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Abstract

A multitype urn scheme with random replacements is considered. Each time

a ball is picked, another ball is added, and its type is chosen according to the

transition probabilities of a reducible Markov chain. The vector of frequencies

is shown to converge almost surely to a random element of the set of stationary

measures of the Markov chain. Its probability distribution is characterized as the

solution to a fixed point problem. It is proved to be Dirichlet in the particular

case of a single transient state to which no return is possible. This is no more

the case as soon as returns to transient states are allowed.
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1 Introduction

In the vast literature devoted to urn models (see Johnson and Kotz [12] as a general
reference), a good number of recent papers have been devoted to random replacement
policies. Each time a ball is drawn, the types of balls which are added or removed are
random variables, whose distribution depends on the type of the ball that has been
picked: see for instance [1, 2, 3, 10, 11]. Strong convergence results [9, 10], as well as
functional central limit theorems [2, 8, 11] are now available for a vast range of models.
However, in all these references, some irreducibility hypothesis is made to ensure that
there is only one possible limit for the frequency vector. Our aim here is to answer the
natural question: what happens when there are more than one?

We study the simplest possible model: balls are added one by one, the type of the
added ball only depends on the type of the one that has been drawn. We believe that
our results can be extended to more general schemes, such as those of Janson [11] or
Benäım et al. [3]. The types are numbered from 1 to d. If a ball of type i has been
drawn, then a ball of type j is added with probability pi,j. The matrix P = (pi,j) is
a (reducible) stochastic matrix on {1, . . . , d}. As expected, the distribution of types
converges almost surely to a stationary distribution for the matrix P (Theorem 2.1).
The proof is based on the classical stochastic algorithm technique [3, 10, 13], and uses
the results of Delyon [5].

The limit is a random element of the set of stationary measures, hence a random
convex combination of the measures corresponding to irreducible recurrent classes.
The question arises to characterize its probability law. Theorem 3.1 first reduces the
problem to computing the d cases where initially a single ball is present, then char-
acterizes those d distributions as the solution to a fixed point problem. The classical
Eggenberger-Pólya model [7] can be seen as a particular case of ours: if P is the iden-
tity matrix, it is well known that the vector of frequencies converges to a Dirichlet
random vector. In our case, it could seem natural to expect a Dirichlet law for the
limit stationary distribution: this would be coherent with the numerous connections
between Dirichlet distributions and urn models (see for instance [12, 15]). We prove
that it is actually the case if no return to a transient state is allowed (Proposition 3.2).
We also show in Proposition 3.3 that the asymptotic distribution is not Dirichlet if
returns to transient states are allowed.

The convergence result is stated and proved in Section 2, the probability distribution
of the limit is studied in Section 3.

2 Almost sure convergence

In this section, the model is described, then the strong convergence result is stated and
proved.

Recall that a transition matrix P = (pi,j) on the set of types {1, . . . , d} is given.
Initially, the number of balls in the urn is n0 and the distribution of types is X0

(deterministic or not). At each instant n > 0 a ball is added to the urn, hence the
number of balls in the urn at time n is n0 + n. The type of the ball which is added
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depends on that of a ball drawn with uniform probability. If a ball of type i has
been drawn, the probability to add a ball of type j is pi,j. We denote by Xn the
distribution of types in the urn at time n: Xn is a d-dimensional vector, whose i-th
coordinate is the frequency of type i after the n-th addition. It is a random element of
the (d− 1)-dimensional simplex, denoted by ∆d.

∆d = { (x1, . . . , xd) ∈ [0, 1]d , x1 + · · ·+ xd = 1 } .

We will prove that the frequency distributions Xn converge almost surely to a
stationary distribution of P . We denote by S their set, i.e. the set of (line) vectors x
in ∆d such that xP = x.

Theorem 2.1 The sequence of random vectors (Xn) converges almost surely to a S-

valued random vector.

Proof: The proof is based on the classical technique that consists of expressing (Xn)
as a stochastic algorithm (see [6, 13] as general references). That technique has been
used several times for proving strong convergence results in urn schemes, for instance
by Benäım et al. [3] and Higueras et al. [10].

For j = 1, . . . , d, let ej be the d-dimensional vector whose j-th coordinate is 1, and
the others 0. For x ∈ ∆d, let ǫ(x) denote the probability distribution on {e1, . . . , ed}
such that

ǫ(x)(ej) =

d
∑

i=1

xi pi,j .

One can write:

Xn+1 =
n + n0

n+ n0 + 1
Xn +

1

n+ n0 + 1
εn(Xn) , (2.1)

where the conditional distribution of εn(Xn) knowing X0 = x0, . . . , Xn = xn is ǫ(xn).
Denote by ηn the following random vector.

ηn = εn(Xn) −XnP .

The sequence (ηn) is adapted to the filtration Fn generated by (Xn), and

E[ ηn+1

∣

∣ Fn ] = 0 .

Let us rewrite (2.1) as:

Xn+1 = Xn +
1

n0 + n+ 1
(Xn(P − I) + ηn) . (2.2)

Hence Xn can be seen as a Robbins-Monro algorithm. We shall use the results of
Delyon [5]. Equation (2.2) is the same as equation (2) in [5], with

h(X) = X(P − I) , γn =
1

n + n0 + 1
and ηn = εn(Xn) −XnP .

The main steps of the proof are the following.
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Step 1 The series
∑

γnηn converges a.s., hence (Xn) is an A-stable algorithm, (Definition
1 of [5]).

Step 2 The distance from Xn to the set S of stationary measures for P tends to 0 a.s.

Step 3 The sequence (Xn) converges a.s., hence its limit is an element of S.

As Xn remains in a compact subset of R
d (the simplex of probability vectors), step

1 is proved as soon as we can show that
∑

n≥0 γnηn < ∞. Since the random variables
γnηn are the increments of a martingale, which is bounded in L2, this result is true.
Hence it is an A-stable algorithm.

A classical method to study this type of stochastic algorithm is to compare its
trajectories to the flow of an ordinary differential equation, which in our case is y′ =
h(y) = y(P − I). It is linear, and the non-null eigenvalues of its matrix P − I all have
a negative real part (since P is a stochastic matrix). Therefore, if x ∈ R

d and yx is the
solution such that yx(0) = x, then limt→+∞ yx(t) exists.

Step 2 uses Theorem 2.2 p. 2153 of [17]: the limiting set of (Xn) is an internally
chain recurrent set for the flow of the ODE y′ = h(y), hence it is included in S. Since
(Xn) takes its values in a compact set, and all possible limits of its subsequences are
in S, the distance from Xn to S must tend to 0.

Step 3 is an application of Theorem 2 in [5]. Let us prove first that S satisfies
condition (B) of [5]. This condition says that there should exist a neighborhood N of
S in R

d, and two functions π, W , uniformly Lipschitz, defined on N , taking values in
R

d and R respectively, and such that

(a) |π(y(t)) − π(y(s))| ≤ |W (y(t)) −W (y(s))| for any solution (y(u), s ≤ u ≤ t) of
y′ = h(y) on N .

(b) π(x) = x if x ∈ S.

Here we shall take N = R
d and π(x) = limt→+∞ yx(t). ¿From the same observation on

eigenvalues of P − I as in step 2, it follows that π is Lipschitz. If (yx(u), s ≤ u ≤ t)
is any solution of y′ = h(y), then by definition of π, π(yx(s)) = π(yx(t)) and (a) holds
with W = 0. Of course, if x ∈ S then h(x) = 0 and yx is constant and equal to x.
Thus x ∈ S implies π(x) = x, hence (b).

In order to apply the first part of Theorem 2 in [5] there remains to prove that:

∞
∑

n=0

γn

∣

∣

∣

∣

∣

∞
∑

i=n

γiηi

∣

∣

∣

∣

∣

< +∞ .
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Let us write:

E

[

∞
∑

n=0

γn

∣

∣

∣

∣

∣

∞
∑

i=n

γiηi

∣

∣

∣

∣

∣

]

=

∞
∑

n=0

γnE

[∣

∣

∣

∣

∣

∞
∑

i=n

γiηi

∣

∣

∣

∣

∣

]

≤
∞
∑

n=0

γnE





(

∞
∑

i=n

γiηi

)2




1/2

=

∞
∑

n=0

γn

[

∞
∑

i=n

γ2
i

]1/2

< +∞.

Hence step 3, which ends the proof of Theorem 2.1. �

3 Asymptotic distribution

Theorem 2.1 proves that the distribution of types in the urn converges to a random
element of the set S of stationary distributions for the transition matrix P . In this
section we characterize the probability law of that random element.

Assume the recurrent classes for the transition matrix P are numbered from 1 to k.
For c = 1, . . . , k, denote by πc the unique element of S whose coordinates are positive
on class number c and null elsewhere. Any element of S is a convex combination of the
πc’s. We shall denote by σ the one to one correspondence between S and ∆k defined
by:

∀α = (α1, . . . , αk) ∈ ∆k , σ−1(α) =
k
∑

c=1

αc πc .

Our goal is to describe the distribution of σ(limXn), which depends on the initial state
of the urn. We will generically denote by A∗ the ∆k-valued random variable σ(limXn)
for X0 = ∗:

• AX0 if the initial state of the urn is the random distribution X0,

• Ax0 if the initial state of the urn is the deterministic distribution x0,

• A(i) if the urn initially contains a single ball of type i.

Observe that the distribution of X0 is discrete. Obviously,

AX0
(d)
=
∑

x0

Ax0 IX0=x0
,

where X0 and all the Ax0 ’s are mutually independent.
Theorem 3.1 below reduces the distribution of Ax0 to those of the A(i)’s, then

expresses the A(i)’s as a solution of a fixed point problem.
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Theorem 3.1

1. Let n0 be the initial number of balls. For b = 1, . . . n0 let Ab be a copy of A(i(b)),

where i(b) is the type of ball b. Let Y = (Y (1), . . . , Y (n0)) be a random vector,

uniformly distributed on ∆n0
. Assume that Ab, b = 1, . . . , n0 are mutually inde-

pendent, and independent from the vector Y . Then

Ax0
(d)
=

n0
∑

b=1

Y (b)Ab . (3.3)

2. For i = 1, . . . , d, let A(i)′ , A(i)′′ be independent copies of A(i); let Y (i) be uniformly

distributed on [0, 1]; let Ui have distribution (pi,j)j=1,...,d. Assume all these random

variables are mutually independent. Then

A(i) (d)
=

d
∑

j=1

IUi=j

(

Y (j)A(i)′ + (1 − Y (j))A(j)′′
)

. (3.4)

Proof: Assume the n0 initial balls are labelled from 1 to n0. Assume that at each step
the ball that has been added receives the same label as the one that has been drawn.
Replacing types by labels, one gets a standard Eggenberger-Pólya urn [7]. Denote by

Yn = (Y
(b)
n ), b = 1, . . . , n0 the distribution of labels at time n: it converges a.s. to a

random vector Y whose distribution is uniform on the simplex ∆n0
. For b = 1, . . . , n0,

denote by Z
(b)
n the d-dimensional vector of the frequencies of types among the balls

with label k at time n. By Theorem 2.1, Z
(b)
n converges a.s. to a random variable Z(b),

distributed as if initially the urn only had one ball with label i(b): the distribution of
Z(b) is that of A(i(b)). Moreover these random variables are mutually independent. The
overall distribution of types at times n decomposes as

Xn =

n0
∑

b=1

Y (b)
n Z(b)

n .

As n tends to infinity, Xn tends to

X =

n0
∑

b=1

Y (b)Z(b) ,

Hence equation (3.3).
Assume now that initially, a single ball of type i is present. At time 1, another ball

is added, which is of type j with probability pi,j. Let us apply point 1 with n0 = 2: if
two balls of types i and j are present, then the final distribution is that of

Y (i)A(i)′ + (1 − Y (i))A(j)′′.

The limit starting with one single ball of type i or the two balls of time 1 must be the
same, hence equation (3.4). �
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Equations (3.3) and (3.4) characterize the distribution of Ax0 , for any x0. This follows
from standard results of Letac [14] and Chamayou and Letac [4]. In practice, finding
the actual distribution of Ax0 may be rather intricate. We shall give two examples with
a single transient state, one with no possible return (Proposition 3.2), the other with
possible returns (Proposition 3.3).

Observe that from the point of view of Ax0, the contents of recurrent classes is not
relevant: each recurrent class can be aggregated into one single absorbing state. Thus
one can assume with no loss of generality that the transition matrix P has k absorbing
states and d− k transient states.

Proposition 3.2 Assume the matrix P is the following

P =











0 p2 · · · pd

0 1 0 0

0 0
. . . 0

0 · · · 0 1











,

with p2 + . . .+ pd = 1. Assume moreover that initially a single ball of type 1 is present.

The probability distribution of A(1) is the Dirichlet distribution on ∆d−1, with pa-

rameter (p2, . . . , pd).

Proof: The result can be proved directly by the classical method of moments, using
Theorem 3.1. This was our original approach. We are indebted to Brigitte Chauvin
and Nicolas Pouyanne for the more elegant argument which follows.

Consider a Pólya-Eggenberger urn with 2(d− 1) types. The types are divided into
two matching halves: for i = 2, . . . , d, there is a ‘recurrent’ type ri and a ‘transient’
type ti. The replacement policy is deterministic. When a ball of type ri is drawn, then
another ball of the same type ri is added. When a ball of type ti is drawn, a ball of the
corresponding ri type is added. Initially, only balls of types t2, . . . , td are present and
the proportion of balls of type ti is pi. Classical results on deterministic replacement
policies show that the distribution of types converges a.s. to a random distribution that
vanishes on types t2, . . . , td and loads r2, . . . , rd according to a Dirichlet distribution
with parameters (p2, . . . , pd): see Gouet [9] and Pouyanne [16].

The deterministic replacement model that has just been described is equivalent to
the random replacement model of Proposition 3.2: it suffices to merge all transient
types ti into type 1 to see the correspondence. This proves the result when p2, . . . , pd

take rational values. A continuity argument finishes the proof. �

We will now show that the pleasant result of Proposition 3.2 worsens as returns to
transient states become possible.

Proposition 3.3 Let d = 3, and

P =





p1 p2 p3

0 1 0
0 0 1



 ,
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with p1, p2, p3 strictly positive. Starting initially with a single ball of type 1, the distribu-

tion A(1) only charges the two absorbing states 2 and 3. Let us write A(1) = (A, 1−A)
where A is the asymptotic frequency of type 2. Let ϕ be the generating function of

moments of A.

ϕ(z) =

+∞
∑

n=0

E[An] zn .

Then
1

ϕ(z)
= (1 − z)p2

2F1(p2,−p1, 1 − p1)(z) , (3.5)

where 2F1(p2,−p1, 1−p1) is the hypergeometric function with parameters (p2,−p1) and

1 − p1.

Having computed the moments of A, it easy to check that its distribution is not Beta,
except in the particular case p2 = p3. Hence the distribution of A(1) is not Dirichlet.

Proof: ¿From point 2 of Theorem 3.1, A is equal in distribution to

Y A′ + (1 − Y )(A′′
IU=1 + IU=2) , (3.6)

where A′ and A′′ are distributed as A, Y is uniformly distributed on [0, 1], U has
distribution (p1, p2, p3) and (A′, A′′, Y, U) are mutually independent.

Denote by cn = E[An] the n-th moment of A. From (3.6), the following induction
for cn is deduced.

cn =
1

n + 1
cn +

n−1
∑

k=0

(

n

k

)

E[ρk(1 − ρ)n−k](ckcn−kp1 + ckp2)

⇐⇒ ncn = p1

n−1
∑

k=0

ckcn−k + p2

n−1
∑

k=0

ck

⇐⇒ (n + p1 + p2)cn = p1

n
∑

k=0

ckcn−k + p2

n
∑

k=0

ck.

Multiplying by zn and summing leads to

zϕ′(z) + (p1 + p2)ϕ(z) = p1ϕ(z)2 + p2
ϕ(z)

1 − z
. (3.7)

Letting ψ = 1/ϕ leads to

z(z − 1)ψ′(z) − (p1(z − 1) + p2z)ψ(z) = p1(1 − z) , (3.8)

from which (3.5) follows. �

The technique of conditioning upon the first drawn ball also permits to treat the case
where there is a single transient state with possible return, and more than 2 absorbing
ones. By induction on d, one can express the distribution of A(1) using Proposition 3.3.

Acknowledgement: We are indebted to Brigitte Chauvin, Gérard Letac and Nicolas
Pouyanne for helpful comments and hints.
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urn. Ann. Probab., 21(3):1624–1639, 1993.

[9] R. Gouet. Strong convergence of proportions in a multicolor Pólya urn. J. Appl.
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