
Normal immune system development in mice lacking the

Deltex-1 RING finger domain.
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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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ABSTRACT 

 

The Notch signalling pathway controls several cell fate decisions during lymphocyte 

development, from T-cell lineage commitment to peripheral differentiation of B and T 

lymphocytes. Deltex-1 is a RING finger ubiquitin ligase, conserved from Drosophila to humans, 

which has been proposed to be a regulator of Notch signalling. Its pattern of lymphoid expression 

as well as gain-of-function experiments suggest that Deltex-1 regulates both B-cell lineage and 

splenic marginal zone B cell commitment. Deltex-1 was also found to be highly expressed in 

germinal center B cells. To investigate the physiological function of Deltex-1, we generated a 

mouse strain lacking the Deltex-1 RING finger domain, which is essential for its ubiquitin ligase 

activity. Deltex-1Δ/Δ mice were viable and fertile. A detailed histological analysis did not reveal 

any defect in major organs. T- and B-cell development was normal, as were humoral responses 

against T-dependent and T-independent antigens. These data indicate that the Deltex-1 ubiquitin 

ligase activity is dispensable for mouse development and immune function. Possible 

compensatory mechanisms, in particular from for a fourth deltex gene identified during the 

course of this study are discussed. 
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INTRODUCTION 

 

 Notch proteins are evolutionarily conserved transmembrane receptors which control 

cellular differentiation processes in nearly every organ (reviewed in references (2, 19)). 

Mammals have four homologues of the Drosophila Notch gene. Upon interaction with one of 

their ligands, Notch receptors undergo a cascade of proteolytic cleavages, which ultimately 

releases the Notch Intra-Cellular Domain (NICD) from the membrane (reviewed in reference 

(40)). NICD subsequently translocates to the nucleus and forms a complex with RBP-J, which 

upregulates transcription of various targets. RBP-J is thus the central mediator of Notch signal 

transduction. However, a RBP-J-independent pathway has also been described (37) (reviewed in 

reference (22)), but its relevance in vivo remains to be addressed in Mammals. 

Notch-1 is essential for lymphoid development (reviewed in reference (35)). Notch-1 

activation in the thymus (13) commits common lymphocyte precursors to the T-cell lineage and 

prevents them from adopting a B-cell fate (34, 36, 45). In agreement with this function, NICD 

can repress the activity of E2A (30, 32), a transcription factor required for early B-cell ontogeny. 

Notch/RBP-J pathway also regulates later steps of T cell differentiation such as VDJβ 

rearrangement, β-selection (47), αβ/γδ (44) and TH1/TH2 (1) lineage decisions. Gain-of-function 

experiments suggested that Notch-1 might similarly influence CD4+/ CD8+ lineage decision (38), 

but conditional inactivation of RBP-J did not alter the CD4/CD8 ratio (44). At last, new data 

point to a potential function of the Notch pathway in the regulation of peripheral T cell activation 

(6) and the development of regulatory T cells (reviewed in reference (27)). 

 A role for the Notch pathway in B-cell development was recently uncovered. Conditional 

deletion of either RBP-J (43) or Notch-2 (39) in the B-cell lineage results in the selective loss of 
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splenic marginal zone B-cells. Moreover, RBP-J deletion leads to a concomitant increase in the 

number of follicular B-cells, while mice deficient in Mint (18), a suppressor of the Notch/RBP-J 

pathway, display the reciprocal phenotype. It was thus suggested that Notch-2/RBP-J instruct 

splenic transitional B cells to adopt a marginal zone B cell versus follicular B cell fate. Notch-2 

has also been proposed to regulate B1/B2 lineage decision (46), but conflicting data have been 

reported (43). 

 E3 ubiquitin ligases are key regulators of Notch signalling, which control the trafficking 

and the stability of Notch receptors and ligands (20). For example, Itchy/Suppressor of deltex and 

c-Cbl are thought to drive the endocytosis of a membrane-anchored form of Notch to the 

lysosomal compartment (16, 26), while a ubiquitin ligase complex containing SEL-10 targets 

nuclear NICD to the proteasome (11, 31, 48). 

Deltex is another ubiquitin ligase that binds Notch and modulates its signalling, but its 

precise function remains unclear. Deltex was initially identified in Drosophila as a positive 

regulator of the Notch pathway : deltex loss-of-function mutants display a phenotype similar to 

that caused by weak Notch alleles (10, 49), whereas deltex overexpression partially mimics Notch 

gain-of-function (23). However, the ovexepression of Deltex-1, one of the three mammalian 

homologues of Drosophila deltex gene (17, 33), can either enhance (24) or antagonize (41) 

Notch/RBP-J signalling, depending on the cellular context. In addition, Deltex is thought to 

mediate RBP-J-independent Notch signals (32, 37). 

Deltex proteins share three functional domains (17). Domain I mediates physical 

interaction with Notch ankyrin repeats (23). Domain II consists of prolin-rich sequences, which 

may serve as a docking site for an unknown WW- or SH3-protein (24). Domain III contains a 

highly conserved RING finger domain which mediates homo- and hetero-dimerization (25) and 

confers ubiquitin ligase activity in vitro (42). 
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 Deltex-1 is expressed in a wide array of tissues, particularly in the central nervous system, 

testis and endothelial cells (24, 28). Deltex-1 has been suggested to play a role in neurogenesis 

(17), myogenesis (32), oligodendrocyte maturation and myelination (4, 14). Deltex-1 also 

displays a dynamic pattern of expression in thymocytes (15, 29) (5) and peripheral T cells (29) 

and may thus play a role in T cell development. On the basis of its ability to inhibit E2A in vitro 

(32), Deltex-1 was initially thought to mediate Notch signal during T-cell commitment. However, 

Izon et al. reported opposite effects of Deltex-1 on E2A and showed that enforced expression of 

Deltex-1 in hematopoietic stem cells results in a phenotype that mirrors that caused by Notch-1 

inactivation (15). The reason for this discrepancy is not clear, but the latter results suggest that 

Deltex-1 may actually antagonize Notch signalling in common lymphocyte precursors to promote 

B-cell fate. Deltex-1 could be important for later steps of B cell differentiation as well, since it is 

highly expressed in mouse marginal zone B cells (39) and human germinal center B cells (12). 

 To investigate the physiological function of Deltex-1, we generated a mouse strain 

lacking the C-terminal half of Deltex-1, which contains the RING finger domain. To our surprise, 

Deltex-1Δ/Δ mice were viable and fertile and displayed normal lymphocyte differentiation and 

immune function. Possible compensatory mechanisms are discussed. 
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Material and Methods 

 

Construction of targeting vector. 

A mouse 129/SvJ genomic library (λFixII; Stratagene) was screened with a 1 kb probe located in 

the 3' untranslated region of DTX-1. A 15 kb phage encompassing exons 4 to 10 (see Fig. 1) was 

selected. A 4.3 kb fragment upstream of exon 4 was amplified with Pfu-Turbo (Stratagene) using 

primers GAGCCACGTGCTCCTGTTTG (forward) and GGCCTGGAACCCAACTATC 

(reverse). A 3.6 kb fragment downstream of the poly(A) signal was amplified using primers 

CCAGGAGAATGAGGAAGACC (forward) and λFix5' (reverse) (see Fig. 1). Fragments were 

inserted using restriction sites added in the primers in the SalI and XhoI cloning sites flanking the 

neomycin resistance gene (neoR) of a modifed pLNTK vector (Bertocci, 2002). 

 

Generation of gene-targeted mice. 

E14.1 embryonic stem cells (ES) were transfected as described (Torres, 1997). G418- and 

ganciclovir-resistant clones were screened by PCR (35 cycles with the Long Expand PCR system 

(Roche)), using the following external (E) and internal (I) primer sets : 5'(E) forward 

ACAAGTTCCCAAGTCTTGCAGGAGC and 5'(I) reverse 

GCTGGACGTAAACTCCTCTTCAGAC ; 3'(I) forward 

GTCTGAAGAGGAGTTTACGTCCAGC and 3'(E) reverse 

CTCACCCATGGGTTTACACTTAGCC. Homologous recombination was confirmed by 

Southern blot analysis of DNA from ES clones and thymus of gene-targeted mice, using probe S 

(Fig. 1). Three recombinant clones (Deltex-1Δ/+) were obtained among 384 clones and were 

injected into BALB/c or C57BL/6 blastocysts to generate chimeric mice for germline 
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transmission of the mutant allele. Deltex-1Δ/Δ mice of mixed genetic background were analyzed 

after 6 weeks of age. Genotyping of mice was performed by PCR, with simultaneous 

amplification of wild-type (400 bp) and mutant allele (180 bp), using the primers 

CAGAGTGTTCTGCAGGAATCGATGC (forward), 

GGGATCCATAAGTGTGGACTCTATCGG (reverse) and 

GCTGGACGTAAACTCCTCTTCAGAC (reverse in neoR). 

 

Analysis of Deltex-1 expression in gene-targeted mice. 

Total RNA was extracted with Trizol (Invitrogen). 5 µg of poly A+ mRNA isolated from total 

RNA with Micro Fast Track 2.0 (Invitrogen) were analyzed by northern blotting. The blots were 

probed with probe 5' (contained in exon 3) and 3' (encompassing exons 5 to 8) (see Fig. 1). Probe 

5' was amplified by RT-PCR with the primers CTAGGACAGACATTGCCTAC (forward) and 

GATGCATGGATTGTAGGTCGATG (reverse). Probe 3' is a 500 bp digestion product by 

BamHI and EcoRI of a RT-PCR product cloned into pCR2.1-TOPO (Invitrogen) (primers : 

CTAGGACAGACATTGCCTAC (forward) and GCTGTGTCCCTGTCTTCTC (reverse)). 

Signals were normalized to β-actin. 

 

Histology. 

Organs were fixed in 4% PFA for 48 hours and embedded in paraffin blocks. From the blocks, 5 

µm-thick sections were stained with hematoxylin, eosin and saffron (HES). 

 

Flow cytometry analyses. 
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Single-cell suspensions from spleen, Peyer's patches, thymus, bone marrow and peritoneal cavity 

were analyzed using a FACStar apparatus and CellQuest software (BD Biosciences) after 

staining with the following reagents : goat anti-mouse IgM-FITC, from Southern Biotechnology 

Associated; anti-CD16/CD32 (clone 2.4G2), anti-B220-PE (clone RA3-6B2), anti-CD19-bio 

(clone 1D3), anti-CD21-FITC (clone 7G6), anti-CD23-PE (clone B3B4), anti-CD5-FITC (53-7-

3), anti-CD4-PE (clone RM 4-5), anti-CD8-FITC (clone 53-6.7), anti-CD25-FITC (7D4) and 

Streptavidin-CyChrome from BD Biosciences ; peanut agglutinin (PNA)-FITC from Vector. 

 

Immunizations and determination of immunoglobulin titers. 

Deltex-1Δ/Δ and littermate control mice were immunized by intraperitoneal injection of 100 μg of 

TNP-Ficoll or 100 μg of alum-precipitated TNP-KLH (Biosearch Technologies). TNP-KLH-

immunized mice were boosted 21 days later. Serum samples were collected before immunization 

and at day 7 after TNP-Ficoll immunization or at day 14 and 28 after TNP-KLH immunizations. 

Plates were incubated overnight at 4°C with TNP-BSA capturing antigen (Biosearch 

Technologies) (50µg/ml) and saturated with PBS-BSA 1% (1 hour at 37°C). Serial dilutions of 

serum samples were added to the wells for 2 hour at room temperature, washed and incubated 

with HRP-conjugated goat-anti-mouse isotypes at 1/500 (Southern Biotechnology Associated). 

After revelation with ABTS substrate, the optical density at 405nm was recorded. Serum from a 

pool of immunized wild-type mice served as a standard control between plates. 

Basal serum immunoglobulin levels were quantified by ELISA using goat anti-mouse Ig (H+L) 

and SBA Clonotyping System/HRP from Southern Biotechnology Associated.  

To study somatic hypermutation, mice were immunized with phenyl-oxazolone and splenic cells 

were treated as described in (8). 
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Analysis of gene expression through semi-quantitative RT-PCR. 

Splenic marginal zone B cells (MZB) (CD19+CD21hiCD23-/lo) and follicular B cells (FoB) 

(CD19+CD21intCD23hi) were sorted with a FACSVantage SE apparatus (BD Bisosciences). Total 

RNA was extacted from 2.105 cells using the RNeasy Kit (Qiagen) and cDNA was synthesized 

using the ProSTAR First-Strand RT-PCR kit (Stratagene). RT-PCR were performed with the 

Advantage 2 polymerase (BD Biosciences) using the following set of primers : Deltex-1 forward 

GGTGGCCATGTACTCCATG and Deltex-1 reverse TTGGCCATGGCCTCAGAAAC ; Deltex-

2 forward CAATGCTACCTGCCAGATAG and Deltex-2 reverse 

AAGAAGCTGACCTGAAGCTG ; Deltex-4 forward TTGTTACCTTCCAGACAGCGAG and 

Deltex-4 reverse CCTTGACTACCCAGAACTGAAG. Semi-quantitative PCR was performed on 

serial dilutions of the templates. Reaction products were separated by electrophoresis, transferred 

onto Hybond N+ membrane (Amersham) and hybridized with internal 32P-labeled 

oligonucleotides. Quantitation was obtained using Storm 840 Phosphoimager (Molecular 

Dynamics). 
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RESULTS 

 

Generation of a mouse strain lacking the Deltex-1 ring finger domain (Deltex-1∆/∆ mice). 

 

 We engineered a gene-targeting vector that replaced exons 4 to 10 of Deltex-1 with a 

neomycin resistance cassette (neoR) (Fig. 1 A). These exons code for the C-terminal half of 

Deltex-1 (G 321 to A 626) which contains one of the proline-rich sequences, the RING finger 

domain and a motif highly conserved across all Deltex proteins (17). Exon 10 also contains the 3' 

untranslated region of Deltex-1 with the polyadenylation signal. 

 Homologous recombination was confirmed by PCR on both sides of the construct (data 

not shown) and by Southern blot analysis of DNA from the three ES clones chosen for injection 

and from thymus DNA of the resulting heterozygous (Deltex-1+/Δ) and homozygous (Deltex-1Δ/Δ) 

mice (Fig. 1 B). RT-PCR and northern blot confirmed the expected deletion, while showing the 

appearance of three new RNA products in Deltex-1+/Δ and Deltex-1Δ/Δ mice (Fig. 1 D and data 

not shown). The highest (marked "a") and the lowest (marked "c") forms hybridized with a neoR 

probe and disappeared after removal of the neoR cassette in B cells by mating Deltex-1Δ/Δ mice 

with CD19-CRE mice (Fig. 1 E). Given its large size, the highest form probably corresponds to a 

partially spliced pre-mRNA stabilized by the poly-adenylation signal brought by the neoR 

cassette. Sequencing of a RT-PCR product suggested that the lowest truncated form is created by 

splicing of the donor site of the third exon to a cryptic acceptor site in neoR, which creates an in 

frame stop codon seven amino acids farther (data not shown). The intermediate truncated product 

(marked "b") is still present after removal of the neoR cassette (Fig. 1 E). Both truncated products 

b and c are at least three to five times less abundant than the wild-type Deltex-1 mRNA (Fig. 1 D 
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and 1 E). However, due to the lack of an antibody against Deltex-1 N-terminus, we cannot 

evaluate whether a truncated protein devoid of RING finger domain is expressed. As a 

conservative estimate, we therefore qualify our mutant mice as being deleted for the ring finger 

domain of Deltex-1 (Deltex-1Δ/Δ ). 

 

Gross phenotypic and histologic analysis of Deltex-1∆/∆ mice. 

 

 Homozygous Deltex-1Δ/Δ mice are viable and fertile and show no apparent defects. Since 

Deltex-1 is expressed in a wide array of organs (17, 24, 28), we performed a detailed histological 

analysis of four adult Deltex-1Δ/Δ mice. Given the mixed genetic background, wild-type 

littermates were used as a control. No abnormalities were detected in brain, spinal cord, eye, 

liver, kidney, urinary bladder, pancreas, salivary glands, lung, testis, ovary, uterus, mammary 

gland, skin, aorta and bone marrow (data not shown). Analysis of spleen and mesenteric lymph 

node did not reveal any differences between wild-type and Deltex-1Δ/Δ mice : primary follicles as 

well as germinal centers were present in normal numbers (Fig. 2). 

 

Normal lymphocyte development of lymphocytes in Deltex-1∆/∆ mice. 

 

Deltex-1 overexpression in mouse hematopoietic stem cells inhibits T cell development 

while inducing ectopic B cell development in the thymus (15), which suggests that Deltex-1 

antagonizes Notch-1 signal to promote B cell development. Thus, we first examined lymphocyte 

differentiation in the thymus and bone marrow of Deltex-1Δ/Δ mice. The distribution of bone 

marrow B cell subpopulations (pro-B/pre-B B220loIgM- ; immature B220loIgM+ ; mature 
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B220hiIgM+) found in mutant mice is indistinguishable from that in wild-type mice (Fig. 3 A). 

Similarly, as shown in figure 3 B, the proportions of thymic T cell subpopulations (CD4-CD8- ; 

CD4+CD8+ ; CD4+CD8- and CD4-CD8+) are not altered in mutant mice and the numbers of 

ectopic B cells in the thymus remain unchanged (data not shown). 

We next checked T cell populations in the spleen, since the Notch pathway is known to 

influence peripheral T cell development and activation (1, 6, 27). In particular, Deltex-1 was 

recently shown to be constitutively expressed in human CD4+CD25+ regulatory T cells and 

downregulated after activation of these cells with anti-CD3 (29). However, wild-type and mutant 

mice display similar numbers of CD4+ and CD8+ T cells in the spleen, and splenic CD4+CD25+ 

population was not affected in Deltex-1Δ/Δ mice (Fig. 3 B). 

 Deltex-1 was also suggested to play a role in late B cell differentiation (12, 39 ). First, 

Deltex-1 is highly expressed in mouse marginal zone B cells, in a Notch-2 dependent fashion 

(39). We therefore examined splenic B cell subsets. Three populations can be distinguished 

according to their relative expression of CD21 and CD23 : transitional B cells 1 (CD19+CD21-

CD23-),  marginal zone B cells (MZB : CD19+CD21hiCD23-/lo) and  follicular B cells (FoB, 

comprising transitional B cells 2 and long-lived recirculating mature B cells : 

CD19+CD21intCD23hi) (21). In contrast with the selective loss of marginal zone B cells observed 

in Notch-2-/- (39) or RBP-J-/- mice (43), all three populations are present in the spleen of Deltex-

1∆/∆ mice in normal percentages (Fig. 3 A). Contrary to what was observed in Notch-2-/- mice 

(39), CD21 level was not decreased at the surface of splenic B cells (data not shown). As Deltex-

1 had been reported to modulate E2A activity (15, 17, 32), a transcription factor essential for 

early and late B cell development, we checked E2A activity in vitro using a reporter assay (15). 

Deltex-1Δ/Δ and wild-type splenic B cells stimulated with lipo-polysaccharide (LPS) have similar 
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level of E2A activity (data not shown). Secondly, we have reported that Deltex-1 is highly 

expressed in sheep and human germinal center B cells, as well as in their malignant counterpart 

(12). We thus investigated whether chronic germinal center formation occurred normally in 

Peyer's patches of mutant mice by staining cells with peanut agglutinin (PNA) which selectively 

binds centroblasts and centrocytes. The B220+PNAhi germinal center B cell population is 

comparable between wild-type and Deltex-1Δ/Δ mice. Thirdly, Notch-2 has also been proposed to 

play a role in peritoneal B1 cell development (46), potentially through a RBP-J independent 

pathway (43). We could not observe any difference in the size of the B1 cell population between 

wild-type and mutant mice (Fig. 3 A). 

 Together, all these data show that the Deltex-1 RING finger domain is dispensable for 

both early and late lymphocyte development in mice. 

 

Deltex-1Δ/Δ mice have normal humoral immune responses. 

 

 In order to look for a role of Deltex-1 in the terminal differentiation of B lymphocytes, we 

checked the ability of Deltex-1Δ/Δ mice to mount humoral responses. First, we found that Deltex-

1Δ/Δ splenic B lymphocytes proliferated in response to LPS stimulation and were able to undergo 

class-switch recombination in vitro upon stimulation with LPS and IL4 (data not shown). 

Comparison of the serum concentrations of immunoglobulin classes did not reveal any significant 

differences between naive Deltex-1Δ/Δ and wild-type mice (Fig. 4 A). We then compared humoral 

responses in vivo of mutant and wild-type mice by challenging them with a T-independent type 2 

antigen, TNP-Ficoll, and a T-dependent antigen, TNP-KLH. Titers of IgM and IgG3 were similar 

in both groups of mice after immunization with TNP-Ficoll (Fig. 4 B). Similarly, mutant and 
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wild-type mice displayed comparable IgM, IgG1, IgG2a, IgG2b and IgG3 anti-TNP antibody 

titers after primary and secondary immunizations with TNP-KLH (Fig. 4 C).  

 Deltex-1 was found to be strongly expressed in hypermutating lymphocytes of sheep ileal 

Peyer's patches and human germinal center centroblasts (12). We therefore investigated whether 

somatic hypermutation occurs normally in Deltex-1Δ/Δ mice. To this end, we immunized mice 

with the hapten phenyl-oxazolone which elicits a well-characterized antibody response and 

sequenced the rearranged VκOx1 gene segments of B220+PNAhi splenic B cells. Deltex-1Δ/Δ mice 

showed a mutation rate equivalent to that of wild-type mice (data not shown). 

 Together, these data show that Deltex-1Δ/Δ mice mount normal T-dependent and T-

independent type 2 humoral responses in vivo. 

 

KIAA0937 is a fourth mammalian Deltex protein (Deltex-4). 

 

 The absence of an obvious phenotype in mice lacking the Deltex-1 RING finger domain 

prompted us to study the expression profile of other Deltex family members that could have a 

redundant function. Three mouse Deltex genes were initially described (17). While Deltex-2 

protein sequence is quite similar to that of Deltex-1, Deltex-3 is far more divergent since it lacks 

the domain I and does not bind Notch proteins in vitro (17). Thus, only Deltex-2 is likely to 

compensate for the absence of Deltex-1. 

 A chicken Deltex gene was cloned (cDTX2) and shown to be the orthologue of human 

KIAA0937 (9). KIAA0937 was therefore called Deltex-2. Sequence comparison actually 

demonstrates that KIAA0937 (and its mouse orthologue (NM_172442)) is a genuine fourth 
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mammalian Deltex gene, which encodes a protein even closer to Deltex-1 (Fig. 5 A and 5 B). 

Therefore, we propose to name this gene Deltex-4. 

 We first determined the relative levels of expression of Deltex-1, Deltex-2 and Deltex-4 in 

different adult organs by northern blot. All three Deltex genes have very different, though 

partially overlapping, expression patterns (Fig. 6 A). A search of EST sequences revealed that 

human DELTEX-4 (XM_166213) is expressed in many fetal, adult and cancerous tissues, 

particularly in the brain (35 EST), heart (17 EST), colon (11 EST), stomach (8 EST) and lung (7 

EST). Mouse EST for Deltex-4 can be found in the brain (38 EST), eye (9 EST) and thymus (4 

EST) as well as other organs. We then determined the relative levels of Deltex-1, Deltex-2 and 

Deltex-4 in marginal zone B cells and follicular B cells by semi-quantitative RT-PCR. As 

previously described, Deltex-1 is far more expressed (9 fold more) in marginal zone B cells (Fig. 

6 B). Interestingly, Deltex-4 is hardly detectable in spleen by northern blot. However, this gene 

shows a similar bias of expression in favor of marginal zone B cells (9 fold more, Fig. 6 B). On 

the contrary, Deltex-2 is hardly detectable in any splenic B cell subset (Fig. 6 B), suggesting that 

T cells are major contributors to its splenic expression level. We next investigated whether 

Deltex-1 inactivation induces an upregulation of Deltex-2 or Deltex-4 transcript that could 

compensate for its absence. Deltex-2 and Deltex-4 transcript levels remain unchanged in the 

brain, testis and spleen of Deltex-1Δ/Δ mice, compared to wild-type mice (Fig. 6 C). 
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DISCUSSION 

 

 In the course of a cDNA subtraction, we identified Deltex-1, a modulator of Notch 

signalling pathway, as being highly expressed in human and sheep germinal center B cells (12). 

Meanwhile, Deltex-1 was shown to be highly expressed in mouse marginal zone B cells (39) and 

overexpression studies suggested that Deltex-1 promotes B cell lineage commitment (15). 

Moreover, its expression profile indicated a potential role for Deltex-1 in T cell differentiation (5, 

29, 32) and several other developmental processes (4, 14, 17, 24, 28, 41). 

In this study, we generated a mouse strain defective for the Deltex-1 gene. We chose to 

delete the C-terminal RING finger domain responsible for the ubiquitin ligase activity of Deltex-

1 (42). Since residual expression of the mRNA coding for the N-terminal half of the protein was 

observed in the mutant mice obtained, we refer to these strains as deleted for the RING finger 

domain (Deltex-1Δ/Δ). Our results demonstrate that this domain is dispensable for mouse 

development and normal immune system functions. First, Deltex-1Δ/Δ mice have normal 

lymphoid development in the thymus and bone marrow and peripheral B- and T-cell 

subpopulations are present in expected proportions. In particular, neither marginal zone B cells 

nor germinal center B cells are affected by this mutation. Secondly, Deltex-1Δ/Δ mice mount 

efficient T-independent type 2 and T-dependent humoral immune responses, which suggests that 

the Deltex-1 RING finger domain is also dispensable for terminal B cell differentiation and 

function. Considering the potential role of Deltex-1 in lymphopoiesis and embryonic 

development, these results are quite surprising. Two hypotheses can account for this lack of overt 

phenotype.  
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 One explanation could be that the Deltex-1 RING finger domain is dispensable for 

Deltex-1 function in vivo. Prior experiments supported this hypothesis since Deltex domain I was 

able to rescue the deltex phenotype in Drosophila mutants on its own (23). However, the nature 

of the mutation has not been determined in these mutants, which are likely hypomorphic and may 

be specifically impaired for some function of Deltex relying on the sole domain I. Similarly, the 

overexpression of Deltex-1 domain I in cell lines has been shown to antagonize the 

transcriptional activity of the NICD/RBP-J complex (15). However, several articles report that 

Deltex proteins lacking a RING finger domain rather behave as a weak form of Deltex (23 , 25), 

or even as a dominant-negative form of Deltex in vitro (50) and in vivo (4, 7, 14 ). At last, it 

should be noted that the experiments investigating Deltex-1 effects on NICD overexpression may 

not be fully relevant and could result in non-physiological effects, such as competition with other 

factors for binding to Notch. Indeed, Deltex is rather likely to act downstream of full-length 

Notch and upstream of an activated NICD (25). Since Deltex-1 is a bona-fide ubiquitin ligase 

(42), one possibility is that Deltex-1 ubiquitinates a membrane-anchored form of Notch through 

its RING finger, to control its stability and/or its subcellular localization (40). Moreover, it should 

be noted that the level of the truncated Deltex-1 transcript that we observe in Deltex-1Δ/Δ mice is 

quite low compared to Deltex-1 transcript in wild-type mice. Preliminary results show that 

excision of the neoR cassette in B lymphocytes by mating Deltex-1Δ/Δ mice with CD19-CRE mice 

results in a stronger decrease in the expression of the truncated mRNAs with still no alteration of 

early and late B cell development (our unpublished results). We therefore think that the lack of 

phenotype observed in Deltex-1Δ/Δ mice is unlikely to originate from an incomplete inactivation 

of this gene. 
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 A second hypothesis could be that gene redundancy compensate for the absence of 

Deltex-1. Deltex-1 indeed belongs to a multigenic family (17). We show here that this family 

consists of four different members, since we observed that KIAA0937, a previously described 

human orthologue of chicken Deltex-2 (9), actually encodes a fourth Deltex gene, which should 

thus be called Deltex-4. Both Deltex-2 and Deltex-4 have a sequence highly similar to that of 

Deltex-1, but their expression patterns only partially overlaps that of Deltex-1. Moreover, neither 

Deltex-2 nor Deltex-4 transcripts are upregulated in Deltex-1Δ/Δ mice. Therefore, Deltex-2 and 

Deltex-4 are not likely to compensate for Deltex-1 absence in all tissues. Another possibility is 

that Deltex-1 deficiency is compensated for by an unrelated protein that displays functional 

convergence, as it might be the case with Neuralized and Mind bomb, two E3 ubiquitin ligases 

required for the endocytosis of a Notch ligand (reviewed in (20)). 

 If an imperfect compensation process is taking place, one might envision to uncover more 

subtle phenotypes associated with specific differentiation processes, possibly by mating Deltex-

1Δ/Δ mice with strains heterozygous for a mutation in another component of the Notch pathway. 
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FIGURE LEGENDS 

 

FIG.1. Targeted disruption of mouse Deltex-1 gene. (A) Schematic representation of Deltex-1 

protein domains, with the deleted region including the RING finger domain underlined. (B) 

Schematic representation of wild-type and targeted Deltex-1 locus. Dotted boxes represent non 

coding sequences within exons. Positions of BamHI sites (B) and of the probes used for Southern 

(S) and northern (5' and 3' cDNA probes) blot analysis are indicated. PGK p(A) signal, 

polyadenylation signal of phospho-glycerate kinase gene. TK, Herpes simplex thymidine kinase 

gene. Triangles flanking the neomycin resistance gene (neoR) represent LoxP sites. (C) Southern 

blot analysis of BamHI-digested thymic DNA from wild-type mice (+/+) and from mice 

heterozygous (+/Δ) and homozygous (Δ/Δ) for the targeted Deltex-1 gene. (D) Northern blot 

analysis of Deltex-1 expression in the spleen and brain from wild-type, heterozygous and 

homozygous mice, with a cDNA probe outside (probe 5') or inside (probe 3') the deletion. a, b 

and c mark the three truncated forms of Deltex-1 transcript observed in mutant mice (see text for 

details). Blots were normalized with an actin probe. 

 

FIG. 2. Deltex-1Δ/Δ mice have normal lymphoid organ structure. Sections from spleen (A and B), 

and mesenteric lymph node (C) from wild-type (left panel) and Deltex-1Δ/Δ mice (right panel) 

were stained with hematoxylin, eosin and saffron and photographed under a light microscope at 

40x. (B) Higher magnification view of (A) showing a primary B cell follicle and adjacent 

marginal zone. 
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FIG. 3. Normal lymphoid development in Deltex-1Δ/Δ mice. (A) B cell subpopulations in the bone 

marrow, spleen, peritoneal cavity and Peyer's patches were determined by fluorescence-activated 

cell sorting (FACS). (B) Thymic and splenic T-cell subpopulations were determined by FACS. 

Mean values and standard deviations for at least 5 animals of each genotype are indicated. 

 

FIG. 4. Deltex-1Δ/Δ have normal basal serum immunoglobulin levels and mount normal humoral 

responses. The plotted values represent the serum concentrations of each mouse relative to the 

average concentration of all wild-type mice. (A) The concentrations of the indicated serum 

immunoglobulin isotypes of 10 Deltex-1Δ/Δ (filled circles) and 10 littermate (open circles) control 

mice were measured by ELISA. (B) T-independent type-2 response. 7 wild-type and 7 Deltex-

1Δ/Δ mice were immunized with TNP-Ficoll and sera were quantified for the presence of TNP-

specific antibodies of IgM and IgG3 isotypes by ELISA. (C) T-dependent response. 8 wild-type 

and 8 Deltex-1Δ/Δ mice were immunized with TNP-KLH and boosted at day 21, as marked by an 

arrow. Sera were quantified for the presence of TNP-specific antibodies of IgM, IgG1, IgG2a, 

IgG2b and IgG3 isotypes by ELISA. 

 

FIG. 5. Deltex-4 protein sequence and transcript expression profile. (A) Comparison of human 

and mouse Deltex-1 (accession NP_004407 and BAB18939) and Deltex-4 (XP_166213 and 

AAH58647) proteins performed using Multalin program (3). Conserved amino acids are 

indicated in bold letters. Shaded and open boxes represent proline rich sequences and RING 

finger motif, respectively. The dotted line indicates the region deleted in Deltex-1Δ/Δ mice. (B) 

Two-by-two comparison of mouse Deltex-1 (BAB18939), Deltex-2 (BAB18940), Deltex-3 

(BAB18942) and Deltex-4 (AAH58647) proteins performed using BLAST. The number of amino 

 29



acids and the identity (left) and similarity (right) values are indicated for each pair of proteins. 

(C) Northern blot analysis of mouse Deltex-1, Deltex-2 and Deltex-4 expression. Spleen, brain, 

testis, mouse embryonic fibroblasts (MEF) and LPS-stimulated B cells (LPS-B) were prepared 

from Deltex-1+/Δ mice. Exposure time : 7 (Deltex-1), 5 (Deltex-2) and 6 (Deltex-4) days. 

Normalization was performed using an actin probe. (D) Semi-quantitative RT-PCR analysis of 

Deltex-1, Deltex-2 and Deltex-4 expression in follicular B cells (FoB : CD19+CD21intCD23hi) and 

marginal zone B cells (MZ-B : C19+CD21hiCD23-/lo). Serial dilutions of reverse transcription 

products were used. The number of cycles used in each reaction is indicated. 
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