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ADAPTIVE DENSITY ESTIMATION FOR GENERAL ARCH MODELS

F. COMTE∗,1, J. DEDECKER2, AND M. L. TAUPIN 3

Abstract. We consider a model Yt = σtηt in which (σt) is not independent of the noise
process (ηt), but σt is independent of ηt for each t. We assume that (σt) is stationary and
we propose an adaptive estimator of the density of ln(σ2

t ) based on the observations Yt.
Under various dependence structures, the rates of this nonparametric estimator coincide
with the minimax rates obtained in the i.i.d. case when (σt) and (ηt) are independent,
in all cases where these minimax rates are known. The results apply to various linear
and non linear ARCH processes.

MSC 2000 Subject Classifications. 62G07 - 62M05. September 27, 2006
Keywords and phrases. Adaptive density estimation. Deconvolution. General ARCH
models. Model selection. Penalized contrast.

1. Introduction

In this paper, we consider the following general ARCH-type model: ((Yt, σt))t≥0 is a
strictly stationary sequence of R × R

+-valued random variables, satisfying the equation

(1.1) Yt = σtηt

where (ηt)t∈Z is a sequence of independent and identically distributed (i.i.d.) random
variables with mean zero and finite variance, and for each t ≥ 0, the random vector
(σi, ηi−1)0≤i≤t is independent of the sequence (ηi)i≥t.

The model is classically re-written via a logarithmic transformation:

(1.2) Zt = Xt + εt,

where Zt = ln(Y 2
t ), Xt = ln(σ2

t ) and εt = ln(η2
t ). In the context derived from the model

(1.1), Xt and εt are independent for a given t, whereas the processes (Xt)t≥0 and (εt)t∈Z

are not independent.
Our aim is the adaptive estimation of g, the common distribution of the unobserved

variables Xt = ln(σ2
t ), when the density fε of εt = ln(η2

t ) is known. More precisely we
shall build an estimator of g without any prior knowledge on its smoothness, using the
observations Zt = ln(Y 2

t )t and the knowledge of the convolution kernel fε. Since Xt and εt
are independent for each t, the common density fZ of the Zt’s is given by the convolution
equation fZ = g ∗ fε.

In many papers dealing with ARCH models, εt is assumed to be Gaussian or the log of
a squared Gaussian (when ηt is Gaussian, see van Es et al. (2005) or in slightly different
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contexts van Es et al. (2003), Comte and Genon-Catalot (2005)). Our setting is more
general since we consider various type of error densities. More precisely, we assume that
fε belongs to some class of smooth functions described below: there exist nonnegative
numbers κ0, γ, µ, and δ such that the fourier transform f∗ε of fε satisfies

(1.3) κ0(x
2 + 1)−γ/2 exp{−µ|x|δ} ≤ |f∗ε (x)| ≤ κ′0(x

2 + 1)−γ/2 exp{−µ|x|δ}.
Since fε is known, the constants µ, δ, κ0, and γ defined in (1.3) are known. When δ = 0
in (1.3), the errors are called “ordinary smooth” errors. When µ > 0 and δ > 0, they are
called “super smooth”. The standard examples for super smooth densities are Gaussian or
Cauchy distributions (super smooth of order γ = 0, δ = 2 and γ = 0, δ = 1 respectively).
When εt = ln(η2

t ) with ηt ∼ N (0, 1) as in van Es et al. (2003, 2005), then εt is super-
smooth with δ = 1, γ = 0 and µ = π/2. An example of ordinary smooth density is the
Laplace distribution, for which δ = µ = 0 and γ = 2.

In density deconvolution of i.i.d variables the Xt’s and the εt’s are i.i.d. and the se-
quences (Xt)t≥0 and (εt)t∈Z are independent (for short we shall refer to this case as the i.i.d.
case). In the setting of Model (1.2), the classical assumptions of independence between
the processes (Xt)t≥0 and (εt)t∈Z are no longer satisfied and the tools for deconvolution
have to be revisited.

As in density deconvolution for i.i.d. variables, the slowest rates of convergence for
estimating g are obtained for super smooth error densities. For instance, in the i.i.d case,
when εt is Gaussian or the log of a squared Gaussian and g belongs to some Sobolev class,
the minimax rates are negative powers of ln(n) (see Fan (1991)). Nevertheless, it has been
noticed by several authors (see Pensky and Vidakovic (1999), Butucea (2004), Butucea
and Tsybakov (2005), Comte et al. (2006)) that the rates are improved if g has stronger
smoothness properties. So, we describe the smoothness properties of g by the set

(1.4) Ss,r,b(C1) =
{

ψ such that

∫ +∞

−∞
|ψ∗(x)|2(x2 + 1)s exp{2b|x|r}dx ≤ C1

}

for s, r, b unknown non negative numbers. When r = 0, the class Ss,r,b(C1) corresponds
to a Sobolev ball. When r > 0, b > 0 functions belonging to Ss,r,b(C1) are infinitely many
times differentiable.

Our estimator of g is constructed by minimizing an appropriate penalized contrast
function only depending on the observations and on fε. It is chosen in a purely data-
driven way among a collection of non-adaptive estimators. We start by the study of those
non-adaptive estimators and show that their mean integrated squared error (MISE) has
the same order as in the i.i.d. case. In particular they reach the minimax rates of the
i.i.d. case in all cases where they are known (see Fan (1991), Butucea (2004) and Butucea
and Tsybakov (2005)). Next we prove that the MISE of our adaptive estimator is of the
same order as the MISE of the best non-adaptive estimator, up to some possible negligible
logarithmic loss in one case.

In their 2005 paper, van Es et al. (2005) have considered the case where ηt is Gaussian,
the density g of Xt is twice differentiable, and the process (Zt,Xt) is α-mixing. Here
we consider various types of error density, and we do not make any assumption on the
smoothness of g: this is the advantage of the adaptive procedure. We shall consider
two types of dependence properties, which are satisfied by many ARCH processes. First
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we shall use the classical β-mixing properties of general ARCH models, as recalled in
Doukhan (1994) and described in more details in Carrasco and Chen (2002). But we
also illustrate that new recent coefficients can be used in our context, which allow an
easy characterization of the dependence properties in function of the parameters of the
models. Those new dependence coefficients, recently defined and studied in Dedecker and
Prieur (2005), are interesting and powerful because they require much lighter conditions
on the models. Such ideas have been popularized by Ango Nzé and Doukhan (2004) and
Doukhan et al. (2006). For instance, these coefficients allow to deal with the general
ARCH(∞) processes defined by Giraitis et al. (2000).

The paper is organized as follows. Many examples are described in Section 2, together
with their dependence properties. The estimator is defined in Section 3. The MISE bounds
are given in Section 4, and the proofs are given in Section 5.

2. The model and its dependence properties

2.1. Models and examples. A particular case of model (1.1) is

(2.1) Yt = σtηt, with σt = f(ηt−1, ηt−2, . . .)

for some measurable function f . Another important case is

(2.2) Yt = σtηt, with σt = f(σt−1, ηt−1) and σ0 independent of (ηt)t≥0,

that is σt is a stationary Markov chain.
We begin with models satisfying a recursive equation, whose stationary solution satisfies

(2.1). The original ARCH model as introduced by Engle (1982) was given by

(2.3) Yt =
√

a+ bY 2
t−1ηt, a ≥ 0, b ≥ 0

It has been generalized by Bollerslev (1986) with the class of GARCH(p, q) models defined
by Yt = σtηt and

(2.4) σ2
t = a+

p
∑

i=1

aiY
2
t−i +

q
∑

j=1

bjσ
2
t−j

where the coefficients a, ai, i = 1, . . . , p and bj , j = 1, . . . , q are all positive real numbers.
Those processes were studied from the point of view of existence and stationarity of solu-
tions by Bougerol and Picard (1992a, 1992b) and Ango Nzé (1992). Under the condition
∑p

i=1 ai +
∑q

j=1 bj < 1, this model has a unique stationary solution of the form (2.1).
Many extensions have been proposed since then. A general linear example of model is

given by the ARCH(∞) model described by Giraitis et al. (2000):

(2.5) σ2
t = a+

∞
∑

j=1

ajY
2
t−j ,

where a ≥ 0 and aj ≥ 0. Again if
∑

j≥1 aj < 1, then there exists a unique strictly

stationary solution to (2.5) of the form (2.1).
For the models satisfying (2.2), let us cite first the so-called augmented GARCH(1, 1)

models introduced by Duan (1997):

(2.6) Λ(σ2
t ) = c(ηt−1)Λ(σ2

t−1) + h(ηt−1),
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where Λ is an increasing and continuous function on R
+. We refer to Duan (1997) for

numerous examples of more standard models belonging to this class. There exists a sta-
tionary solution to (2.6), provided c satisfies the condition A∗

2 given in Carrasco and
Chen (2002) (this condition is satisfied as soon as E(|c(η0)|s) < 1 and E(|h(η0)|s) <∞ for
integer s ≥ 1, see the condition A2 of the same paper). An example of the model (2.6) is
the threshold ARCH model (see Zaköıan (1993)):

(2.7) σt = a+ bσt−1ηt−11I{ηt−1>0} − cσt−1ηt−11I{ηt−1<0}, a, b, c > 0

for which c(ηt−1) = bηt−11I{ηt−1>0}−cηt−11I{ηt−1<0} and h = a. In particular, the condition
for the stationarity is satisfied as soon as b ∨ c < 1.

Other models satisfying (2.2) are the non linear ARCH models (see Doukhan (1994), p.
106-107), for which:

(2.8) σt = f(σt−1ηt−1).

There exists a stationary solution to (2.8) provided that the density of η0 is positive on a
neighborhood of 0 and lim sup|x|→∞ |f(x)/x| < 1.

In the next section, we define the dependence coefficients that we shall use in this
paper, and we give the dependence properties of the models (2.3)-(2.8) in terms of these
coefficients.

2.2. Measures of dependence. Let (Ω,A,P) be a probability space. LetW be a random
vector with values in a Banach space (B, ‖ ·‖B), and let M be a σ-algebra of A. Let PW |M
be a conditional distribution of W given M, and let PW be the distribution of W . Let
B(B) be the Borel σ-algebra on (B, ‖·‖B), and let Λ1(B) be the set of 1-Lipschitz functions
from (B, ‖ · ‖B) to R. Define now

β(M, σ(W )) = E

(

sup
A∈B(X )

|PW |M(A) − PW (A)|
)

,

and if E(‖W‖B) <∞, τ(M,W ) = E

(

sup
f∈Λ1(B)

|PW |M(f) − PW (f)|
)

.

The coefficient β(M, σ(W )) is the usual mixing coefficient, introduced by Rozanov and
Volkonskii (1960). The coefficient τ(M,W ) has been introduced by Dedecker and Prieur
(2005).

Let (Wt)t≥0 be a strictly stationary sequence of R
2-valued random variables. On R

2,
we put the norm ‖x− y‖R2 = |x1 − y1| + |x2 − y2|. For any k ≥ 0, define the coefficients

(2.9) β1(k) = β(σ(W0), σ(Wk)), and if E(‖W0‖R2) <∞, τ1(k) = τ(σ(W0),Wk).

On (R2)l, we put the norm ‖x − y‖(R2)l = l−1(‖x1 − y1‖R2 + · · · + ‖xl − yl‖R2). Let

Mi = σ(Wk, 0 ≤ k ≤ i). The coefficients β∞(k) and τ∞(k) are defined by

(2.10) β∞(k) = sup
i≥0

sup
l≥1

{β(Mi, σ(Wi1 , . . . ,Wil)), i + k ≤ i1 < · · · < il} ,

and if E(‖W1‖R2) <∞,

(2.11) τ∞(k) = sup
i≥0

sup
l≥1

{τ(Mi, (Wi1 , . . . ,Wil)), i+ k ≤ i1 < · · · < il} .
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We say that the process (Wt)t≥0 is β-mixing (resp. τ -dependent) if the coefficients
β∞(k) (resp. τ∞(k)) tend to zero as k tends to infinity. We say that it is geometrically
β-mixing (resp. τ -dependent), if there exist a > 1 and C > 0 such that β∞(k) ≤ Cak

(resp. τ∞(k) ≤ Cak) for all k ≥ 1.
We now recall the coupling properties associated with the dependency coefficients. As-

sume that Ω is rich enough, which means that there exists U uniformly distributed over
[0, 1] and independent of M∨σ(W ). There exist two M∨σ(U)∨σ(W )-measurable random
variables W ⋆

1 and W ⋆
2 distributed as W and independent of M such that

(2.12) β(M, σ(W )) = P(W 6= W ⋆
1 ) and τ(M,W ) = E(‖W −W ⋆

2 ‖B) .

The first equality in (2.12) is due to Berbee (1979), and the second one has been estab-
lished in Dedecker and Prieur (2005), Section 7.1.

As consequences of the coupling properties (2.12), we have the following covariance
inequalities. Let ‖ · ‖∞,P be the L

∞(Ω,P)-norm. For two measurable functions f, h from
R to C, we have

(2.13) |Cov(f(Y ), h(X))| ≤ 2‖f(Y )‖∞,P‖h(X)‖∞,P β(σ(X), σ(Y )) .

Moreover, if Lip(h) is the Lipschitz coefficient of h,

(2.14) |Cov (f(Y ), h(X))| ≤ ‖f(Y )‖∞,PLip(h) τ(σ(Y ),X) .

Thus, using that t→ eixt is |x|-Lipschitz, we obtain the bounds

|Cov(eixZ1 , eixXk)| ≤ 2β1(k − 1) and |Cov(eixZ1 , eixXk)| ≤ |x|τ1(k − 1).(2.15)

2.3. Application to ARCH models. For the models (1.1) and (1.2), the β-mixing
coefficients of the process

(Wt)t∈Z = ((Zt,Xt))t∈Z(2.16)

are smaller than that of ((Yt, σt))t∈Z (because of the inclusion of σ-algebras). If we assume
that in all cases the ηt’s are centered with unit variance and admit a density with respect
to the Lebesgue measure, then

• The process ((Yt, σt))t∈Z defined by Model (2.3) is geometrically β-mixing as soon
as 0 < b < 1.

• The process ((Yt, σt))t∈Z defined by Model (2.4) is geometrically β-mixing, as soon
as

∑p
i=1 ai +

∑q
j=1 bj < 1 (see Carrasco and Chen (2000, 2002)).

• The process ((Yt, σt))t∈Z defined by Model (2.6) is geometrically β-mixing as soon
as: the density of η0 is positive on an open set containing 0; c and h are polynomial
functions; there exists an integer s ≥ 1 such that |c(0)| < 1, E(|c(η0)|s) < 1, and
E(|h(η0)|s) <∞. See Proposition 5 in Carrasco and Chen (2002).

• The process ((Yt, σt))t∈Z defined by Model (2.7) is geometrically β-mixing as soon
as 0 < b ∨ c < 1.

• The process ((Yt, σt))t∈Z defined by Model (2.8) is geometrically β-mixing as soon
as the density of η0 is positive on a neighborhood of 0 and lim sup|x|→+∞ |f(x)/x| <
1 (see Doukhan (1994), Proposition 6 page 107).
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Note that some other extensions to nonlinear models having stationarity and dependency
properties can be found in Lee and Shin (2005).

Concerning the τ -dependence, here is a general method to handle the models (2.1)
and (2.2). The following Proposition will be proved in appendix (see Ango Nzé and
Doukhan (2004) and Doukhan et al. (2006) for related results).

Proposition 2.1. Let Yt and σt satisfy either (2.1) or (2.2). For Model (2.1), let (η′t)t∈Z

be an independent copy of (ηt)t∈Z, and for t > 0, let σ∗t = f(ηt−1, . . . , η1, η
′
0, η

′
−1, . . .).

For Model (2.2), let σ∗0 be a copy of σ0 independent of (σ0, ηt)t∈Z, and for t > 0 let
σ∗t = f(σ∗t−1, ηt−1). Let δn be a non increasing sequence such that

(2.17) 2E(|σ2
n − (σ∗n)

2|) ≤ δn .

Then

(1) The process ((Y 2
t , σ

2
t ))t≥0 is τ -dependent with τ∞(n) ≤ δn.

(2) Assume that Y 2
0 , σ2

0 have densities satisfying max(fσ2(x), fY 2(x)) ≤ C| ln(x)|αx−ρ
in a neighborhood of 0, for some α ≥ 0 and 0 ≤ ρ < 1. The process ((Xt, Zt))t≥0

is τ -dependent with τ∞(n) = O((δn)
(1−ρ)/(2−ρ)| ln(δn)|(1+α)/(2−ρ)).

Consider Model (2.5), and assume that c =
∑

j≥1 aj < 1. Let then ((Yt, σt))t∈Z be the

unique strictly stationary solution of the form (2.1). Then (2.17) holds with

δn = O
(

inf
1≤k≤n

{

cn/k +
∞

∑

i=k+1

ai

})

.

Note that if σ2
0 and η2

0 have bounded densities, then fY 2(x)) ≤ C| ln(x)| in a neighbor-
hood of 0, so that Proposition 2.1(2) holds with ρ = 0 and α = 1.

Under the assumptions of Proposition 2.1(2), we obtain for Model (2.5) the following
rates for ((Xt, Zt))t≥0:

• If aj = 0, for j ≥ J , then ((Xt, Zt))t≥0 is geometrically τ -dependent.

• If aj = O(bj) for some b < 1 then τ∞(n) = O(κ
√
n) for some κ < 1.

• If aj = O(j−b) for some b > 1 then τ∞(n) = O(n−b(1−ρ)/(2−ρ)(ln(n))(b+2)(1+α)/2).

For more general models than (2.5), we refer to Doukhan et al. (2006).
For Model (2.2), if there exists κ < 1 such that

(2.18) E(|(f(x, η0))
2 − (f(y, η0))

2|) ≤ κ|x2 − y2| ,
then one can take δn = 4E(σ2

0)κ
n. Hence, under the assumptions of Proposition 2.1(2),

((Xt, Zt))t>0 is geometrically τ dependent. An example of Markov chain satisfying (2.18)
is the autoregressive model σ2

t = h(σ2
t−1) + r(ηt−1) for some κ-lipschitz function h.

3. The estimators

For two complex-valued functions u and v in L2(R) ∩ L1(R), let u∗(x) =
∫

eitxu(t)dt,
u ∗ v(x) =

∫

u(y)v(x− y)dy, and 〈u, v〉 =
∫

u(x)v(x)dx with z the conjugate of a complex
number z. We also denote by ‖u‖1 =

∫

|u(x)|dx, ‖u‖2 =
∫

|u(x)|2dx, and ‖u‖∞ =
supx∈R |u(x)|.
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3.1. The projection spaces. Let ϕ(x) = sin(πx)/(πx). For m ∈ N and j ∈ Z, set
ϕm,j(x) =

√
mϕ(mx − j). The functions {ϕm,j}j∈Z constitute an orthonormal system in

L
2(R) (see e.g. Meyer (1990), p.22). Let us define

Sm = span{ϕ
m,j
, j ∈ Z},m ∈ N.

The space Sm is exactly the subspace of L2(R) of functions having a Fourier transform
with compact support contained in [−πm, πm]. The orthogonal projection of g on Sm is
gm =

∑

j∈Z
am,j(g)ϕm,j where am,j(g) =< ϕm,j , g >. To obtain representations having a

finite number of ”coordinates”, we introduce

S(n)
m = span {ϕm,j , |j| ≤ kn}

with integers kn to be specified later. The family {ϕm,j}|j|≤kn
is an orthonormal basis of

S
(n)
m and the orthogonal projections of g on S

(n)
m is given by g

(n)
m =

∑

|j|≤kn
am,j(g)ϕm,j .

Subsequently a space S
(n)
m will be referred to as a ”model” as well as a ”projection space”.

3.2. Construction of the minimum contrast estimators. We subsequently assume
that

(3.1) fε belongs to L2(R) and is such that ∀x ∈ R, f∗ε (x) 6= 0.

Note that the square integrability of fε and (1.3) require that γ > 1/2 when δ = 0. Under

Condition (3.1) and for or t in S
(n)
m , we define the contrast function

γn(t) =
1

n

n
∑

i=1

[

‖t‖2 − 2u∗t (Zi)
]

, with ut(x) =
1

2π

(

t∗(−x)
f∗ε (x)

)

.

Then, for an arbitrary fixed integer m, an estimator of g belonging to S
(n)
m is defined by

(3.2) ĝ(n)
m = arg min

t∈S(n)
m

γn(t).

By using Parseval and inverse Fourier formulae we obtain that E [u∗t (Zi)] = 〈t, g〉, so that
E(γn(t)) = ‖t− g‖2 −‖g‖2 is minimal when t = g. This shows that γn(t) suits well for the
estimation of g. It is easy to see that

ĝ(n)
m =

∑

|j|≤kn

âm,jϕm,j with âm,j =
1

n

n
∑

i=1

u∗ϕm,j
(Zi), and E(âm,j) =< g,ϕm,j >= am,j(g).

3.3. Minimum penalized contrast estimator. The minimum penalized estimator of

g is defined as g̃ = ĝ
(n)
m̂g

where m̂g is chosen in a purely data-driven way. The main point

of the estimation procedure lies in the choice of m = m̂ (or equivalently in the choice of

model S
(n)
m̂ ) involved in the estimators ĝ

(n)
m given by (3.2), in order to mimic the oracle

parameter

m̆g = arg min
m

E ‖ ĝ(n)
m − g ‖2

2 .(3.3)
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The model selection is performed in an automatic way, using the following penalized
criteria

(3.4) g̃ = ĝ
(n)
m̂ with m̂ = arg min

m∈{1,··· ,mn}

[

γn(ĝ
(n)
m ) + pen(m)

]

,

where pen(m) is a penalty function that depends on f∗ε (·) through ∆(m) defined by

∆(m) =
1

2π

∫ πm

−πm

1

|f∗ε (x)|2
dx.(3.5)

The key point in the dependent context is to find a penalty function not depending on the
dependency coefficients such that

E ‖ g̃ − g ‖2≤ C inf
m∈{1,··· ,mn}

E ‖ ĝ(n)
m − g ‖2 .

In that way, the estimator g̃ is adaptive since it achieves the best rate among the estimators

ĝ
(n)
m , without any prior knowledge on the smoothness on g.

4. Density estimation bounds

¿From now on, the dependence coefficients are defined as in (2.9), (2.10) and (2.11)
with (Wt)t∈Z = ((Zt,Xt))t∈Z.

4.1. Rates of convergence of the minimum contrast estimators ĝ
(n)
m . Subsequently,

the density g is assumed to satisfy the following assumption:

(4.1) g ∈ L2(R), and there exists M2 > 0,

∫

x2g2(x)dx ≤M2 <∞.

Assumption (4.1), which is due to the construction of the estimator, already appears in
density deconvolution in the independent framework in Comte et al. (2005, 2006). It is
important to note that Assumption (4.1) is very unrestrictive. In particular, all densities

having tails of order |x|−(s+1) as x tends to infinity satisfy (4.1) only if s > 1/2. One can
cite for instance the Cauchy distribution or all stable distributions with exponent r > 1/2
(see Devroye (1986)). The Lévy distribution, with exponent r = 1/2 does not satisfies
(4.1).

Note that (4.1) is fulfilled if g is bounded by M0 and E(X2
1 ) ≤ M1 < +∞, with

M2 = M0M1.

The order of the MISE of ĝ
(n)
m is given in the following proposition.

Proposition 4.1. If (3.1) and (4.1) hold, then ĝ
(n)
m defined by (3.2) satisfies

E‖g − ĝ(n)
m ‖2 ≤ ‖g − gm‖2 +

m2(M2 + 1)

kn
+

2∆(m)

n
+

2Rm
n

,

where

(4.2) Rm =
1

π

n
∑

k=2

∫ πm

−πm

∣

∣

∣

Cov
(

eixZ1 , eixXk
)

f∗ε (−x)
∣

∣

∣
dx.
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Moreover, Rm ≤ min(Rm,β , Rm,τ ), where

Rm,β = 4∆1/2(m)

n−1
∑

k=1

β1(k) and Rm,τ = πm∆1/2(m)

n−1
∑

k=1

τ1(k) ,

with β1, τ1 defined by (2.9), and where

(4.3) ∆1/2(m) =
1

2π

∫ πm

−πm

1

|f∗ε (x)|
dx.

This proposition requires several comments.
As usual, the order of the risk is given by a bias term ‖ gm− g ‖2 +m2(M2 + 1)/kn and

a variance term 2∆(m)/n + 2Rm/n. As in density deconvolution for i.i.d. variables, the
variance term 2∆(m)/n+2Rm/n depends on the rate of decay of the Fourier transform of
fε. It is the sum of the variance term appearing in density deconvolution for i.i.d. variables
2∆(m)/n and of an additional term 2Rm/n. This last term Rm involves the dependency
coefficients and the quantity ∆1/2(m), which is specific to the ARCH problem. The point
is that, as in the i.i.d. case, the main order term in the variance part is ∆(m)/n, which
does not involve the dependency coefficients. In other words, the dependency coefficients
only appear in front of the additional and negligible term ∆1/2(m)/n, specific to ARCH
models.

The bias term is the sum of the usual bias term ‖ gm−g ‖2, depending on the smoothness
properties of g, and on an additional term m2(M2 + 1)/kn. With a suitable choice of kn,
not depending on g, this last term is negligible with respect to the variance term.

Concerning the main variance term, ∆(m) given by (3.5) has the same order as

Γ(m) = (1 + (πm)2)γ(πm)1−δ exp
{

2µ(πm)δ
}

,

up to some constant bounded by

λ1(fε, κ0) =
1

κ2
0πR(µ, δ)

, where R(µ, δ) = 1I{δ=0} + 2µδ1I{δ>0}.(4.4)

The rates resulting from Proposition 4.1 under (1.3) and (1.4) are given in the following
proposition.

Corollary 4.1. Assume that (1.3), (3.1), and (4.1) hold, that g belongs to Ss,r,b(C1)
defined by (1.4), and that kn ≥ n. Assume either that

(1)
∑

k≥1 β1(k) < +∞
(2) or δ = 0, γ > 1 in (1.3) and

∑

k≥1 τ1(k) < +∞
(3) or δ > 0 in (1.3) and

∑

k≥1 τ1(k) < +∞.

Then ĝ
(n)
m defined by (3.2) satisfies

(4.5) E‖g− ĝ(n)
m ‖2 ≤ C1

2π
(m2π2 +1)−s exp{−2bπrmr}+

2λ1(fε, κ0)Γ(m)

n
+
C2

n
Γ(m)om(1),

where C1 and C2 are finite constants. The constant C2 depends on
∑

k≥1 β1(k) (respectively

on
∑

k≥1 τ1(k)).
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If γ = 1 when δ = 0, then the bound 4.5 becomes

(4.6) E‖g − ĝ(n)
m ‖2 ≤ C1

2π
(m2π2 + 1)−s exp{−2bπrmr} +

(2 + C2)λ1(fε, κ0)Γ(m)

n
,

with C2 depending on
∑

k≥1 β1(k) (respectively on
∑

k≥1 τ1(k)).

The rate of convergence of ĝ
(n)
m̆ is the same as the rate for density deconvolution for

i.i.d. sequences. Our context here encompasses the particular case considered by van Es
et al. (2005).

Table 1 below gives a summary of these rates obtained when minimizing the right hand
of (4.5). The m̆g denotes the corresponding minimizer (see 3.3).

Table 1. Choice of m̆g and corresponding rates under Assumptions (1.3)
and (1.4).

fε

δ = 0 δ > 0
ordinary smooth supersmooth

g

r = 0
Sobolev(s)

πm̆g = O(n1/(2s+2γ+1))
rate = O(n−2s/(2s+2γ+1))

πm̆g = [ln(n)/(2µ+ 1)]1/δ

rate = O((ln(n))−2s/δ)

r > 0
C∞

πm̆g = [ln(n)/2b]1/r

rate = O

(

ln(n)(2γ+1)/r

n

)

m̆g solution of
m̆2s+2γ+1−r

g exp{2µ(πm̆g)
δ + 2bπrm̆r

g}
= O(n)

When r > 0, δ > 0 the value of m̆g is not explicitly given. It is obtained as the solution
of the equation

m̆2s+2γ+1−r
g exp{2µ(πm̆g)

δ + 2bπrm̆r
g} = O(n).

Consequently, the rate of ĝ
(n)
m̆g

is not easy to give explicitly and depends on the ratio r/δ.

If r/δ or δ/r belongs to ]k/(k+ 1); (k+ 1)/(k+ 2)] with k integer, the rate of convergence
can be expressed as a function of k. We refer to Comte et al. (2006) for further discussions
about those rates. We refer to Lacour (2006) for explicit formulae for the rates in the
special case r > 0 and δ > 0.

4.2. Adaptive bound. Theorem 4.1 below gives a general bound which holds under weak
dependency conditions, for ε being either ordinary or super smooth.

For a > 1, let pen(m) be defined by

(4.7) pen(m) =











192a
∆(m)

n
if 0 ≤ δ < 1/3,

64aλ3
∆(m)mmin((3δ/2−1/2)+ ,δ))

n
if δ ≥ 1/3,

where ∆(m) is defined by (3.5). The constant λ1(fε, κ0) is defined in (4.4) and

(4.8) λ3 = 1 +
32µπδ

λ1(fε, κ
′
0)

(

(
√

2 + 8)‖fε‖∞κ−1
0

√

λ1(fε, κ0)1I0≤δ≤1 + 2λ1(fε, κ0)1Iδ>1

)

.
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The important point here is that λ3 is known. Hence the penalty is explicit up to a nu-
merical multiplicative constant. This procedure has already been practically studied for
independent sequences (Xt)t≥1 and (εt)t≥1 in Comte et al. (2005, 2006). In particular,
the practical implementation of the penalty functions, and the calibration of the constants
have been studied in the two previously mentioned papers. Moreover, it is shown therein
that the estimation procedure is robust to various types of dependence, whether the errors
εi’s are ordinary or super smooth (see Tables 4 and 5 in Comte et al. (2005)).

In order to bound up pen(m), we impose that

πmn ≤







n1/(2γ+1) if δ = 0
[

ln(n)

2µ
+

2γ + 1 − δ

2δµ
ln

(

ln(n)

2µ

)]1/δ

if δ > 0.
(4.9)

Subsequently we set

Ca = max(κ2
a, 2κa) where κa = (a+ 1)/(a− 1).(4.10)

Theorem 4.1. Assume that fε satisfies (1.3) and 3.1, that g satisfies (4.1), and that mn

satisfies (4.9). Let pen(m) be defined by (4.7). Consider the collection of estimators ĝ
(n)
m

defined by (3.2) with kn ≥ n and 1 ≤ m ≤ mn. Let β∞ and τ∞ be defined as in (2.10)
and (2.11) respectively. Assume either that

(1) β∞(k) = O(k−(1+θ)) for some θ > 3
(2) or δ = 0, γ ≥ 3/2 in (1.3) and τ∞(k) = O(k−(1+θ)) for some θ > 3 + 2/(1 + 2γ)

(3) or δ > 0 in (1.3) and τ∞(k) = O(k−(1+θ)) for some θ > 3.

Then the estimator g̃ = ĝ
(n)
m̂ defined by (3.4) satisfies

(4.11) E(‖g − g̃‖2) ≤ Ca inf
m∈{1,··· ,mn}

[

‖g − gm‖2 + pen(m) +
m2(M2 + 1)

n

]

+
C

n
,

where Ca is defined in (4.10) and C is a constant depending on fε, a, and
∑

k≥1 β∞(k)

(respectively on
∑

k≥1 τ∞(k)).

Remark 4.1. In case (2), when δ = 0 in (1.3), the condition on θ is weaker as γ increases
and fε gets smoother.

The estimator g̃ is adaptive in the sense that it is purely data-driven. This is due to the
fact that pen(.) is explicitly known. In particular, its construction does not require any
prior smoothness knowledge on the unknown density g and does not use the dependency
coefficients. This point is important since all quantities involving dependency coefficients
are usually not tractable in practice.

The main result in Theorem 4.1 shows that the MISE of g̃ automatically achieves the
best squared-bias variance compromise (possibly up to some logarithmic factor). Conse-

quently, it achieves the best rate among the rates of the ĝ
(n)
m , even from a non-asymptotical

point of view. This last point is of most importance since the m selected in practice are
small and far away from asymptotic. For practical illustration of this point in the case of
density deconvolution of i.i.d. variables, we refer to Comte et al. (2005, 2006). Another
important point is that, if we consider the asymptotic trade-off, then the rates given in
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Table 1 are automatically reached in most cases by the adaptive estimator g̃. Only in
the case δ > 1/3 and r > 0, a loss may occur in the rate of g̃. This comes from the
additional power of m in the penalty for δ ≥ 1/3 with respect to the variance order ∆(m).
Nevertheless, the resulting loss in the rate has an order which is negligible compared to
the main order rate.

As a conclusion, the estimator g̃ has the rate of the i.i.d. case, with an explicit penalty
function not depending on the dependency coefficients.

5. Proofs

5.1. Proof of Proposition 4.1. The proof of Proposition 4.1 follows the same lines as
in the independent framework (see Comte et al. (2006)). The main difference lies in the
control of the variance term. We keep the same notations as in Section 3.2. According to

(3.2), for any given m belonging to {1, · · · ,mn}, ĝ(n)
m satisfies, γn(ĝ

(n)
m )− γn(g(n)

m ) ≤ 0. For
a random variable T with density fT , and any function ψ such that ψ(T ) is integrable, set
νn,T (ψ) = n−1

∑n
i=1[ψ(Ti) − 〈ψ, fT 〉]. In particular,

(5.1) νn,Z(u∗t ) =
1

n

n
∑

i=1

[u∗t (Zi) − 〈t, g〉] .

Since

γn(t) − γn(s) = ‖t− g‖2 − ‖s− g‖2 − 2νn,Z(u∗t−s),(5.2)

we infer that

(5.3) ‖g − ĝ(n)
m ‖2 ≤ ‖g − g(n)

m ‖2 + 2νn,Z

(

u∗
ĝ
(n)
m −g(n)

m

)

.

Writing that âm,j − am,j = νn,Z(u∗ϕm,j
), we obtain that

νn,Z

(

u∗
ĝ
(n)
m −g(n)

m

)

=
∑

|j|≤kn

(âm,j − am,j)νn,Z(u∗ϕm,j
) =

∑

|j|≤kn

[νn,Z(u∗ϕm,j
)]2.

Consequently, E‖g− ĝ
(n)
m ‖2 ≤ ‖g− g

(n)
m ‖2 + 2

∑

j∈Z
E[(νn,Z(u∗ϕm,j

))2]. According to Comte

et al. (2006),

‖g − g(n)
m ‖2 =‖ g − gm ‖2 +‖gm − g(n)

m ‖2 ≤‖ g − gm ‖2 +
(πm)2(M2 + 1)

kn
.(5.4)

The variance term is studied by using first that for f ∈ L1(R),

νn,Z(f∗) =

∫

νn,Z(eix·)f(x)dx.(5.5)

Now, we use (5.5) and apply Parseval’s formula to obtain

E

(

∑

j∈Z

(νn,Z(u∗ϕm,j
))2

)

=
1

4π2

∑

j∈Z

E

(

∫

ϕ∗
m,j(−x)
f∗ε (x)

νn,Z(eix·)dx
)2

=
1

2π

∫ πm

−πm

E|νn,Z(eix·)|2
|f∗ε (x)|2

dx.(5.6)
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Since νn,Z involves centered and stationary variables, we have

(5.7) E|νn,Z(eix·)|2 = Var|νn,Z(eix·)| =
1

n
Var(eixZ1) +

1

n2

∑

1≤k 6=l≤n
Cov(eixZk , eixZl).

It follows from the structure of the model that, for k < l, εl is independent of (Xl, Zk), so

that E(eixZk) = f∗ε (x)g
∗(x) and E(eix(Zl−Zk)) = f∗ε (x)E(eix(Xl−Zk)). Thus, for k < l,

Cov(eixZk , eixZl) = f∗ε (x)Cov(eixZk , eixXl).(5.8)

¿From (5.7) and the stationarity of (Xi)i≥1, we obtain that

(5.9) E|νn,Z(eix·)|2 ≤ 1

n
+

2

n

n
∑

k=2

∣

∣Cov(eixZ1 , eixXk)
∣

∣ |f∗ε (x)|.

The first part of Proposition 4.1 follows from the stationarity of the Xi’s, and from (5.3),
(5.4), (5.6) and (5.9).

The proof of Rm ≤ min(Rm,β , Rm,τ ), where Rm,β and Rm,τ are defined in Proposition
4.1, comes from the inequalities (2.15) in Section 2.2. Hence we get the result.2

5.2. Proof of Corollary 4.1. According to Butucea and Tsybakov (2005), under (1.3),
we have

λ1(fε, κ
′
0)Γ(m)(1 + om(1)) ≤ ∆(m) ≤ λ1(fε, κ0)Γ(m)(1 + om(1)) as m→ ∞, where

(5.10) Γ(m) = (1 + (πm)2)γ(πm)1−δ exp
{

2µ(πm)δ
}

,

where λ1 is defined in (4.4). In the same way

λ1(fε, κ
′
0)Γ(m)(1 + om(1)) ≤ ∆1/2(m) ≤ λ1(fε, κ0)Γ(m)(1 + om(1)) as m→ ∞,

where

Γ(m) = (1 + (πm)2)γ/2(πm)1−δ exp(µ(πm)δ)

λ1(fε, κ0) =
[

κ2
0π(1I{δ=0} + µδ1I{δ>0})

]−1
.

It is easy to see that ∆1/2(m) ≤
√

m∆(m) and hence ∆1/2(m) = Γ(m)om(1). Now, as
soon as γ > 1 when δ = 0, m∆1/2(m) = Γ(m)om(1). Set m1 such that for m ≥ m1 we
have

(5.11) 0.5λ1(fε, κ
′
0)Γ(m) ≤ ∆(m) ≤ 2λ1(fε, κ0)Γ(m),

and

(5.12) 0.5λ1(fε, κ
′
0)Γ(m) ≤ ∆1/2(m) ≤ 2λ1(fε, κ0)Γ(m).

If
∑

k≥1 β1(k) < +∞, (1.3) and (4.1) hold, and if kn ≥ n, then we have the upper bounds:

for m ≥ m1, λ1 = λ1(fε, κ0) and λ1 = λ1(fε, κ0),

E‖g − ĝ(n)
m ‖2 ≤ ‖g − gm‖2 +

m2(M2 + 1)

n
+

2λ1Γ(m)

n
+ 8λ1

∑

k≥1

β1(k)
Γ(m)

n

≤ ‖g − gm‖2 +
m2(M2 + 1)

n
+

2λ1Γ(m)

n
+
C(

∑

k≥1 β1(k))Γ(m)

n
om(1).
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In the same way, if
∑

k≥1 τ1(k) < +∞, if γ > 1 when δ = 0, if (1.3) and (4.1) hold, and if
kn ≥ n, then we have the upper bound: for m ≥ m1,

E‖g − ĝ(n)
m ‖2 ≤ ‖g − gm‖2 +

m2(M2 + 1)

n
+

2λ1Γ(m)

n
+ 2πλ1

∑

k≥1

τ1(k)
mΓ(m)

n

≤ ‖g − gm‖2 +
m2(M2 + 1)

n
+

2λ1Γ(m)

n
+
C(

∑

k≥1 τ1(k))Γ(m)

n
om(1).

Since γ > 1 when δ = 0, the residual term n−1m2(M2 + 1) is negligible with respect to
the variance term.

Finally, gm being the orthogonal projection of g on Sm, we get g∗m = g∗1I[−mπ,mπ] and
therefore

‖g − gm‖2 =
1

2π
‖g∗ − g∗m‖2 =

1

2π

∫

|x|≥πm
|g∗|2(x)dx.

If g belongs to the class Ss,r,b(C1) defined in (1.4), then

‖g − gm‖2 ≤ C1

2π
(m2π2 + 1)−s exp{−2bπrmr}.

The corollary is proved. 2

5.3. Proof of Theorem 4.1. By definition, g̃ satisfies that for all m ∈ {1, · · · ,mn},
γn(g̃) + pen(m̂) ≤ γn(gm) + pen(m).

Therefore, by using (5.2) we get

‖g̃ − g‖2 ≤ ‖g(n)
m − g‖2 + 2νn,Z(u∗

g̃−g(n)
m

) + pen(m) − pen(m̂),

where νn,Z is defined in (5.1). If t = t1 + t2 with t1 in S
(n)
m and t2 in S

(n)
m′ , t∗ has its

support in [−πmax(m,m′), πmax(m,m′)] and t belongs to S
(n)
max(m,m′). Set Bm,m′(0, 1) =

{t ∈ S
(n)
max(m,m′) / ‖t‖ = 1} and write

|νn,Z(u∗
g̃−g(n)

m

)| ≤ ‖g̃ − g(n)
m ‖ sup

t∈Bm,m̂(0,1)
|νn,Z(u∗t )|.

Using that 2uv ≤ a−1u2 + av2 for any a > 1, leads to

‖g̃ − g‖2 ≤ ‖g(n)
m − g‖2 + a−1‖g̃ − g(n)

m ‖2 + a sup
t∈Bm,m̂(0,1)

(νn,Z(u∗t ))
2 + pen(m) − pen(m̂).

Proof in the β-mixing case.

We use the coupling methods recalled in Section 2.2 to build approximating variables for
the Wi = (Zi,Xi)’s. More precisely, we build variables W ⋆

i such that if n = 2pnqn + rn,
0 ≤ rn < qn, and ℓ = 0, · · · , pn − 1

Eℓ = (W2ℓqn+1, ...,W(2ℓ+1)qn ), Fℓ = (W(2ℓ+1)qn+1, ...,W(2ℓ+2)qn),

E⋆ℓ = (W ⋆
2ℓqn+1, ...,W

⋆
(2ℓ+1)qn

), F ⋆ℓ = (W ⋆
(2ℓ+1)qn+1, ...,W

⋆
(2ℓ+2)qn

).

The variables E⋆ℓ and F ⋆ℓ are such that

- E⋆ℓ and Eℓ are identically distributed. F ⋆ℓ and Fℓ are identically distributed.
- P(Eℓ 6= E∗

ℓ ) ≤ β∞(qn) and P(Fℓ 6= F ∗
ℓ ) ≤ β∞(qn),
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- E⋆ℓ and M0 ∨ σ(E0, E1, ..., Eℓ−1, E
⋆
0 , E

⋆
1 , · · · , E⋆ℓ−1) are independent, and therefore

independent of M(ℓ−1)qn and the same holds for the blocks F ⋆ℓ .

For the sake of simplicity we assume that rn = 0. We denote by (Z⋆i ,X
⋆
i ) = W ⋆

i the new
couple of variables. We start from

(5.13) ‖ g̃ − g ‖2≤ κ2
a ‖ g(n)

m − g ‖2 +aκa sup
t∈Bm,m̂(0,1)

|νn,Z(u∗t )|2 + κa(pen(m) − pen(m̂)),

where κa is defined in (4.10). Using the notation (5.1), we denote by ν⋆n,Z(u∗t ) the empirical
contrast computed on the Z⋆i . Then we write

‖g̃ − g‖2 ≤ κ2
a‖g − g(n)

m ‖2 + 2aκa sup
t∈Bm,m̂(0,1)

|ν⋆n,Z(u∗t )|2 + κa(pen(m) − pen(m̂))

+2aκa sup
t∈Bm,m̂(0,1)

|ν⋆n,Z(u∗t ) − νn,Z(u∗t )|2.

Set

(5.14) T ⋆n(m,m′) :=
[

sup
t∈Bm,m′ (0,1)

|ν⋆n,Z(t)|2 − p(m,m′)
]

+
.

Hence

‖g̃ − g‖2 ≤ κ2
a‖g − g(n)

m ‖2 + 2aκaT
⋆
n(m, m̂) + κa (2ap(m, m̂) + pen(m) − pen(m̂))

+2aκa sup
t∈Bm,m̂(0,1)

|νn,Z(u∗t ) − ν⋆n,Z(u∗t )|2

≤ κ2
a‖g − g(n)

m ‖2 + 2κapen(m) + 2aκa sup
t∈Bm,m̂(0,1)

|νn,Z(u∗t ) − ν⋆n,Z(u∗t )|2

+2aκaT
⋆
n(m, m̂)(5.15)

where pen(m) is chosen such that

2ap(m,m′) ≤ pen(m) + pen(m′).(5.16)

Now write

νn,Z(u∗t ) − ν⋆n,Z(u∗t ) =
1

2π

1

n

n
∑

k=1

∫

[eixZk − eixZ
⋆
k ]
t∗(−x)
f∗ε (x)

dx

=
1

2π

∫

[νn,Z(eix·) − ν⋆n,Z(eix·)]
t∗(−x)
f∗ε (x)

dx.

Consequently,

(5.17)

E

[

sup
t∈Bm,m̂(0,1)

|νn,Z(u∗t ) − ν⋆n,Z(u∗t )|2
]

≤
∫ πmn

−πmn

E[|νn,Z(eix·) − ν⋆n,Z(eix·)|2] 1

|f∗ε (x)|2 dx.

Since

E[|νn,Z(eix·) − ν⋆n,Z(eix·)|2] = E[|νn,Z(eix·) − ν⋆n,Z(eix·)1IZk 6=Z⋆
k
|2]

≤ 4E

[ 1

n

n
∑

k=1

|1IZk 6=Z⋆
k
|2

]

≤ 4β∞(qn),



16 F. COMTE∗,1, J. DEDECKER2, AND M. L. TAUPIN 3

we obtain that

E

[

sup
t∈Bm,m̂(0,1)

|νn,Z(u∗t ) − ν⋆n,Z(u∗t )|2
]

≤ 4β∞(qn)∆(mn).(5.18)

By gathering (5.15) and (5.18) we get

E‖g̃ − g‖2 ≤ κ2
a‖g − g(n)

m ‖2 + 2aκa

mn
∑

m′=1

E
[

T ⋆n(m,m′)
]

+ 2κapen(m) + 2aκaβ∞(qn)∆(mn).

Therefore we infer that, for all m ∈ {1, · · · ,mn},

E‖g − g̃‖2 ≤ Ca

[

‖g − g(n)
m ‖2 + pen(m)

]

+ 2aκa(C1 + C2)/n,(5.19)

provided that

(5.20) ∆(mn)β∞(qn) ≤ C1/n and

mn
∑

m′=1

E(T ⋆n(m,m′)) ≤ C2/n.

Using (5.11), we conclude that the first part of (5.20) is fulfilled as soon as

(5.21) mn
2γ+1−δ exp{2µπδmn

δ}β∞(qn) ≤ C ′
1/n.

In order to ensure that our estimators converge, we only consider models with bounded
penalty, and therefore (5.21) requires that β∞(qn) ≤ C ′

1/n
2. For qn = [nc] and β∞(k) =

O(n−1−θ), we obtain the condition n−c(1+θ) = O(n−2). If θ > 3, one can find c ∈]0, 1/2[,
such that this condition is satisfied. Consequently, (5.21) holds.

To prove the second part of (5.20), we split T ⋆n(m,m′) into two terms

T ⋆n(m,m′) = (T ⋆n,1(m,m
′) + T ⋆n,2(m,m

′))/2,

where, for k = 1, 2,

(5.22)

T ⋆n,k(m,m
′) =

[

sup
t∈Bm,m′ (0,1)

∣

∣

1

pnqn

pn
∑

ℓ=1

qn
∑

i=1

(

u∗t (Z
⋆
(2ℓ+k−1)qn+i) − 〈t, g〉

)
∣

∣

2 − pk(m,m
′)
]

+
.

We only study T ⋆n,1(m,m
′) and conclude for T ⋆n,2(m,m

′) analogously. The study of T ⋆n,1(m,m
′)

consists in applying a concentration inequality to ν⋆n,1(t) defined by

ν⋆n,1(t) =
1

pnqn

pn
∑

ℓ=1

qn
∑

i=1

(

u∗t (Z
⋆
2ℓqn+i) − 〈t, g〉

)

=
1

pn

pn
∑

ℓ=1

ν⋆qn,ℓ(u
∗
t ).(5.23)

The random variable ν⋆n,1(u
∗
t ) is considered as the sum of the pn independent random

variables ν⋆qn,ℓ(t) defined as

ν⋆qn,ℓ(u
∗
t ) = (1/qn)

qn
∑

j=1

u∗t (Z
⋆
2ℓqn+j) − 〈t, g〉.(5.24)
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Let m∗ = max(m,m′). Let M⋆
1 (m∗), v⋆(m∗) and H⋆(m∗) be some terms such that

supt∈Bm,m′ (0,1) ‖ ν⋆qn,ℓ(u∗t ) ‖∞≤ M⋆
1 (m∗), supt∈Bm,m′ (0,1) Var(ν⋆qn,ℓ(u

∗
t )) ≤ v⋆(m) and lastly

E(supt∈Bm,m′ (0,1) |ν⋆n,1(u∗t )|) ≤ H⋆(m∗). According to Lemma 5.2 we take

(H⋆(m∗))2 =
2∆(m∗)

n
, M⋆

1 (m∗) =
√

∆(m∗) and v⋆(m∗) =
2
√

∆2(m∗, fZ)

2πqn
,

where

(5.25) ∆2(m, fZ) =

∫ πm

−πm

∫ πm

−πm

|f∗Z(x− y)|2
|f∗ε (x)f∗ε (y)|2

dxdy.

From the definition of T ⋆n,1(m,m
′), by taking p1(m,m

′) = 2(1 + 2ξ2)(H⋆)2(m∗), we get

(5.26) E(T ⋆n,1(m,m
′)) ≤ E

[

sup
t∈Bm,m′ (0,1)

|ν⋆n,1(u∗t ) − 2(1 + 2ξ2)(H⋆)2(m∗)
]

+
.

According to the condition (5.16), we thus take

pen(m) = 4ap(m,m) = 4a(2p1(m,m) + 2p2(m,m)) = 16ap1(m,m)

= 32a(1 + 2ξ2)
(

2n−1∆(m)
)

= 64a(1 + 2ξ2)n−1∆(m).(5.27)

where ξ2 is suitably chosen. Set m2 and m3 as defined in Lemma 5.2, and set m1 such
that for m∗ ≥ m1, ∆(m∗) satisfies (5.11). Take m0 = m1 ∨m2 ∨m3. We split the sum
over m′ in two parts and write

(5.28)

mn
∑

m′=1

E(T ⋆n,1(m,m
′)) =

∑

m′|m∗≤m0

E(T ⋆n,1(m,m
′)) +

∑

m′|m∗≥m0

E(T ⋆n,1(m,m
′)).

By applying Lemma 5.4, we get E(T ⋆n,1(m,m
′)) ≤ K[I(m∗) + II(m∗)], where

I(m∗) =

√

∆2(m∗, fZ)

pn
exp

{

−2K1ξ
2 ∆(m∗)
v⋆(m∗)

}

, II(m∗) =
∆(m∗)
p2
n

exp

{

−2K1ξC(ξ)

√

n

qn

}

.

When m∗ ≤ m0, with m0 finite, we get that, for all m ∈ {1, · · · ,mn},
∑

m′|m∗≤m0

E(R⋆n,1(m,m
′)) ≤ C(m0)

n
.

We now come to the sum over m′ such that m∗ ≥ m0. It follows from Comte et al. (2006)
that

v⋆(m∗) =
2
√

∆2(m∗, fZ)

2πqn
≤ 2λ⋆2(fε, κ0)

Γ2(m
∗)

qn
,(5.29)

with

(5.30) λ⋆2(fε, κ0) = κ−1
0

√

2πλ1‖fε∗‖1Iδ≤1 + 1Iδ>1

where λ1 = λ1(fε, κ0) is defined in (4.4) and
(5.31)

Γ2(m) = (1 + (πm)2)γ(πm)min((1/2−δ/2),(1−δ)) exp(2µ(πm)δ) = (πm)−(1/2−δ/2)+Γ(m).
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By combining the left hand-side of (5.11) and (5.29), we get that, for m∗ ≥ m0,

I(m∗) ≤ λ⋆2(fε, κ0)Γ2(m
∗)

n
exp

{

−K1ξ
2λ1(fε, κ

′
0)

2λ⋆2(fε, κ0)
(πm∗)(1/2−δ/2)+

}

and II(m∗) ≤ ∆(m∗)q2n
n2

exp

{

−2K1ξC(ξ)

7

√
n

qn

}

.

• Study of
∑

m′|m∗≥m0
II(m∗). According to the choices for v⋆(m∗), (H⋆(m∗))2 and

M⋆
1 (m∗), we have

∑

m′|m∗≥m0

II(m∗) ≤
∑

m′∈{1,··· ,mn}

∆(m∗)q2n
n2

exp

{

−2K1ξC(ξ)

7

√
n

qn

}

= O

[

mn exp

{

−2K1ξC(ξ)

7

√
n

qn

}

∆(mn)q
2
n

n2

]

.

Since ∆(mn)/n is bounded, then qn = [nc] with c in ]0, 1/2[ ensures that
mn
∑

m′=1

mn exp

{

−2K1ξC(ξ)

7

√
n

qn

}

∆(mn)q
2
n

n2
≤ C

n
.(5.32)

Consequently
∑

m′|m∗≥m0

II⋆(m∗) ≤ C

n
.(5.33)

• Study of
∑

m′|m∗≥m0
I(m∗). Denote by ψ = 2γ+min(1/2−δ/2, 1−δ), ω = (1/2−δ/2)+ ,

and K ′ = K1λ1(fε, κ
′
0)/(2λ

⋆
2(fε, κ0)). For a, b ≥ 1, we use that

max(a, b)ψe2µπ
δ max(a,b)δ

e−K
′ξ2 max(a,b)ω ≤ (aψe2µπ

δaδ

+ bψe2µπ
δbδ)e−(K ′ξ2/2)(aω+bω)

≤ aψe2µπ
δaδ

e−(K ′ξ2/2)aω

e−(K ′ξ2/2)bω + bψe2µπ
δbδe−(K ′ξ2/2)bω .(5.34)

Consequently,

∑

m′|m∗≥m0

I(m∗) ≤
mn
∑

m′=1

λ⋆2(fε, κ0)Γ2(m
∗)

n
exp

{

−K1ξ
2λ1(fε, κ

′
0)

2λ⋆2(fε, κ0)
(πm∗)(1/2−δ/2)+

}

≤ 2λ⋆2(fε, κ0)Γ2(m)

n
exp

{

−K
′ξ2

2
(πm)(1/2−δ/2)+

} mn
∑

m′=1

exp

{

−K
′ξ2

2
(πm′)(1/2−δ/2)+

}

+

mn
∑

m′=1

2λ⋆2(fε, κ0)Γ2(m
′)

n
exp

{

−K
′ξ2

2
(πm′)(1/2−δ/2)+

}

.(5.35)

Case 0 ≤ δ < 1/3. In that case, since δ < (1/2 − δ/2)+, the choice ξ2 = 1 ensures
that Γ2(m) exp{−(K ′ξ2/2)(m)(1/2−δ/2)} is bounded and thus the first term in (5.35) is
bounded by C/n. Since 1 ≤ m ≤ mn with mn such that ∆(mn)/n is bounded, the term
∑mn

m′=1 Γ2(m
′) exp{−(K ′/2)(m′)(1/2−δ/2)}/n is bounded by C ′/n, and hence

∑

m′|m∗≥m0

I(m∗) ≤ C

n
.
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According to (5.16), the result follows by choosing pen(m) = 4ap(m,m) = 192a∆(m)/n.

Case δ = 1/3. According to the inequality (5.34), ξ2 is such that 2µπδ(m)δ−(K ′ξ2/2)mδ =
−2µ(πm∗)δ that is

ξ2 =
16µπδλ⋆2(fε, κ0)

K1λ1(fε, κ′0)
.

Arguing as for the case 0 ≤ δ < 1/3, this choice ensures that
∑

m′|m∗≥m0
I(m∗) ≤ C/n.

The result follows by taking p(m,m′) = 2(1 + 2ξ2)∆(m∗)/n, and

pen(m) = 64a(1 + 2ξ2)
∆(m)

n
= 64a

(

1 +
32µπδλ⋆2(fε, κ0)

K1λ1(fε, κ
′
0)

)

∆(m)

n
.

Case δ > 1/3. In that case δ > (1/2 − δ/2)+. We choose ξ2 such that

2µπδ(m∗)δ − (K ′ξ2/2)(m∗)ω = −2µπδ(m∗)δ.

In other words

ξ2 = ξ2(m∗) =
16µ(π)δλ⋆2(fε, κ0)

K1λ1(fε, κ
′
0)

(πm∗)min((3δ/2−1/2)+ ,δ).

Hence
∑

m′|m∗≥m0
I(m∗) ≤ C/n. The result follows by choosing p(m,m′) = 2(1 +

2ξ2(m,m′))∆(m)/n, associated to

pen(m) = 64a(1 + 2ξ2(m))
∆(m)

n

= 64a

(

1 +
32µπδλ⋆2(fε, κ0)

K1λ1(fε, κ′0)
(πm∗)min((3δ/2−1/2)+ ,δ)

)

∆(m)

n
2

Proof in the τ-dependent case.

We use the coupling properties recalled in Section 2.2 to build approximating variables for
the Wi = (Zi,Xi)’s. More precisely, we build variables W ⋆

i such that if n = 2pnqn + rn,
0 ≤ rn < qn, and ℓ = 0, · · · , pn − 1

Eℓ = (W2ℓqn+1, ...,W(2ℓ+1)qn ), Fℓ = (W(2ℓ+1)qn+1, ...,W(2ℓ+2)qn),

E⋆ℓ = (W ⋆
2ℓqn+1, ...,W

⋆
(2ℓ+1)qn

), F ⋆ℓ = (W ⋆
(2ℓ+1)qn+1, ...,W

⋆
(2ℓ+2)qn

).

The variables E⋆ℓ and F ⋆ℓ are such that
- E⋆ℓ and Eℓ are identically distributed, F ⋆ℓ and Fℓ are identically distributed,

-

qn
∑

i=1

E(‖W2ℓqn+i−W ⋆
2ℓqn+i‖R2) ≤ qnτ∞(qn),

qn
∑

i=1

E(‖W(2ℓ+1)qn+i−W ⋆
(2ℓ+1)qn+i‖R2) ≤ qnτ∞(qn),

- E⋆ℓ and M0 ∨ σ(E0, E1, ..., Eℓ−1, E
⋆
0 , E

⋆
1 , · · · , E⋆ℓ−1) are independent, and therefore inde-

pendent of M(ℓ−1)qn and the same holds for the blocks F ⋆ℓ .

For the sake of simplicity we assume that rn = 0. We denote by (Z⋆i ,X
⋆
i ) = W ⋆

i the
new couple of variables.
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As for the proof in the β-mixing framework, we start from (5.15) with R⋆n(m, m̂) defined
by (5.14) and pen(m) chosen such that (5.16) holds. Next we use (5.17) and the bound
|e−ixt − e−ixs| ≤ |x||t− s|. Hence we conclude that

qn
∑

i=1

E(|e−iX2ℓqn+i − e−iX
⋆
2ℓqn+i |) ≤ qn|x|τX,∞(qn)

It follows that

E

[

sup
t∈Bm,m̂(0,1)

|νn,Z(u∗t ) − ν⋆n,Z(u∗t )|2
]

≤ 1

π

∫ πmn

−πmn

E|ν⋆n,X(eix·) − νn,X(eix·)|dx

≤ τX,∞(qn)

π

∫ πmn

−πmn

|x|
|f∗ε (x)|2

dx

≤ τX,∞(qn)mn∆(mn).(5.36)

By gathering (5.15) and (5.36) we get

E‖g̃ − g‖2 ≤ κ2
a‖g − g(n)

m ‖2 + 2aκa

mn
∑

m′=1

E
[

T ⋆n(m,m′)
]

+ 2κapen(m) + 2aκaτ∞(qn)mn∆(mn).

Therefore we infer that, for all m ∈ {1, · · · ,mn}, (5.19) holds provided that

(5.37) ∆(mn)mnτ∞(qn) ≤ C1/n and

mn
∑

m′=1

E(T ⋆n(m,m′)) ≤ C2/n.

Using (5.11), we conclude that the first part of (5.37) is fulfilled as soon as

(5.38) mn
2γ+2−δ exp{2µπδmn

δ}τ∞(qn) ≤ C ′
1/n.

In order to ensure that our estimators converge, we only consider models with bounded
penalty, that is ∆(mn) = O(n). Therefore (5.38) requires that mnτ∞(qn) ≤ C ′

1/n
2. For

qn = [nc] and τ∞(k) = O(n−1−θ), we obtain the condition

mnn
−c(1+θ) = O(n−2).(5.39)

If fε satisfies (1.3) with δ > 0, and if θ > 3, one can find c ∈]0, 1/2[, such that (5.39) is
satisfied. Now, if δ = 0 and γ ≥ 3/2 in (1.3) and if θ > 3 + 2/(1 + 2γ), then one can find
c ∈]0, 1/2[, such that (5.39) is satisfied. These conditions ensure that (5.21) holds.

In order to prove the second part of (5.37), we proceed as for the proof of the second
part of (5.20) and split T ⋆n(m,m′) into two terms

T ⋆n(m,m′) = (T ⋆n,1(m,m
′) + T ⋆n,2(m,m

′))/2,

where the T ⋆n,k(m,m
′)’s are defined in (5.22). We only study T ⋆n,1(m,m

′) and conclude for

T ⋆n,2(m,m
′) analogously. As in the β-mixing framework, the study of T ⋆n,1(m,m

′) consists

in applying a concentration inequality to ν⋆n,1(t) defined in (5.23) and considered as the

sum of the pn independent random variables ν⋆qn,ℓ(t) defined as in (5.24). Once again,

set m∗ = max(m,m′), and denote by M⋆
1 (m∗), v⋆(m∗) and H⋆(m∗) the terms such that
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supt∈Bm,m′ (0,1) ‖ ν⋆qn,ℓ(u∗t ) ‖∞≤ M⋆
1 (m∗), supt∈Bm,m′ (0,1) Var(ν⋆qn,ℓ(u

∗
t )) ≤ v⋆(m) and lastly

E(supt∈Bm,m′ (0,1) |ν⋆n,1(u∗t )|) ≤ H⋆(m∗). According to Lemma 5.3, we take

(H⋆(m∗))2 =
2∆(m∗)

n
, M⋆

1 (m∗) =
√

∆(m∗) and v⋆(m∗) =
Cv∗

√

∆2(m∗, fZ)

2πqn
,

where ∆2(m, fZ) is defined in (5.25) and where

Cv∗ = 2
[

1Iδ>0 +

√
2π3/2(2π)3/2√

3

∑

k≥1

τ1(k)1Iδ=0

]

.(5.40)

From the definition of T ⋆n,1(m,m
′), by taking p1(m,m

′) = 2(1 + 2ξ2)(H⋆)2(m∗), we get

(5.41) E(T ⋆n,1(m,m
′)) ≤ E

[

sup
t∈Bm,m′ (0,1)

|ν⋆n,1(u∗t ) − 2(1 + 2ξ2)(H⋆)2(m∗)
]

+
.

As in the β-mixing framework we take pen(m) = 64a∆(m)(1+2ξ2)/n where ξ2 is suitably
chosen (see (5.41)). Set m2 and m3 as defined in Lemma 5.3, and set m1 such that for
m∗ ≥ m1 (5.11) holds. Take m0 = m1 ∨m2 ∨m3 and K ′ = K1λ1(fε, κ

′
0)/(Cv∗λ

⋆
2(fε, κ0)).

The end of the proof is the same as in β-mixing framework, up to possible multiplicative
constants.2

5.4. Technical lemmas.

Lemma 5.1.

‖
∑

j∈Z

|u∗ϕm,j
|2 ‖∞≤ ∆(m).(5.42)

The proof of Lemma 5.1 can be found in Comte et al. (2006).

Lemma 5.2. Assume that
∑

k≥1 β1(k) < +∞. Then we have

sup
t∈Bm,m′ (0,1)

‖ ν⋆qn,ℓ(u∗t ) ‖∞≤
√

∆(m∗)(5.43)

Moreover, there exist m2 and m3 such that

E[ sup
t∈Bm,m′ (0,1)

|ν⋆n,1(u∗t )|] ≤
√

2∆(m∗)/n for m∗ ≥ m2,

and sup
t∈Bm,m′ (0,1)

Var(ν⋆qn,ℓ(u
∗
t )) ≤ 2

√

∆2(m∗, fZ)/(2πqn) for m∗ ≥ m3,

where ∆(m) and ∆2(m, fZ) are defined by (3.5) and (5.25).

Proof of Lemma 5.2. Arguing as in Lemma 5.1 and by using Cauchy-Schwartz Inequal-
ity and Parseval formula, we obtain that the first term supt∈Bm,m′ (0,1) ‖ ν⋆qn,ℓ(u∗t ) ‖∞ is

bounded by

sup
t∈Bm,m′ (0,1)

‖ ν⋆qn,ℓ(u∗t ) ‖∞≤

√

√

√

√

∑

j∈Z

∫
∣

∣

∣

∣

ϕ∗
m∗,j(x)

f∗ε (x)

∣

∣

∣

∣

2

dx =
√

∆(m∗).



22 F. COMTE∗,1, J. DEDECKER2, AND M. L. TAUPIN 3

Next

E

[

sup
t∈Bm,m′ (0,1)

∣

∣

∣
ν⋆n,1(u

∗
t )

∣

∣

∣

]

= E

[

sup
t∈Bm,m′ (0,1)

∣

∣

∣

1

pnqn

pn
∑

ℓ=1

qn
∑

i=1

u∗t (Z
⋆
2ℓqn+i) − 〈t, g〉

∣

∣

∣

]

≤
√

∑

j∈Z

Var(ν⋆n,1(u
∗
ϕm∗,j

)).

By using (5.6) we obtain

√

∑

j∈Z

Var(ν⋆n,1(u
∗
ϕm∗,j

)) =

√

√

√

√

∑

j∈Z

1

p2
n

pn
∑

ℓ=1

Var
(

ν⋆qn,ℓ(u
∗
ϕm∗,j

)
)

=

√

√

√

√

∑

j∈Z

1

p2
n

pn
∑

ℓ=1

Var
(

νqn,ℓ(u
∗
ϕm∗,j

)
)

=

√

∑

j∈Z

1

pn
Var

(

νqn,1(u
∗
ϕm∗,j

)
)

=

√

1

2πpn

∫ πm∗

−πm∗

E|νqn,1(eix.)|2
|f∗ε (x)|2

dx.

Now, according to (5.9) and (2.13)

E|νqn,1(eix.)|2 ≤ 1

qn
+

2

qn

n−1
∑

k=1

β1(k)|f∗ε (x)|.

This implies that

E
2
[

sup
t∈Bm,m′ (0,1)

∣

∣

∣
ν⋆n,1(u

∗
t )

∣

∣

∣

]

≤ 1

pn

( 1

qn
∆(m∗) +

2

qn

n−1
∑

k=1

β1(k)∆1/2(m
∗)

)

.

Since 2
∑

k≥1 β1(k)∆1/2(m) ≤ ∆(m) for m large enough, we get that, for m∗ large enough,

E
2
[

sup
t∈Bm,m′ (0,1)

∣

∣

∣
ν⋆n,1(u

∗
t )

∣

∣

∣

]

≤ 2∆(m∗)/n.

Now, for t ∈ Bm,m′(0, 1) we write

Var
( 1

qn

qn
∑

i=1

u∗t (Z
⋆
2ℓqn+i)

)

= Var
( 1

qn

qn
∑

i=1

u∗t (Zi)
)

=
1

q2n

[

qn
∑

k=1

Var(u∗t (Zk)) + 2
∑

1≤k<l≤qn
Cov(u∗t (Zk), u

∗
t (Zl))

]

.

According to (5.5), (5.8) and (2.13) we have

|Cov(u∗t (Zk), u
∗
t (Zl))| =

∣

∣

∣

∫ πm∗

−πm∗

∫ πm∗

−πm∗

Cov(eixZk , eiyZl)t∗(x)t∗(y)
f∗ε (x)f∗ε (−y) dxdy

∣

∣

∣

=
∣

∣

∣

∫ πm∗

−πm∗

∫ πm∗

−πm∗

f∗ε (−y)Cov(eixZk , eiyXl)t∗(x)t∗(y)
f∗ε (x)f∗ε (−y)

dxdy
∣

∣

∣

≤
∫ πm∗

−πm∗

∫ πm∗

−πm∗

2β1(k)|t∗(x)t∗(y)|
|f∗ε (x)|

dxdy.
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Hence,

Var
( 1

qn

qn
∑

i=1

u∗t (Z
⋆
2ℓqn+i)

)

≤ 1

qn

(

∫ πm∗

−πm∗

∫ πm∗

−πm∗

f∗Z(u− v)t∗(u)t∗(−v)
fε(u)fε(−v)

dudv

+2

qn
∑

k=1

β1(k)

∫ πm∗

−πm∗

∫ πm∗

−πm∗

∣

∣

∣

t∗(u)t∗(v)
f∗ε (v)

∣

∣

∣
dudv

)

.

Following Comte et al. (2006) and applying Parseval’s formula, the first integral is less

that
√

∆2(m∗, fZ)/2π. For the second one, write

∫ πm∗

−πm∗

∫ πm∗

−πm∗

∣

∣

∣

t∗(u)t∗(v)
f∗ε (v)

∣

∣

∣
dudv ≤

√
2πm∗‖t∗‖

√

∫

|t∗(v)|2dv
∫ πm∗

−πm∗

dv

|f∗ε (v)|2
,

that is
∫ πm∗

−πm∗

∫ πm∗

−πm∗

∣

∣

∣

t∗(u)t∗(v)
f∗ε (v)

∣

∣

∣
dudv ≤ (2π)2

√

m∗∆(m∗).

Using that γ > 1/2 if δ = 0, we get that
√

m∗∆(m∗) = om(
√

∆2(m∗, fZ)) and hence the
result follows for m large enough. 2

Lemma 5.3. Assume that
∑

k≥1 τ1(k) < +∞. Assume either that

(1) δ = 0, γ ≥ 3/2 in (1.3)
(2) or δ > 0 in (1.3).

Then we have

sup
t∈Bm,m′ (0,1)

‖ ν⋆qn,ℓ(u∗t ) ‖∞≤
√

∆(m∗)(5.44)

Moreover, there exist m2 and m3 such that

E[ sup
t∈Bm,m′ (0,1)

|ν⋆n,1(u∗t )|] ≤
√

2∆(m∗)/n for m∗ ≥ m2,

and sup
t∈Bm,m′ (0,1)

Var(ν⋆qn,ℓ(u
∗
t )) ≤ Cv∗

√

∆2(m∗, fZ)/(2πqn) for m∗ ≥ m3,

where ∆(m) and ∆2(m, fZ) are defined by (3.5) and (5.25) and where Cv∗ is defined in
(5.40).

Proof of Lemma 5.3. The proof of (5.44) is the same as the proof of (5.43). Next, again
as for the proof of Lemma 5.2

E

[

sup
t∈Bm,m′ (0,1)

∣

∣

∣
ν⋆n,1(u

∗
t )

∣

∣

∣

]

≤
√

∑

j∈Z

Var(ν⋆n,1(u
∗
ϕm∗,j

))

with

√

∑

j∈Z

Var(ν⋆n,1(u
∗
ϕm∗,j

)) =

√

1

2πpn

∫ πm∗

−πm∗

E|νqn,1(eix.)|2
|f∗ε (x)|2

dx.
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Now, according to (5.9) and (2.14)

E|νqn,1(eix.)|2 ≤ 1

qn
+

1

qn

n−1
∑

k=1

τ1(k)|x||f∗ε (x)|.

This implies that

E
2
[

sup
t∈Bm,m′ (0,1)

∣

∣

∣
ν⋆n,1(u

∗
t )

∣

∣

∣

]

≤ 1

pn

( 1

qn
∆(m∗) +

2π

qn

n−1
∑

k=1

τ1(k)m∆1/2(m
∗)

)

.

Since 2π
∑

k≥1 τ1(k)m∆1/2(m) ≤ ∆(m) for m large enough, we get that for m∗ large
enough

E
2
[

sup
t∈Bm,m′ (0,1)

∣

∣

∣
ν⋆n,1(u

∗
t )

∣

∣

∣

]

≤ 2∆(m∗)/n.

Now, for t ∈ Bm,m′(0, 1) we write

Var
( 1

qn

qn
∑

i=1

u∗t (Z
⋆
2ℓqn+i)

)

= Var
( 1

qn

qn
∑

i=1

u∗t (Zi)
)

=
1

q2n

[

qn
∑

k=1

Var(u∗t (Zk)) + 2
∑

1≤k<l≤qn
Cov(u∗t (Zk), u

∗
t (Zl))

]

.

According to (5.5), (5.8) and (2.14) and by applying the same arguments as for the proof
of Lemma 5.2 we have

|Cov(u∗t (Zk), u
∗
t (Zl))| =

∣

∣

∣

∫ πm∗

−πm∗

∫ πm∗

−πm∗

f∗ε (−y)Cov(eixZk , eiyXl)t∗(x)t∗(y)
f∗ε (x)f∗ε (−y)

dxdy
∣

∣

∣

≤
∫ πm∗

−πm∗

∫ πm∗

−πm∗

|y|τ1(k)|t∗(x)t∗(y)|
|f∗ε (x)|

dxdy.

Hence,

Var
( 1

qn

qn
∑

i=1

u∗t (Z
⋆
2ℓqn+i)

)

≤ 1

qn

(

∫ πm∗

−πm∗

∫ πm∗

−πm∗

f∗Z(u− v)t∗(u)t∗(−v)
fε(u)fε(−v)

dudv

+2

qn
∑

k=1

τ1(k)

∫ πm∗

−πm∗

∫ πm∗

−πm∗

∣

∣

∣

ut∗(u)t∗(v)
f∗ε (v)

∣

∣

∣
dudv

)

.

Once again the first integral is less that
√

∆2(m∗, fZ)/2π. For the second one, write

∫ πm∗

−πm∗

∫ πm∗

−πm∗

∣

∣

∣

ut∗(u)t∗(v)
f∗ε (v)

∣

∣

∣
dudv ≤

√
2π3/2

√
3

(m∗)3/2‖t∗‖
√

∫

|t∗(v)|2dv
∫ πm∗

−πm∗

dv

|f∗ε (v)|2
,

that is
∫ πm∗

−πm∗

∫ πm∗

−πm∗

∣

∣

∣

t∗(u)t∗(v)
f∗ε (v)

∣

∣

∣
dudv ≤

√
2π3/2

√
3

(2π)3/2
√

(m∗)3∆(m∗).
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If δ > 0, then
√

(m∗)3∆(m∗) = om
√

∆2(m∗, fZ). If γ > 3/2 and δ = 0, we get

that
√

(m∗)3∆(m∗) = om
√

∆2(m∗, fZ). Lastly, if γ = 3/2 and δ = 0, we get that
√

(m∗)3∆(m∗) ≤
√

∆2(m∗, fZ) and the result follows for m large enough. 2

Lemma 5.4. Let Y1, . . . , Yn be independent random variables and let F be a countable
class of uniformly bounded measurable functions. Then for ξ2 > 0

E

[

sup
f∈F

|νn,Y (f)|2 − 2(1 + 2ξ2)H2
]

+
≤ 4

K1

(

v

n
e−K1ξ2

nH2

v +
98M2

1

K1n2C2(ξ2)
e
− 2K1C(ξ)ξ

7
√

2
nH
M1

)

,

with C(ξ) =
√

1 + ξ2 − 1, K1 = 1/6, and

sup
f∈F

‖f‖∞ ≤M1, E

[

sup
f∈F

|νn,Y (f)|
]

≤ H, sup
f∈F

1

n

n
∑

k=1

Var(f(Yk)) ≤ v.

This inequality comes from a concentration Inequality in Klein and Rio (2005) and
arguments that can be found in Birgé and Massart (1998). Usual density arguments show
that this result can be applied to the class of functions F = Bm,m′(0, 1).

Proof of Proposition 2.1. To prove (1), let for t > 0, Y ∗
t = ηtσ

∗
t . Note that the sequence

((Y ∗
t , σ

∗
t ))t≥1 is distributed as ((Yt, σt))t≥1 and independent of Mi = σ(σj , Yj, 0 ≤ j ≤ i).

Hence, by the coupling properties of τ (see (2.12)), we have that, for n+ i ≤ i1 < · · · < il,

τ(Mi, (Y
2
i1 , σ

2
i1), . . . , (Y

2
il
, σ2
il
)) ≤ 1

l

l
∑

j=1

‖(Y 2
ij , σ

2
ij ) − ((Y ∗

ij )
2, (σ∗ij ))

2‖R2 ≤ δn ,

and (1) follows.
To prove (2), define the function fǫ(x) = ln(x)1Ix>ǫ + 2 ln(ǫ)1Ix≤ǫ and the function

gǫ(x) = ln(x) − fǫ(x). Clearly, for any ǫ > 0 and any n+ i ≤ i1 < . . . < il, we have

(5.45) τ(Mi, (Zi1 ,Xi1), . . . , (Zil ,Xil)) ≤ 2E(|gǫ(Y 2
0 )| + |gǫ(σ2

0)|)
+ τ(Mi, (fǫ(Y

2
i1), fǫ(σ

2
i1)), . . . , (fǫ(Y

2
il
), fǫ(σ

2
il
)))

For 0 < ǫ < 1, the function fǫ is 1/ǫ-Lipschitz. Hence, applying (1),

τ(Mi, (fǫ(Y
2
i1), fǫ(σ

2
i1)), . . . , (fǫ(Y

2
il
), fǫ(σ

2
il
))) ≤ δn

ǫ
.

Since max(fσ2(x), fY 2(x)) ≤ C| ln(x)|αx−ρ in a neighborhood of 0, we infer that for small
enough ǫ,

E(|gǫ(Y 2
0 )| + |gǫ(σ2

0)|) ≤ K1ǫ
1−ρ| ln(ǫ)|1+α ,

for K1 a positive constant. From (5.45), we infer that there exists a positive constant K2

such that, for small enough ǫ,

τ(Mi, (Zi1 ,Xi1), . . . , (Zil ,Xil)) ≤ K2

(δn
ǫ

+ ǫ1−ρ| ln(ǫ)|1+α
)

.

The result follows by taking ǫ = (δn)
1/(2−ρ)| ln(δn)|−(1+α)/(2−ρ).
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Now, we go back to the model (2.5). If
∑∞

j=1 aj < 1, the unique stationary solution to

(2.5) is given by Giraitis et al. (2000):

σ2
t = a+ a

∞
∑

ℓ=1

∞
∑

j1,...,jl=1

aj1 . . . ajlη
2
t−j1 . . . η

2
t−(j1+···+jl).

for any 1 ≤ k ≤ n, let

σ2
t (k, n) = a+ a

[n/k]
∑

ℓ=1

k
∑

j1,...,jl=1

aj1 . . . ajlη
2
t−j1 . . . η

2
t−(j1+···+jl).

Clearly

E(|σ2
n − (σ∗n)

2|) ≤ 2E(|σ2
0 − σ2

0(k, n)|) .
Now

E(|σ2
0 − σ2

0(k, n)|) ≤
(

∑

l=[n/k]+1

cl +

∞
∑

l=1

cl−1
∑

j>k

aj

)

.

This being true for any 1 ≤ k ≤ n, the proof of Proposition 2.1 is complete.
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