

Spatio-temporal Functional Regression on Paleo-ecological Data

Liliane Bel, Avner Bar-Hen, Rachid Cheddadi, Rémy Petit

► To cite this version:

Liliane Bel, Avner Bar-Hen, Rachid Cheddadi, Rémy Petit. Spatio-temporal Functional Regression on Paleo-ecological Data. 2008. <hal-00297705>

HAL Id: hal-00297705 https://hal.archives-ouvertes.fr/hal-00297705

Submitted on 16 Jul 2008

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	Spatio-temporal Functional Regression on
2	Paleo-ecological Data
3	Liliane Bel [*] ,
4	UMR 518 AgroParisTech/INRA,16, rue Claude Bernard - 75231 Paris Cedex 05
	Armon Don Hon
5	Avner Dar-nen,
6	Université René Descartes, MAP5, 45 rue des Saints Pères, 75270 Paris cedex 06
7	Rachid Cheddadi
1	rtaema encudadi,
8	ISEM, case postale 61, CNRS UMR 5554, 34095 Montpellier, France
9	Rémy Petit,
10	UMR 1202 INRA , 69 route d'Arcachon 33612 Cestas Cedex, France

11 Abstract

The influence of climate on biodiversity is an important ecological question. Vari-12 ous theories try to link climate change to allelic richness and therefore to predict 13 the impact of global warming on genetic diversity. We model the relationship be-14 tween genetic diversity in the European beech forests and curves of temperature 15 and precipitation reconstructed from pollen databases. Our model links the genetic 16 measure to the climate curves through a linear functional regression. The interac-17 tion in climate variables is assumed to be bilinear. Since the data are georeferenced, 18 our methodology accounts for the spatial dependence among the observations. The 19 practical issues of these extensions are discussed. 20

Key words: Functional Data Analysis; Spatio-temporal modeling; Climate change;
 Biodiversity

Preprint submitted to Elsevier Science

1 **1** Introduction

Climate records show that the earth has recorded a succession of periods of major warming and cooling at different time windows and scales [5, 12]. During 3 the last post-glacial period (18000 years before the present), Europe recorded a 15°C to 20°C warming depending on the area. At the same period there was an expansion of all forest biomes and an upward movement of the tree-lines that reached an altitude 300 m higher than today. Although there is a wealth of paleodata and detailed climate reconstruction for the Holocene period, we 8 still lack some knowledge as to how the warming was recorded and what the 9 vegetation feedbacks were that affected local or regional past climates. Various 10 theories try to link climate change to allelic richness and therefore to predict 11 the impact of global warming on genetic diversity. 12

In the recent literature there have been a lot of theoretical results for regres-13 sion models with functional data. Based on this framework, we used a linear 14 functional model to model the relationship between genetic diversity in Euro-15 pean beech forests (represented by a positive number) and curves of temper-16 ature and precipitation reconstructed from the past. The classical functional 17 regression model has been extended in two ways to account for our specific 18 problem. First, as the effects of temperature and precipitation are far from 19 independent we included an interaction term in our model. This interaction 20 term appears as a bilinear function of the two predictors. Second, since we 21 have spatial data there is dependence among the observations. To take into 22 account with dependence the covariance matrix of the residuals is estimated 23 in a spatial framework and plugged into generalized least-squares to estimate 24 the parameters of the model. The practical difficulties of these extensions will 25 be discussed. 26

In Section 2, we present the genetic and climate data. The functional regression
model is studied in Section 3. Results are presented and discussed in Section 4

^{*} Corresponding author.

Email address: Liliane.Bel@agroparistech.fr (Liliane Bel).

¹ and concluding remarks are given in Section 5.

2 **2 Data**

Pollen records are important proxies for the reconstruction of climate param-3 eters since variations in the pollen assemblages mainly respond to climate changes. Based on the fossil and surface pollen data from pollen databases, 5 we used modern analogue technique (MAT) to reconstruct climate variables. 6 Climate reconstruction is accomplished by matching fossil biological assem-7 blages to recently deposited (modern) pollen assemblages for which climate 8 properties are known. The relatedness of fossil and modern assemblages is usu-9 ally measured using a distance metric that rescales multidimensional species 10 assemblages into a single measure of dissimilarity. The distance-metric method 11 is widely used among paleoecologists and paleoceanographers [8]. Temperature 12 and precipitation were reconstructed at 216 locations from the present back 13 to a variable date depending on available data. The pollen dataset was used 14 to reconstruct climate variables, throughout Europe for the last 15 000 years 15 of the Quaternary. Due to the methodology, each climate curve is sampled at 16 irregular times for each location. 17

¹⁸ Genetic diversities were measured from variation at 12 polymorphic isozyme ¹⁹ loci in European beech (*Fagus sylvatica* L.) forests based on an extensive ²⁰ sample of 389 populations distributed throughout the species range. Based ²¹ on these data, various indices of diversity can be computed. They mainly ²² characterize within or between population diversity. In this article, we focus on ²³ the *H* index, the probability that two alleles sampled at random are different. ²⁴ This parameter is a good indication of gene diversity [3]. The two datasets were collected independently and their locations do not
 coincide.

3 3 Functional Regression

The functional linear regression model with functional or real response has 4 been the focus of various investigations [1, 6, 7, 11]. We want to estimate the 5 link between the real random response $y_i = d(s_i)$, the diversity at site s_i and 6 $(\theta_i(t), \pi_i(t))_{t>0}$ the temperature and precipitation functions at site s_i . There 7 are two points to consider for the modeling: (i) functional linear models need 8 to be extended to incorporate interaction between climate functions; (ii) since 9 we have spatial data, observations cannot be considered as independent and 10 we also need to extend functional modeling to account for spatial correlation. 11

We assume that the temperature and precipitation functions are square integrable random functions defined on some real compact set [0, T]. The very general model can be written as:

$$Y = f((\theta(t), \pi(t))_{T > t > 0}) + \varepsilon$$

12

¹³ f is an unknown functional from $L^2([0,T]) \times L^2([0,T])$ to \mathbb{R} and ε is a spatial ¹⁴ stationary random field with correlation function $\rho(.)$.

¹⁵ We assume here that the functional f may be written as the sum of linear ¹⁶ terms in $\theta(t)$ and $\pi(t)$ and a bilinear term modeling the interaction

$$f(\theta, \pi) = \mu + \int_{[0,T]} A(t)\theta(t)dt + \int_{[0,T]} B(t)\pi(t)dt + \iint_{[0,T]^2} C(t,u)\theta(t)\pi(u)dudt$$
$$= \mu + \langle A; \theta \rangle + \langle B; \pi \rangle + \langle C\theta; \pi \rangle$$

17

¹⁸ by the Riesz representation of linear and bilinear forms.

¹⁹ A and B are in $L^2([0,T])$ and C is a kernel of $L^2([0,T])$.

Let $(e_k)_{k>0}$ be an orthonormal basis of $L^2([0,T])$. Expanding all functions on this basis we get

$$\theta_i(t) = \sum_{k=1}^{+\infty} \alpha_k^i e_k(t) \quad \pi_i(t) = \sum_{k=1}^{+\infty} \beta_k^i e_k(t)$$
$$A(t) = \sum_{k=1}^{+\infty} a_k e_k(t) \quad B(t) = \sum_{k=1}^{+\infty} b_k e_k(t) \quad C(t, u) = \sum_{k,\ell=1}^{+\infty} c_{k\ell} e_k(t) e_\ell(u)$$

and

$$y_i = \mu + \sum_{k=1}^{+\infty} a_k \alpha_k^i + \sum_{k=1}^{+\infty} b_k \beta_k^i + \sum_{k,\ell=1}^{+\infty} c_{k\ell} \alpha_k^i \beta_\ell^i + \varepsilon_i$$

1

4

² If the sums are truncated at $k = \ell = K$ the problem results in a linear ³ regression $Y = \mu + X\phi + \varepsilon$ with spatially correlated residuals with

$$X = \begin{pmatrix} \alpha_1^1 \dots \alpha_K^1 \ \beta_1^1 \dots \beta_K^1 \ \alpha_1^1 \beta_1^1 \dots \alpha_K^1 \ \beta_K^1 \\ \vdots & \dots & \vdots \\ \alpha_1^n \dots \alpha_K^n \ \beta_1^n \dots \beta_K^n \ \alpha_1^n \beta_1^n \dots \alpha_K^n \ \beta_K^n \end{pmatrix} \quad \dim(X) = n \times (2K + K^2)$$
$$\operatorname{cov}(\varepsilon_i, \varepsilon_j) = \rho(s_i - s_j)$$

In order to estimate the regression and the correlation function parameters we proceed by Quasi Generalized Least Squares: a preliminary estimation of ϕ is given by Ordinary Least Squares, $\phi^* = (X^t X)^{-1} X^t Y$, the correlation function is estimated from the residuals $\hat{\varepsilon} = Y - X \phi^*$ and the final estimate of ϕ is given by plugging the estimated correlation matrix $\hat{\Sigma}$ in the Generalized Least Squares formula $\hat{\phi} = (X^t \hat{\Sigma}^{-1} X)^{-1} X^t \hat{\Sigma}^{-1} Y$. If both estimations of ϕ and Σ are convergent and assuming normal distribution of the residuals then [9]:

$$\sqrt{n}(\widehat{\phi} - \phi) \to \mathcal{N}(0, \lim_{n \to \infty} n(X^t \Sigma^{-1} X)^{-1})$$

The estimation of Σ is convergent under mild conditions [4] and the convergence of ϕ is assessed for example when the functions are expanded on a splines basis [1] or on a Karhunen expansion [10].

- ¹ Significance of the predictors can be tested if the residuals are assumed to be
- ² Gaussian, within the classical framework of linear regression models.

Several parameters need to be set. The first choice is that of the orthonormal 3 basis. It can be Fourier, splines, orthogonal polynomials, wavelets. Then the 4 order of truncation has to be determined. The spatial correlation function 5 of the residuals may be of parametric form (exponential, Gaussian, spherical 6 etc.). These choices will be made by minimizing a cross validation criterion: a 7 sample with no missing data for all variables is determined, and for each site of 8 the sample a prediction of the diversity is computed according to parameters 9 estimated without the site in the sample. The global criterion is the quadratic 10 mean of the prediction error. 11

12 4 Results

Pollen was collected throughout Europe providing temporal estimation of temperatures and precipitation. These estimations are not regularly spaced, and have very different ranges from 1 Kyears to 15 Kyears. Beech genetic indices are recorded in forests and do not coincide with the pollen locations. Figure 1 shows the locations of the two datasets.

Measurement sites

Figure 1. Locations of pollen (black dots) and genetic (open circles) records.

Climate variables are continuous all over Europe but beech forests have specific
locations. In order to make our data to spatially coincide, temperature and
precipitation curves are firstly estimated on a regular grid of time from 15
Kyears to present on sites where are collected the genetic measures. 15 Kyears
corresponds to the beginning of migration of plants onto areas made free by
the retreating ice sheets.

The interpolation is done by a spatio-temporal kriging assuming the covariance
function is exponential and separable. Figure 2 shows for a particular site the
estimated temperature curve together with some neighboring curves issued
from collected pollen.

Spatio-temporal kriging of temperature

Figure 2. Resulting temperature curve (thick black curve) from spatio-temporal kriging of 20 neighboring temperatures curves from recorded pollen.

We aim to predict genetic diversity with precipitation and temperature curves. This corresponds to a functional regression model with genetic diversity as dependent variable and temperature and precipitation curves as predictor variable. The cross validation criterion gives better results with an expansion of the predictor variables on a Fourier basis of order 5. Figures 3 and 4 show the coefficient functions A, B, and kernel C.

Figure 3. Coefficient function A of the temperature and coefficient function B of the precipitation

Figure 4. Kernel C of the interaction temperature-precipitation

The shape of the coefficient function A shows that the term $\langle A, \theta \rangle$ will be higher when the gap between periods before 7.5 Kyears and after 7.5 Kyears is higher (temperatures before 7.5 Kyears are mostly negative), meanwhile the shape of the coefficient function B shows that the term $\langle B, \pi \rangle$ will be higher when the precipitation before 7.5 Kyears is higher (precipitation is positive). The surface of kernel C is obviously not the product of two curves in the two coordinates, showing an effect of interaction.

⁸ In Figure 5 the residual variogram graph exhibits some spatial dependence.
⁹ An exponential variogram is fitted, and the resulting covariance matrix is
¹⁰ plugged into the GLS formula to update the coefficients and test the effects
¹¹ of the temperature, precipitation and interaction.

Figure 5. Empirical and fitted variogram on the residuals.

The graphs in Figure 6 show that the model explains a part of the diversity variability. However it is far from explaining all the variability as the R^2 is equal to 0.31.

Figure 6. Observed-Predicted response and Predicted-Residuals graphs.

- ¹ Table 1 gives the analysis of variance of the four nested models:
- ² Model 1: $\mathbb{E}(Y) = \mu + \langle A; \theta \rangle + \langle B; \pi \rangle + \langle C\theta; \pi \rangle$
- ³ Model 2: $\mathbb{E}(Y) = \mu + \langle A; \theta \rangle + \langle B; \pi \rangle$
- 4 Model 3: $\mathbb{E}(Y) = \mu + \langle A; \theta \rangle$
- 5 Model 4: $\mathbb{E}(Y) = \mu + \langle B; \pi \rangle$

 Table 1

 Analysis of variance models of nested models

- ⁶ The *p*-values (2.2e-16) of the tests H_0 : model 3 (model 4) against H_1 : model
- $_{7}$ 2 and (1.430e-07) of the test H₀: model 2 against H₁: model 1 show that the
- $_{\rm 8}~$ interaction and the two variables have a strong effect.

Figure 7. Pattern of temperature curves according to the range of the predicted response.

Figure 8. Pattern of precipitation curves according to the range of the predicted response.

To give a better understanding of the regression model we divide the predicted 1 response range into 4 classes: less than 0.24, [0.24;0.26], [0.26;0.28] and greater 2 than 0.28. Figures 7 and 8 show the shapes of temperature and precipitation curves for each class. When low (< 0.24) diversity is predicted, temperature curves are globally higher than the averaged temperature curves on all the 5 sample. As the predicted diversity becomes higher the gap between the two 6 periods before 7.5 Kyears and after 7.5 Kyears gets more pronounced. This effect is less evident for precipitation, low diversity is predicted when the precipitation is higher on the first period than the averaged precipitation curves on all the sample. When the predicted diversity is higher than 0.24 there seems 10 to be no effect of precipitation on its the level. 11

¹² When the change of climate during the Holocene (12 Kyears to present) is ¹³ significant the diversity is higher. This mostly concerns northern and west-¹⁴ ern Europe. This is coherent with previous studies [2]. After 12 Kyears and ¹⁵ throughout the Holocene the climate was no longer uniform all over Europe. ¹⁶ The largest mismatch between NW and SE Europe occurred around 9 Kyears ¹⁷ and 5 Kyears. By 5 Kyears, all deciduous tree taxa (such as beech) were outside ¹⁸ their glacial refugia.

¹⁹ 5 Conclusion

The classical linear functional model has been extended in a straightforward 20 manner to the case of two functional predictors with an interaction term, and 21 with spatially correlated residuals. Such a model applied to complex paleoe-22 cological and biodiversity data emphasizes an interesting relationship between 23 climate change and genetic diversity: diversity is higher when the change in 24 climate (mostly temperature) during the Holocene (12 Kyears to present) 25 was sizeable and lower when temperature and precipitation are both globally 26 higher over the whole period. This model may be improved in several ways. 27 The spatial effect may be handled in other ways, by means of a mixed struc-28 ture or with other kinds of correlation matrix structure. In this first attempt 29 we have neglected the random structure and the correlation of the predic-30

- ¹ tors. Taking into account these two characteristics should give a better way
- $_{\rm 2}$ $\,$ to understand the real effect of climate on biodiversity.

¹ References

H. Cardot, F. Ferraty, P. Sarda, Functional linear model, Statist. Probab.
 Lett. 45 (1999) 11-22.

⁴ [2] R. Cheddadi, A. Bar-Hen, Spatial gradient of temperature and potential
⁵ vegetation feedback across Europe during the late Quaternary, Climate
⁶ Dynamics (in press).

- ⁷ [3] B. Comps, D. Gömöry, J. Letouzey, B. Thiébaut, R.J. Petit, Diverging
 trends between heterozygosity and allelic richness during postglacial colonization in the European beech, Genetics 157(2001) 389-397.
- [4] N. Cressie, Statistics for spatial data, Revised Edition, Wiley, New-York,
 11 1993
- ¹² [5] D. Dahl-Jensen, K. Mosegaard, N. Gundestrup, G.D. Clow, S.J. Johnsen,
 ¹³ A.W. Hansen, N. Balling, Past Temperatures Directly from the Greenland
 ¹⁴ Ice Sheet, Science 282 (1998) 268-271.
- ¹⁵ [6] J. Fan, J.T. Zhang, Two-step estimation of functional linear models with
 ¹⁶ application to longitudinal data. J. R. Stat. Soc. Ser. B Stat. Methodol.
 ¹⁷ 62 (2000) 303-322.
- ¹⁸ [7] J.J. Faraway, Regression analysis for a functional response, Technometrics
 ¹⁹ 39 (1997) 254-261.
- [8] J. Guiot, Methodology of the last climatic cycle reconstruction in France
 from pollen data, Palaeogeography Palaeoclimatology Palaeo-ecology 80
 (1990) 49-69.
- 23 [9] X. Guyon, Statistique et économétrie, Ellipses Marketing, Paris, 2001
- ²⁴ [10] H.G. Müller, U. Stadtmüller, Generalized functional linear models, Ann.
 ²⁵ Stat. 33 (2005) 774-806
- ²⁶ [11] J.O. Ramsay, B.W. Silverman, Functional Data Analysis, Springer, New ²⁷ York, 1997
- [12] J. Seierstad, A. Nesje, S.O. Dahl, J.R. Simonsen, Holocene glacier fluctuations of Grovabreen and Holocene snow-avalanche activity reconstructed from lake sediments in Groningstolsvatnet, western Norway, The
 Holocene 12:2 (2002) 211-222.