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Abstract  

Selective expansion and activation of a very small number of antigen-specific CD4+ T cells is a 

remarkable and essential property of the adaptive immune response. Antigen-specific T cells were 

until recently identified only indirectly by functional assays, such as antigen-induced cytokine 

secretion and proliferation. The advent of MHC Class II tetramers has added a pivotal tool to our 

research armamentarium, allowing the definition of allo- and autoimmune responses in deeper 

detail. Rare antigen-specific CD4+ cells can now be selectively identified, isolated and 

characterized. The same tetramer reagents also provide a new mean of stimulating T cells, more 

closely reproducing the MHC-peptide/TCR interaction. This property allows the use of tetramers to 

direct T cells towards the more desirable outcome, i.e. activation (in malignancies and infectious 

diseases) or Th2/T regulatory cell deviation, anergy and deletion (in autoimmune diseases). These 

experimental approaches hold promise for diagnostic, prognostic and therapeutic applications. 
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From MHC Class I to MHC Class II Tetramers: where similarities end 

The binding between any given TCR and MHC-peptide complex is fairly specific, but is 

characterized by a low affinity and fast off-rates. It is now argued that during T cell recognition, 

these low affinity and fast off-rates are necessary to enable serial contacts of each TCR molecule 

with multiple MHC-peptide ligands (1). Such characteristics were assumed to be too unfavorable 

for direct staining of T cells by means of MHC-peptide reagents. Indeed, fluorescent-labeled single 

MHC-peptide molecules are not capable of stable binding to the cell. Such limitation has been 

circumvented by multivalently complexing MHC molecules, typically in the form of tetramers. The 

low affinity of the single MHC units is thus compensated for by the higher avidity gained by 

cooperative binding. 

Since their first description in 1996 (2), the innovation of MHC Class I tetramers has revolutionized 

our understanding of virus- and tumor-specific T cells. To generate this class of reagents, MHC 

Class I molecules are made in Escherichia coli and peptides are introduced during the refolding of 

the Class I α chain. The approach is made easier by the fact that only the " chain, coupled with the 

invariant $2-microglobulin structure, binds the peptide. On the contrary, successful MHC Class II 

tetramer production requires interaction of three components – α and β chains (both polymorphic) 

and the peptide – making the task more complex. 

The group of J. Kappler and P. Marrack first described an approach in designing soluble MHC 

Class II molecules for murine alleles, where the peptide of interest is covalently linked to the β 

chain of the MHC molecule to ensure its placement in the peptide-binding groove during the 

synthesis process (3,4). Peptide-MHC multimers produced in this manner have been used to 

identify T cells from mice transgenic for an α/β TCR specific for moth cytochrome c (4). Because 

of the introduction of the TCR transgene, the majority of T cells are bound by the Class II tetramer 

in this system. In contrast, frequencies of epitope-specific T cells are significantly lower in humans, 

necessitating a much more sensitive system to successfully follow CD4+ T cell responses. 
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Moreover, the main disadvantage is that a separate molecular construct must be produced for every 

Class II-peptide tetramer designed. 

The drawback of a peptide that had to be engineered into the construct similarly arose with MHC 

Class II multimers of the human molecules (5-8). We first reported the production of human MHC 

Class II tetramers (9); notably, this construct is expressed in empty form and only subsequently is 

the peptide loaded, without any covalent binding. This approach allows greater flexibility, since 

different peptides can be loaded in the same MHC molecules. The structure of this tetramer 

construct is illustrated in Fig. 1. Recombinant Class II monomeric molecules are produced that 

incorporate leucine zipper motifs in place of the native transmembrane and cytosolic domains to 

stabilize the α/β complex. Flexible linkers on either side of leucine zippers provide structural 

flexibility, which likely allow better clustering of TCRs upon interaction. This molecule is produced 

in stably transfected Drosophila cells, purified by affinity chromatography and subsequently 

biotinylated on the terminal portion of the MHC β chain (9). The monomers thus obtained can be 

stored empty and later loaded with the peptide of interest, using a detergent-facilitated exchange 

reaction. The loaded monomers are subsequently assembled into tetramers by the addition of 

streptavidin, which has four biotin-binding sites. The use of fluorochrome-labeled streptavidin 

(typically phycoerythrin, for its bright emission and limited self-quenching) permits detection of the 

binding of the tetramers to target T cells.  
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MHC Class II Tetramers at work: identifying and characterizing antigen-specific CD4+ T 

cells 

The presence of antigen-specific T cells has traditionally been inferred by functional assays, i.e., as 

a readout of the activation induced by the antigen. The most sensitive assays of T cells function rely 

on the detection of cytokine synthesis, usually interferon-γ, by means of intracellular cytokine 

staining, surface capture or ELISpot. The main disadvantages of these techniques is that they are 

indirect and prone to considerable experimental variability.    

On the other hand, the main disadvantage of both MHC Class I and Class II tetramers is that only 

known MHC-peptide specificities can be analyzed. This limitation is not critical in inbred mouse 

strains or human infections for which immunodominant peptides exist, but the problem arises in the 

most common situation where a complex set of epitopes is targeted by T cells. Further complexity 

is added when unknown epitopes need to be identified to load the appropriate peptide in the 

tetramer construct. To this aim, computer-assisted algorithms have been designed that predict 

potential MHC-binding epitopes by scanning the aminoacid sequence of whole antigens (10). We 

have devised a different approach named tetramer-guided epitope mapping (TGEM) (11,12), where 

the ability to load the MHC Class II molecule with different peptides allows to combine tetramer 

analysis with peptide array strategies for epitope identification. Different pools of peptides are 

loaded on the selected MHC Class II molecule: in this mixture, the peptides binding with higher 

affinity preferentially occupy the MHC groove. The corresponding pooled tetramers obtained are 

then used to stain T cells. In a second step, peptides from positively staining pooled tetramers are 

loaded individually onto MHC Class II molecules, and the staining of T cells with the 

corresponding tetramers is repeated to identify the individual T cell epitope(s). A panel of MHC 

Class II tetramers and different antigens containing relevant binding epitopes is shown in Table 1.     

The application of human Class I tetramers to study self antigens has been most extensively 

developed in studies of tumor antigens. For example, peptides from melanoma-associated antigens 

loaded into HLA-A2 tetramers have been used for patient monitoring, phenotyping, and clinical 
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correlations in patients with melanoma and in cancer vaccine trials (13). Early uses of human MHC 

Class II multimers were concentrated primarily in the detection and monitoring of human T cell 

responses to infectious antigens, for which the CD4+ T cell response is robust and epitope 

specificity is fairly predictable. Antigen-specific T cells from influenza-immune individuals were 

detected using Class II tetramers loaded with an immunodominant epitope from hemagglutinin 

(HA) (9). The use of tetramer staining to identify antigen-specific cells permits simultaneous 

analysis of cells using fluorochrome-labeled antibodies. This additional phenotypic analysis can 

provide important information about an antigen-specific response such as the type of T cell 

involved, presence of activation or other markers, and cytokine production through intracellular 

staining, thus differentiating, for instance, between Th1 and Th2 responses. With this approach, 

tetramer-positive cells which had been previously expanded in vitro with peptide-pulsed antigen-

presenting cells were found to be CD3+CD4highCD25+, a phenotype characteristic of activated T 

helper cells responding to antigen (9,14). Moreover, the concomitant use of MHC Class II tetramers 

and carboxyfluorescein diacetate succinimidyl ester (CFSE) staining allows to calculate precursor 

frequencies without the need for limiting dilution analysis. CFSE-labeled cells halve their dye 

content each time they divide, resulting in a parallel halving of their corresponding fluorescence. 

With each peak of progressively lower fluorescence intensity representing one cell division, the 

original number of CD4+ T cell precursors can  be derived (9). 

Similar approaches have been used in identifying epitope-specific CD4+ T cells from individuals 

infected with Herpes simplex virus type 2 (HSV-2) (15). In this latter work, tetramer-positive cells 

were subsequently sorted, cloned, and further characterized. The vast majority of the clones retained 

tetramer staining and proliferated when challenged with the same peptide used in the tetramer. This 

confirms the antigen-specific properties of peripheral blood T cells detected using tetramer staining 

(15). Tetramers can thus be used not only to identify antigen-specific cells, but also to isolate these 

cells by fluorescence sorting for further characterization. Different T cell clones have been obtained 
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from the same HSV-2-infected individual with this approach, showing different TCR gene usage 

and affinities (16). 

The application of MHC Class II tetramer technology to autoimmune diseases faces additional 

problems. The number of antigen-specific CD4+ cells present in peripheral blood is even lower than 

with allo-responses. Moreover, autoreactive T cells must harbor lower affinity TCRs in order to 

escape thymic negative selection. An initial study was conducted in rheumatoid arthritis patients, 

taking advantage of synovial fluid sampling, an enriched starting material not available in other 

autoimmune diseases. This study failed to directly detect cartilage antigen-specific CD4+ T cells, 

finding DR4 tetramer-positive fractions above background only in a marginal subset of individuals 

(5). In our study on GAD65-specific T cells in type 1 diabetic patients, preliminary in vitro 

expansion of peripheral blood lymphocytes on GAD65-pulsed antigen-presenting cells was 

necessary to overcome this problem (17). A large expansion of tetramer-positive cells can thus be 

obtained, representing both the accumulation of proliferating antigen-specific cells and the loss of 

unrelated T cells lacking appropriate antigenic stimulation during in vitro culture. Similarly, 

tetramer staining of gliadin-specific T cells obtained from intestinal biopsies of patients with celiac 

disease was accomplished after in vitro expansion and generation of clones (8).       

This problem is not unique to autoimmunity studies. The size of clonal expansion is considerably 

lower for CD4+ than for CD8+ T cells, resulting in low frequencies of antigen-specific CD4+ T 

lymphocytes in peripheral blood, in the range of 1:6,000 to 1:100,000. While it is reasonable to 

attempt direct detection strategies in human studies when the antigen challenge is robust, as in 

vaccine trials, direct detection of antigen-specific CD4+ T cells has so far yielded very low tetramer-

binding peripheral blood populations even in an infectious context (18). The low number of 

antigen-specific CD4+ cells in peripheral blood is beyond the sensitivity limit of flow cytometry: 

frequencies of tetramer-positive cells below 0.2% (1:500) significantly overlap with the 0.1% 

background staining tipically obtained using tetramers loaded with control irrelevant peptides. 

Coupling in vitro amplification with CFSE staining circumvents one problem, allowing to calculate 
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the original precursor frequency without the need for direct detection (9). Nonetheless, the 

requirement for in vitro amplification prior to tetramer detection prompts some caution in 

interpreting the data. Changes in T cell phenotype and preferential expansion of cells either with 

higher affinity TCRs (in the presence of limited peptide availability) or with lower affinity TCRs (in 

the presence of excess peptide concentration) may occur during culture.  

Combining tetramer fluorescence sorting with more sensitive techniques such as gene expression 

array analysis and real-time PCR might help to fill the gap and to better characterize the functional 

profile of antigen-specific cells. 
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Beyond staining: tickling the TCR with MHC Class II Tetramers 

As with monoclonal antibodies (mAbs), MHC Class II tetramers can be used not just as staining 

reagents, but also as stimulating tools for T cell activation. There are several ways in which T cells 

can be activated for in vitro studies (Table 2): typically, anti-CD3 mAbs (either plate-bound or in 

soluble form) have been used for this purpose. These reagents bind to the ε chain of the CD3 

complex and supply a potent surrogate signal mimicking the MHC-peptide-TCR trimolecular 

interaction. Several features limit the fidelity of this system: 1) the affinity of mAb binding is 

approx. five-fold higher than the MHC Class II/TCR interaction, with different on-rate and off-rate 

characteristics; 2) anti-CD3 stimulation is not dependent on recognition by the TCR of the 

processed antigen in the MHC Class II groove, and 3) there is no CD4 contribution to the signal 

delivered. A more physiological approach is to use antigen-presenting cells (APCs) pulsed with the 

peptide of interest. This system closely mimics physiology but is subject to the vagaries of less 

controllable conditions and lacks the flexibility required to follow the whole range of signals 

delivered. 

The advent of recombinant MHC Class II molecules has opened new possibilities for T cell 

functional studies. Cochran et al. thoroughly investigated the valency required for TCR engagement 

in order to initiate signaling, using chemically defined MHC Class II oligomers (6). Monomeric 

MHC-peptide complexes did not induce T cell activation, while MHC dimers and tetramers 

stimulated T cells (6). Moreover, the extent of activation correlated with the number of TCR cross-

linked, suggesting that clustering of two TCR molecules is necessary and sufficient for signaling. 

Another study performed with a series of oligomeric MHC-peptide complexes produced by 

streptavidin-mediated cross-linking of biotinylated MHC proteins reported that trimers were the 

minimal activating species (19). At odds with these results, some reports have suggested that 

monomeric MHC-peptide complexes may not trigger complete T cell activation, but can deliver 

early, transient Ca2+ signals (20). Two additional phenomena associated with MHC/TCR 

interactions further complicate the interpretation. First, at high concentrations MHC-TCR 
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complexes show a tendency to aggregate exhibited by neither MHC nor TCR alone, suggesting that 

binding of monomeric MHC peptide complexes could trigger oligomerization of TCR on the 

surface of T cells (21). Second, at low antigen densities single MHC-peptide complexes can serially 

engage multiple TCR molecules (1,22). In principle, such serial triggering could allow a single 

MHC molecule on an APC to cluster TCRs on the T cell membrane.   

The activation events following the interaction of the TCR with recombinant soluble MHC 

molecules have been initially studied by means of dimeric peptide/MHC Class II ligands, obtained 

by fusing the MHC extracellular domains with the IgG Fc portion (23-25). In the study by Hamad 

et al., IEk-peptide dimers adsorbed on plastic delivered a signal even more potent than anti-CD3 

mAb, as assessed by TCR downregulation, IL-2 production and proliferation (23). Similar results 

were obtained with a human HLA-DR2-peptide dimer: this construct induced proliferation in 

myelin basic protein (MBP)-specific T cell clones when used in soluble form, while the same effect 

was not elicited by soluble anti-CD3 mAb (25). Monomeric MHC units coated on plastic have also 

been used in place of peptide-pulsed APCs to induce proliferation and support the growth of 

antigen-specific T cells (3,17). 

More recently, we undertook a comprehensive evaluation of the TCR signaling cascades using 

MHC Class II tetramers as activating ligands. Stimulation with these reagents has several 

advantages over monomers: 1) tetramer is used in soluble form, allowing the amount of stimulus to 

be quantitated rather than just estimated as amount of MHC monomer offered for adsorption; 2) the 

signaling events can be correlated with tetramer binding by means of phycoerythrin-labeled 

streptavidin; 3) the short timeframes of early transduction steps can be studied more conveniently. 

A simplified representation of  the signaling pathways elicited by MHC/TCR interaction is depicted 

in Fig. 2. At the earliest time points, sequential phosphorylation cascades are activated. These 

events also lead to activation of phospholipase C (PLC)-γ1, whose enzymatic activity produces 

diacylglycerol (DAG), which triggers protein kinase C (PKC) pathway, and inositol triphosphate 

(IP3), which elicits Ca2+ release from intracellular stores. This first Ca2+ burst triggers a second 
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wave of Ca2+ influx from the extracellular space. All phosphorylation and Ca2+ signal transduction 

cascades ultimately lead to the formation of active transcription factor complexes, which initiate the 

expression of new genes. These early and late activation events were analyzed in glutamic acid 

decarboxylase (GAD65)-specific HLA-DR0401-restricted T cell clones derived from a diabetic 

patient (R. Mallone et al., manuscript submitted for publication). The initiation of tetramer-induced 

signal transduction was followed by real-time Ca2+ measurements. As shown in Fig. 3, panel A, 

optimal concentrations (10-20 ug/ml) of the tetramer loaded with the cognate GAD65 peptide 

(TMr-GAD) led to a consistent raise in intracellular Ca2+ concentration, which was paralleled by a 

smaller and low-onset signal delivered by the same tetramer loaded with an irrelevant MBP peptide 

(TMr-MBP). Fig. 3 panel B shows the Ca2+ fluxes registered with cross-linked anti-CD3 stimulation 

as compared to an isotype-matched IgG. The immediate onset of a potent signal reflects the much 

higher affinity of antigen/mAb interactions as compared to MHC-peptide-TCR ones. A similar 

picture was obtained when protein tyrosine phosphorylation was considered: TMr-GAD was 

capable of delivering an efficient signal, although delayed and not as high as the one elicited by 

cross-linked anti-CD3 mAb. However, this effect was promiscuous with respect to peptide 

specificity, since a smaller, transient shift in phosphorylation was also obtained by the non-cognate 

TMr-MBP. This lack of specificity was limited to early signaling events, and MBP-loaded tetramers 

were not capable of committing cells to full activation. As exemplified in Fig. 3, panels C-D, CD69 

(the earliest newly synthesized surface protein following complete T cell activation) was readily 

upregulated by TMr-GAD, but not by TMr-MBP. This upregulation was accompanied by surface 

staining for TMr-GAD, while no binding was evident for TMr-MBP. 

The early signals delivered by non-cognate tetramers occurred in the absence of any detectable 

binding, likely due to fast, transient tetramer/TCR interactions not followed by stable binding and 

signal progression. Indeed, approx. 90% of the energy necessary for the interaction with the TCR is 

given solely by the MHC molecule (26). In line with a two-step model of TCR recognition (26), the 

GAD peptide delivers specificity and full T cell activation by turning this initial association into a 
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stable, longer binding. Transient peptide-independent TCR engagements are increasingly 

recognized as important contributors to effective signaling and antigen sensitivity (20,27,28). Co-

stimulation was not a requirement for these T cell clones, likely due to their memory phenotype 

(29) and, possibly, to the high transducing efficiency of tetramers (19,30-32). Despite the 

limitations of a direct comparison, tetramer stimulation achieved stronger effects than APC 

stimulation, as judged by the induction of cytokine secretion. 

The plethora of stimulatory effects observed is even more striking considering the non-saturating 

binding of MHC Class II tetramers, which occupied only a small fraction of the TCRs available. 

Using a quantitative flow cytometry approach, we estimated that, at optimal signaling 

concentrations, only 8-12% of the available TCRs were stably occupied by cognate tetramers. The 

potent signals delivered despite binding to so few TCRs could be partly related to a serial 

engagement effect as described by Valitutti et al. (1). In other words, each single MHC unit within 

the tetramer could transiently contact and scan a large number of TCRs by serial fast interactions. 

At the same time, the tetramer as a whole would still be stably bound to the cell surface, due to the 

increased avidity achieved by the multiple MHC interactions of the tetramer. In contrast, the high 

affinity of anti-CD3 mAbs allows them to bind a very large number of TCRs, but in a static rather 

than dynamic fashion. 

A promising frontier for T cell activation studies will be the development of so-called “artificial” 

APCs. This approach has been mainly developed in the field of adoptive transfer of cytotoxic T 

lymphocytes (CTLs) (33,34). The infusion of antigen-specific CD8+ cells is a potential 

immunotherapy against selected cancers (e.g., melanoma) and infectious diseases (e.g., HIV and 

Cytomegalovirus infections), but its broad use is challenged by the need to generate consistent 

numbers of autologous T cells directed against the selected epitopes. While beads coated with anti-

CD3 and anti-CD28 mAbs are capable of supporting the long-term growth of CD4+ T cells, 

additional requirements need to be met for CD8+ T cells (34). To circumvent this problem, mouse 

fibroblasts have been transfected with single peptide-MHC Class I complexes along with B7.1, 
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ICAM-1 and LFA-3 costimulatory molecules (33). The induction of fully functional CTLs was 

more efficient than that obtained with autologous blood-derived dendritic cells, probably due to a 

higher availability of MHC and costimulatory molecules and absence of other MHC alleles in the 

artificial APC. Moreover, strong responses were induced not only against flu peptides, but also 

against autoantigens in the absence of autoimmune diseases. This suggests that there is not only a 

recall effect on primed CTLs, but also activation of naïve T cells present at very low frequencies 

(33). For expansion of antigen-specific CD4+ T cells, MHC Class II tetramers have been used to 

engineer bead-based artificial APCs capable of activating human CD4+ T cells in an antigen-

specific manner (35). Recombinant MHC Class II molecules have also been incorporated into 

liposomes. Compared with bead-based artificial APCs, cell- and liposome-based systems exploit 

membrane fluidity to more closely mimic physiological interactions with T cells and have been 

shown to induce immunological synapse formation (36). 
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How much activation is right? 

The capability of recombinant MHC Class II reagents for activating CD4+ lymphocytes is a double-

edged sword that can be differently used in distinct disease situations. For malignancies and 

infectious diseases, it may be desirable to stimulate these cells, thus allowing better cooperation 

between cytotoxic and helper lymphocytes. Trials of adoptive immunotherapy have focused on the 

infusion of CD8+ cells as direct effectors of tumor cell killing. However, several studies have shown 

that CD4+ cells are required in the optimal induction of human tumor-specific CD8+ cells (37,38). 

In murine models, CD4+ cells play an important role in eradicating tumors and can sometimes do so 

even in the absence of CD8+ T cells (39). The limited success of trials of adoptive transfer with 

CD8+ T cells has been partially attributed to a need for continuing CD4+ T cells help to sustain the 

anti-tumor response (40,41). 

In the setting of autoimmunity (and of transplantation immunity as well), different goals are 

therapeutically pursued. CD4+ T cells can either be skewed towards more protective phenotypes 

(e.g., Th2 versus Th1, stimulation of CD4+CD25+ regulatory T cells) or can be turned off. These 

outcomes can be achieved by changing the quality or quantity of the signal delivered through the 

TCR. Administration of a dimeric peptide/MHC Class II chimera to TCR transgenic mice specific 

for an HA peptide in the context of I-Ed induced differentiation of CD4+ cells towards a Th2 

response through negative signaling on the STAT4 pathway of Th1 differentiation. This Th2 

polarization had subsequent bystander inhibitory effects on CD8+ T cell function as a result of IL-2 

deprivation (24). The same dimeric peptide/MHC chimera was shown to have anti-diabetogenic 

properties in mice transgenic both for HA/I-Ed-specific TCR and for selective expression of the HA 

protein in pancreatic β cells. This treatment prevented autoimmune diabetes and reversed it in 

animals that were already diabetic through induction of anergy in autoreactive CD4+ T cells in the 

spleen and stimulation of IL-10-secreting T regulatory type 1 cells in the pancreas (42). A similar 

induction of IL-2-reversible anergy was obtained in vitro in human MBP-reactive MHC-DR2-

restricted T cells from multiple sclerosis patients by a dimeric DR2/MBP chimera (32). In a murine 
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model of collagen-induced arthritis, a bivalent form of a single I-Aq chain presenting a peptide from 

type II collagen delayed the onset and reduced severity of disease by induction of antigen-specific 

hyporesponsiveness (43). Dimeric Class I MHC molecules have also been shown to induce antigen-

specific T cell unresponsiveness in cytotoxic T lymphocytes in vitro and in vivo (44).   

Another way to silence autoreactive T cells may be to quantitatively alter the TCR signal to induce 

activation-induced cell death (AICD) (45). In our diabetes model of GAD65-specific T cell clones, 

sustained stimulation with GAD65-loaded Class II tetramers induced massive apoptosis, as readily 

detectable even by morphological parameters alone (Fig. 4, panel A). This apoptotic process was 

characteristic of AICD, being inhibited by blocking the Fas/Fas ligand interaction (Fig. 4, panel B) 

(R. Mallone et al., manuscript submitted for publication). Gene expression arrays also confirmed 

that the apoptosis was mainly antigen-driven, following the classical death receptor pathway (46). 

Increased mRNA expression was detected for: 1) members of the tumor necrosis factor (TNF) 

ligand family: Fas ligand (47,48), CD40 ligand (49), lymphotoxin α (50) (but not TNF-α, likely for 

the short half life of its mRNA) (51); 2) members of the TNF receptor family (52,53): TNF receptor 

2 (but not FAS, which is already highly expressed in this clones) and 4-1BB (54); 3) downstream 

mediators, more notably IAP-1 (downstream of TNF receptor 2) (53), caspase-3 (46) and caspase-

14 (55); 4) members of the Bcl-2 family: Bcl-x (56), suggesting some contribution of a cytokine 

withdrawal mechanism (57) (R. Mallone and E.M. Laughlin, unpublished observations).   
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Present and future clinical applications: diagnosis, prognosis, therapy 

The use of MHC Class II tetramers for diagnostic and prognostic evaluations is currently the focus 

of clinical application. In mouse models of infection, Class II tetramers specific for lymphocytic 

choriomeningitis virus-derived peptides have been used to track the expansion of CD4+ T cell 

populations, showing that the increase in the CD4+ compartment starts later, achieves a lower 

maximum level and is less stable than that of CD8+ T cells (58). Results are very promising in 

human infectious diseases, where, despite the limited feasibility of direct detection (18), influenza A 

and HSV-2 antigen-specific CD4+ T cells have been detected following in vitro expansion 

(9,15,16). This area of application is particularly relevant for infectious diseases such as AIDS and 

hepatitis C, for which CD4+ T cell responses are crucial to the outcome. The translation of these 

tools to the field of tumor immunology could also open new avenues for the development and 

monitoring of cancer vaccines and, at the same time, for better understanding the relative 

contribution of CD4+ cells.      

Lower precursor frequencies in peripheral blood and lower TCR affinities have made advancement 

slower for autoimmune diseases. The recent report by Reijonen et al. filled this gap by 

demonstrating the possibility to detect significant numbers of GAD65-reactive T cells in patients 

with new-onset type 1 diabetes (17). GAD65-loaded MHC DR0401 and DR0404 tetramers were 

capable of detecting 4-28% antigen-specific CD4+ T cells from peripheral blood lymphocytes 

previously expanded in vitro on GAD65-pulsed APCs. More importantly, GAD-reactive cells were 

found in all type 1 diabetic patients and some at risk subjects, but not in normal control subjects 

(17). The prognostic significance of tetramer staining in at risk subjects, i.e., whether they have an 

increased probability of developing diabetes in the short term, deserves further study. Indeed, the 

prediction of diabetes development obtained using MHC Class I tetramers to quantify β cell 

epitope-specific CD8+ T cells in the peripheral blood of NOD mice is encouraging (59).  

The relevance of the functional properties of recombinant MHC Class II reagents in stimulating T 

cells is not limited to in vitro activation studies. The possibility of exploiting these properties for 
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therapeutic purposes is intriguing. While in oncologic and infectious diseases the aim would be to 

bolster the CD4 response in order to provide sustained help for the cytotoxic effector phase (40,41), 

the more promising preclinical studies using immunomodulatory MHC Class II multimers come 

from autoimmunity (24,32,42,43). In this field, immune intervention has proved to be a formidable 

task, so far rewarded with little success. The recent publication of the first clinical trial using a non-

activating (60) humanized form of OKT3 mAb in new-onset type 1 diabetes is a notable exception 

(61). This treatment obtained a consistent, although transient, improvement in β cell function, likely 

acting through Th2 polarization and induction of CD4+CD25+ regulatory T cells (62,63). The 

possibility of using immunodominant peptides or altered peptide ligands for more antigen-specific 

immunomodulatory therapies has been extensively explored. Several animal studies have shown 

that prevention of experimental autoimmune encephalomyelitis (a murine model of multiple 

sclerosis) or diabetes can be achieved by the downregulation of autoreactive T cells after 

administration of immunodominant peptides derived from MBP (64,65) or from the major β cell 

antigens, i.e., insulin B chain (66), GAD65 (67), heat-shock protein (hsp)60 (68). However, some 

studies have shown a lack of protection by peptide-based therapy, and the translation to clinical 

trials using different routes of administration has been disappointing at best (69-73). This inefficacy 

may partly be due to the fast proteolytic degradation of peptides, with lifespans in the order of 0.5-

10 minutes in the bloodstream (74). The threat of exacerbating autoimmunity rather than inducing 

tolerance adds further uncertainty (75). New clinical trials with insulin B chain and GAD65 

peptides are under way, supported by the Immune Tolerance Network 

(http://www.immunetolerance.org).   

MHC Class II multimers could represent an appealing therapeutic alternative, endowed with 

remarkable specificity and better bioavailability (with half lives of approx. 50 h in vivo) (76). The 

selective nature of this approach is a potential drawback because it requires knowledge of  the 

relevant T cell epitopes of several target proteins. It may also require intervention early in the 

disease process, before extensive epitope spreading has occurred (77). Dominant  peptide epitopes 
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are likely to change during the progression of autoimmune disease (78), and successful tolerance 

induction will depend on correlating antigen hierarchy with disease progression. In this respect, a 

combined approach of disease “immune staging” and tolerogenic therapy could be envisioned. 

Periodic screening of at risk or newly-diagnosed individuals with the same tetramers, which could 

be conveniently loaded with any relevant peptide, may allow to choose the best timing for specific 

immunomodulatory intervention.  
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Tables 

 

Table 1. Human MHC Class II tetramers and relevant antigens  

 Infectious antigens Autoimmune antigens Tumor antigens 

DRB1*0401 Influenza A hemagglutinin 

Borrelia burgdorferi OspA 

Herpes simplex 2 VP16 

RP collagen II 

Type 1 diabetes GAD65 

MS myelin basic protein 

Melanoma tyrosinase

DRB1*0101 Influenza A hemagglutinin 

Herpes simplex 2 VP16 

Cytomegalovirus pp65 

HIV gag 

RP Collagen II  

DRB1*0404 Herpes simplex 2 VP16 Type 1 diabetes GAD65  

DRB1*0402 Herpes simplex 2 VP16   

DRB1*1104 Herpes simplex 2 VP16   

DRB1*1501 Herpes simplex 2 VP16 MS myelin basic protein  

DQB1*0602 Herpes simplex 2 VP16   

DQB1*0201  Celiac disease gliadin  

 
  RP, relapsing polycondritis; MS, multiple sclerosis 
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         Table 2. In vitro T cell activation systems 

- Anti-CD3 monoclonal antibodies 

- Peptide-pulsed antigen-presenting cells 

- Plate-bound or soluble MHC dimers 

- Plate-bound MHC monomers 

- Soluble MHC tetramers 

- Artificial antigen presenting cells 

 

H
A

L author m
anuscript    inserm

-00266546, version 1



 27

Figure Legends 

 

Fig. 1.  Structure of MHC Class II tetramers. 

Fig. 2. TCR signaling events triggered following TCR/MHC interaction. TCR ligation leads to 

phosphorylation of Lck, which then phosphorylates ITAM domains on the ζ chains of the CD3 

complex. Once phosphorylated, ITAM domains function as docking sites for ζ-associated protein 

(ZAP)-70, which is activated through phosphorylation by Lck and in turn phosphorylates adaptor 

proteins such as LAT. Further phosphorylation cascades are triggered, which interact with co-

stimulatory signals and also lead to activation of phospholipase C (PLC)-γ1. The enzymatic activity 

of PLC- γ1 produces diacylglycerol (DAG), which triggers protein kinase C (PKC) pathway, and 

inositol triphosphate (IP3), which elicits Ca2+ release from intracellular stores. This first Ca2+ burst 

triggers a second wave of Ca2+ influx from the extracellular space. All phosphorylation and Ca2+ 

signal transduction cascades ultimately lead to the formation of active transcription factor 

complexes, which initiate gene expression.  

Fig. 3. Signals delivered upon tetramer (TMr) stimulation on GAD-specific DR0401-restricted T 

cell clones. (A-B) Ca2+ mobilization, as assessed by the fluorescence shift of the Ca2+-sensitive dye 

Fluo-3. The indicated stimuli were added at t=0; the dotted lines indicate the basal Ca2+ level before 

stimulation. (C-D) CD69 upregulation. Cells were stimulated with the indicated tetramers for 3 h at 

37ºC. Insets in panels show density plots of CD69 upregulation relative to tetramer binding.  

Fig. 4. Cognate tetramer-induced apoptosis on GAD-specific DR0401-restricted T cells. (A) Three-

dimensional plots of forward (FSC) and side scatter (SSC) distribution among cells treated with the 

same DR0401 tetramer loaded with either cognate GAD or non-cognate MBP peptide. (B) The 

apoptotic effect of the cognate TMr-GAD is due to activation-induced cell death: inhibition of TMr-

GAD-induced apoptosis by a blocking anti-Fas ligand mAb. 
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