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émanant des établissements d’enseignement et de
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CUMULATIVE DISTRIBUTION FUNCTION ESTIMATION UNDER
INTERVAL CENSORING CASE 1.

E. BRUNEL1 AND F. COMTE2

Abstract. We consider projection methods for the estimation of cumulative distribu-
tion function under interval censoring, case 1. Such censored data also known as cur-
rent status data, arise when the only information available on the variable of interest is
whether it is greater or less than an observed random time. Two types of adaptive estima-
tors are investigated. The first one is a two-step estimator built as a quotient estimator.
The second estimator results from a mean square regression contrast. Both estimators
are proved to achieve automatically the standard optimal rate associated with the un-
known regularity of the function, but with some restriction for the quotient estimator.
Simulation experiments are presented to illustrate and compare the methods.

March 2008
AMS Classification (2001): 62G05; 62G20.
Keywords and phrases. Adaptive estimation. Current status data. Minimax rate.
Interval censoring. Nonparametric estimator. Penalized contrast.

1. Introduction

Let X be a survival time with unknown cumulative distribution function (cdf) F . In the
interval censoring case 1 model, we are not able to observe the survival time X. Instead, an
observation consists of the pair (U, δ) where U is an examination time and δ is the indicator
function of the event (X ≤ U). Roughly speaking, the only knowledge about the variable
of interest X is wether it has occurred before U or not. Early examples of such interval
censoring can be found in demography studies, see Diamond and McDonald (1991).
In epidemiology, this censoring schemes also arise for instance in AIDS studies or more
generally in the study of infectious diseases when the infection time is an unobservable
event. We assume that U is independent of X, that F has density f and that the cdf
G of U has density g. Such data also known as current status data may remind us
right-censored data where the observed data is the pair (min(X,C), I(X≤C)) where C
is a censoring variable. But, the estimation procedure in these two censoring models
is substantially different. In the right-censoring model, the Kaplan and Meier (1958)
estimator is well studied and is asymptotically normal at the rate

√
n. Nevertheless,

current status data have been studied by many authors in the last two decades see Jewell
and van der Laan (2004) for a state of the art. In the interval censoring model, the
nonparametric maximum likelihood estimator (NPMLE) of the survival function is proved
to be uniformly consistent, pointwise convergent to a nonnormal asymptotic distribution
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at the rate n1/3 in Groeneboom and Wellner (1992). In van de Geer (1993), it is also
established that the NPMLE converges at rate n−1/3 in L2-norm. The locally linear
smoother proposed by Yang (2000), contrary to the NPMLE may be non monotone,
but it has a better convergence rate than the NPMLE when the density f is smooth
and the kernel function and bandwidth properly chosen. In the same spirit, Ma and
Kosorok (2006) introduced an adaptive modified penalized least square estimator built
with smoothing splines and proved that it achieved asymptotic optimal nonparametric
rate if the function F belongs to some Sobolev space.

Here, we present two different penalized minimum contrast estimators built on trigono-
metric, polynomial or wavelet spaces whose associated penalty terms are really simple;
the minimization of the penalized contrast function allows to choose a space that leads
to both a non asymptotic automatic squared bias/variance compromise and to an asymp-
totic optimal convergence rate according to the regularity of the function F in term of
Besov spaces. An interesting feature of the procedure is that the estimators and their
study are quite simple and clean thanks to the most powerful Talagrand (1996) inequality
for empirical centered processes. We also use technical properties proved in a regression
framework by Baraud et al. (2001) and Baraud (2002) for the mean-square estimator.

The plan of the paper is as follows. Section 2 introduces the quotient and the regression
estimators, after the description of the lifetimes model. We also give a detailed description
of the projection spaces with their main properties. Then, we study one projection estima-
tor of the density of the failure times which have occurred before the examination time in
Section 3. Both convergence and adaptation results are given. This estimator is then ap-
plied to the estimation of the cumulative distribution function via a quotient construction.
Section 4 describes a direct adaptive procedure to estimate the distribution function based
on a mean square regression contrast. Simulations compare both approaches in Section 5.
Lastly, most proofs and technical lemmas are deferred to Section 6.

2. Definition of the estimators

2.1. Model and assumptions. Let (U1, δ1), · · · (Un, δn) be a sample of the pair (U, δ)
where δi = I(Xi≤Ui) and the pair (Ui, δi) is independent of Xi for all i = 1, · · · , n. We are
interested in the estimation of the distribution function F of the lifetime X on a compact
set A only. We take A = [0, 1] without loss of generality. Remember that we denote by f
and F the density and the cumulative distribution function of the unobserved lifetime X
and g and G those of the examination time U . A function of interest is the density ψ of
the Ui restricted to the individuals for which δi = 1 defined by:

(2.1) ψ(x) = F (x) g(x)

It is clear that this equation provides a way to build an estimator of F . This approach
is developed in Section 3. The censoring mechanism is such that the conditional law of
δ = I(X≤U) given U = u is a Bernoulli law with parameter F (u) and as a consequence we
have:

(2.2) E(δ|U = u) = F (u)

This relation will lead to define a direct mean-square estimator of F .
Both strategies require the following assumption:



ESTIMATION UNDER CASE 1 INTERVAL CENSORING 3

[A1] The density g of the random time U is lower and upper bounded on A so that there
exist real constants g0 > 0 and g1 > 0 such that for all x ∈ A, g0 ≤ g(x) ≤ g1.

2.2. Definition of the estimators. Assume that we have at our disposal a collection
of finite dimensional spaces of functions, denoted by (Sm)m∈Mn , satisfying the following
assumption:

(H1) (Sm)m∈Mn is a collection of finite-dimensional linear sub-spaces of L2([0, 1]), with
dimension dim(Sm) = Dm such that Dm ≤ n, ∀m ∈Mn and satisfying:

(2.3) ∃Φ0 > 0,∀m ∈Mn, ∀t ∈ Sm, ‖t‖∞ ≤ Φ0

√
Dm‖t‖.

where ‖t‖2 =
∫ 1

0 t
2(x)dx, for t in L2([0, 1]).

2.2.1. Quotient estimator. As already mentioned, the first strategy requires to estimate
ψ and g. We take as estimator of g, g̃ an adaptive density estimator defined in Mas-
sart (2007), Chapter 7, namely: g̃ = ĝm̂g where ĝm = arg mint∈Sm γ

g
n(t),

γgn(t) = ‖t‖2 − 2
n

n∑
i=1

t(Ui),

and

(2.4) m̂g = arg min
m∈Mn

γgn(ĝm) + peng(m).

with peng(m) = κΦ2
0Dm/n.

For the estimation of ψ, we consider the following contrast function

(2.5) γψn (t) = ‖t‖2 − 2
n

n∑
i=1

δit(Ui).

Let then

(2.6) ψ̂m = arg min
t∈Sm

γψn (t).

Then we define ψ̃ = ψ̂m̂ where

m̂ = arg min
m∈Mn

[γψn (ψ̂m) + penψ(m)].

The penalty function will be motivated and defined later. The contrasts γgn and γψn are
both found as empirical versions of the L2 distance between a function t in Sm and the
function of interest (g or ψ). To see this, take the expectation of e.g. γψn :

E(γψn (t)) = ‖t‖2 − 2〈t, ψ〉 = ‖t− ψ‖2 − ‖ψ‖2

with 〈t, s〉 =
∫
t(x)s(x)dx. This illustrates that minimizing γψn is likely to provide a

function t that minimizes in mean ‖t− ψ‖2 and thus estimate ψ, on the space Sm.
Now from the adaptive estimators ψ̃ of ψ and g̃ of g, and by using the definition 2.1,

we can build a quotient estimator of the distribution function F by setting

(2.7) F̃ (x) =


0 if ψ̃(x)/g̃(x) < 0
ψ̃(x)
g̃(x)

if 0 ≤ ψ̃(x)/g̃(x) ≤ 1

1 if ψ̃(x)/g̃(x) > 1
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2.2.2. Regression estimator. On the other hand, a direct estimator of the cdf F can be
obtained by considering the following mean-square contrast:

(2.8) γMS
n (t) =

1
n

n∑
i=1

[δi − t(Ui)]2

In this case, we set

(2.9) F̂m = arg min
t∈Sm

γMS
n (t)

in the sense that we always can compute a vector (F̂m(U1), . . . , F̂m(Un)) as the orthogonal
projection of the vector (δ1, . . . , δn) on the sub-space of Rn defined by {(t(U1), . . . , t(Un)), t ∈
Sm}. Then we define F̂m̂0 by:

(2.10) m̂0 = arg min
m∈Mn

{γMS
n (F̂m) + penMS(m)},

with

(2.11) penMS(m) = κ0
Dm

n
.

where κ0 is a numerical constant.

Before studying both estimators, let us give some examples of collections (Sm)m∈Mn .

2.3. Spaces of approximation. The main assumption is described by (H1). In this
setting, an orthonormal basis of Sm is denoted by (ϕλ)λ∈Λm where |Λm| = Dm. Let us
mention that it follows from Birgé and Massart (1997) that Property (2.3) in the context
of (H1) is equivalent to

(2.12) ∃Φ0 > 0, ‖
∑
λ∈Λm

ϕ2
λ‖∞ ≤ Φ2

0Dm.

Moreover, for some results we need the following additional assumption:
(H2) (Sm)m∈Mn is a collection of nested models, we denote by Sn the space belonging

to the collection, such that ∀m ∈ Mn, Sm ⊂ Sn. We denote by Nn the dimension
of this nesting space: dim(Sn) = Nn (∀m ∈Mn, Dm ≤ Nn).

We consider more precisely the following examples:
[T ] Trigonometric spaces: Sm is generated by { 1,

√
2 cos(2πjx),

√
2 sin(2πjx) for

j = 1, . . . ,m }, Dm = 2m+ 1 and Mn = {1, . . . , [n/2]− 1}.
[P ] Regular piecewise polynomial spaces: Sm is generated by m(r + 1) polynomials,
r + 1 polynomials of degree 0, 1, . . . , r on each subinterval [(j − 1)/m, j/m], for
j = 1, . . .m, Dm = (r + 1)m, m ∈ Mn = {1, 2, . . . , [n/(r + 1)]}. For exam-
ple, consider the orthogonal collection in L2([−1, 1]) of Legendre polynomials Qk,
where the degree of Qk is equal to k, |Qk(x)| ≤ 1,∀x ∈ [−1, 1], Qk(1) = 1 and∫ 1
−1Q

2
k(u)du = 2/(2k + 1). Then the orthonormal basis is given by ϕj,k(x) =√

m(2k + 1)Qk(2mx − 2j + 1)1I[(j−1)/m,j/m[(x) for j = 1, . . . ,m and k = 0, . . . , r,
with Dm = (r + 1)m. In particular, the histogram basis corresponds to r = 0
and is simply defined by ϕj(x) =

√
Dm 1I[(j−1)/Dm,j/Dm](x) and Dm = m. We

call dyadic collection of piecewise polynomials, and denote by [DP], the collection
corresponding to dyadic subdivisions with m = 2q and Dm = (r + 1) 2q.
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[W] Dyadic wavelet generated spaces with regularity r and compact support, as de-
scribed e.g. in Donoho and Johnstone (1998).

All those spaces satisfy (H1), with for instance Φ0 =
√

2 for collection [T] and Φ0 =√
2r + 1 for collection [P]. Moreover, [T], [DP] and [W] satisfy (H2) since they are nested

with Sn being the space with the largest dimension in the collection.

3. Study of the quotient estimator

Our aim is to estimate the cdf F from the observations (δi, Ui), i = 1, · · · , n.

3.1. Convergence results for one estimator. An explicit expression of the estima-
tor follows from definition (2.5)-(2.6) by using the orthonormal basis (ϕλ)λ∈Λm of (Sm)
described in (H1):

(3.1) ψ̂m =
∑
λ∈Λm

âλϕλ with âλ =
1
n

n∑
i=1

δiϕλ(Ui).

We define also ψm as the orthogonal projection of ψ on Sm. We can write

(3.2) ψm =
∑
λ∈Λm

aλϕλ with aλ =
∫ 1

0
ϕλ(x)ψ(x)dx.

The rate of the estimator ψ̂m of ψ is quite easy to derive. Indeed, it follows from (3.1),
(3.2) and Pythagoras theorem that

‖ψ − ψ̂m‖2 = ‖ψ − ψm‖2 + ‖ψm − ψ̂m‖2 = ‖ψ − ψm‖2 +
∑
λ∈Λm

(aλ − âλ)2

= ‖ψ − ψm‖2 +
∑
λ∈Λm

(
1
n

n∑
i=1

δiϕλ(Ui)−
∫ 1

0
ψ(x)ϕλ(x)dx

)2

.

Therefore

E(‖ψ − ψ̂m‖2) = ‖ψ − ψm‖2 +
∑
λ∈Λm

Var

(
1
n

n∑
i=1

δiϕλ(Ui)

)

= ‖ψ − ψm‖2 +
1
n

∑
λ∈Λm

Var (δ1ϕλ(U1))

≤ ‖ψ − ψm‖2 +
1
n

E

 ∑
λ∈Λm

ϕ2
λ(U1)

 δ1I(U1≤1)


≤ ‖ψ − ψm‖2 +

Φ2
0Dm

n
E(δ1I(U1≤1)).

This can be summarized by the following Proposition:

Proposition 3.1. Consider the model described in Section 2.1 and the estimator ψ̂m =
arg mint∈Sm γ

ψ
n (t) where γψn (t) is defined by (2.5) and Sm is a Dm-dimensional linear space
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in a collection satisfying (H1). Then

(3.3) E(‖ψ − ψ̂m‖2) ≤ ‖ψ − ψm‖2 +
Φ2

0Dm

n
E(δ1I(U1≤1)).

Inequality (3.3) gives the asymptotic rate for one estimator if we consider that ψ belongs
to a Besov space Bαψ ,p,∞([0, 1]) with finite Besov norm denoted by |ψ|αψ ,p. For a precise
definition of those notions we refer to DeVore and Lorentz (1993) Chapter 2, Section 7,
where it is also proved that Bαψ ,p,∞([0, 1]) ⊂ Bαψ ,2,∞([0, 1]) for p ≥ 2. This justifies that
we now restrict our attention to Bαψ ,2,∞([0, 1]).
Then the following (standard) rate is obtained:

Corollary 3.1. Consider the model described in Section 2.1 and the estimator ψ̂m =
arg mint∈Sm γ

ψ
n (t) where γψn (t) is defined by (2.5) and Sm is a Dm-dimensional linear

space in collection [T], [P], or [W]. Assume moreover that ψ belongs to Bαψ ,2,∞([0, 1]) with
r > αψ > 0 and choose a model with m = mn such that Dmn = O(n1/(2αψ+1)), then

(3.4) E(‖ψ − ψ̂mn‖2) = O

(
n
−

2αψ
2αψ+1

)
.

Remark 3.1. The bound r stands for the regularity of the basis functions for collec-
tions [P] and [W]. For the trigonometric collection [T], no upper bound for the unknown
regularity αψ is required.

Proof. The result is a straightforward consequence of the results of DeVore and Lorentz (1993)
and of Lemma 12 of Barron et al. (1999), which imply that ‖ψ − ψm‖ is of order D−αψm

in the three collections [T], [P] and [W], for any positive αψ. Thus the minimum order
in (3.3) is reached for a model Smn with Dmn = O([n1/(1+2αψ)]), which is less than n for
αψ > 0. Then, if ψ ∈ Bαψ ,2,∞([0, 1]) for some αψ > 0, we find the standard nonparametric
rate of convergence n−2αψ/(1+2αψ). 2

3.2. Adaptive estimator of the density ψ. The penalized estimator is defined in order
to ensure an automatic choice of the dimension. Indeed, it follows from Corollary 3.1
that the optimal dimension depends on the unknown regularity αψ of the function to be
estimated in the asymptotic setting and more generally on the unknown constants involved
in the squared-bias/variance terms. Then we define

m̂ = arg min
m∈Mn

[γψn (ψ̂m) + penψ(m)]

where the penalty function penψ is determined in order to lead to the choice of a “good”
model. First, we apply some Talagrand (1996) type inequality to the linear empirical
process defined by

(3.5) νn(t) :=
1
n

n∑
i=1

(δit(Ui)− 〈t, ψ〉) .

Then, by using the decomposition of the contrast given by

(3.6) γψn (t)− γψn (s) = ‖t− ψ‖2 − ‖s− ψ‖2 − 2νn(t− s),
we easily derive the following result:
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Theorem 3.1. Consider the model described in Section 2.1 and the estimator ψ̂m =
arg mint∈Sm γ

ψ
n (t) where γψn (t) is defined by (2.5) and Sm is a Dm-dimensional linear

space in a collection satisfying (H1) and (H2). Then the estimator ψ̂m̂ with m̂ defined by

m̂ = arg min
m∈Mn

[γψn (ψ̂m) + penψ(m)]

and

penψ(m) = κΦ2
0

(∫ 1

0
ψ(x)dx

)
Dm

n

where κ is a universal constant, satisfies

(3.7) E(‖ψ̂m̂ − ψ‖2) ≤ inf
m∈Mn

(
3‖ψ − ψm‖2 + 4penψ(m)

)
+
C

n
,

where C is a constant depending on Φ0 and on
∫ 1

0 ψ(x)dx.

Therefore, the adaptive estimator automatically makes the squared-bias/variance com-
promise and from an asymptotic point of view, reaches the optimal rate, provided that
the constant in the penalty is known. Note that Inequality (3.7) is nevertheless non-
asymptotic.

Remark 3.2. In practice, the constant in the penalty, denoted above by κ, is found by
simulation experiments taking into account very different types of functions ψ. See some
examples of such a work in Birgé and Rozenholc (2006) or Comte and Rozenholc (2004).

The penalty given in Theorem 3.1 cannot be used in practice since it depends on the
unknown quantity ∫ 1

0
ψ(x)dx = E(δ1I(U1≤1)).

A simple solution is to use that
∫ 1

0 ψ(x)dx ≤ 1; it follows that Inequality (3.7) would hold
for a penalty defined by penψ(m) = κΦ2

0Dm/n. This possibly works with a resulting over-
estimation of the penalty, in a way depending on the unknown function ψ. The alternative
solution is to replace the unknown quantity by an estimator (rather than a bound), and
to prove that the estimator of ψ built with this random penalty keeps the adaptation
property of the theoretical penalized estimator. This is described in the following theorem
whose proof is omitted since it is quite the same as the proof of Theorem 3.4 in Brunel
and Comte (2005).

Theorem 3.2. Assume that the assumptions of Theorem 3.1 are satisfied. Consider the
estimator ψ̂m̂ with m̂ defined by

m̂ = arg min
m∈Mn

[γψn (ψ̂m) + p̂enψ(m)]

and

p̂enψ(m) = κΦ2
0

(
1
n

n∑
i=1

δi

)
Dm

n

where κ is a universal constant, then ψ̂m̂ satisfies

(3.8) E(‖ψ̂m̂ − ψ‖2) ≤ inf
m∈Mn

K0

[
‖ψ − ψm‖2 + Φ2

0

(∫ 1

0
ψ(x)dx

)
Dm

n

]
+
K

n
,
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where K0 is a universal constant and K depends on ψ, Φ0.

In particular, we can derive quite straightforwardly from results as Theorem 3.2 some
adaptation results to unknown smoothness:

Proposition 3.2. Consider the collection of models [T], [DP] or [W], with r > αψ > 0.
Assume that an estimator ψ̃ of ψ satisfies inequality (3.8) in Theorem 3.2 (respectively
inequality (3.7) in Theorem 3.1). Let L > 0. Then

(3.9)

(
sup

ψ∈Bαψ,2,∞(L)
E‖ψ − ψ̃‖2

) 1
2

≤ C(αψ, L)n
−

αψ
2αψ+1

where Bαψ ,2,∞(L) = {t ∈ Bαψ ,2,∞([0, 1]), |t|αψ ,2 ≤ L} where C(αψ, L) is a constant depend-
ing on αψ, L and also on ψ, Φ0.

3.3. Application to the estimation of the distribution function F . Consider now
the first estimator of F , given by (2.7).

A simple case study allows to see that if ψ̃(x)/g̃(x) < 0 or ψ̃(x)/g̃(x) > 1, then |F̃ (x)−
F (x)| ≤ |ψ̃(x)/g̃(x)− F (x)|, and thus the inequality |F̃ (x)− F (x)| ≤ |ψ̃(x)/g̃(x)− F (x)|
holds for any x. Also, our definition implies that |F̃ (x)− F (x)| ≤ 1, for any x. Moreover,
to exploit [A1], we define

Ωg = {ω : g̃(x)− g(x) > −g0/2,∀x ∈ [0, 1]}.

Then, the following bounds are obtained:

‖F̃ − F‖2 =
∫ 1

0
(F̃ (x)− F (x))2dx =

∫ 1

0
(F̃ (x)− F (x))2dx1IΩg +

∫ 1

0
(F̃ (x)− F (x))2dx1IΩcg

≤
∫ 1

0
(
ψ̃(x)
g̃(x)

− ψ(x)
g(x)

)2dx1IΩg +
∫ 1

0
dx1IΩcg .

Thus the first term can de decomposed as follows

F̃ − F =
ψ̃ − ψ
g̃

+ F

(
g − g̃
g̃

)
and thus, since g̃(x) ≥ g0/2 on Ωg,∫ 1

0
(
ψ̃(x)
g̃(x)

− ψ(x)
g(x)

)2dx1IΩg ≤ (
2
g0

)2
(
‖ψ̂m̂ − ψ‖2 + ‖g̃ − g‖2

)
.

For the second, taking the expectation, we use the following Lemma:

Lemma 3.1. Assume that g ∈ Bαg ,2,∞([0, 1]) for some αg > 0 and consider a collection of
spaces Sm such that log(n) ≤ Dm ≤

√
n. Then, under Assumptions [A1] and (H2), there

exists a constant C such that

(3.10) P(Ωc
g) ≤ P (‖g̃ − g‖∞ > g0/2) ≤ C

n
.

Finally, by gathering the bounds, we obtain the following proposition:
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Figure 1. Plot of 15 Quotient estimators (left: density estimators g̃ of g,
right: Quotient estimators F̃ ) for Model 4 with n = 500.

Proposition 3.3. Under the assumptions of Lemma 3.1,

(3.11) E‖F̃ − F‖2 ≤ 24

g2
0

(
E‖ψ̃ − ψ‖2 + E‖g̃ − g‖2

)
+
C(g0, ‖ψ‖)

n
,

where C(g0, ‖ψ‖) is a constant depending on g0 and ‖ψ‖.

From Inequality (3.11), we easily deduce by using results (3.7) or (3.8) that F̃ is an
adaptive estimator of F if the functions g and ψ have the same regularity α = αg = αψ.
Here we can state the following result:

Proposition 3.4. Consider the collection of models [T], [DP] or [W], with r > αF =
αψ = αg > 0 and the estimator F̃ defined by 2.7. Let L > 0. Then

(3.12)

(
sup

F∈BαF ,2,∞(L)
E‖F − F̃‖2

) 1
2

≤ C(αF , L)n−
αF

2αF+1

where BαF ,2,∞(L) = {t ∈ BαF ,2,∞([0, 1]), |t|αF ,2 ≤ L} where C(αF , L) is a constant de-
pending on αF , L and also on ψ, Φ0 and g0.

Note that Theorem 2 in Yang (2000) shows that the rate in the sup-norm over a
compact is of order O((lnn/n)(1+α)/(3+2α)) a.s. where α stands for the regularity of the
density function f .

If the index of regularity of F , αF , is greater than the index of regularity of ψ = Fg,
αψ, then the asymptotic rate of the estimator F̃ is given by n−αψ/(1+2αψ) instead of the
optimal one n−αF /(1+2αF ). This is the reason why we propose another contrast to estimate
directly F .

4. Study of the mean square estimator

In this section, we study the mean square estimator of F from (2.2) and its adaptive
version. In this context, we define the empirical norm ‖ · ‖n as follows: for t ∈ Sm,
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Figure 2. Plot of 15 Quotient estimators (left: density estimators g̃ of g,
right: Quotient estimators F̃ ) for Model 5 with n = 500.

‖t‖2n = (1/n)
∑n

i=1 t
2(Ui). It is a natural norm in regression problems, and under [A1], it

is equivalent in mean to the standard Lebesgue integrated L2-norm, i.e., under [A1]:

∀t ∈ Sm, g0 ≤ ‖t‖2 ≤ E(‖t‖2n) =
∫
t2(x)g(x)dx ≤ g1‖t‖2.

Then, the mean-square contrast defined by (2.8) can be decomposed as follows:

γMS
n (t)− γMS

n (s) = ‖t− F‖2n − ‖s− F‖2n − 2νMS
n (t− s)(4.1)

where νMS
n (.) is defined by:

(4.2) νMS
n (t) =

1
n

n∑
i=1

(δi − F (Ui))t(Ui)

which is a centered process since E(δ|U = u) = F (u).
In this case, we obtain the following result for the penalized estimator:

Theorem 4.1. Consider the collections of models [T] with Nn ≤
√
n/ ln(n) or [DP] or

[W] with Nn ≤ n/ ln2(n). Let F̂m̂0 be defined by (2.10), with penMS(m) defined by (2.11).
Then,

(4.3) E(‖F̂m̂0 − F‖2n) ≤ C inf
m∈Mn

(‖Fm − F‖2n + penMS(m)) + C ′
1
n

where Fm stands for the orthogonal projection of F on Sm and C and C ′ are constants
depending on Φ0 and g.

Note that the computation of the estimator may be more tedious in practice than
the quotient one, but the result is obtained directly for the estimator of F , without any
regularity condition on ψ. As a consequence, we obtain here a rate only depending on the
regularity of F , and we can state the following result:



ESTIMATION UNDER CASE 1 INTERVAL CENSORING 11

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 3. Plot of 15 Regression estimators for Model 4 with n = 500.

Proposition 4.1. Consider the collection of models [T], [DP] or [W], with r > αF > 0
and the estimator F̂m̂0 defined by (2.10)-(2.11). Let L > 0. Then

(4.4)

(
sup

F∈BαF ,2,∞(L)
E‖F − F̃‖2n

) 1
2

≤ C(αF , L)n−
αF

2αF+1

where BαF ,2,∞(L) = {t ∈ BαF ,2,∞([0, 1]), |t|αF ,2 ≤ L} where C(αF , L) is a constant de-
pending on αF , L and also on ψ, Φ0 and g0.

5. Simulations

Remember that the distribution of δ given U = u is a Bernoulli variable with parameter
F (u). We consider the following models for generating data:

Model 1. Uniform distribution F : U ∼ U(0, 1) and δ ∼ B(1, U)
Model 2. χ2-distribution F : U ∼ U(0, 1) and δ ∼ B(1, Fχ2

1
(U))

Model 3. Quadratic distribution F : U ∼ U(0, 1) and δ ∼ B(1, U2)
Model 4. Exponential distribution F : U ∼ γ(1, λ) and δ ∼ B(1, 1−e−µU ) with λ = 1, µ = 0.5.
Model 5. Gamma distribution F : U ∼ U(0, a) with a = 10 and δ ∼ B(1, Fγ(3,2)(U)), where

Fγ(p,θ) is the cdf of a Gamma distribution of parameter (p, θ).
Model 6. Beta distribution (S-shape) F : U ∼ β(4, 6) and δ ∼ B(1, Fβ(4,8)(U)) where Fβ(α,β)

is the cdf of a Beta distribution of parameter (α, β).
Now, to study the quality of each estimation procedure and to compare them, we

compute over J sample replications of size n = 60, 200, 500 and 1000 the mean squared
errors (MSE) over the sample points u1, . . . , uK falling in [a, b]:

MSEj =
(b− a)
K

K∑
k=1

[F (uk)− F̂j(uk)]2
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Figure 4. Plot of 15 Regression estimators for Model 5 with n = 500.

Table 1. Monte-Carlo results for the MSE (×10−2) of the quotient and
regression estimators of the cdf F , for J = 100 sample replications.

Quotient est. Regression est.
n 60 200 500 1000 60 200 500 1000

model 1 1.56 0.36 0.20 0.066 0.77 0.14 0.055 0.028
model 2 2.23 0.82 0.28 0.15 10.2 0.87 0.18 0.033
model 3 1.64 0.57 0.25 0.074 1.61 0.34 0.069 0.025
model 4 5.65 3.78 1.60 0.40 6.8 1.85 0.46 0.10
model 5 61.2 32.7 1.15 0.95 5.74 3.31 1.22 0.93
model 6 1.92 0.83 0.40 0.20 0.89 0.23 0.12 0.07

where F̂j stands for the (adaptive) quotient estimator F̃ or for the penalized regression
estimator F̂m̂0 computed over the jth sample replication for j = 1, . . . , J . To avoid bound-
ary effects due to the sparsity of the observations at the end of the interval, the MSEj ’s
are truncated for each replication in the sense that we include in the mean only the uk
less than a given quantile value: P(X ≤ 0.9) = 0.9 for model 1, P(X ≤ 1.8) = 0.82 for
model 2, P(X ≤ 0.9) = 0.81 for model 3, P(X ≤ 1) = 0.86 for model 4, P(X ≤ 8) = 0.76
for model 5 and P(X ≤ 0.5) = 0.89 for model 6; thus, the MSEj are computed over [a, b]
with a = 0 and b = 0.9 for models 1 and 3, b = 1.8, 1, 8 and 0.5 for model 2, 4, 5 and
6 respectively. Therefore, the MSE’s given in Table 1 stand effectively for the truncated
arithmetic means of the MSEj ’s. As we can see from results in Table 1, the regression es-
timator always makes better than the quotient estimators for large samples. However, for
small sample size, the quotient estimator can behave as well as and even better than the
regression one, see models 2 and 4 for n = 60, 200. Note also that, the density estimator
g̃ of g is a very attractive estimator by itself as shown in Figures 1 and 2. In some cases
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and particularly for model 4, see Figure 1, the quotient mechanism works wrong even if
the density estimator is very performant. Figure 1 (right) shows that near than half of
the curves don’t give the good shape. This is a drawback of quotient strategies which
do not have good robustness properties whereas this does not happen with the regression
estimators (see Figures 3 and 4).

6. Proofs

6.1. Talagrand’s Inequality. The following version of Talagrand’s Inequality (see Tala-
grand (1996)) is very useful in most of the proofs:

Lemma 6.1. Let Z1, . . . , Zn be i.i.d. random variables and νn(g) be defined by νn(g) =
(1/n)

∑n
i=1[g(Zi)− E(g(Zi))] for g belonging to a countable class G of uniformly bounded

measurable functions. Then for ε > 0

(6.1) E

[
sup
g∈G
|νn(g)|2 − 2(1 + 2ε)H2

]
+

≤ 6
K1

(
v

n
e−K1ε

nH2

v +
8M2

1

K1n2C2(ε)
e
−K1C(ε)

√
ε√

2
nH
M1

)
,

with C(ε) = (
√

1 + ε− 1) ∧ 1, K1 is a universal constant, and where

sup
g∈G
‖g‖∞ ≤M1, E

(
sup
g∈G
|νn(g)|

)
≤ H, sup

g∈G
Var(g(X1)) ≤ v.

6.2. Proof of Lemma 3.1. Let us write

‖g̃ − g‖∞ ≤ ‖g − gm̂g‖∞ + ‖gm̂g − ĝm̂g‖∞
with g̃ = ĝm̂g defined by (2.4). If g belongs to some Besov space Bαg ,2,∞([0, 1] with αg > 0
then, Lemma 12 in Barron et al. (1999) gives (with the rectriction Dm ≥ log(n), ∀m):

‖g − gm̂g‖∞ ≤ CD
−αg
m̂g
≤ C(log n)−αg .

Thus, ‖g− gm̂g‖∞ decreases to 0 as n goes to ∞ and for some integer n0 large enough, we
have for n ≥ n0,

P(‖g̃ − g‖∞ > g0/2) ≤ P(‖gm̂g − ĝm̂g‖∞ > g0/4)

Now, ‖gm̂g − ĝm̂g‖∞ ≤ Φ0

√
Dm̂g‖gm̂g − ĝm̂g‖ and ‖gm̂g − ĝm̂g‖2 =

∑
λ∈Λm̂g

ν2
n,g(ϕλ) =

supt∈Bm̂g |ν
2
n,g(t)|. This implies

P(‖g̃ − g‖∞ > g0/2) ≤ P( sup
t∈Bm̂g

|νn,g(t)| >
g0

4Φ0

√
Dm̂g

)

≤
∑

m∈Mn

P( sup
t∈Bm

|νn,g(t)| >
g0

4Φ0

√
Dm

)(6.2)

We apply the version of Talagrand (1996) inequality given in Corollary 2 in Birgé and
Massart (1998) which states that there exists a universal constant K1 such that, for any
positive η and λ,

P(sup
f∈F
|νn,g(f)| ≥ (1 + η)E + λ) ≤ 3 exp

[
−K1n

(
λ2

v
∧ (η ∧ 1)λ

b

)]
.
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This result can be applied to the class of functions F = Bm(0, 1) by taking f = t−E(t(U1)),
with

sup
t∈Bm(0,1)

Var(t(U1)) ≤ sup
t∈Bm(0,1)

∫ 1

0
t2(u)g(u)du ≤ g1 := v, sup

t∈Bm(0,1)
‖t‖∞ ≤ Φ0

√
Dm := b

and E(supt∈Bm(0,1) ν
2
n,g(t)) = (1/n)

∑
λ∈Λm

Var(ϕλ(U1)) ≤ Φ2
0Dm/n := E2. By choosing

η = 1 and λ = g0/(8Φ0

√
Dm) and if 2E + λ ≤ g0/(4Φ0

√
Dm), we obtain from (6.2):

P(‖g̃ − g‖∞ > g0/2) ≤
∑

m∈Mn

3 exp
[
−K1n

(
λ2

g1
∧ λ

Φ0

√
Dm

)]
≤

∑
m∈Mn

3 exp [−K1C1n/Dm]

with C1 =
(

g20
64g1Φ2

0
∧ g0

8Φ2
0

)
, if we ensure that 2E + λ ≤ g0/(4Φ0

√
Dm). But with E =

Φ0

√
Dm/n, this is verified if Dm ≤ [g0/(16Φ2

0)]
√
n. Thus, we can deduce that

P(‖g̃ − g‖∞ > g0/2) ≤ 3|Mn| exp
[
−K1C

′
1

√
n
]

with C ′1 =
(

g20
64g1Φ2

0
∧ g0

8Φ2
0

)
/[g0/(16Φ2

0)]. Finally, since |Mn| ≤ n, ifDm ≤ (K1C1)n/(2 ln(n))
then P(‖g̃ − g‖∞ > g0/2) ≤ 3/n and this concludes the proof. 2

6.3. Proof of Theorem 3.1.

6.3.1. Proof of a preliminary Lemma. First, we prove the following lemma:

Lemma 6.2. Assume that (H1) and (H2) are fulfilled and denote by Bm,m′(0, 1) = {t ∈
Sm + Sm′ , ‖t‖ = 1}. Let νn(gt) be defined by (3.5) and

(6.3) gt(u, δ) = δt(u),

then for ε > 0

(6.4) E

(
sup

t∈Bm,m′ (0,1)
ν2
n(gt)− pψ(m,m′)

)
+

≤ κ1

n

(
e−κ2ε (Dm+Dm′ ) +

e−κ3ε3/2
√
n

C(ε)2

)
,

with pψ(m,m′) = 2(1 + 2ε)Φ2
0

∫ 1
0 ψ(x)dx (Dm +Dm′)/n and C(ε) = (

√
1 + ε− 1)∧ 1. The

constants κi for i = 1, 2, 3 depend on Φ0, ψ and F .

We apply Talagrand’s inequality by taking Zi = (Ui, δi) for i = 1, . . . , n and g(u, δ) =
gt(u, δ). Usual density arguments show that this result can be applied to the class of
functions G = {gt, t ∈ Bm,m′(0, 1)}. Then we find for the present empirical process the
following bounds:

sup
g∈G
‖g‖∞ = sup

t∈Bm,m′ (0,1)
‖gt‖∞ ≤ Φ0

√
D(m,m′) := M1

with D(m,m′) denoting the dimension of Sm + Sm′ . Then
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sup
g∈G

Var(g(U1, δ1)) = sup
t∈Bm,m′ (0,1)

Var(gt(U1, δ1)) = sup
t∈Bm,m′ (0,1)

E(δ1t
2(U1))

= sup
t∈Bm,m′ (0,1)

∫ 1

0
t2(u)ψ(u)du ≤ g1 := v.

Lastly,

E

(
sup
g∈G

ν2
n(g)

)
= E

(
sup

t∈Bm,m′ (0,1)
ν2
n(gt)

)
≤

∑
λ∈Λm,m′

1
n

Var(δ1ϕλ(U1))

≤ Φ2
0D(m,m′)

n

∫ 1

0
ψ(x)dx = C1

D(m,m′)
n

:= H2.

with the natural notation Λm,m′ = Λm ∪ Λm′ . Then it follows from (6.1) that

E

(
sup

t∈Bm,m′ (0,1)
ν2
n(gt)− pψ(m,m′)

)
≤ κ1

(
1
n
e−κ2εD(m′) +

1
nC2(ε)

e−κ3ε3/2
√
n

)
,

where κi for i = 1, 2, 3 are constant depending on K1 and C1 and pψ(m,m′) = 2(1 +
2ε)C1(Dm +Dm′)/n. 2

6.3.2. Proof of Theorem 3.1. It follows from the definition of ψ̂m̂ that: ∀m ∈Mn,

(6.5) γψn (ψ̂m̂) + penψ(m̂) ≤ γψn (ψm) + penψ(m).

Then by using decomposition (3.6), it follows from (6.5) and from the definition of the
process νn(gt) given by (3.5) and (6.3) that:

‖ψ̂m̂ − ψ‖2 ≤ ‖ψm − ψ‖2 + 2νn(gψ̂m̂−ψ) + penψ(m)− penψ(m̂)

≤ ‖ψm − ψ‖2 +
1
4
‖ψ̂m̂ − ψm‖2 + 4 sup

t∈Bm,m̂(0,1)
ν2
n(gt)

+penψ(m)− penψ(m̂)(6.6)

where we recall that Bm,m̂(0, 1) = {t ∈ Sm + Sm̂ / ‖t‖ ≤ 1}. Note that the norm
connection as described by (2.3) still holds for any element t of Sm + Sm′ as follows:
‖t‖∞ ≤ Φ0 max(Dm, Dm′)‖t‖. Indeed, under (H2), we restrict our attention to nested
collections of models, so that Sm +Sm̂ is equal to the larger of the two spaces. For a fixed
integer m, we denote by D(m′) the dimension of Sm + Sm′ , for all m′ ∈ Mn. Note that
D(m′) = max(Dm, Dm′) ≤ Dm +Dm′ .
Let pψ(m,m′) be such that

8pψ(m,m′) ≤ penψ(m) + penψ(m′) for all m, m′ in Mn.(6.7)

Then ∀m ∈Mn,
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1
2
‖ψ̂m̂ − ψ‖2 ≤ 3

2
‖ψ − ψm‖2 + 2 penψ(m) + 8

(
sup

t∈Bm,m̂(0,1)
ν2
n(gt)− pψ(m, m̂)

)
.

Then if we prove
(6.8)

E

(
sup

t∈Bm,m̂(0,1)
ν2
n(gt)− pψ(m, m̂)

)
+

≤
∑

m′∈Mn

E

(
sup

t∈Bm,m′ (0,1)
ν2
n(gt)− pψ(m,m′)

)
+

≤ C

n

we have the following result, which proves the theorem: ∀m ∈Mn,

E(‖ψ̂m̂ − ψ‖2) ≤ 3‖ψ − ψm‖2 + 4penψ(m) +
C

n
.

Therefore by using equation (6.7) and the definition of pψ(m,m′) in Lemma 6.2, we choose

penψ(m) = 16(1 + 2ε)
∫ 1

0
ψ(x)dx

Dm

n

Inequality (6.8) is a straightforward consequence of Lemma 6.2 since

∑
m′∈Mn

E

(
sup

t∈Bm,m′ (0,1)
ν2
n(gt)− pψ(m,m′)

)
+

≤κ1


∑

m′∈Mn

e−κ2εD(m′)

n
+
|Mn|
n

e−κ3ε3/2
√
n

 .

Then by taking ε = 1/2 and assuming that |Mn| ≤ n and since, under (H2),
∑

m∈Mn
e−aDm ≤∑n

k=1 e
−ka ≤ Σ(a) < +∞,∀a > 0, this leads to the bound∑

m′∈Mn

E

(
sup

t∈Bm,m′ (0,1)
ν2
n(gt)− pψ(m,m′)

)
+

≤ C

n
,

and this ensures (6.8). 2

6.4. Proof of Theorem 3.2. We start by writing that, ∀m ∈Mn,

γn(F̂m̂0) + penMS(m̂0) ≤ γn(Fm) + penMS(m)
and by using the decomposition (4.1). It follows that

‖F̂m̂0 − F‖2n ≤ ‖Fm − F‖2n + 2νMS
n (F̂m̂0 − Fm) + penMS(m)− penMS(m̂0).

Let us introduce, in the same way as Baraud et al. (2001), for ‖t‖2g =
∫

[0,1] t
2(u)g(u) du,

the ball Bg
m,m′(0, 1) = {t ∈ Sm + Sm′ , ‖t‖g = 1} and the set

Ωn =
{
ω,

∣∣∣∣‖t‖2n‖t‖2g − 1
∣∣∣∣ ≤ 1

2
, ∀t ∈

⋃
m,m′∈Mn

(Sm + Sm′) \ {0}
}
.

On the complement of Ωn, a separate study leads to the following lemma:

Lemma 6.3. If Nn ≤
√
n/ ln(n) for [T] or Nn ≤ n/ ln2(n) for [P] or [W], then P(Ωc

n) ≤
c/n and, E (‖F̂m̂0 − F‖2n1IΩcn) ≤ c′/n, where c and c′ are positive constants.
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Proof of Lemma 6.3. That P(Ωc
n) ≤ c/n2 is in fact a pure property of the basis and is

proved under our assumptions in Baraud (2002). Moreover, ‖F̂m̂0 − F‖2n ≤ 2(‖F̂m̂0‖2n +
‖F‖2n). Now ‖F‖2n ≤ 1 and ‖F̂m̂0‖2n = (1/n)‖Πm̂0δ‖2Rn where δ = (δ1, . . . , δn), Πm̂ is the
orthogonal projection in Rn on {t(U1), . . . , t(Un)), t ∈ Sm} and ‖ · ‖Rn is the Euclidean
norm in Rn. It follows that ‖F̂m̂0‖2n ≤ (1/n)‖δ‖2Rn = (1/n)

∑n
i=1 δ

2
i ≤ 1. Therefore

E (‖F̂m̂0 − F‖2n1IΩcn) ≤ 2P(Ωc
n) ≤ c′/n. 2

Therefore, we focus on the study of the bounds on Ωn, where the inequality ‖t‖2g ≤ 2‖t‖2n
is fulfilled. We obtain

‖F̂m̂0 − F‖2n1IΩn ≤ ‖Fm − F‖2n +
1
8
‖F̂m̂0 − Fm‖2f1IΩn + 16 sup

t∈Bgm̂0,m
(0,1)

[νMS
n ]2(t)

+penMS(m)− penMS(m̂0)

≤
(

1 +
1
2

)
‖Fm − F‖2n +

1
2
‖F̂m̂0 − F‖2n1IΩn

+16
(

sup
t∈Bgm̂0,m

(0,1)

[νMS
n ]2(t)− p̃(m, m̂0)

)
+

+penMS(m) + 16p̃(m, m̂0)− penMS(m̂0).

Let (ϕ̄λ)λ∈Λm,m′ be an orthonormal basis of Sm + Sm′ for the scalar product 〈·, ·〉g (built
by Gramm-Schmidt orthonormalization). It is easy to see that:

E
(

sup
t∈Bg

m′,m(0,1)

[νMS
n ]2(t)

)
≤

∑
λ∈Λm,m′

1
n

Var
(

[δ1 − F (U1)]ϕ̄λ(U1)
)

≤
∑

λ∈Λm,m′

1
n

EX
(∫ 1

0
[1IX≤u − F (u)]2ϕ̄λ(u)2g(u)du

)

≤ 1
n

∑
λ∈Λm,m′

(∫ 1

0
EX [1IX≤u − F (u)]2ϕ̄2

λ(u)g(u)du
)

≤ 1
n

∑
λ∈Λm,m′

(∫ 1

0
F (u)(1− F (u))ϕ̄2

λ(u)g(u)du
)

≤ Dm ∨Dm′

n

as F (u)(1− F (u)) ≤ 1. Therefore, we obtain by applying Talagrand’s Inequality∑
m′∈Mn

E
(

sup
t∈Bg

m′,m((0,1)

[νMS
n ]2(t)− p̃(m,m′)

)
+
≤ c

n

with

p̃(m,m′) = 4
Dm ∨Dm′

n
:= 4H2,
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sup
t∈Bg

m′,m(0,1)

Var[(δ1 − F (U1))t(U1)] ≤ sup
t∈Bg

m′,m(0,1)

E(t2(U1)) = 1 := v,

and sup
t∈Bg

m′,m(0,1)

‖(δ1 − F (U1))t‖∞ ≤ sup
t∈Bg

m′,m(0,1)

‖t‖∞ ≤ Φ0

√
Dm,m′/g0 := M1.
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