, the residue of x at s =0 is 0.

c-1

Proof. If c_1 # 0 in the Laurent series expansion z = ) ., ¢,s", = is

annihilated in equation (1.7) with £. O
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1.5 Exploiting linear estimators

1.5.1 Obtaining numerical values

For obtaining “numerical” values of the unknown parameters @ define a
differential specialisation ko{y} — M over ky.

1.5.2 Unstructured noises

A noise which is not structured is said to be unstructured. In practice we
will assume that when specialised to M such a noise corresponds to a “high
frequency” time-function which may be attenuated by a low pass filter.

Example 1.5.1. Set, for instance,

= [0 if t<0
T T sin(Qt+¢) i £>0

Then
w_/t()d_ 0 if t<0
s Jo T T el >

It goes to 0 when 2 — .

1.6 Examples

1.6.1 A corrupted sinusoid

Set, for t > 0,
y(t) = Asin(wt + ¢) + k + n(t), (1.7)

where k represents an unknown constant bias attached to an unstructured
noise n(t). Consider first the noise-free signal §(t) = A sin(wt + ¢) + k which

also reads 5 5
w oS @ + ssin K
) g
y 52 4+ w? s

The numerical simulations of figure 1.1 were obtained for
g(t) = 117.5sin(2r ft + 0.44) + K

where f = 60 Hz, by a direct application of section 1.4.4. They depict the
precision and speed of calculations.
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Asin(27ft + P) + ~
1507 amplitude: A=117.5
1004
frequency: f=60 cps,
50
)(phase:¢=0.44 rad
04
-504
-1004
-150 T T T
0.00 0.01 0.02 0.03
time [s]

Figure 1.1: Estimation of the unknown parameters of a sinusoid corrupted
by a constant perturbation of unknown amplitude.

The robustness of the proposed estimation was tested when the biased
sinusoid signal is also corrupted by a high frequency perturbation signal
n(t).

y(t) = Asin(2r ft + @) + K + n(t)
We set for the computer simulations n(t) = 0.1sin (900¢ + 300 cos(1000t)).
Figure 1.2 shows the accuracy of the estimations in the simulation results.
It can be seen that the mean values of the estimates coincide with the actual
values of the parameters.

0.34

0.2+
0.1
0.0

72(t)
|

-0.1
-0.2
-0.3

v

time'[s]

1504
1004
50

-50
-100-
-1504

0.000 0.005 0.010 0.015 0.020 0.025 0.030

N

L

Amplitude: A=117.46
frequency: f=59.97 cps

phase:$=0.4397
A sin(27w ft + ) + 12(t)

0.000 0.005 0.010 0.015 0.020 0.025 0.030
time [s]

Figure 1.2: Estimation of the unknown parameters of a sinusoid in the
presence of a high frequency noise.



1.6. EXAMPLES 13

Although this example is somehow of academic nature, the speed of
calculations make it very relevant in many real-life applications. The de-
modulation of continuous phase modulated (CPM) signals [28] is such an
application. Indeed, a full response (1IREC) CPM signal has, in each sym-
bol period interval, the form given by equation (1.7). An on-line symbol-by-
symbol detection method exploiting the results of this example are presented
in [10].

1.6.2 A piecewise polynomial signal

Set
po(t) = —=3(t—to)+ 3,
pi(t) = —A(t—t1)*/6+5(t —t1)?/2 = 2(t — t1) + 2,
pat) = (t—t2)? —2(t—ty) +2

to be a sequence of unknown time polynomial signals measured by y;(t) =
pi(t) +w(t) where w(t) is a zero mean value stochastic process constituted,
at each time ¢, by a rectangularly distributed computer-generated random
variable!'4.

To carry out the simulations, the polynomial signals were generated as
solutions of a perturbed linear differential equation of the form: z(®) =
v(t),y = z+w(t), with suitable (unknown) initial conditions and v(¢) being
also a zero mean stochastic process.

Figure 1.3 shows the sequence of polynomials estimates, which are seen
to converge quite fast to the ideal signal and the results of the constant
parameter identification in the noisy environment. It should be pointed out
that in the previous simulations, the instants t;, at which the polynomial
signal p;(t) changed into a new one p;11(t), were known beforehand. It is
not difficult to see that the proposed identification algorithm is also capable
of depicting the instant at which the new polynomial signal arrives, when
such discontinuity instants are randomly selected. Being unaware of the
signal change, results in a noticeable drifting of the constant values of the
parameters being currently identified. This allows for a simple and timely re-
initialization of the estimation algorithm. Figure 1.4 depicts an example of
the estimated parameters drift that occurs when a second order polynomial
signal is suddenly changed to a different one.

MProposition 1.4.4 is telling us that such a signal cannot be identified if it is corrupted
by a constant perturbation.
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10 T T

T . . T a=2a=—2a=04=_2

5“00—3301—_3 ﬂc2_563 —4 || o =2 1
5 U M il

0 1 2 3 4 5 6
10 T T T T T
ot po(t) pl(t) pz(t) *
2 . 6

1

OWWMWMWWWNWNWNMMWWWM
'10)(10.4 1 2 3 . 5 6

5 T T T T T

~{0)

0 [F AWV WAV IMANANAS AW A AMAANAMA NN A A AL AN VAR AWM A

20 1 2 3 . 5 6

Figure 1.3: A sequence of noisy measured polynomial signals, generated by
a noisy system, and their estimated parameter values.

T T T T T T
1
I | ‘ ‘ | I
os] | €2, C2e | -
0\ N !
or / / | ) 1
| — R
C1, Cle ‘
_05 ‘ Il Il Il Il Il Il Il Il Il
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.6 T
| |
|
0.5 ‘
0.4 ‘ 1
€0, Coe ‘ ~
| o
0.3 —
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.4
12
02+ (t
0
0.2
0.4
0

Figure 1.4: Identification of a discontinuity time in a perturbed time-
polynomial signal parameter identification process.
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1.6.3 A chirp signal

Chirp signals are of interest in many signal processing applications such as
frequency modulation, sonar and radar systems [27], and Vibroseis system
in seismology [2], [32]. Such signals can be represented as:

y(t) = Asinp(t) + n(t) (1.8)

where (t) is a second order polynomial, ¢(t) = ¢ + @1t + @at?, A is a
constant amplitude and n(t) represents a noise corruption. The estimation
of the parameters ® = (A, g, 1, ¥2) has long been investigated in the
litterature essentially in a discrete-time setting [19], [20], [15], [25], [§].

Keeping the continuous-time nature of the signal, we readily observe
that the noise-free signal x(t) = y(t) — n(t) satisfies the following linear
differential equation with time-varying coefficients

T(t) + p(t)*i(t) + 3p(t)@(t)z(t) = 0 (1.9)
which also reads as

d P2
{(29”“”2 +pls +5%) + dpa(po + ¢15) - + 49038@} )
= (#(0) + z(0)¢}) + #(0)s + x(0)s* (1.10)

The signal is thus differentially rational (compare with equation (1.4)). Set-
ting

1 =12(0) + go%a:(O) =2p9Acospy 05 =x(0) = Asinpy  0f = 2p1¢09
0 = 2(0) = 1A cos @ 0y = —¢7 05 = —4¢3

allows us to rewrite equation (1.10) in the more convenient form

d & d
0] + 0hs + 045 + 0y sz + 0, <28% - 1> T+ 65 <s@ - %> z =53 (1.11)

Now, the parameters @' = (6],...,0}) are clearly linearly identifiable from
the system of linear equations

4" Lo 4oy 1046 40 o (2L 1 0 ¢ _d
S ds—m 1+ 28+ 3S+4S$+5 8%_ l'—f—GS@—% X

—l/dm 3
=5 ds—m{sac}, m=0,1,...,5 (1.12)
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where v > 0 is large enough so that the coefficients of the system and the
left hand sides only contain terms of the form ¢s™* and cs_k‘é;f , k> 1,
i > 0. By the well know rules of the operational calculus, we obtain, in the

time domain, expressions of the forms 7%, where 7 is the estimation time,

and
T Thk—1 T 1 T ,
// / )\’x()\)dimdrld)\:ﬁ/ (1= A I z(A)dA
0J0 0 (k_l)' 0

We now proceed with numerical simulations in which the chirp signal is
corrupted by an additive Gaussian noise as in equation (1.8). We consider,
for sake of simplicity, that n(¢) has zero-mean. Note that if a constant bias
were present, then either it could be ruled out as described in section 1.4.4
or else it could be estimated as part of the parameters.

The noise-free chirp signal considered in the following simulations was
set to

z(t) = 2.2911 sin(1.524 + 0.876¢ — 1.892¢)

The noisy signal, y(t) = x(t) + n(t) is represented in figure 1.5 for a signal
to noise ratio of 20dB. The estimates are obtained from (1.12) for v = 4
and 7 = 1.4, by substituting the noisy measured signal y to the noise-free
signal x.

y(t)

Figure 1.5: Noisy chirp signal: SNR = 20dB

Figure 1.6 displays the estimated signal (solid line) in comparison with
the noise-free signal (dotted line). The two curves are undistinguishable,
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showing that the estimates are quite precise under a reasonable level of
noise.

Figure 1.6: Estimation of a chirp signal corrupted by a zero-mean Gaussian
noise: SNR = 20dB

The parameters obtained after different estimation times 7 are also given
in table 1.1 below, to illustrate the fastness of the proposed estimator.

= | 14] 16] 18] 2] 22] 24|
A || 22919 | 2.2902 | 2.2911 | 2.2904 | 2.2922 | 2.2912
@o || 1.5279 | 1.5100 | 1.5241 | 1.5137 | 1.5234 | 1.5238
@1 || 0.8678 | 0.8999 | 0.8762 | 0.8895 [ 0.8758 | 0.8762
@2 || -1.8914 | -1.900 | -1.8927 [ -1.8952 | -1.8920 | -1.8920

Table 1.1: Numerical values for different estimation times: SNR = 20dB

The same simulation is reproduced but with a high level of noise: the
signal to noise ratio is now set to 10dB. Again, figure 1.7 display the noisy
signal while figure 1.8 shows the noise-free signal (dotted line) along with
the estimated one (solid line) obtained for 7 = 2. Note that even in this
case, which seems to correspond to the worst result among that given in
table 1.2, the signal is correctly recovered up to an initial phase shift.



18 CHAPTER 1. QUESTIONING SOME PARADIGMS

The obtained results are a nice illustration of the robustness and speed
of the estimation.

_57 T T T T T T T T T T t

0 1 2 3 4 5
Figure 1.7: Noisy chirp signal: SNR = 10dB

Figure 1.8: Estimation of a chirp signal corrupted by a zero-mean Gaussian
noise: SNR = 10dB



1.6. EXAMPLES 19

El 2] 22| 24] 26|
A || 22919 | 2.2986 | 2.2958 | 2.2912
@o || 1.5137 | 1.5024 | 1.5342 | 1.5219
@1 || 0.7018 | 0.8619 | 0.7257 | 0.8796
@ || -1.8953 | -1.8961 | -1.8905 | -1.8930

Table 1.2: Numerical values for different estimation times: SNR = 10dB

1.6.4 A time-varying amplitude polynomial phase signal

In this example, we address the parameter estimation problem for a class
of non-stationary signals which generalizes the one of the preceding exam-
ple. This class is that of polynomial phase signals with time-varying am-
plitude. Typical representatives of this class are AM-FM signals which are
encountered in many applications such as numerical communications, voiced
speech modeling, radar and sonar systems (see, e.g., [33] and the references
therein). Recall that a complex (analytic signal) polynomial phase signal
with time-varying amplitude, x(t), is modeled as

z(t) = a(t)e’¥® (1.13)

where the phase is a polynomial in ¢, ¢(t) = > .. pxt* and where the
amplitude a(t) is a given continuous function of time. Since the signal is to
be analyzed in a finite interval of time, one usually invoke the Weierstrass
approximation theorem to represent the amplitude also as a polynomial
in ¢, unless a model is available for a(¢) [27]. So from now on, we set
a(t) = Zﬁnite ak’tk'

Now, one can readily check that the signal z in equation (1.13) is a
solution of the following linear differential equation with time-varying coef-
ficients

a(t)i(t) —{a(t) +ia(t)p(t)}z(t) = 0.

The parameters ® = ({ax}r>0, {¥k}r>0) can then be identified, using the
same developments as in the chirp example. However the two polynomials
a(t) and p(t) can also be identified seperately, in a more simple and straight-
forward way from the polar decomposition of the signal. Indeed, if z(t) is a
polynomial signal of degree x — 1, then it satisfies the differential equation

gt—z,z(t) = 0, which corresponds in the operational domain to:

§2 — "7 12(0) — ... — 27D (0) = 0.
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The initial conditions 2 (0) = %z(t)‘ ) t= 0,...,x — 1 and hence the
t=
coefficients of the polynomial, are then obtained from the linear triangular

system of equations

dm dm
—v (k—1) (k—2) k=1 _ —v K
e {z (0) + 25D (0)s + ... + 2(0)s } s {75
for m=0,...,k — 1 and where v > k.

In the following simulations we have considered second order polynomials
for both a(t) and ¢(t). The two polynomials were estimated separatly, with
v = 6, from a noisy version of equation (1.13): y(¢t) = x(t) + n(¢t). The
signal to noise ratio where set to 10dB. The curves in figure 1.9 represent
the graphs of the estimated amplitude (in solid line) together with that of
the true amplitude (in dotted line). The results of the phase estimation are
displayed in figure 1.10.

® 0.253

0.245 -

0237+ et
0 0.4 0.8 12 16 2.0

Figure 1.9: Noisy polynomial phase signal with time-varying amplitude—
estimation of a(t): SNR = 10dB

In these simulations, the plotted curves correspond to results obtained
by averaging 10 runs. This then shows that the mean value of our estimates
coincide with the true values of the parameters.
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Figure 1.10: Noisy polynomial phase signal with time-varying amplitude—
estimation of ¢(t): SNR = 10dB
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