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émanant des établissements d’enseignement et de
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ADAPTIVE ESTIMATION OF THE TRANSITION DENSITY OF

A PARTICULAR HIDDEN MARKOV CHAIN

Claire Lacour

MAP5, Université Paris 5, 45 rue des Saints-Pères
75270 Paris Cedex 06, France.

email: lacour@math-info.univ-paris5.fr

Abstract. We study the following model of hidden Markov chain: Yi = Xi + εi,
i = 1, . . . , n + 1 with (Xi) a real-valued positive recurrent and stationary Markov
chain and (εi)1≤i≤n+1 a noise independent of the sequence (Xi) having a known
distribution. We present an adaptive estimator of the transition density based on
the quotient of a deconvolution estimator of the density of Xi and an estimator
of the density of (Xi, Xi+1). These estimators are obtained by contrast minimiza-
tion and model selection. We evaluate the L2 risk and its rate of convergence
for ordinary smooth and supersmooth noise with regard to ordinary smooth and
supersmooth chains. Some examples are also detailed.

Keywords. Hidden Markov chain ; Transition density ; Nonparametric estima-
tion ; Deconvolution ; Model selection ; Rate of convergence

1. Introduction

Let us consider the following model:

(1) Yi = Xi + εi i = 1, . . . , n+ 1

where (Xi)i≥1 is an irreducible and positive recurrent Markov chain and (εi)i≥1 is a
noise independent of (Xi)i≥1. We assume that ε1, . . . , εn are independent and identi-
cally distributed random variables with known distribution. This model belongs to
the class of hidden Markov models. Contrary to the literature on the subject, we are
interested in a nonparametric approach of the estimation of the hidden chain transi-
tion. The problem of estimating the density of Xi from the observations Y1, . . . , Yn

when the Xi are i.i.d. (known as the convolution model) has been extensively stud-
ied, see e.g. Carroll and Hall (1988), Fan (1991), Stefanski (1990), Pensky and
Vidakovic (1999), Comte et al. (2006b).

But very few authors study the case where (Xi) is a Markov chain. We can cite
Dorea and Zhao (2002) who estimate the density of Yi in such a model, Masry (1993)
who is interested in the estimation of the multivariate density in a mixing frame-
work and Clémençon (2003) who estimates the stationary density and the transition
density of the hidden chain. More precisely he introduces an estimator of the tran-
sition density based on thresholding of a wavelet-vaguelette decomposition and he
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studies its performance in the case of an ordinary smooth noise (i.e. whose Fourier
transform has polynomial decay). Here we are interested also in the estimation of
the transition density of (Xi) but we consider a larger class of noise distributions.
In Clémençon (2003) there is no study of supersmooth noise (i.e. with exponentially
decreasing Fourier transform), as the Gaussian distribution. However the study of
such noise allows to find interesting rates of convergence, in particular when the
chain density is also supersmooth. In the present paper, the four cases (ordinary
smooth or supersmooth noise with ordinary smooth or supersmooth chain) are con-
sidered.

The aim of this paper is to estimate the transition density Π of the Markov chain
(Xi) from the observations Y1, . . . , Yn. To do this we assume that the regime is
stationary and we note that Π = F/f where F is the density of (Xi, Xi+1) and f the
stationary density. The estimation of f comes down to a problem of deconvolution,
as does the estimation of F . We use contrast minimization and a model selection
method inspired by Barron et al. (1999) to find adaptive estimators of f and F .
Our estimator of Π is then the quotient of the two previous estimators. Note that
it is worth finding an adaptive estimator, i.e. an estimator whose risk automati-
cally achieves the minimax rates, because the regularity of the densities f and F is
generally very hard to compute, even if the chain can be fully described (case of a
diffusion or an autoregressive process).

We study the performance of our estimator by computing the rate of convergence
of the L2 risk. We improve the result of Clémençon (2003) (case of an ordinary
smooth noise) since we obtain the minimax rate without logarithmic loss. Moreover
we observe noteworthy rates of convergence in the case where both noise and the
chain are supersmooth.

The paper is organized as follows. Section 2 is devoted to notations and assump-
tions while the estimation procedure is developed in Section 3. After describing the
projection spaces to which the estimators belong, we define separately the estimator
of the stationary density f , the one of the joined density F and last the estimator
Π̃ of the transition density. Section 4 states the results obtained for our estimators.
To illustrate the theorems, some examples are provided in Section 5 as the AR(1)
model, the Cox-Ingersoll-Ross process or the stochastic volatility model. The proofs
are to be found in Section 6.

2. Notations and Assumptions

For the sake of clarity, we use lowercase letters for the dimension 1 and capital
letters for the dimension 2. For a function t : R 7→ R, we denote by ‖t‖ the L2 norm
that is ‖t‖2 =

∫

R
t2(x)dx. The Fourier transform t∗ of t is defined by

t∗(u) =

∫

e−ixut(x)dx
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Notice that the function t is the inverse Fourier transform of t∗ and can be writ-
ten t(x) = 1/(2π)

∫

eixut∗(u)du. Finally, the convolution product is defined by
(t ∗ s)(x) =

∫

t(x− y)s(y)dy.
In the same way, for a function T : R2 7→ R, ‖T‖2 =

∫∫

R2 T
2(x, y)dxdy and

T ∗(u, v) =

∫∫

e−ixu−iyvT (x, y)dxdy, (T∗S)(x, y) =

∫∫

T (x−z, y−w)S(z, w)dzdw.

We denote by t⊗ s the function: (x, y) 7→ (t⊗ s)(x, y) = t(x)s(y).
The density of εi is named q and is considered as known. We denote by p the

density of Yi. We have p = f ∗ q and then p∗ = f ∗q∗. Similarly if P is the density
of (Yi, Yi+1), then P = F ∗ (q ⊗ q) and P ∗(u, v) = F ∗(u, v)q∗(u)q∗(v).

Now the assumptions on the model are the following:

A1: The function q∗ never vanishes.
A2: There exist s ≥ 0, b > 0, γ > 0 if s = 0 and k0, k1 > 0 such that

k0(x
2 + 1)−γ/2 exp(−b|x|s) ≤ |q∗(x)| ≤ k1(x

2 + 1)−γ/2 exp(−b|x|s)
A3: The chain is stationary with (unknown) density f .
A4: The chain is geometrically β-mixing (βq ≤ Me−θq), or arithmetically β-

mixing (βq ≤Mq−θ) with θ > 6.

This last condition is verified as soon as the chain is uniformly ergodic. In the sequel
we consider the following smoothness spaces:

Aδ,r,a(l) = {f density on R and

∫

|f ∗(x)|2(x2 + 1)δ exp(2a|x|r)dx ≤ l}

with r ≥ 0, a > 0, δ > 1/2 if r = 0, l > 0 and

A∆,R,A(L) = {F density on R
2 and

∫∫

|F ∗(x, y)|2(x2 + 1)∆(y2 + 1)∆ exp(2A(|x|R + |y|R))dxdy ≤ L}

with R ≥ 0, A > 0,∆ > 1/2 if R = 0, L > 0.
When r > 0 (respectively R > 0) the function f (resp. F ) is known as super-

smooth, and as ordinary smooth otherwise. In the same way, the noise distribution
is called ordinary smooth if s = 0 and supersmooth otherwise. The spaces of or-
dinary smooth functions correspond to classic Sobolev classes, while supersmooth
functions are infinitely differentiable. It includes for example normal (r = 2) and
Cauchy (r = 1) densities.

3. Estimation procedure

Since Π = F/f we proceed in 3 steps to estimate the transition density Π. First

we find an estimator f̃ of f (see Subsection 3.2). Then we estimate F by F̃ (see

Subsection 3.3). And last we estimate Π with the quotient F̃ /f̃ (Subsection 3.4).
All estimators defined here are projection estimators. We therefore start with

describing the projection spaces.
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3.1. Projection spaces. Let

ϕ(x) = sin(πx)/(πx)

and, for m in N∗, j in Z, ϕm,j(x) =
√
mϕ(mx − j). Notice that {ϕm,j}j∈Z is an

orthonormal basis of the space of integrable functions having a Fourier transform
with compact support included into [−πm, πm]. In the sequel, we use the following
notations:

Sm = Span{ϕm,j}j∈Z; Sm = Span{ϕm,j ⊗ ϕm,k}j,k∈Z

These spaces have particular properties, which are a consequence of the first point
of Lemma 3 (see Section 6.7):

∀t ∈ Sm ‖t‖∞ ≤
√
m‖t‖; ∀T ∈ Sm ‖T‖∞ ≤ m‖T‖(2)

where ‖t‖∞ = supx∈R |t(x)| and ‖T‖∞ = sup(x,y)∈R2 |T (x, y)|.
3.2. Estimation of f . Here we estimate f , which is the density of the Xi’s. It
is the classic deconvolution problem. We choose to estimate f by minimizing a
contrast. The classical contrast in density estimation is 1/n

∑n
i=1[‖t‖2 − 2t(Xi)]. It

is not possible to use this contrast here since we do not observe X1, . . . , Xn. Only
the noisy data Y1, . . . , Yn are available. That is why we use the following lemma.

Lemma 1. For all function t, let vt be the inverse Fourier transform of t∗/q∗(−.),
i.e.

vt(x) =
1

2π

∫

eixu t∗(u)

q∗(−u)du.

Then, for all 1 ≤ k ≤ n,

(1) E[vt(Yk)|X1, ..., Xn] = t(Xk)
(2) E[vt(Yk)] = E[t(Xk)]

The second assertion in Lemma 1 is an obvious consequence of the first one and
leads us to consider the following contrast:

γn(t) =
1

n

n
∑

i=1

[‖t‖2 − 2vt(Yi)] with v∗t (u) =
t∗(u)

q∗(−u)
We can observe that Eγn(t) = 1/n

∑n
i=1[‖t‖2 − 2E[vt(Yi)]] = 1/n

∑n
i=1[‖t‖2 −

2E[t(Xi)]] = ‖t‖2 − 2
∫

tf = ‖t − f‖2 − ‖f‖2 and then minimizing γn(t) comes
down to minimizing the distance between t and f . So we define

(3) f̂m = arg min
t∈Sm

γn(t)

or, equivalently,

f̂m =
∑

j∈Z

âjϕm,j with âj =
1

n

n
∑

i=1

vϕm,j
(Yi).

Actually we should define f̂m =
∑

|j|≤Kn
âjϕm,j because we can estimate only a

finite number of coefficients. If Kn is suitably chosen, it does not change the rate
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of convergence since the additional terms can be made negligible. For the sake of
simplicity, we let the sum over Z. For an example of detailed truncation see Comte
et al. (2006b).

Conditionally to (Xi), the variance or stochastic error is

E[‖f̂m − fm‖2|X1, . . . , Xn] ≤
∑

j

Var[
1

n

n
∑

i=1

vϕm,j
(Yi)|X1, . . . , Xn] ≤

‖
∑

j v
2
ϕm,j

‖∞
n

since Y1, . . . , Yn are independent conditionally to (Xi). Then, it follows from Lemma
3 (see Subsection 6.7) that ‖∑j v

2
ϕm,j

‖∞ = ∆(m) where

(4) ∆(m) =
1

2π

∫ πm

−πm

|q∗(u)|−2du.

This implies that the order of the variance is ∆(m)/n. That is why we introduce

Mn =

{

m ≥ 1,
∆(m)

n
≤ 1

}

.

To complete the estimation, we choose the best estimator among the collection
(f̂m)m∈Mn . Let

m̂ = arg min
m∈Mn

{γn(f̂m) + pen(m)}

where pen is a penalty term to be specified later (see Theorem 1). Finally we define

f̃ = f̂m̂.

3.3. Estimation of the density F of (Xi, Xi+1). We proceed similarly to the
estimation of f . To define the contrast to minimize, we use the following lemma:

Lemma 2. For all function T , let VT be the inverse Fourier transform of T ∗/(q∗ ⊗
q∗)(−.), i.e.

VT (x, y) =
1

4π2

∫∫

eixu+iyv T ∗(u, v)

q∗(−u)q∗(−v)dudv.

Then, for all 1 ≤ k ≤ n,

(1) E[VT (Yk, Yk+1)|X1, ..., Xn] = T (Xk, Xk+1)
(2) E[VT (Yk, Yk+1)] = E[T (Xk, Xk+1)]

For any function T in L2(R2), we define the contrast

Γn(T ) =
1

n

n
∑

i=1

[‖T‖2 − 2VT (Xi, Xi+1)]

whose expectation is equal to ‖T‖2 − 2/n
∑n

k=1 E[T (Xk, Xk+1)] = ‖T −F‖2 −‖F‖2.
We can now define

(5) F̂m = arg min
T∈Sm

Γn(T )
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By differentiating Γn, we obtain

F̂m(x, y) =
∑

j,k

Âj,kϕm,j(x)ϕm,k(y) with Âj,k =
1

n

n
∑

i=1

Vϕm,j⊗ϕm,k
(Yi, Yi+1).

We choose again not to truncate the estimator for the sake of simplicity. We have
defined a collection of estimators {F̂m}m∈Mn. Note that Vt⊗s(x, y) = vt(x)vs(y) so
that here the variance is of order ∆2(m)/n, so we introduce

Mn =

{

m ≥ 1,
∆2(m)

n
≤ 1

}

.

To define an adaptive estimator we have to select the best model m. So let

M̂ = arg min
m∈Mn

{Γn(F̂m) + Pen(m)}

where Pen is a penalty function which is specified in Theorem 2. Finally we consider
the estimator F̃ = F̂M̂ .

3.4. Estimation of Π. Whereas the estimation of f and F is valid on the whole
real line R or R2, we estimate Π on a compact set B2 only, because we need a lower
bound on the stationary density. More precisely, we need to set some additional
assumptions:

A5: There exists a positive real f0 such that ∀x ∈ B, f(x) ≥ f0

A6: ∀x ∈ B, ∀y ∈ B, Π(x, y) ≤ ‖Π‖B,∞ <∞
Now we set

(6) Π̃(x, y) =











F̃ (x, y)

f̃(x)
if |F̃ (x, y)| ≤ n|f̃(x)|,

0 otherwise.

Here the truncation allows to avoid the too small values of f̃ in the quotient. Now
we evaluate upper bounds for the risk of our estimators.

4. Results

Our first theorem regards the problem of deconvolution. This result may be put
together with results of Comte et al. (2006b) in the i.i.d. case and of Comte et al.
(2006a) in various mixing frameworks.

Theorem 1. Under Assumptions A1–A4, consider the estimator f̃ = f̂m̂ where for
each m, f̂m is defined by (3) and m̂ = arg min

m∈Mn

{γn(f̂m) + pen(m)} with

pen(m) = k
(πm)[s−(1−s)+/2]+∆(m)

n
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where k is a constant depending only on k0, k1, b, γ, s. Then there exists C > 0 such
that

E‖f̃ − f‖2 ≤ 4 inf
m∈Mn

{‖fm − f‖2 + pen(m)} +
C

n
.

The penalty is close to the variance order. It implies that the obtained rates of
convergence are minimax in most cases. More precisely, the rates are given in the
following corollary where ⌈x⌉ denotes the ceiling function, i.e. the smallest integer
larger than or equal to x.

Corollary 1. Under Assumptions of Theorem 1, if f belongs to Aδ,r,a(l), then

• If r = 0 and s = 0 E‖f̃ − f‖2 ≤ Cn− 2δ
2δ+2γ+1

• If r = 0 and s > 0 E‖f̃ − f‖2 ≤ C(lnn)−2δ/s

• If r > 0 and s = 0 E‖f̃ − f‖2 ≤ C
(lnn)(2γ+1)/r

n
• If r > 0 and s > 0

– if r < s and k = ⌈(s/r − 1)−1⌉ − 1 , there exist reals bi such that

E‖f̃ − f‖2 ≤ C(lnn)−2δ/s exp[

k
∑

i=0

bi(lnn)(i+1)r/s−i]

– if r = s, if ξ = [2δb+ (s− 2γ − 1 − [s− (1 − s)+/2]+)a]/[(a+ b)s]

E‖f̃ − f‖2 ≤ Cn−a/(a+b)(lnn)−ξ

– if r > s and k = ⌈(r/s− 1)−1⌉ − 1, there exist reals di such that

E‖f̃ − f‖2 ≤ C
(lnn)(1+2γ−s+[s−(1−s)+/2]+)/r

n
exp[−

k
∑

i=0

di(lnn)(i+1)s/r−i]

These rates are the same as those obtained in the case of i.i.d. variables Xi; they
are studied in detail in Comte et al. (2006b). In the case r > 0, s > 0, we find the
original rates obtained in Lacour (2006), proved as being optimal for 0 < r < s in
Butucea and Tsybakov (2006). In the other cases, we can compare the results of
Theorem 1 to the one obtained with a nonadaptive estimator. There is a loss only
in the case r ≥ s > 1/3 where a logarithmic term is added. But in this case, the
rates are faster than any power of logarithm.

Now let us study the risk for our estimator of the joined density F .

Theorem 2. Under Assumptions A1–A4, consider the estimator F̃ = F̂M̂ where

for each m, F̂m is defined by (5) and M̂ = arg min
m∈Mn

{Γn(F̂m) + Pen(m)} with

Pen(m) = K
(πm)[s−(1−s)+]+∆2(m)

n
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where K is a constant depending only on k0, k1, b, γ, s. Then there exists C > 0 such
that

E‖F̃ − F‖2 ≤ 4 inf
m∈Mn

{‖Fm − F‖2 + Pen(m)} +
C

n
.

The bases derived from the sine cardinal function are adapted to the estimation
on the whole real line. The proof of Theorem 2 actually contains the proof of
another result (see Proposition 2 in Section 6): the estimation of a bivariate density
in a mixing framework on R2 and not only on a compact set. In this case of the
absence of noise (ε = 0), we obtain the same result with the penalty Pen(m) =
K0(

∑

k β2k)m
2/n. This limit case gives the mixing coefficients back in the penalty,

as it always appears in this kind of estimation (see e.g. Tribouley and Viennet
(1998)).

It is then significant that in the presence of noise the penalty contains neither
mixing term nor unknown quantity. It is entirely computable since it depends only
on the characteristic function q∗ of the noise which is known.

Theorem 2 enables us to give rates of convergence for the estimation of F .

Corollary 2. Under Assumptions of Theorem 2, if F belongs to A∆,R,A(L), then

• If R = 0 and s = 0 E‖F̃ − F‖2 ≤ Cn− 2∆
2∆+4γ+2

• If R = 0 and s > 0 E‖F̃ − F‖2 ≤ C(lnn)−2∆/s

• If R > 0 and s = 0 E‖F̃ − F‖2 ≤ C
(lnn)(4γ+2)/R

n
• If R > 0 and s > 0

– if R < s and k = ⌈(s/R− 1)−1⌉ − 1, there exist reals bi such that

E‖F̃ − F‖2 ≤ C(lnn)−2∆/s exp[
k
∑

i=0

bi(lnn)(i+1)R/s−i]

– if R = s if ξ = [4∆b+ (2s− 4γ − 2 − [s− (1 − s)+]+)A]/[(A+ 2b)s]

E‖f̃ − f‖2 ≤ Cn−A/(A+2b)(lnn)−ξ

– if R > s and k = ⌈(R/s− 1)−1⌉ − 1, there exist reals di such that

E‖F̃ − F‖2 ≤ C
(lnn)(2+4γ−2s+[s−(1−s)+]+)/R

n
exp[−

k
∑

i=0

di(lnn)(i+1)s/R−i]

The rates of convergence look like the one of Corollary 1 with modifications due
to the bivariate nature of F . We can compare this result to the one of Clémençon
(2003) who studies only the case R = 0 and s = 0. He shows that the minimax lower

bound in that case is n− 2∆
2∆+4γ+2 , so our procedure is optimal, whereas his estimator

has a logarithmic loss for the upper bound. We remark that if s > 0 (supersmooth
noise), the rate is logarithmic for F belonging to a classic ordinary smooth space.
But if F is also supersmooth, better rates are recovered.
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Except in the case R = 0 and s = 0 , there is, to our knowledge, no lower bound
available for this estimation. We can however evaluate the performance of this
estimator by comparing it with a nonadaptive estimator. If the smoothness of F is
known, an m depending on R and ∆ which minimizes the risk ‖F−Fm‖2+∆(m)2/n
can be exhibited and then some rates of convergence for this nonadaptive estimator
are obtained. As soon as s ≤ 1/2 (i.e. [s− (1− s)+]+ = 0), the penalty is ∆(m)2/n
and then the adaptive estimator recovers the same rates of convergence as those
of a nonadaptive estimator if the regularity of F were known. It automatically
minimizes the risk without prior knowledge on the regularity of F and there is no
loss in the rates. If s > 1/2 a loss can appear but is not systematic. If R < s, the
rate of convergence is unchanged since the bias dominates. It is only in the case
R ≥ s > 1/2 that an additional logarithmic term appears. But in this case the risk
decreases faster than any logarithmic function so that the loss is negligible.

We can now state the main result regarding the estimation of the transition density
Π.

Theorem 3. Under Assumptions A1–A6, consider the estimator Π̃ defined in (6).
We assume that f belongs to Aδ,r,a(l) with δ > 1/2 and that we browse only the
models m ∈ Mn such that

(7) m ≥ ln lnn and m∆(m) ≤ n

(lnn)2

to define f̃ . Then Π̃ verifies, for n large enough,

E‖Π̃ − Π‖2
B ≤ C1E‖F̃ − F‖2 + C2E‖f̃ − f‖2 +

C

n

where ‖T‖2
B =

∫∫

B2 T
2(x, y)dxdy.

Note that, contrary to Theorems 1 and 2, this result is asymptotic. It states
that the rate of convergence for Π is no larger than the maximum of the rates of
f and F . The restrictions (7) do not modify the conclusion of Theorem 1 and the
resulting rates of convergence. Thus if f and F have the same regularity, the rates
of convergence for Π are those of F , given in Corollary 2.

If s = 0 i.e. if εi is ordinary smooth, then the rates of convergence are polynomial
and even near the parametric rate 1/n if R and r are positive. But the smoother
the error distribution is, the harder the estimation is. In the case of a supersmooth
noise, the rates are logarithmic if f or F is ordinary smooth but faster than any
power of logarithm if the hidden chain has supersmooth densities. The exact rates
depend on all regularities γ, s, δ, r, ∆, R and are very tedious to write. That is
why we prefer to give some detailed examples.

5. Examples

5.1. Autoregressive process of order 1. Let us study the case where the Markov
chain is defined by

Xn+1 = αXn + β + ηn+1
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where the ηn’s are i.i.d. centered Gaussian with variance σ2. This chain is irre-
ducible, Harris recurrent and geometrically β-mixing. The stationary distribution
is Gaussian with mean β/(1 − α) and variance σ2/(1 − α2). So

f ∗(u) = exp

[

−iu
(

β

1 − α

)

− σ2

2(1 − α2)
u2

]

and then bias computing gives δ = 1/2, r = 2. The function F is the density of
a Gaussian vector with mean (β/(1 − α), β/(1 − α)) and variance matrix σ2/(1 −
α2)

(

1 α
α 1

)

. So

F ∗(u, v) = exp

[

−i(u+ v)

(

β

1 − α

)

− σ2

2(1 − α2)
(u2 + v2 + 2αuv)

]

and ∆ = 1/2, R = 2.
We can compute the rates of convergence for different kinds of noise ε. If ε has a

Laplace distribution, q∗(u) = 1/(1 + u2) so s = 0, γ = 2. In this case, Corollary 1

gives E‖f̃ − f‖2 ≤ C(lnn)5/2/n and E‖F̃ − F‖2 ≤ C(lnn)5/n. Consequently,

E‖Π̃ − Π‖2
B ≤ C

(lnn)5

n

with B an interval [−d, d]. This rate is close to the parametric rate 1/n; it is due to
the great smoothness of the chain compared with that of error.

If now ε has a normal distribution with variance τ 2, then we compute

E‖Π̃ − Π‖2
B ≤ Cn

− σ2

σ2+2τ2 (lnn)
− τ2

σ2+2τ2 .

5.2. Cox-Ingersoll-Ross process. Another example is given by Xn = Rnτ with τ
a fixed sampling interval and Rt the so-called Cox-Ingersoll-Ross process defined by

dRt = (2θRt + κσ2
0)dt+ 2σ0

√

RtdWt θ < 0, κ ∈ {2, 3, ...}.
Following Chaleyat-Maurel and Genon-Catalot (2006), we observe that Xn is the
square of the Euclidean norm of a κ-dimensional vector whose components are lin-
ear autoregressive processes of order 1. The stationary distribution is a Gamma
distribution with parameter κ/2 and |θ|/σ2 so that

f ∗(u) =

(

1 + iu
σ2

0

|θ|

)−κ/2

and r = 0, δ = (κ − 1)/2. To compute the characteristic function of the joined
density, we write

F ∗(u, v) =

∫

E[e−ivX1 |X0 = x]e−iuxf(x)dx.
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Let β2 = σ2
0(e

2θτ − 1)/(2θ). Then, conditionally to X0 = x, β−2X1 is a non-central
chi-square χ′2(e2θτx/β2, κ), so that

E[e−ivX1 |X0 = x] = (1 + 2ivβ2)−κ/2 exp

(

− ive2θτx

1 + 2ivβ2

)

.

This implies

F ∗(u, v) =

[

1 − (1 − e2θτ )
σ4

0

θ2
uv + i

σ2
0

|θ|(u+ v)

]−κ/2

and R = 0, ∆ = (κ−1)/2. Then, if for example the noise has a Gaussian distribution
(γ = 0, s = 2), the rate of convergence is (lnn)(1−κ)/2. But this rate is faster if ε has
a Gamma distribution with shape parameter α (so that γ = α, s = 0): we obtain
in this case n(1−κ)/(κ+4α+1).

5.3. Stochastic volatility model. Our work allows to study some multiplicative
models as the so-called stochastic volatility model in finance (see Genon-Catalot
et al. (2000) for the links between the standard continuous-time SV models and the
hidden Markov models). Let

Zn = U1/2
n ηn

where (Un) is a nonnegative Markov chain, (ηn) a sequence of i.i.d. standard Gauss-
ian variables, the two sequences being independent. Setting Xn = ln(Un) and
εn = ln(η2

n) leads us back to our initial problem.
The noise distribution is the logarithm of a chi-square distribution and then ver-

ifies q∗(x) = 2−ixΓ(1/2 − ix)/
√
π. Van Es et al. (2005) show that |q∗(x)| ∼+∞√

2e−π|x|/2 and then s = 1, γ = 0.
We assume that the logarithm of the hidden chain Xn derives from a regular

sampling of an Ornstein-Uhlenbeck process, i.e. Xn = Vnτ where Vt is defined by
the equation

dVt = θVtdt+ σdBt

with Bt a standard Brownian motion. Then all the assumptions are satisfied. Sim-
ilarly to Subsection 5.1, the stationary distribution is Gaussian with mean 0 and
variance σ2/2|θ| and then δ = 1/2, r = 2. In the same way F is the density of a cen-

tered Gaussian vector with variance matrix σ2/(2|θ|)
(

1 eθτ

eθτ 1

)

and then ∆ = 1/2,

R = 2. We obtain the following rate of convergence on some interval B = [−d, d]

E‖Π̃ − Π‖2
B ≤ C

√
lnn

exp[(π/β)
√

lnn]

n

with β2 = σ2(e2θτ − 1)/(2θ).
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6. Proofs

Here we do not prove the results concerning the estimation of f . Indeed they are
similar to the ones concerning F (but actually simpler) and the ones of Comte et al.
(2006b). It is then sufficient to use corresponding proofs for F mutatis mutandis.

For the sake of simplicity, all constants in the following are denoted by C, even if
they have different values.

6.1. Proof of Lemma 2. It is sufficient to prove the first assertion. First we write
that VT (Yk, Yk+1) = 1/4π2

∫

eiYku+iYk+1vT ∗(u, v)/q∗(−u)q∗(−v)dudv so that

E[VT (Yk, Yk+1)|X1, ..., Xn] =
1

4π2

∫

E[eiYku+iYk+1v|X1, ..., Xn]
T ∗(u, v)

q∗(−u)q∗(−v)dudv.

By using the independence between (Xi) and (εi), we compute

E[eiYku+iYk+1v|X1, .., Xn] = E[eiXku+iXk+1veiεku+iεk+1v|X1, .., Xn]

= eiXku+iXk+1v
E[eiεku]E[eiεk+1v] = eiXku+iXk+1v

∫

eixuq(x)dx

∫

eiyvq(y)dy

= eiXku+iXk+1vq∗(−u)q∗(−v).
Then

E[VT (Yk, Yk+1)|X1, .., Xn] =
1

4π2

∫

eiXku+iXk+1vq∗(−u)q∗(−v) T ∗(u, v)

q∗(−u)q∗(−v)dudv

=
1

4π2

∫

eiXku+iXk+1vT ∗(u, v)dudv = T (Xk, Xk+1).

6.2. Proof of Theorem 2. First we introduce some auxiliary variables whose ex-
istence is ensured by Assumption A4 of mixing. In the case of arithmetical mixing,
since θ > 6, there exists a real c such that 0 < c < 1/2 and cθ > 3. We set in this
case qn = 1

2
⌊nc⌋. In the case of geometrical mixing, we set qn = 1

2
⌊c ln(n)⌋ where c

is a real larger than 3/θ.
For the sake of simplicity, we suppose that n = 4pnqn, with pn an integer. Let for

i = 1, . . . , n/2, Vi = (X2i−1, X2i) and for l = 0, . . . , pn−1, Al = (V2lqn+1, ..., V(2l+1)qn),
Bl = (V(2l+1)qn+1, ..., V(2l+2)qn). As in Viennet (1997), by using Berbee’s coupling
Lemma, we can build a sequence (A∗

l ) such that










Al and A∗
l have the same distribution,

A∗
l and A∗

l′ are independent if l 6= l′,

P (Al 6= A∗
l ) ≤ β2qn .

In the same way, we build (B∗
l ) and we define for any l ∈ {0, . . . , pn − 1},

A∗
l = (V ∗

2lqn+1, ..., V
∗
(2l+1)qn

), B∗
l = (V ∗

(2l+1)qn+1, ..., V
∗
(2l+2)qn

) so that the sequence

(V ∗
1 , . . . , V

∗
n/2) and then the sequence (X∗

1 , . . . , X
∗
n) are well defined. We can now

define
Ω∗ = {∀i, 1 ≤ i ≤ n Xi = X∗

i }.
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Then we split the risk into two terms:

E(‖F̃ − F‖2) = E(‖F̃ − F‖21Ω∗) + E(‖F̃ − F‖21Ω∗c).

To pursue the proof, we observe that for all T, T ′

Γn(T ) − Γn(T ′) = ‖T − F‖2 − ‖T ′ − F‖2 − 2Zn(T − T ′)

where Zn(T ) =
1

n

n
∑

i=1

{

VT (Yi, Yi+1) −
∫

T (x, y)F (x, y)dxdy

}

.

Let us fix m ∈ Mn and denote by Fm the orthogonal projection of F on Sm. Since
Γn(F̃ ) + Pen(M̂) ≤ Γn(Fm) + Pen(m), we have

‖F̃ − F‖2 ≤ ‖Fm − F‖2 + 2Zn(F̃ − Fm) + Pen(m) − Pen(M̂)

≤ ‖Fm − F‖2 + 2‖F̃ − Fm‖ sup
T∈B(M̂)

Zn(T ) + Pen(m) − Pen(M̂)

where, for all m′, B(m′) = {T ∈ Sm + Sm′ , ‖T‖ = 1}. Then, using inequality
2xy ≤ x2/4 + 4y2,

(8) ‖F̃ − F‖2 ≤ ‖Fm − F‖2 +
1

4
‖F̃ − Fm‖2 + 4 sup

T∈B(M̂)

Z2
n(T ) + Pen(m)− Pen(M̂).

By denoting EX the expectation conditionally to X1, . . . , Xn and by using Lemma 2,
Zn(T ) can be split into two terms :

Zn(T ) = Zn,1(T ) + Zn,2(T )

with


















Zn,1(T ) =
1

n

n
∑

i=1

{VT (Yi, Yi+1) − EX [VT (Yi, Yi+1)]} ,

Zn,2(T ) =
1

n

n
∑

i=1

{

T (Xi, Xi+1) −
∫

T (x, y)F (x, y)dxdy

}

.

Now let P1(., .) be a function such that for all m,m′,

(9) 16P1(m,m
′) ≤ Pen(m) + Pen(m′).

Then (8) becomes

‖F̃ − F‖2 ≤ ‖Fm − F‖2 +
1

2
(‖F̃ − F‖2 + ‖F − Fm‖2) + 2Pen(m)

+8[ sup
T∈B(M̂ )

Z2
n,1(T ) − P1(m, M̂)] + 8[ sup

T∈B(M̂ )

Z2
n,2(T ) − P1(m, M̂)]

which gives, by introducing a function P2(., .),

1

2
‖F̃ − F‖21Ω∗ ≤ 3

2
‖Fm − F‖2 + 2Pen(m) + 8

∑

m′∈Mn

[ sup
T∈B(m′)

Z2
n,1(T ) − P1(m,m

′)]+

+8
∑

m′∈Mn

[ sup
T∈B(m′)

Z2
n,2(T ) − P2(m,m

′)]+1Ω∗ + 8
∑

m′∈Mn

[P2(m,m
′) − P1(m,m

′)].
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We now use the following propositions:

Proposition 1. Let P1(m,m
′) = C(q)(πm′′)[s−(1−s)+]+∆2(m′′)/n where ∆(m) is de-

fined in (4) and m′′ = max(m,m′) and C(q) is a constant. Then, under assumptions
of Theorem 2, there exists a positive constant C such that

(10)
∑

m′∈Mn

E

([

sup
T∈B(m′)

Z2
n,1(T ) − P1(m,m

′)

]

+

)

≤ C

n
.

Proposition 2. Let P2(m,m
′) = 96(

∑

k β2k)m
′′/n where ∆(m) is defined in (4) and

m′′ = max(m,m′). Then, under assumptions of Theorem 2, there exists a positive
constant C such that

(11)
∑

m′∈Mn

E

([

sup
T∈B(m′)

Z2
n,2(T ) − P2(m,m

′)

]

+

1Ω∗

)

≤ C

n
.

The definition of the functions P1(m,m
′) and P2(m,m

′) given in Propositions 1
and 2 imply that there exists m0 such that ∀m′ > m0 P1(m,m

′) ≥ P2(m,m
′). (If

s = 0 = γ (case of a null noise), it would be wrong and the penalty would then be
P2(m,m

′) instead of P1(m,m
′)). Then

∑

m′∈Mn

[P2(m,m
′) − P1(m,m

′)] ≤
∑

m′≤m0

P2(m,m
′) ≤ C(m0)

n
.(12)

Since m′′∆2(m′′) ≤ m∆2(m) +m′∆2(m′), the condition (9) is verified with

Pen(m) = 16C(q)(πm)[s−(1−s)+]+
∆2(m)

n
.

And finally, combining (12) and Propositions 1 and 2,

E(‖F̃ − F‖21Ω∗) ≤ 4(‖Fm − F‖2 + Pen(m)) +
C

n
.

For the term E(‖F̃ − F‖21Ω∗c), recall that

F̂m(x, y) =
∑

j,k

Âj,kϕm,j(x)ϕm,k(y) with Âj,k =
1

n

n
∑

i=1

Vϕm,j⊗ϕm,k
(Yi, Yi+1).

Thus, for any m in Mn,

‖F̂m‖2 =
∑

j,k

[

1

n

n
∑

i=1

Vϕm,j⊗ϕm,k
(Yi, Yi+1)

]2

≤ 1

n2

∑

j,k

n

n
∑

i=1

V 2
ϕm,j⊗ϕm,k

(Yi, Yi+1)

≤ ‖
∑

j,k

V 2
ϕm,j⊗ϕm,k

‖∞ ≤ ‖
∑

j

v2
ϕm,j

‖2
∞ ≤ ∆2(m)(13)

using Lemma 3. Then ‖F̂M̂‖2 ≤ ∆2(M̂) ≤ n since M̂ belongs to Mn. And

E‖F̃ − F‖21Ω∗c ≤ E(2(‖F̃‖2 + ‖F‖2)1∗c
Ω ) ≤ 2(n+ ‖F‖2)P (Ω∗c).



15

Using Assumption A4 in the geometric case, β2qn ≤Me−θc ln(n) ≤ Mn−θc and, in the
other case, β2qn ≤ M(2qn)−θ ≤ Mn−θc. Then P (Ω∗c) ≤ 2pnβ2qn ≤ nMn−cθ. Since

cθ > 3, P (Ω∗c) ≤ Mn−2, which implies E(‖F̃ − F‖21Ω∗c) ≤ C/n.
Finally we obtain

E‖F̃ − F‖2 ≤ E(‖F̃ − F‖21Ω∗) + E(‖F̃ − F‖21Ω∗c)

≤ 4(‖Fm − F‖2 + Pen(m)) +
C

n
.

This inequality holds for each m ∈ Mn, so the result is proved.

6.3. Proof of Proposition 1. We start by isolating odd terms from even terms to
avoid overlaps:

Zn,1(T ) =
1

2
Zo

n,1(T ) +
1

2
Ze

n,1(T )

with






















Zo
n,1(T ) =

2

n

n
∑

i=1,i odd

{VT (Yi, Yi+1) − EX [VT (Yi, Yi+1)]} ,

Ze
n,1(T ) =

2

n

n
∑

i=1, even

{VT (Yi, Yi+1) − EX [VT (Yi, Yi+1)]} .

It is sufficient to deal with the first term only, as the second one is similar. For each
i, let Ui = (Y2i−1, Y2i), then

Zo
n,1(T ) =

1

n/2

n/2
∑

i=1

{VT (Ui) − EX [VT (Ui)]} .

Notice that conditionally to X1, . . . , Xn, the Ui’s are independent. Thus we can use
the Talagrand inequality recalled in Lemma 5. Note that if T belongs to Sm + Sm′ ,
then T can be written T1 + T2 where T ∗

1 has its support in [−πm, πm]2 and T ∗
2 has

its support in [−πm′, πm′]2. Then T belongs to Sm′′ where m′′ is defined by

(14) m′′ = max(m,m′).

Now let us compute M1, H and v of the Talagrand’s inequality.

(1) If T belongs to B(m′),

VT (x, y) =
∑

j,k

ajkVϕm′′,j⊗ϕm′′,k
(x, y) =

∑

j,k

ajkvϕm′′,j
(x)vϕm′′,k

(y).

Thus |VT (x, y)|2 ≤
∑

j,k |vϕm′′,j
(x)vϕm′′,k

(y)|2. So

sup
T∈B(m′)

‖VT‖2
∞ ≤ ‖

∑

j,k

|vϕm′′,j
(x)vϕm′′ ,k

(y)|2‖∞ ≤ ‖
∑

j

|vϕm′′,j
|2‖2

∞.

By using Lemma 3, M1 = ∆(m′′).
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(2) To compute H2, we write

EX( sup
T∈B(m′)

(Zo
n,1)

2(T )) ≤ EX(
∑

j,k

Zo
n,1(ϕm′′,j ⊗ ϕm′′,k)

2)

≤
∑

j,k

VarX

[

2

n

n
∑

i=1,i odd

vϕm′′ ,j
(Yi)vϕm′′,k

(Yi+1)

]

≤
∑

j,k

4

n2

n
∑

i=1,i odd

VarX [vϕm′′,j
(Yi)vϕm′′,k

(Yi+1)]

since, conditionally to X1, . . . , Xn, the Ui’s are independent. And then

EX( sup
T∈B(m′)

Zo2
n,1(T )) ≤

∑

j,k

4

n2

n
∑

i=1,i odd

EX [v2
ϕm′′,j

(Yi)v
2
ϕm′′,k

(Yi+1)]

≤ 4

n2

n
∑

i=1,i odd

‖
∑

j

|vϕm′′,j
|2‖∞‖

∑

k

|vϕm′′,k
|2‖∞ ≤ 2∆(m′′)2

n
.

So we set H =
√

2∆(m′′)/
√
n.

(3) We still have to find v. On the one hand

VarX [VT (Yk, Yk+1)] ≤ EX [(
∑

j,k

ajkvϕm′′,j
(Yk)vϕm′′,k

(Yk+1))
2]

≤
∑

j,k

a2
jk‖
∑

j

|vϕm′′,j
|2‖∞‖

∑

k

|vϕm′′,k
|2‖∞

and so v ≥ ∆(m′′)2. On the other hand

VarX [VT (Yk, Yk+1)]

≤
∑

j1,k1

∑

j2,k2

aj1k1aj2k2EX [vϕm′′,j1
vϕm′′,j2

(Yk)vϕm′′,k1
vϕm′′,k2

(Yk+1)]

≤
∑

j,k

a2
jk

√

∑

j1,k1

∑

j2,k2

E2
X [vϕm′′,j1

vϕm′′,j2
(Yk)vϕm′′,k1

vϕm′′,k2
(Yk+1)]

≤
∑

j,k

a2
jk

√

∑

j1,j2

E2
X [vϕm′′,j1

vϕm′′ ,j2
(Yk)]

∑

k1,k2

E2
X [vϕm′′ ,k1

vϕm′′ ,k2
(Yk+1)],(15)
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using conditional independence. Now we use Lemma 3 to compute

EX [vϕm′′ ,j1
vϕm′′,j2

(Yk)] =

∫

(vϕm′′ ,j1
vϕm′′,j2

)(Xk + x)q(x)dx

=
m′′

4π2

∫ ∫ π

−π

e−ij1vei(x+Xk)vm′′

q∗(−vm′′)
dv

∫ π

−π

e−ij2uei(x+Xk)um′′

q∗(−um′′)
duq(x)dx

=
m′′

4π2

∫ π

−π

∫ π

−π

e−ij1v−ij2ueiXk(u+v)m′′

q∗(−vm′′)q∗(−um′′)

∫

eix(u+v)m′′

q(x)dxdudv.

If we setW (u, v) = m′′eiXk(u+v)m′′

q∗(−(u+ v)m′′)/[q∗(−vm′′)q∗(−um′′)], then
EX [vϕm′′,j1

vϕm′′,j2
(Yk)] is the Fourier coefficient with order (j1, j2) of W . Us-

ing Parseval’s formula
∑

j1,j2

E
2
X [vϕm′′,j1

vϕm′′,j2
(Yk)] =

1

4π2

∫ π

−π

∫ π

−π

|W (u, v)|2dudv

=
m′′2

4π2

∫ π

−π

∫ π

−π

∣

∣

∣

∣

q∗(−(u+ v)m′′)

q∗(−vm′′)q∗(−um′′)

∣

∣

∣

∣

2

dudv.

Now we apply Schwarz inequality:
∑

j1,j2

E
2
X [vϕm′′,j1

(Yk)] ≤

m′′2

4π2

√

∫∫ |q∗(−(u+ v)m′′)|2
|q∗(−um′′)|4 dudv

√

∫∫ |q∗(−(u+ v)m′′)|2
|q∗(−vm′′)|4 dudv

≤ m′′

4π2

∫ π

−π

|q∗(−um′′)|−4du

∫

|q∗(x)|2dx ≤ ‖q‖2

4π2

∫ πm′′

−πm′′

|q∗(−u)|−4du.

We introduce the following notation:

(16) ∆2(m) =
1

4π2

∫ πm

−πm

|q∗(u)|−4du.

Finally, coming back to (15), VarX [VT (Yk, Yk+1)] ≤ ‖T‖2‖q‖2∆2(m
′′) which

yields v ≥ ‖q‖2∆2(m
′′). Finally we write v = min(‖q‖2∆2(m

′′),∆2(m′′)).

We can now use Talagrand’s inequality (see Lemma 5):

E[ sup
T∈B(m′)

(Zo
n,1)

2(T ) − 2(1 + 2ǫ)
2∆2(m′′)

n
]+ ≤

C

n
{ve−K1ǫ∆2(m′′)/v +

∆2(m′′)

nC2(ǫ)
e−K2C(ǫ)

√
ǫ
√

n}.

And then, if P1(m,m
′) ≥ 4(1 + 2ǫ)∆2(m′′)/n,

∑

m′∈Mn

E

[

sup
T∈B(m′)

(Zo
n,1)

2(T ) − P1(m,m
′)

]

+

≤ K

n
{I(m) + II(m)}
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with I(m) =
∑

m′∈Mn
ve−K1ǫ∆2(m′′)/v; II(m) =

∑

m′∈Mn
(1/nC2(ǫ))e−K2C(ǫ)

√
ǫ
√

n.
To bound these terms, we use Lemma 4 which yields to

v ≤ c3(πm
′′)4γ+min(1−s,2−2s)e4b(πm′′)s

and
∆2(m′′)

v
≥ c4(πm

′′)(1−s)+

where c3 and c4 depend only on k0, k1, γ and s. Therefore,

I(m) ≤ c3
∑

m′∈Mn

(πm′′)4γ+min(1−s,2−2s)e4b(πm′′)s−K1c4ǫ(πm′′)(1−s)+

≤ c3
∑

m′∈Mn

[(πm)4γ+min(1−s,2−2s)e4b(πm)s

+(πm′)4γ+min(1−s,2−2s)e4b(πm′)s

]e−
K1c4ǫ

2
[(πm)(1−s)++(πm′)(1−s)+ ]

≤ c3(πm)4γ+min(1−s,2−2s)e4b(πm)s−K1c4ǫ
2

(πm)(1−s)+
∑

m′∈Mn

e−
K1c4ǫ

2
(πm′)(1−s)+

+c3e
−K1c4ǫ

2
(πm)(1−s)+

∑

m′∈Mn

(πm′)4γ+min(1−s,2−2s)e4b(πm′)s−K1c4ǫ
2

(πm′)(1−s)+
.

We have to distinguish three cases

case s < (1 − s)+ ⇔ s < 1/2: In this case we choose ǫ = 8b/(K1c4) and then

I(m) ≤ c3(πm)4γ+1−se4b[(πm)s−(πm)(1−s) ]
∑

m′∈Mn

e−K1c4(πm′)(1−s)

+c3e
−K1c4(πm)(1−s)

∑

m′∈Mn

(πm′)4γ+1−se4b[(πm′)s−(πm′)(1−s)]

which implies that I(m) is bounded. Moreover the definition of Mn and
Lemma 4 give |Mn| ≤ Cnζ with C > 0 and ζ > 0. So II(m) ≤ (C/n)|Mn|e−K ′

2

√
n

is bounded too.
case s = (1 − s)+ ⇔ s = 1/2: In this case

I(m) ≤ c3(πm)4γ+1/2e(4b−K1c4ǫ
2

)(πm)1/2
∑

m′∈Mn

e−
K1c4ǫ

2
(πm′)1/2

+c3e
−K1c4ǫ

2
(πm)1/2

∑

m′∈Mn

(πm′)4γ+1/2e(4b−K1c4ǫ

2
)(πm′)1/2

.

We choose ǫ such that 4b−K1c4ǫ/2 = −4b so that

I(m) ≤ c3(πm)4γ+1/2e−4b(πm)1/2
∑

m′∈Mn

e−
K1c4ǫ

2
(πm′)1/2

+c3e
−K1c4ǫ

2
(πm)1/2

∑

m′∈Mn

(πm′)4γ+1/2e−4b(πm′)1/2 ≤ C.

The term II(m) is also bounded since ǫ is a constant.
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case s > (1 − s)+ ⇔ s > 1/2: Here we choose ǫ such that

4b(πm′′)s −K1c4ǫ(πm
′′)(1−s)+/2 = −4b(πm′′)s

so that

I(m) ≤ c3(πm)4γ+min(1−s,2−2s)e−4b(πm)s
∑

m′∈Mn

e−
K1c4ǫ

2
(πm′)(1−s)+

+c3e
−K1c4ǫ

2
(πm)(1−s)+

∑

m′∈Mn

(πm′)4γ+min(1−s,2−2s)e−4b(πm′)s ≤ C.

Moreover

II(m) =
∑

m′∈Mn

1

nC2(ǫ)
e−K2

√
8b/K1c4(πm′′)[s−(1−s)+]/2√n ≤ C.

In any case ǫ = [8b/K1c4](πm
′′)[s−(1−s)+]+ , so that

P1(m,m
′) = C(q)(πm′′)[s−(1−s)+]+∆2(m′′)/n

where C(q) is a constant depending only on k0, k1, b, γ, s.

6.4. Proof of Proposition 2. We split Zn,2(T ) into two terms :

Zn,2(T ) =
1

2
Zo

n,2(T ) +
1

2
Ze

n,2(T )

with






















Zo
n,2(T ) =

2

n

n
∑

i=1,i odd

{

T (Xi, Xi+1) −
∫

T (x, y)F (x, y)dxdy

}

,

Ze
n,2(T ) =

2

n

n
∑

i=1,i even

{

T (Xi, Xi+1) −
∫

T (x, y)F (x, y)dxdy

}

.

We bound E

(

[

supT∈B(m′)(Z
o
n,2)

2(T ) − P2(m,m
′)
]

+
1Ω∗

)

. The second term can

be bounded in the same way. We write Zo
n,2(T ) = (2/n)

∑n/2
i=1 {T (Vi) − E[T (Vi)]}

with Vi = (X2i−1, X2i). In order to use Lemma 5, we introduce

Zo∗
n,2(T ) =

1

2
νn,1(T ) +

1

2
νn,2(T )

where


























νn,1(T ) =
1

pn

pn−1
∑

l=0

1

qn

(2l+1)qn
∑

i=2lqn+1

{T (V ∗
i ) − E[T (V ∗

i )]} ,

νn,2(T ) =
1

pn

pn−1
∑

l=0

1

qn

(2l+2)qn
∑

i=(2l+1)qn+1

{T (V ∗
i ) − E[T (V ∗

i )]} .
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Since Xi = X∗
i on Ω∗, we can replace Zo

n,2 by Zo∗
n,2. This leads us to bound

E

(

[

supT∈B(m′) ν
2
n,1(T ) − P2(m,m

′)
]

+
1Ω∗

)

. So we compute the bounds M1, H and

v of Lemma 5.

(1) If T belongs to Sm”, |T (x, y)|2 ≤
∑

j,k a
2
j,k

∑

j,k ϕ
2
m′′,j(x)ϕ

2
m′′,k(y) and so

‖T‖∞ ≤ ‖T‖‖
∑

j

ϕ2
m′′,j‖∞ ≤ ‖T‖m′′,

using (1) of Lemma 3. Then ‖1/qn
∑(2l+1)qn

i=2lqn+1 T‖∞ ≤ ‖T‖m′′ and M1 = m′′.

(2) Let us compute H2.

sup
T∈B(m′)

ν2
n,1(T ) ≤

∑

j,k

ν2
n,1(ϕm′′,j ⊗ ϕm′′,k)

Then, by taking the expectation,

E

(

sup
T∈B(m′)

ν2
n,1(T )

)

≤
∑

j,k

1

p2
n

Var(

pn−1
∑

l=0

1

qn

(2l+1)qn
∑

i=2lqn+1

ϕm′′,j ⊗ ϕm′′,k(V
∗
i ))

≤
∑

j,k

1

p2
n

pn−1
∑

l=0

Var(
1

qn

(2l+1)qn
∑

i=2lqn+1

ϕm′′,j ⊗ ϕm′′,k(V
∗
i )),

by using independence of the A∗
l . Lemma 6 then gives

E

(

sup
T∈B(m′)

ν2
n,1(T )

)

≤ 4

pnqn
‖
∑

j,k

(ϕm′′,j ⊗ ϕm′′,k)
2‖∞

∑

β2k ≤ 16

n
(
∑

β2k)m
′′2

Finally H = 4
√
∑

β2km
′′/
√
n

(3) v remains to be calculated. If T belongs to B(m′), using Lemma 6

Var[
1

qn

(2l+1)qn
∑

i=2lqn+1

T (V ∗
i )] ≤ 4

qn
E[T 2(V1)b(V1)]

≤ 4

qn
‖T‖∞

√

E[T 2(V1)]
√

E[b2(V1)] ≤
4

qn
‖T‖∞

√

‖F‖∞
√

2
∑

(k + 1)β2k

and so v = 4‖F‖1/2
∞
√

2
∑

(k + 1)β2km
′′/qn.

By writing Talagrand’s inequality (Lemma 5) with ǫ = 1, we obtain

E

(

[ sup
T∈B(m′)

(νn,1)
2(T ) − 6

16

n
(
∑

β2k)m
′′2]+1Ω∗

)

≤ K

n

{

m′′e−K1m′′

+
m′′q2

n

n
e−K2

√
n/qn

}

.
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Then by summation over m′

∑

m′∈Mn

E

(

[ sup
T∈B(m′)

(νn,1)
2(T ) − 96

n
(
∑

β2k)m
′′2]+1Ω∗

)

≤ K

n
{
∑

m′∈Mn

m′′e−K1m′′

+
∑

m′∈Mn

m′′n2c−1e−K2n1/2−c} ≤ C

n

since c < 1/2. In the same way, we obtain

∑

m′∈Mn

E

(

[ sup
T∈B(m′)

(νn,2)
2(T ) − 96

n
(
∑

β2k)m
′′2]+1Ω∗

)

≤ C

n
,

which yields

∑

m′∈Mn

E

(

[ sup
T∈B(m′)

(Zo
n,2)

2(T ) − P2(m,m
′)]+1Ω∗

)

≤ C

n

with P2(m,m
′) = 96(

∑

β2k)m
′′2/n.

6.5. Proof of Corollary 2. Let us compute the bias term. Since F ∗
m = F ∗1[−πm,πm]2,

‖F − Fm‖2 =
1

4π2

∫∫

([−πm,πm]2)c

|F ∗(u, v)|2dudv

≤ 1

4π2

∫∫

[−πm,πm]c×R

|F ∗(u, v)|2dudv +
1

4π2

∫∫

R×[−πm,πm]c
|F ∗(u, v)|2dudv

But
∫∫

[−πm,πm]c×R

|F ∗(u, v)|2dudv ≤ L((πm)2 + 1)−∆e−2A(πm)R

.

Thus ‖F − Fm‖2 = O((πm)−2∆e−2A(πm)R
) and

E‖F − F̃‖2 ≤ C ′ inf
m∈Mn

{

(πm)−2∆e−2A(πm)R

+ (πm)[s−(1−s)+]++4γ+2−2s e
4b(πm)s

n

}

+
C

n
.

Next the bias-variance trade-off is performed similarly to Lacour (2006).

6.6. Proof of Theorem 3. Let En = {‖f − f̃‖∞ ≤ f0/2}. On En and for x ∈ B,

f̃(x) = f̃(x)−f(x)+f(x) ≥ f0/2. Since F̃ belongs to SM̂ , using (2), ‖F̃‖∞ ≤ M̂‖F̃‖.
But (13) gives ‖F̃‖ ≤ ∆(M̂) so that ‖F̃‖∞ ≤ M̂∆(M̂). Since M̂ belongs to Mn,

∆(M̂) ≤ √
n and Lemma 4 gives M̂ ≤ ∆(M̂)1/(2γ+1) if s = 0 or M̂ ≤ (ln ∆(M̂))1/s

otherwise. So, for n large enough, (2/f0)‖F̃‖∞ ≤ n and Π̃(x, y) = F̃ (x, y)/f̃(x).



22

For all (x, y) ∈ B2,

|Π̃(x, y) − Π(x, y)|2 ≤
∣

∣

∣

∣

∣

F̃ (x, y) − f̃(x)Π(x, y)

f̃(x)

∣

∣

∣

∣

∣

2 1En + (|Π̃(x, y)| + |Π(x, y|)21EC
n

≤ |F̃ (x, y) − F (x, y) + Π(x, y)(f(x) − f̃(x))|2
f 2

0 /4

+2(‖Π̃‖2
∞ + |Π(x, y)|2)1EC

n
.

Since
∫

B
Π2(x, y)dy ≤ ‖Π‖B,∞

∫

B
Π(x, y)dy ≤ ‖Π‖B,∞ for all x ∈ B,

E‖Π − Π̃‖2
B ≤ 8

f 2
0

[E‖F − F̃‖2 + ‖Π‖B,∞E‖f − f̃‖2] + 2|B|(|B|n2 + ‖Π‖B,∞)P (EC
n ).

We still have to prove that P (EC
n ) ≤ Cn−3. Given that ‖f − f̃‖∞ ≤ ‖f − fm̂‖∞ +

‖fm̂ − f̂m̂‖∞ we obtain

P (Ec
n) ≤ P (‖f − fm̂‖∞ > f0/4) + P (‖fm̂ − f̂m̂‖∞ > f0/4).

Let us prove now that if f belongs to Aδ,r,a(l) with δ > 1/2, ‖f − fm‖∞ =
O(m1/2−δe−a(πLm)r

). Since f ∗
m = f ∗1[−πm,πm] and using the inverse Fourier trans-

form,

‖f − fm‖∞ ≤ 1

2π

∫

|u|≥πm

|f ∗(u)|du.

Let α ∈ (1/4, δ/2). By considering that function x 7→ (x2 +1)δ/2−αea|x|r is increasing
and using the Schwarz inequality, we obtain

‖f − fm‖∞ ≤ 1

2π
((πm)2 + 1)−δ/2+αe−a(πm)r

√
l

√

∫

|u|≥πm

(u2 + 1)−2αdu.

But
∫

|u|≥πm
(u2 + 1)−2αdu ≤ C(πm)1−4α and then

‖f − fm‖∞ ≤
√
Cl

2π
((πm)2 + 1)−δ/2+αe−a(πm)r

(πm)1/2−2α = O(m1/2−δe−a(πm)r

).

Thus, since m̂ ≥ ln lnn, ‖f − fm̂‖∞ → 0 and for n large enough P (‖f − fm̂‖∞ >
f0/4) = 0. Next

P (‖fm̂ − f̂m̂‖∞ > f0/4) ≤ P (Ω∗c) + P

(

‖fm̂ − f̂m̂‖1Ω∗ >
f0

4
√
m̂

)

.

Since cθ > 3, P (Ω∗c) ≤Mn1−cθ ≤Mn−2. We still have to prove that

P

(

‖fm̂ − f̂m̂‖1Ω∗ >
f0

4
√
m̂

)

≤ C

n2
.



23

First, we observe that

‖fm̂ − f̂m̂‖2 =
∑

j∈Z

(

1

n

n
∑

i=1

vϕm̂j
(Yi) − E[vϕm̂j

(Yi)]

)2

= sup
t∈Bm̂

ν2
n(t)

where νn(t) = 1
n

∑n
i=1 vt(Yi) − E[vt(Yi)], Bm = {t ∈ Sm, ‖t‖ ≤ 1}.

Then

P

(

‖fm̂ − f̂m̂‖1Ω∗ >
f0

4
√
m̂

)

= P

(

sup
t∈Bm̂

|νn(t)|1Ω∗ >
f0

4
√
m̂

)

.

As previously, we split νn(t) into two terms

νn(t) =
1

2pn

pn−1
∑

l=0

1

qn

(2l+1)qn
∑

i=2lqn+1

vt(Yi)−E[vt(Yi)]+
1

2pn

pn−1
∑

l=0

1

qn

(2l+2)qn
∑

i=(2l+1)qn+1

vt(Yi)−E[vt(Yi)]

and it is sufficient to study

P



 sup
t∈Bm̂

∣

∣

∣

∣

∣

∣

1

pn

pn
∑

l=0

1

qn

(2l+1)qn
∑

i=2lqn+1

vt(Y
∗
i ) − E[vt(Y

∗
i )]

∣

∣

∣

∣

∣

∣

>
f0

4
√
m̂



 .

We use inequality (17) in proof of Lemma 5 with η = 1 and λ =
f0

8
√
m̂

:

P



 sup
t∈Bm̂

∣

∣

∣

∣

∣

∣

1

pn

pn
∑

l=0

1

qn

(2l+1)qn
∑

i=2lqn+1

vt(Y
∗
i ) − E[vt(Y

∗
i )]

∣

∣

∣

∣

∣

∣

> 2H + λ





≤ exp

(

−Kpn min

(

λ2

v
,
λ

M1

))

Here, we compute

M1 =
√

∆(m̂); H2 = 8
∑

k

βk
∆(m̂)

n
; v = 4

∑

k

βk
∆(m̂)

qn
.

Thus

P

(

sup
t∈Bm̂

|νn(t)| > 2H +
f0

8
√
m̂

)

≤ 2 exp

(

−K ′ min

(

n

m̂∆(m̂)
,

pn
√

m̂∆(m̂)

))

.

Now we use the assumption ∀m m∆(m) ≤ n/(lnn)2. For n large enough, 2H =

4
√

2
∑

k βk

√

∆(m̂)/
√
n ≤ f0/(8

√
m̂). So

P

(

sup
t∈Bm̂

|νn(t)| > f0

4
√
m̂

)

≤ 2 exp
(

−K ′ min
(

(lnn)2, n1/2−c lnn
))

≤ C

n3
.
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6.7. Technical Lemmas.

Lemma 3. For each m ∈ Mn

(1) ‖∑j ϕ
2
m,j‖∞ = m

(2) vϕm,j
(x) =

√
m/(2π)

∫ π

−π
e−ijveixvm[q∗(−vm)]−1dv

(3) ‖
∑

j |vϕm,j
|2‖∞ = ∆(m)

where ∆(m) is defined in (4).

Proof of Lemma 3: First we remark that

ϕ∗
m,j(u) =

∫

e−ixu
√
mϕ(mx− j)dx

=
1√
m
e−iju/m

∫

e−ixu/mϕ(x)dx =
1√
m
e−iju/mϕ∗(

u

m
).

Thus using the inverse Fourier transform

ϕm,j(x) =
1

2π

∫

eiux 1√
m
e−iju/mϕ∗(

u

m
)du =

1

2π

∫ π

−π

e−ijv
√
meixvmdv.

The Parseval equality yields
∑

j ϕ
2
m,j(x) = 1/2π

∫ π

−π
|√meixvm|2dv = m. The first

point is proved. Now we compute vϕm,j
(x)

vϕm,j
(x) =

1

2π

∫

eixu
ϕ∗

m,j(u)

q∗(−u) du =
1

2π

∫

eixu 1√
m
e−iju/mϕ∗(

u

m
)

du

q∗(−u)

=

√
m

2π

∫

e−ijveixvm ϕ∗(v)

q∗(−vm)
dv.

But ϕ∗(v) = 1[−π,π](v) and thus the second point is proved. Moreover vϕm,j
(x) can

be seen as a Fourier coefficient. Parseval’s formula then gives

∑

j

|vϕm,j
(x)|2 =

1

2π

∫ π

−π

∣

∣

∣

∣

√
meixvm 1

q∗(−vm)

∣

∣

∣

∣

2

dv =
m

2π

∫

|q∗(−vm)|−2 dv.

Therefore ‖
∑

j |vϕm,j
|2‖∞ = 1/2π

∫ πm

−πm
|q∗(−u)|−2du = ∆(m).

Lemma 4. If q verifies |q∗(x)| ≥ k0(x
2 + 1)−γ/2 exp(−b|x|s), then

(1) ∆(m) ≤ c1(πm)2γ+1−se2b(πm)s
,

(2) ∆2(m) ≤ c2(πm)4γ+1−se4b(πm)s
.

Moreover if |q∗(x)| ≤ k1(x
2 +1)−γ/2 exp(−b|x|s), then ∆(m) ≥ c′1(πm)2γ+1−se2b(πm)s

.

The proof of this result is omitted. It is obtained by distinguishing the cases
s > 2γ + 1 and s ≤ 2γ + 1 and with standard evaluations of integrals.

Lemma 5. Let T1, . . . , Tn be independent random variables and νn(r) = (1/n)
∑n

i=1[r(Ti)−
E(r(Ti)], for r belonging to a countable class R of measurable functions. Then, for
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ǫ > 0,

E[sup
r∈R

|νn(r)|2 − 2(1 + 2ǫ)H2]+ ≤ C

(

v

n
e−K1ǫ nH2

v +
M2

1

n2C2(ǫ)
e
−K2C(ǫ)

√
ǫ nH

M1

)

with K1 = 1/6, K2 = 1/(21
√

2), C(ǫ) =
√

1 + ǫ− 1 and C a universal constant and
where

sup
r∈R

‖r‖∞ ≤M1, E

(

sup
r∈R

|νn(r)|
)

≤ H, sup
r∈R

1

n

n
∑

i=1

Var(r(Ti)) ≤ v.

Usual density arguments allow to use this result with non-countable class of func-
tions R.

Proof of Lemma 5: We apply the Talagrand concentration inequality given in
Klein and Rio (2005) to the functions si(x) = r(x) − E(r(Ti)) and we obtain

P (sup
r∈R

|νn(r)| ≥ H + λ) ≤ exp

(

− nλ2

2(v + 4HM1) + 6M1λ

)

.

Then we modify this inequality following Birgé and Massart (1998) Corollary 2
p.354. It gives

(17) P (sup
r∈R

|νn(r)| ≥ (1 + η)H + λ) ≤ exp

(

−n
3

min

(

λ2

2v
,
min(η, 1)λ

7M1

))

.

To conclude we set η =
√

1 + ǫ−1 and we use the formula E[X]+ =
∫∞
0
P (X ≥ t)dt

with X = supr∈R |νn(r)|2 − 2(1 + 2ǫ)H2.

Lemma 6. (Viennet (1997)) Let (Ti) a strictly stationary process with β-mixing
coefficients βk. Then there exists a function b such that

E[b(T1)] ≤
∑

k

βk and E[b2(T1)] ≤ 2
∑

k

(k + 1)βk

and for all function ψ (such that E[ψ2(T1)] <∞) and for all N

Var(

N
∑

i=1

ψ(Ti)) ≤ 4NE[ψ2(T1)b(T1)].
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Clémençon, S., 2003. Nonparametric estimation for some specific classes
of hidden markov models. Preprint Modal’X n◦ 03-9: http://www.u-
paris10.fr/65897276/0/fiche pagelibre/ .

Comte, F., Dedecker, J., Taupin, M.-L., 2006a. Adaptive density deconvolution
with dependent input. Preprint MAP5 n◦ 2006-4: http://www.math-info.univ-
paris5.fr/map5/publis/titres06.html .

Comte, F., Rozenholc, Y., Taupin, M.-L., 2006b. Penalized contrast estimator for
adaptive density deconvolution. Canad. J. Statist. 34 (3), 431–452.

Dorea, C. C. Y., Zhao, L. C., 2002. Nonparametric density estimation in hidden
Markov models. Stat. Inference Stoch. Process. 5 (1), 55–64.

Fan, J., 1991. On the optimal rates of convergence for nonparametric deconvolution
problems. Ann. Statist. 19 (3), 1257–1272.
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