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recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL Descartes

https://core.ac.uk/display/52199188?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00297705


Spatio-temporal Functional Regression on1

Paleo-ecological Data2

Liliane Bel ∗,3

UMR 518 AgroParisTech/INRA,16, rue Claude Bernard - 75231 Paris Cedex 054

Avner Bar-Hen,5
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Abstract11

The influence of climate on biodiversity is an important ecological question. Vari-12

ous theories try to link climate change to allelic richness and therefore to predict13

the impact of global warming on genetic diversity. We model the relationship be-14

tween genetic diversity in the European beech forests and curves of temperature15

and precipitation reconstructed from pollen databases. Our model links the genetic16

measure to the climate curves through a linear functional regression. The interac-17

tion in climate variables is assumed to be bilinear. Since the data are georeferenced,18

our methodology accounts for the spatial dependence among the observations. The19

practical issues of these extensions are discussed.20
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1 Introduction1

Climate records show that the earth has recorded a succession of periods of2

major warming and cooling at different time windows and scales [5, 12]. During3

the last post-glacial period (18000 years before the present), Europe recorded4

a 15◦C to 20◦C warming depending on the area. At the same period there was5

an expansion of all forest biomes and an upward movement of the tree-lines6

that reached an altitude 300 m higher than today. Although there is a wealth7

of paleodata and detailed climate reconstruction for the Holocene period, we8

still lack some knowledge as to how the warming was recorded and what the9

vegetation feedbacks were that affected local or regional past climates. Various10

theories try to link climate change to allelic richness and therefore to predict11

the impact of global warming on genetic diversity.12

In the recent literature there have been a lot of theoretical results for regres-13

sion models with functional data. Based on this framework, we used a linear14

functional model to model the relationship between genetic diversity in Euro-15

pean beech forests (represented by a positive number) and curves of temper-16

ature and precipitation reconstructed from the past. The classical functional17

regression model has been extended in two ways to account for our specific18

problem. First, as the effects of temperature and precipitation are far from19

independent we included an interaction term in our model. This interaction20

term appears as a bilinear function of the two predictors. Second, since we21

have spatial data there is dependence among the observations. To take into22

account with dependence the covariance matrix of the residuals is estimated23

in a spatial framework and plugged into generalized least-squares to estimate24

the parameters of the model. The practical difficulties of these extensions will25

be discussed.26

In Section 2, we present the genetic and climate data. The functional regression27

model is studied in Section 3. Results are presented and discussed in Section 428
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and concluding remarks are given in Section 5.1

2 Data2

Pollen records are important proxies for the reconstruction of climate param-3

eters since variations in the pollen assemblages mainly respond to climate4

changes. Based on the fossil and surface pollen data from pollen databases,5

we used modern analogue technique (MAT) to reconstruct climate variables.6

Climate reconstruction is accomplished by matching fossil biological assem-7

blages to recently deposited (modern) pollen assemblages for which climate8

properties are known. The relatedness of fossil and modern assemblages is usu-9

ally measured using a distance metric that rescales multidimensional species10

assemblages into a single measure of dissimilarity. The distance-metric method11

is widely used among paleoecologists and paleoceanographers [8]. Temperature12

and precipitation were reconstructed at 216 locations from the present back13

to a variable date depending on available data. The pollen dataset was used14

to reconstruct climate variables, throughout Europe for the last 15 000 years15

of the Quaternary. Due to the methodology, each climate curve is sampled at16

irregular times for each location.17

Genetic diversities were measured from variation at 12 polymorphic isozyme18

loci in European beech (Fagus sylvatica L.) forests based on an extensive19

sample of 389 populations distributed throughout the species range. Based20

on these data, various indices of diversity can be computed. They mainly21

characterize within or between population diversity. In this article, we focus on22

the H index, the probability that two alleles sampled at random are different.23

This parameter is a good indication of gene diversity [3].24
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The two datasets were collected independently and their locations do not1

coincide.2

3 Functional Regression3

The functional linear regression model with functional or real response has4

been the focus of various investigations [1, 6, 7, 11]. We want to estimate the5

link between the real random response yi = d(si), the diversity at site si and6

(θi(t), πi(t))t>0 the temperature and precipitation functions at site si. There7

are two points to consider for the modeling: (i) functional linear models need8

to be extended to incorporate interaction between climate functions; (ii) since9

we have spatial data, observations cannot be considered as independent and10

we also need to extend functional modeling to account for spatial correlation.11

We assume that the temperature and precipitation functions are square in-

tegrable random functions defined on some real compact set [0, T ]. The very

general model can be written as:

Y = f((θ(t), π(t))T>t>0) + ε

12

f is an unknown functional from L2([0, T ])×L2([0, T ]) to R and ε is a spatial13

stationary random field with correlation function ρ(.).14

We assume here that the functional f may be written as the sum of linear15

terms in θ(t) and π(t) and a bilinear term modeling the interaction16

f(θ, π)= µ +
∫

[0,T ]
A(t)θ(t)dt +

∫

[0,T ]
B(t)π(t)dt +

∫ ∫

[0,T ]2
C(t, u)θ(t)π(u)dudt

= µ + 〈A; θ〉 + 〈B; π〉 + 〈Cθ; π〉
17

by the Riesz representation of linear and bilinear forms.18

A and B are in L2([0, T ]) and C is a kernel of L2([0, T ]).19
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Let (ek)k>0 be an orthonormal basis of L2([0, T ]). Expanding all functions on

this basis we get

θi(t) =
+∞∑

k=1

αi
kek(t) πi(t) =

+∞∑

k=1

βi
kek(t)

A(t) =
+∞∑

k=1

akek(t) B(t) =
+∞∑

k=1

bkek(t) C(t, u) =
+∞∑

k,ℓ=1

ckℓek(t)eℓ(u)

and

yi = µ +
+∞∑

k=1

akα
i
k +

+∞∑

k=1

bkβ
i
k +

+∞∑

k,ℓ=1

ckℓα
i
kβ

i
ℓ + εi

1

If the sums are truncated at k = ℓ = K the problem results in a linear2

regression Y = µ + Xφ + ε with spatially correlated residuals with3

X =





α1
1 . . . α1

K β1
1 . . . β1

K α1
1β

1
1 . . . α1

K β1
K

... . . .
...

αn
1 . . . αn

K βn
1 . . . βn

K αn
1β

n
1 . . . αn

K βn
K





dim(X) = n × (2K + K2)

cov(εi, εj) = ρ(si − sj)
4

In order to estimate the regression and the correlation function parameters we5

proceed by Quasi Generalized Least Squares: a preliminary estimation of φ is6

given by Ordinary Least Squares, φ∗ = (X tX)−1X tY , the correlation function7

is estimated from the residuals ε̂ = Y − Xφ∗ and the final estimate of φ is8

given by plugging the estimated correlation matrix Σ̂ in the Generalized Least9

Squares formula φ̂ = (X tΣ̂−1X)−1X tΣ̂−1Y . If both estimations of φ and Σ are10

convergent and assuming normal distribution of the residuals then [9]:11

√
n(φ̂ − φ) → N (0, lim

n→∞

n(X tΣ−1X)−1)

The estimation of Σ is convergent under mild conditions [4] and the conver-12

gence of φ is assessed for example when the functions are expanded on a splines13

basis [1] or on a Karhunen expansion [10].14
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Significance of the predictors can be tested if the residuals are assumed to be1

Gaussian, within the classical framework of linear regression models.2

Several parameters need to be set. The first choice is that of the orthonormal3

basis. It can be Fourier, splines, orthogonal polynomials, wavelets. Then the4

order of truncation has to be determined. The spatial correlation function5

of the residuals may be of parametric form (exponential, Gaussian, spherical6

etc.). These choices will be made by minimizing a cross validation criterion: a7

sample with no missing data for all variables is determined, and for each site of8

the sample a prediction of the diversity is computed according to parameters9

estimated without the site in the sample. The global criterion is the quadratic10

mean of the prediction error.11

4 Results12

Pollen was collected throughout Europe providing temporal estimation of tem-13

peratures and precipitation. These estimations are not regularly spaced, and14

have very different ranges from 1 Kyears to 15 Kyears. Beech genetic indices15

are recorded in forests and do not coincide with the pollen locations. Figure16

1 shows the locations of the two datasets.17
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Figure 1. Locations of pollen (black dots) and genetic (open circles) records.

Climate variables are continuous all over Europe but beech forests have specific1

locations. In order to make our data to spatially coincide, temperature and2

precipitation curves are firstly estimated on a regular grid of time from 153

Kyears to present on sites where are collected the genetic measures. 15 Kyears4

corresponds to the beginning of migration of plants onto areas made free by5

the retreating ice sheets.6

The interpolation is done by a spatio-temporal kriging assuming the covariance7

function is exponential and separable. Figure 2 shows for a particular site the8

estimated temperature curve together with some neighboring curves issued9

from collected pollen.10
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Figure 2. Resulting temperature curve (thick black curve) from spatio-temporal

kriging of 20 neighboring temperatures curves from recorded pollen.

We aim to predict genetic diversity with precipitation and temperature curves.1

This corresponds to a functional regression model with genetic diversity as de-2

pendent variable and temperature and precipitation curves as predictor vari-3

able. The cross validation criterion gives better results with an expansion of4

the predictor variables on a Fourier basis of order 5. Figures 3 and 4 show the5

coefficient functions A, B, and kernel C.6
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Figure 4. Kernel C of the interaction temperature-precipitation
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The shape of the coefficient function A shows that the term 〈A, θ〉 will be1

higher when the gap between periods before 7.5 Kyears and after 7.5 Kyears2

is higher (temperatures before 7.5 Kyears are mostly negative), meanwhile the3

shape of the coefficient function B shows that the term 〈B, π〉 will be higher4

when the precipitation before 7.5 Kyears is higher (precipitation is positive).5

The surface of kernel C is obviously not the product of two curves in the two6

coordinates, showing an effect of interaction.7

In Figure 5 the residual variogram graph exhibits some spatial dependence.8

An exponential variogram is fitted, and the resulting covariance matrix is9

plugged into the GLS formula to update the coefficients and test the effects10

of the temperature, precipitation and interaction.11
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Figure 5. Empirical and fitted variogram on the residuals.

The graphs in Figure 6 show that the model explains a part of the diversity12

variability. However it is far from explaining all the variability as the R2 is13

equal to 0.31.14
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Figure 6. Observed-Predicted response and Predicted-Residuals graphs.

Table 1 gives the analysis of variance of the four nested models:1

Model 1: E(Y ) = µ + 〈A; θ〉 + 〈B; π〉 + 〈Cθ; π〉2

Model 2: E(Y ) = µ + 〈A; θ〉 + 〈B; π〉3

Model 3: E(Y ) = µ + 〈A; θ〉4

Model 4: E(Y ) = µ + 〈B; π〉5

Table 1

Analysis of variance models of nested models

The p-values (2.2e-16) of the tests H0: model 3 (model 4) against H1: model6

2 and (1.430e-07) of the test H0: model 2 against H1: model 1 show that the7

interaction and the two variables have a strong effect.8
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Figure 7. Pattern of temperature curves according to the range of the predicted

response.
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Figure 8. Pattern of precipitation curves according to the range of the predicted

response.
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To give a better understanding of the regression model we divide the predicted1

response range into 4 classes: less than 0.24, ]0.24;0.26], ]0.26;0.28] and greater2

than 0.28. Figures 7 and 8 show the shapes of temperature and precipitation3

curves for each class. When low (< 0.24) diversity is predicted, temperature4

curves are globally higher than the averaged temperature curves on all the5

sample. As the predicted diversity becomes higher the gap between the two6

periods before 7.5 Kyears and after 7.5 Kyears gets more pronounced. This7

effect is less evident for precipitation, low diversity is predicted when the pre-8

cipitation is higher on the first period than the averaged precipitation curves9

on all the sample. When the predicted diversity is higher than 0.24 there seems10

to be no effect of precipitation on its the level.11

When the change of climate during the Holocene (12 Kyears to present) is12

significant the diversity is higher. This mostly concerns northern and west-13

ern Europe. This is coherent with previous studies [2]. After 12 Kyears and14

throughout the Holocene the climate was no longer uniform all over Europe.15

The largest mismatch between NW and SE Europe occurred around 9 Kyears16

and 5 Kyears. By 5 Kyears, all deciduous tree taxa (such as beech) were outside17

their glacial refugia.18

5 Conclusion19

The classical linear functional model has been extended in a straightforward20

manner to the case of two functional predictors with an interaction term, and21

with spatially correlated residuals. Such a model applied to complex paleoe-22

cological and biodiversity data emphasizes an interesting relationship between23

climate change and genetic diversity: diversity is higher when the change in24

climate (mostly temperature) during the Holocene (12 Kyears to present)25

was sizeable and lower when temperature and precipitation are both globally26

higher over the whole period. This model may be improved in several ways.27

The spatial effect may be handled in other ways, by means of a mixed struc-28

ture or with other kinds of correlation matrix structure. In this first attempt29

we have neglected the random structure and the correlation of the predic-30

13



tors. Taking into account these two characteristics should give a better way1

to understand the real effect of climate on biodiversity.2
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