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ABSTRACT 

The emergence of multi-resistant pathogenic bacteria is a worldwide health issue. Recently, 

clinical variants of a single antibiotic-modifying acetyltransferase, AAC(6’)-Ib, have 

appeared that confer extended resistance to most aminoglycosides and, more surprisingly, to 

structurally unrelated fluoroquinolones. The corresponding gene is carried by mobile genetic 

elements and is present in most multi-resistant pathogenic strains, hence making it a serious 

threat to current therapies. We report the crystal structures of both narrow and broad-spectrum 

resistance variants of this enzyme, which reveal the structural basis for the emergence of 

extended resistance. The active site displays an important plasticity and has adapted to new 

substrates by a large-scale gaping process. We have also obtained co-crystals with both 

substrates, as well as with a simple transition state analog, which provides new clues for the 

design of inhibitors of this resistance mechanism. 
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INTRODUCTION 

One of the major mechanisms of antibiotic resistance is the enzymatic modification of the 

active compound which prevents its binding to the cellular target. Aminoglycosides and 

fluoroquinolones are potent, broad-spectrum antibiotics of major clinical importance. Until 

recently, they escaped this resistance mechanism to different degrees, which preserved them 

as key drugs for treating life-threatening infections caused by resistant bacteria. While no 

enzymatic modification of the synthetic fluoroquinolones had been observed, the known 

aminoglycoside-modifying enzymes with their somewhat limited substrate specificities could 

not simultaneously inactivate all clinically used compounds. One of the most common 

mechanisms is N-acetylation at the 6’ position (Vakulenko & Mobashery, 2003) (Fig 1A), 

catalyzed by the aminoglycoside 6’-N-acetyltransferases (AAC(6’)). Two functional classes 

of this enzyme have been described: AAC(6’)-I, conferring resistance to amikacin but not to 

gentamicin, and AAC(6’)-II, with the reciprocal selectivity (both classes also acetylate 

kanamycin, tobramycin, neomycin, netilmicin and sisomicin). Now, isoforms of the AAC(6’)-

Ib subclass have evolved in clinical isolates with the capacity to modify amikacin as well as 

gentamicin or some fluoroquinolones. 

This has a strong clinical relevance, as AAC(6’)-Ib is the most prevalent 

aminoglycoside-modifying enzyme, present in over 70% of AAC(6’)-producing gram-

negative isolates (Vakulenko & Mobashery, 2003). Its spread may have been favored by 

integration of its gene into natural expression vectors such as integrons (Fluit & Schmitz, 

2004). Among the recent variants of this enzyme with altered specificity are AAC(6’)-Ib11 

which confers simultaneous resistance to gentamicin and amikacin (Casin et al, 2003) and 

AAC(6’)-Ib-cr, which has a unique extension of its substrate specificity from 

aminoglycosides to structurally unrelated fluoroquinolones (Robicsek et al, 2006b). Both 

variants differ from the initially identified AAC(6’)-Ib (Tran Van Nhieu & Collatz, 1987) 

(aside from functionally irrelevant N-terminal differences) by two amino acid substitutions 

each and are currently spreading (Robicsek et al, 2006a) (supplementary Fig 1 online). 

Two structures of AAC(6’)-I have been reported, AAC(6’)-Ii and AAC(6’)-Iy ( Wybenga-

Groot et al, 1999; Vetting et al, 2004). These two enzymes are chromosomally-encoded and 

hence confined to a single bacterial species. They confer a low level of resistance and their 

primary function as aminoglycoside resistance enzymes has been questioned (Magnet et al, 

2001). Accordingly, they have moderate catalytic efficiencies and/or affinities for 

aminoglycosides, about one to two orders of magnitude lower than those of AAC(6’)-Ib (Kim 



Structural basis of emerging antibiotic resistance 

4 

et al, 2007; Magnet et al, 2001; Wright & Ladak, 1997). Their sequences are also quite 

divergent from that of the predominant AAC(6’)-Ib (identity level < 20%, supplementary Fig 

1 online), therefore, they cannot be used to provide structural insights into the broadenings of 

AAC(6’)-Ib specificity and its current clinical consequences.  

In the present work, we report the structure of narrow and broad-spectrum variants of 

AAC(6’)-Ib, free and complexed. Interaction with the antibiotic substrate is different from 

that of AAC(6’)-Iy and allows both tighter binding and broader recognition of second-

generation aminoglycosides, such as amikacin. Furthermore, we show that the mutations 

which are responsible for spectrum broadening induce a large structural change in the active 

site, which allows for the accommodation of an extended set of substrates. 
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RESULTS AND DISCUSSION 

We have solved the crystal structures of both AAC(6’)-Ib and AAC(6’)-Ib11. The narrow 

spectrum variant Ib was crystallized in complex with coenzyme A (structure solved to 1.8 Å 

resolution), or coenzyme A and kanamycin (2.4 Å resolution). Crystals of broad-spectrum 

variant Ib11 were obtained the absence of substrate (2.1 Å resolution). Interestingly, each 

variant failed to crystallize in the conditions used for the other one. Both variants share the 

same fold (Fig 1B), which belongs to the GCN5-related N-acetyltransferase superfamily 

(Vetting et al, 2005), also encompassing other classes of AAC. Accordingly, the acetyl-CoA 

binding site is structurally similar to that of other enzymes of this family. Even if the cofactor 

was not co-crystallized with the AAC(6’)-Ib11, the corresponding binding pocket is similar to 

that of AAC(6’)-Ib (supplementary Fig 2 online). There are, however, important differences 

at the level of the antibiotic binding site, which will be discussed below.  

The two previously reported AAC(6’) structures are dimers and their aminoglycoside binding 

crevice is shared between the two protomers (Vetting et al, 2004; Wybenga-Groot et al, 1999) 

(supplementary Fig 3 online). On the contrary, AAC(6’)-Ib is essentially monomeric: gel 

filtration experiments confirmed that AAC(6’)-Ib and AAC(6’)-Ib-cr are monomers in 

solution, whereas AAC(6’)-Ib11 exhibits a monomer/dimer equilibrium (not shown). 

Accordingly, the active site is contained within a single protomer, with the aminoglycoside 

binding site being constituted by connecting loops (Fig 1B), a topology that differs from the 

previously reported structures. These loops form a closed pocket, in which the 

aminoglycoside fits snugly (Fig 2A). 

There is also a long -helical flap forming a lid over the antibiotic pocket, with a loop 

contacting the aminoglycoside rings (Fig 1B). This extended flap is specific of ACC(6’)-Ib 

(supplementary Figs 1 and 3 online) and is held in place by a stacking interaction between the 

side chains of W38 (in the flap) and N147 (in the core, Fig 2B), creating a tunnel surrounding 

the end of the pantetheine arm of coenzyme A. This could explain the specific enzymatic 

behavior of AAC(6’)-Ib, which exhibits an ordered kinetic mechanism, in which acetyl-CoA 

is the first substrate to bind (Kim et al, 2007). Locking of the flap around acetyl-CoA could 

therefore position key residues involved in antibiotic recognition, such as W39, which stacks 

onto the aminoglycoside ring I. Hence, prior binding of acetyl-CoA could facilitate 

subsequent recognition of the antibiotic. 
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AAC(6’)-Ib has evolved the capacity to acetylate semi-synthetic aminoglycosides that carry a 

bulky N-substituent on the central ring, such as amikacin (Fig 1A). There indeed exists a 

cavity on the surface of the active site that can accommodate such a chain (Fig 2A). This 

binding pocket is absent in the active site of other, less efficient variants of AAC(6’).  

Mutations which confer a broadened spectrum to AAC(6’)-Ib11, Q106L and L107S (purple in 

Fig 1C), are not located in the immediate vicinity of the aminoglycoside site, but along the 

narrow groove that binds the pantetheine arm of acetyl-CoA. In AAC(6’)-Ib11, the double 

substitution induces a large structural change, caused by a disruption of the central -strand 

(Fig 1C and supplementary figure 4 online). As a consequence, the packing of helices above 

and below the -sheet is perturbed, causing a large scale “gaping” of the active site, with W38 

moving by as much as 15 Å. Several lines of evidence indicate that this structural change is 

genuine, and not a consequence of crystal packing. It is direct structural effect: in the wild-

type structure, the side chain of W39, in the flap, interdigitates between residues 105 and 107, 

an interaction obstructed by the double mutation at this site (supplementary Fig 4 online). 

This structural change involving W38 and W39 also induces a redshift of the intrinsic 

fluorescence of the mutant protein in solution, suggesting that they are indeed more exposed 

to the solvent in the latter structure (supplementary Table 1 online). It is thus likely that the 

flap will be quite flexible in the AAC(6’)-Ib11 mutant with several possible conformations 

among which that observed in the crystals could be trapped by packing. This structural 

changes result in a major increase in the accessible volume of the active site which could then 

possibly accommodate bulkier substrates with substituted amino groups. In addition, the 

carboxylate group  of D105, next to the double mutation, could also contribute directly to 

render the secondary N6’ amine of gentamicin more acidic and hence more reactive to 

acetylation (supplementary Fig 5 online). This might explain the dual specificity of this 

variant for gentamicin and amikacin. 

AAC(6’)-Ib11, which was crystallized in the absence of substrate, serendipitously co-

crystallized with one HEPES buffer molecule bound within the active site (Fig 3B). 

Remarkably, the sulfonate group of HEPES lies over the position of the sulfur atom of 

coenzyme A and the nitrogen atom of its piperazine ring sits at the site of the acetylatable 

nitrogen of kanamycin. Using solution NMR, we observed direct saturation transfer from the 

protons of the enzyme to those of HEPES, confirming that HEPES is able to bind to AAC(6’), 

not only in crystals, but also in solution (supplementary Fig 6 online). Hence HEPES appears 
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as a minimal transition state analog of the acetylation reaction (Fig 3A) and could thus be 

used as a central scaffold for building effective inhibitors of AAC(6’) enzymes.  

Interestingly, one of the fluoroquinolones which AAC(6’)-Ib-cr has evolved to recognize, 

ciprofloxacin, also contains a piperazine moiety (Fig 3A) which is N-acetylated by the 

enzyme (Robicsek et al, 2006b). The two substitutions which confer the new specificity to 

AAC(6’)-Ib-cr, W92R and D169Y, are located in two exposed loops which form the backside 

of the antibiotic binding pocket (Fig 1B). It appeared therefore straightforward to model the 

structure of AAC(6’)-Ib-cr based on that of AAC(6’)-Ib. The interaction with ciprofloxacin 

was investigated, using the structural similarity with HEPES to anchor the piperazine ring of 

the fluoroquinolones in the enzyme. The result of this modeling (Fig 3C) shows the side-

chains of the two substituted residues being in a position to form specific stabilizing 

interactions with ciprofloxacin: Y169 can stack on the quinolone heterocycle, while the 

guanidinium group of R92 can hydrogen bond to the keto or carboxy groups of the antibiotic. 

In addition to the “gaping” capability of the active site, the specific scaffold of AAC(6’)-Ib, in 

which recognition of the acetylatable substrate is mediated by side-chains of exposed loops 

(as opposed to other AAC(6’) enzymes), could provide the structural plasticity required for 

adaptation to new antibiotics. This could explain in part why this isoform has been selected 

under the pressure of antibiotic usage and is now widely distributed among pathogens. 

Conversely, such a broad distribution makes AAC(6’)-Ib an attractive target for countering 

drug resistance. The reported structures could help in guiding the design of novel 

aminoglycosides circumventing resistance. In addition, the observation that an original 

scaffold (piperazine ethane sulfonate) can mimic the transition sate, could be an interesting 

lead for designing novel inhibitors.  
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METHODS 

Plasmid construction and protein expression 

AAC(6’)-b11 was originally identified in Salmonella enterica (Casin et al, 2003). Its sequence 

was PCR amplified and cloned in pET101 (Invitrogen) and expressed in E. coli (Maurice et 

al, 2006). This protein showed a significant propensity to aggregate and was expressed in 

inclusion bodies at growth temperatures above 20°C. We used a phenotypic screen to select 

for increased solubility. Transformed E. coli cells were streaked on LB plates containing 

kanamycin (50μg/ml) and incubated at 37°C. Cells expressing soluble AAC(6’)-Ib were able 

to grow normally as they could acetylate the antibiotic, whereas those expressing insoluble 

forms were selected against. After DNA sequencing, one such resistant variant was shown to 

carry a single nucleotide deletion in the stop codon. This results in a C-terminal extension of 

the protein by a hydrophilic tail of seven aminoacids, EGRAQFE (supplementary Fig 1 

online). This “tagged” variant proved to be stable and soluble. It was kept for further studies, 

as it is otherwise identical to the original AAC(6’)-b11 and shows a similar antibiotic 

selectivity. Purification of this protein was achieved as described (Maurice et al, 2006). 

Expression vectors for wild type AAC(6’)-Ib and variant AAC(6’)-Ib-cr were derived by site-

directed mutagenesis of the AAC(6’)-Ib11 vector (QuikChange, Stratagene) and the 

corresponding proteins also contain the solubility tag. The function of these various AAC(6’)-

Ib was monitored by in vivo functional resistance assays (supplementary Table 2 online).  

Protein crystallization 

Crystals of AAC(6’)-Ib were grown at 18°C by the hanging-drop method from a solution 

containing 1.5M K2HPO4, 0.06M NaH2PO4, 0.1M guanidine-HCl and were reproduced by 

streak seeding. Crystals were stabilized in 15% glycerol, 1.6 M K2HPO4, 0.07 M NaH2PO4 

before vitrification in liquid N2. Crystals belong to space group P43212 with unit cell constants 

of a = b = 57.62 Å  and c = 146.67 Å. 

Crystals of AAC(6’)-Ib11 and Se-Met-AAC(6’)-Ib11 were grown at 18 °C by the hanging–drop 

method by mixing equal volumes of protein (15 mg/ml) and reservoir solution (100 mM 

HEPES pH 7.5, 1.5 M Li2SO4, 3% isopropanol). Crystals belong to space group C2221 with 

unit cell constant of a = 71.62 Å,  b = 85.37 Å,  and c = 150.41 Å.  

Structure determination and refinement 

A multiwavelength anomalous diffraction data set was collected on a Se-Met AAC(6’)-Ib11 

crystal to 2.8 Å resolution on the BM30A beam line (ESRF, Grenoble). Datasets were 
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collected at =0.9794 Å (inflexion), =0.9792 Å (peak) and =0.9278 Å (remote). They were 

integrated and scaled with XDS (Kabsch, 1993). Model building was done with Sharp and O 

(Jones et al, 1991). A 2.1 Å resolution native dataset of AAC(6’)-Ib11  was also collected on 

ID14 (ESRF, Grenoble), the refinement was performed in CNS (Brunger et al, 1998) 

(crystallographic parameters in supplementary Table 3 online). 

The structure of AAC(6’)-Ib was solved with Phaser (Read, 2001) using the AAC(6’)-Ib11 as a 

molecular replacement model. The model was completed using iterative cycles of model 

building and refinement in REFMAC (Winn et al, 2001). Although not added in the 

crystallization solution, electron density due to bound CoA was observed, a situation 

previously reported for AAC(6’)-Iy (Vetting et al, 2004). The structure of the complex with 

kanamycin was obtained by diffusing the antibiotic into the crystals (1 to 1 ratio with the 

protein) and solving the structure similarly. 2 Fo-Fc density maps of the CoA and kanamycin 

are shown in supplementary Fig 7 online. 

Completeness of the models was 173 out of 196 residues for both the AAC(6’)-Ib and 

AAC(6’)-Ib11 structures. Density was missing for residues 1-10 and 184-196 in AAC(6’)-Ib11 

and 1-11, 41-43 and188-196 in AAC(6’)-Ib. The missing N- and C-terminal extensions are 

not part of the enzyme core. The C-terminal extension corresponds to the solubility tag, 

whereas the N-terminal extension originates from gene fusion (Casin et al, 1998).  

AAC(6’)-Ib11 crystals contain two monomers per asymmetric unit whereas the wild-type 

enzyme contains only one and is a true monomer in solution (not shown). The former 

observation could be related to the fact that AAC(6’)-Ib11 variant appears to be partially 

dimeric in gel filtration experiments (not shown). The protein-protein contact seen in the 

crystal structure of this protein differ from those observed in the structure of other AAC(6’). 

Coordinates have been deposited with the PDB (entries 2PRB, 2QIR and 2PR8). 

Saturation transfer difference. 

NMR setup and saturation transfer difference experiments (Mayer & Meyer, 2001) using 

AAC(6’)-Ib11 were performed as previously described (Maurice et al, 2006; Tisne & Dardel, 

2002). 

Modeling the interaction with ciprofloxacin 

Starting from the structure of wild-type AAC(6’)-Ib, the two mutations (W92R and D169Y, 

suppl. Fig 1) were introduced manually using Pymol (DeLano Scientific). The corresponding 

structure was energy minimized using X-PLOR-NIH (Schwieters et al, 2003). Ciprofloxacin 
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structure was generated using PRODRG (Schuttelkopf & van Aalten, 2004). Six different 

rotamers of ciprofloxacin were generated, by rotation about the piperazine-quinolone bond. 

They were then placed into the active site of AAC(6’)-Ib-cr, by superimposing their 

piperazine ring onto that of HEPES in the structure of AAC(6’)-Ib11, ignoring steric clashes. 

These six complexes were refined independently. C  atoms of residues outside the active site 

(residues 12-38, 44-87, 95-163 and 174-187) were restrained by a harmonic potential, as well 

as the acetylatable nitrogen of ciprofloxacin, in order to maintain the active site geometry. 

The complex was energy minimized and submitted to a restrained simulated annealing 

refinement. It consisted of 2 ps of dynamics at 1000 K followed by cooling to 100 K over 10 

ps during which the harmonic restraints on the C  atoms were gradually turned off. The 

resulting complexes were finally energy minimized.  

Of the six resulting structures, two had poor energy scores  and were discarded. The other four 

were very similar, with both rings of ciprofloxacin in comparable orientations. In some 

structures, the mutated residues (R92 and Y169) had come in contact with the ligand, 

suggesting they contributed directly to binding. In order to model these interactions, we 

submitted the four structures to an additional short restrained molecular dynamics refinement 

(5 ps at 100K followed by minimization). We added distance restraints, forcing the 

guanidinium of R92 and the ring of Y169 to contact ciprofloxacin. This resulted in structures 

in which R92 contacted the oxo or carboxy oxygen of ciprofloxacin, while Y169 stacked on 

top of the quinolone. All four structures were similar and had good stereochemistry. The best 

structure is shown in Fig 3C.  
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FIGURE LEGENDS 

Figure 1. Structure of AAC(6’)-Ib and structural switch associated with broad-spectrum 

inducing substitutions. (A) Structure of gentamicin and amikacin. The amino groups which 

are acetylated are indicated by arrows. (B) Topology of AAC(6’)-Ib. Residue numbers are 

indicated. The yellow disk indicates the location of the aminoglycoside binding pocket. The 

top of this pocket is closed by an alpha helical flap which folds back along the dashed axis, 

above the central -sheet. (C) Structure of AAC(6’)-Ib (left) and of its broad-spectrum variant 

AAC(6’)-Ib11 (right). Substituted residues are shown in purple. Pink arrows indicate 

movements of the flap and W38. Color coding is the same for panels B and C. 

 

Figure 2. Recognition of ligands. (A) structure of AAC(6’)-Ib in complex with kanamycin. 

The solvent accessible surface is shown, colored as a function of the electrostatic surface 

potential. The oval contour highlight the crevice that could accommodate N3 substituents of 

2-DOS, such as that present in amikacin. (B) Locking of the “flap” around coenzyme A. N146  

is hydrogen bonded to the pantetheine arm and provides a stacking platform for the side chain 

of W38 in the flap. This contributes to position W39 which is part of the antibiotic binding 

pocket. 

 

Figure 3. Interaction of AAC(6’)-Ib with ligands. (A) Comparison of ligand geometries : top 

acetyl-CoA  and aminoglycoside; middle, HEPES; bottom, acetyl-CoA and ciprofloxacin. (B) 

2 Fo-Fc electron density of HEPES bound in the active site of AAC(6’)-Ib11 contoured at 2 . 

(C) refined model of ciprofloxacin bound to AAC(6’)-Ib-cr, showing interactions with the 

two mutated residues, R92 and Y169 (same color coding as in Fig 1). 
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