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When a collective outcome triggers a rare individual event: a mode
of metastatic process in a cell population

Abstract

A model of early metastatic process is based on the experimentally assessed role of
a protein, PAI-1, which at high enough extracellular concentration promotes the transi-
tion of cancer cells to a physiological and morphological state prone to migration. This
transition is described at the single cell level as a bi-stable switch generically associated
with a subcritical bifurcation. In a multilevel reaction-diffusion scenario, the microen-
vironment of the tumor is modified by the proliferating cell population so as to push
the concentration of PAI-1 above the bifurcation threshold. The formulation in terms
of partial differential equations fails to capture spatio-temporal heterogeneity. Cellular-
automata and agent-based simulations of cell populations support the hypothesis that
a randomly localized accumulation of PAI-1 can arise and trigger the escape of a few
isolated cells. Away from the primary tumor, these cells experience a reverse transition
back to a proliferative state and could generate a secondary tumor. The proposed role
of PAI-1 in controlling this metastatic cycle would partly explain its well-documented
role in cancer progression.

Running title: Multilevel metastatic escape model

Keywords: cell population, metastastic escape, multilevel modeling, reaction-diffusion,
agent-based simulation, multi-stability.

Abbreviation. PAI-1: Plasminogen-Activator-Inhibitor-1 (a protein, either intra-cellular
(subscript ), soluble in the extracellular space (subscript s), or matrix-bound (subscript

m)).

1 Introduction

Due to lethal consequences of metastatic spreading of cancer, understanding and controlling
the processes underlying the formation of metastases is a major challenge, remaining largely
open. Several modes of metastatic spreading (letting aside surgical dissemination) were
identified: (i) transport in lymphatic circulation, (ii) transport in blood circulation, and (iii)
a mode involving a specific migration mechanism, the amoeboid migration (Friedl, 2004).
The present paper focuses on this latter mode. Taking place at the cell scale, it appears less
pervasive than the first two ones, where circulation-facilitated transport spans the whole
organism. However it is less dependent on the anatomical features of the location of the
tumor and is a candidate for the early events of the metastatic spreading, before metastatic
cells reach the lymphatic or the blood circulation. It might well be an essential preliminary
step common to all metastatic processes.

A difficulty comes from the fact that early events involved in the escape of a cancer cell
from the primary tumor are rare events, too rare to be easily observed or experimented in



varying conditions. Only a small fraction of tumor cells provides the seeds for secondary
tumors. Accordingly, experimental protocols are restricted to indirect investigations, mainly
genetic and biochemical analyses of metastatic cells compared to those of the primary tumor
(Witz, 2008), or statistical tracking of the number, location, and genetic lineage of secondary
tumors (Albini, 2008). An increasing number of experiments focus on the biochemical anal-
ysis of the surrounding microenvironment (Taylor et al., 2008), the morphological signature
of potentially metastatic cells (Vincan et al., 2007) and the reproduction in witro of the
epithelial-mesenchymatous transition and the mesenchymatous-amoeboid transition which
affect the morphology and the proliferative and migratory capacities (amoeboid migration)
of cells of epithelial origin (Malo et al., 2006). These complementary experiments have
shown that the metastatic process involves jointly genetic determinants (accumulation of
specific mutations (Gerstung and Beerenwinkel in this issue)), biochemical factors (trig-
gering new pathways or switching existing ones, leading to modifications in the cell state
and metabolism), and requirements about the state and geometry of the microenvironment
—that is, the extracellular space and matrix— of the tumor cells. However there is no inte-
grated understanding of this process so far. The difficulty comes from the different natures,
locations, and time scales of the potential causal factors, and is strenghtened by the rarity of
metastatic events. Modeling is then essential to articulate the different partial and indirect
experimental results, and to validate their interpretation in an integrated scenario, bridging
molecular, cellular, extracellular, and cell population levels.

From biological facts about the mesenchymatous-amoeboid transition and amoeboid mi-
gration, we wish to explain how permissive conditions for the mestastatic escape of a few
cancer cells might be collectively induced at the cell population level. Our claim is that
proliferation-induced modifications of the tumor microenvironment could produce a feed-
back localized in a few privileged individual cells, selected by a complex conjunction of
stochastic and history-dependent molecular events. Our working hypothesis, supported by
experimental results (Malo et al., 2006), is the central role of the protein, PAI-1, synthe-
sized at high rate by the cancer cells and released in their immediate environment. We
shall describe how this molecule could mediate an interplay between intra-cellular, extra-
cellular, and cell population features, switching a few cells into a state prone to escape and
migration, then switching them back into a proliferative state at a distance of the primary
tumor (this is the process of metastasis). This scenario is rooted in a generic description of
the single cell state in bifurcation theory, supported by in vitro experiments. Its spatially
extended formulation at the cell population level is achieved in a reaction-diffusion model,
implemented either in the standard framework of partial differential equations or in the one
of cellular automata and agent-based simulations. The predictions of our study motivated
and guided new experiments proving the existence of the reverse change from the amoeboid
to the mesenchymatous state and backing up the dynamic nature of this transition. Finally,
we resort to catastrophe theory to suggest a possible path towards the cancer stage where
amoeboid state and migration can be observed.

2 Biological Setting

Considering epithelial cells, a first transition towards a cancerous state is observed, origi-
nating in accumulating mtuations and leading to the so-called mesenchymatous state (see



Figure 1: Epithelial cancer cells (colon cancer). (left) Mesenchymatous state responsible for
the destabilization of epithelium and prone to proliferation. (right) Amoeboid state charac-
terized by a blebbing morphology and by modified adhesion leading to a special migratory
ability. The mesenchymatous-amoeboid transition (as experienced by the rightmost cell in
the left hand side picture) is likely to play a key role in early metastatic escape.

Figure 1left). In this state, cell-cell junctions are no longer established and the epithelium
is destabilized. This state has moreover a strong proliferative capacity, hence the transition
to this mesenchymatous state is generally associated with the appearance of a well-defined
tumor (Thiery, 2002). In invasive epithelial tumors, it is the default state of the cells (Gavert
and Ben-Ze’ev, 2008) and it will be the default state of the cell population in our model.

A second transition may occur towards the so-called amoeboid state (see Figure 1right)
identified by a specific and persistent “blebbing” morphology (round shape with dynamic
actin rings visible at the cell periphery). This mesenchymatous-amoeboid transition is as-
sociated with a change in adhesion properties (more precisely, adhesion becomes integrin-
independent, the actin cytoskeleton reorganizes and a modification of one of its regulatory
pathways, RhoA-pathway, occurs: it now involves an auxiliary protein, ROCK, while there
is no longer proteolysis of the extracellular matrix (Friedl, 2004; McCarthy, 2009). Due to
its peculiar features, a blebbing cell can move fast and progress by exploiting interstices of
the substrate with no need of matrix proteolysis. Accordingly, amoeboid migration is a very
efficient mode of migration in a tissue, encountered in normal conditions during some devel-
opmental stages (Thiery, 2002); in a pathological context, it was suggested as a privileged
mode of metastatic migration (Friedl and Wolf, 2003; Berx et al., 2007).

In the mesenchymatous state, migration is quite inefficient while proliferation is very
active. Proliferation is mostly controlled by cell density for obvious steric reasons. In the
amoeboid state, cell migration is very efficient. Roughly, proliferation occurs at high rate in
the mesenchymatous state whereas migration occurs more efficiently in the amoeboid state, in
agreement with the current wisdom that proliferation and migration are mutually exclusive
processes in a given cell.
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Figure 2: In wvitro observation of the effect of the concentration of substrate-bound PAI-1 on
cell morphology and the mesenchymatous-amoeboid transition. The proportion of blebbing
MDA-MB-231 breast cancer cells is measured at fixed PAI-1 concentration (values 5, 10, 20,
40 pg/em?); x p < 0,05 5 %% p < 0,01 ; %% p < 0,001.

Recent observations in vivo hint at a key player in amoeboid migration, metastases, and
more generally cancer progression: the plasminogen-activator-inhibitor protein of type 1,
henceforth termed by its acronym PAI-1. It is an ubiquitous species involved in several
pathways and functions, among which some aspects are relevant for metastatic process. It
is found in the surroundings of the most invasive tumors (Pedersen, 2005; Wilkins-Port
and Higgins, 2007; Wilkins-Port et al., 2007) and considered as a marker of bad prognosis
(Janicke e al., 2001; Look et al., 2002; Castello et al., 2007; Biermann et al., 2008). PAI-1 is
encountered under several forms: the newly synthesized molecule in the cell (internal PAI-
1), as a soluble form in the extracellular medium (soluble PAI-1). This latter form can either
diffuse in the extracellular medium, or bind to the extracellular matrix (matriz-bound PAI-
1), or be trapped on the cell surface and deactivated, or be internalized and degraded with
no further known consequence on the state of the cell. On the contrary, internalization of
matrix-bound PAI-1 occurs through the formation of a tripartite complex with a membrane
receptor, uPAR, and a molecule, uPA. Its role in modifying the cell physiology (specifically,
in modifying the activity of RhoA pathway) is acknowledged (Chazaud et al., 2000). Strik-
ingly, when cancer cells are placed on artificial substrates with high concentration ¢, > ¢},
of matrix-bound PAI-1, they experience the above-mentioned mesenchymatous-amoeboid
transition (Malo et al., 2006). In this respect, matrix-bound PAI-1 can promote cancer cell
migration, at least in vitro (Friedl and Wolf, 2003). Moreover, these experimental results,
presented on Figure 2, indicate that the mesenchymatous-amoeboid transition is not due to
some mutations but is rather a dynamic transition between two different states of the cell,
controlled by its environment.

Cancer cells synthesize more PAI-1 than normal cells do; PAI-1 molecules are then se-



creted in the extracellular medium and can bind to the extracellular matrix at tumor bound-
ary regions, where the matrix is not fully occupied by cells. Hence, concentration of the
matrix-bound PAI-1 in the border region of the tumor is expected to be higher than around
normal cells. This was observed experimentally (Look et al., 2002; Chazaud et al., 2002).
Cancer cells also produce more uPA and have an increased number of uPA membrane recep-
tors uPAR, directly involved in the internalization of matrix-bound PAI-1. The net result
is an increased internalization flux J; in cancer cells, hence an amplification of the ensuing
cell metabolic and morphological changes compared to normal cells.

From these experimental facts, we shall start from the fact that given cancer cell, with
regards to its metastatic potentialities, can be in two different states, the mesenchyma-
tous and the amoeboid one. We adopt the leading pattern according to which the abrupt
mesenchymatous-amoeboid transition of a cell is controlled by its internalization flux of
matrix-bound PAI-1. The coupled dynamics of several cells and extracellular medium have
then to be considered. Indeed, proliferation in mesenchymatous state turns a single cell
into an aggregate collectively contributing to the concentration of matrix-bound PAI-1. We
shall therefore embed the dynamics of a single cell in a spatially extended population model,
focusing on the spatio-temporal varying internalization flux of the matrix-bound PAI-1,
considered as a marker of the metastatic potentialities of the cells.

3 Model
3.1 Challenges

Let us first avoid a possible misunderstanding: what we term a model is a way to check
the consistency of several experimental facts and partial mechanisms (possibly occuring
at different levels), to put forward control parameters, thresholds, switch behaviors and
quantitative hints on the major determinants of the fate of the system. It should allow us
to derive testable consequences of the hypotheses and suggest novel protocols. A model is
a necessary intermediary step between qualitative understanding and further experimental
evidence and can be seen as a way of hypothesis testing. .

The guideline of our investigations is the multilevel and intricate mechanisms by which
PAI-1 could play a role in the fate of cancer cells and in the metastatic process. As shown
in Section 2, these mechanisms have functional consequences at four different levels:

e at the molecular (intra-cellular) level: internalization of matrix-bound PAI-1. The
internalization of soluble PAI-1 has no intra-cellular consequences and amounts to a
mere degradation;

e at the cellular level: mesenchymatous-amoeboid transition. The experimental fact
that the concentration c¢,, of matrix-bound PAI-1 is a major determinant of the
mesenchymatous-amoeboid transition (Figure 2) will be formulated in the framework
of bifurcation theory at the single cell level, with a control parameter related to ¢,,. The
molecular analysis of intra-cellular pathways and morphological transformations shows
that a more straightforward determinant of the mesenchymatous-amoeboid transition
is the internalization flux J; of the cell. Our hypothesis is that intra-cellular dynamics



determining the overall cell state shows a bifurcation revealed by a switch between
two markedly different mesenchymatous and amoeboid states, at some threshold value
Ji = Jr.

e at the cell population level: the mutualized secretion of PAI-1, feeding extracellular
PAI-1 species. Cell growth and division are considered at this level;

e at the microenvironment level: soluble PAI-1 diffusion in the extracellular medium and
binding on the cell-free matrix, thus turning into matrix-bound PAI-1.

The point is to explain how the interplay between the various forms of PAI-1 and the vari-
ous levels at which they are produced, controlled, or used, can trigger the mesenchymatous-
amoeboid transition and more generally can explain the metastatic process. Complementary
modeling approaches are essentially needed to capture the multilevel determinants and mech-
anisms at work. In order to bring out a robust explanatory scenario, we devise the most
parsimonious model. Such models often need collective variables and effective parameters,
accounting in a bottom-up and already integrated way of a wealth of elementary mechanisms
(here, the use of average densities and pseudo-first order kinetics, see below). In complex
systems, they also involve effective inputs or boundary conditions, accounting in a top-down
way of the influence of the system emergent features or structures and surroundings on ele-
mentary parts and mechanisms (Lesne, 2008b). The main quality of a parsimonious model
is the robustness of its predictions with respect to small changes in the microscopic ingre-
dients, because they will only slightly affect the value of the effective parameters without
modifying the general form of the model (Lesne, 2008a). For instance, a bifurcation (here
the mesenchymatous-amoeboid transition) will still be observed with possibly only a shift of
the bifurcation location. The confrontation with experimental observations would validate
the leading principles and scenario. It is then another part of the work, involving in general
different data and computational tools, to substantiate the minimal model with underlying
mechanisms and explicit ingredients in order to derive the exact numerical values of the
effective parameters, interactions and reactions. The use of a minimal model is here all the
more essential that no experimental access to the values of e.g. kinetic parameters is today
possible, nor a direct experimental investigation of the metastatic process.

3.2 Reaction-Diffusion Model

We first consider a description (termed mean-field-like description in statistical physics for
interacting many-body systems) in which soluble PAI-1, internal PAI-1, and matrix-bound
PAI-1 species are described by means of smooth deterministic concentrations. The cell pop-
ulation is described by a smooth deterministic cell density. The experimental observations
are formalized in terms of chemical kinetics, diffusion, and growth, but the discrete nature
of cells and molecules, and the stochasticity of the elementary processes are no part of the
mean-field description. The set of essential variables includes the concentrations ¢, (7, t) of
matrix-bound PAI-1, ¢,(7,t) of soluble PAI-1, and ¢;(,¢) of internal PAI-1 at time ¢ and
location 7, and a smooth variable o(7,¢) accounting for the presence of cells at the con-
sidered position 7. According to the standard continuous-medium approximation (Landau
and Lifshitz, 1959), the element dr has to be large enough to contain a large number of
molecules, so that concentrations are smooth and deterministic, but not too large so as to



remain infinitesimal at the scale of the system. The evolution of the concentrations is then
ruled by chemical kinetic equations (mass action law) and diffusion equation (Fick law). In a
similar spirit, the variable o is an homogenized version of the Boolean function o (7, t) with
oo(7,t) = 1 if a cell is present in 7 at time ¢ and 0 otherwise. There is need neither to count
cells nor to care much for the boundaries of the cell population in a discrete setting, and the
resulting cell density o(7,t) is a continuous field with 0 < ¢ < 1. In particular, cell growth
and cell division can be treated similarly, both producing a spreading of the support and a
local increase of the field o(7,t). This description is mean-field-like insofar as correlations
between the fluctuating numbers of molecules and cells at various locations and times are
neglected and only their local averages are considered (Lesne, 2007). The overall dynamics
is described in a spatially extended kinetic model, as illustrated on Figure 3, accounting for:

o cell division and growth, continuously enlarging the region occupied by cells (the region
where o > 0). This expansion of the cell population is measured by a rate k, and a
unimodal kernel T'(.) of finite range: cell growth and division induce a continuous
spreading of the continuous regions with short-range increments weighted with I'. As
mentioned, there is no need to consider separate contributions for growth and division.
This kernel is isotropic (I'(¥) depends only on r), time-independent, normalized by
setting its integral over the whole space equal to 1. Its width corresponds typically to
the cell radius;

e a source term describing the synthesis of PAI-1 inside the cell. It describes the net
result of the protein synthesis following gene expression, its degradation right after for-
mation, and possibly a negative self-regulatory effect on the expression of PAI-1 gene;
this is accounted for by an effective term f(c;) such that f(0) > 0 and monotonously
decreasing to 0 as the concentration ¢; of internal PAI-1 increases. Prescribing a more
detailed form for f is not possible given the limited biological knowledge and it would
give an illusory precision; we thus limit ourselves to well-assessed general features of
f, that will appear to be sufficient for deriving qualitative and robust conclusions.

o the release of soluble PAI-1 when cells are present, feeding on their content in internal
PAI-1. Tt is described by a pseudo-first-order kinetics, accounting only for the species of
interest and the simple proportionality of the secreted amount with respect to ¢;. The
influence of possible additional factors and species other than PAI-1 (whose explicit
description would obscure the dominant scenario that we want to explore) is implicitly
taken into account in the effective rate kj:

e soluble PAI-1 then diffuses with a diffusion coefficient D. The fact that it diffuses
only in the extracellular medium is accounted for by using a space-dependent diffusion
coefficient (1 — o(7,t))D which vanishes at maximal cell density o = 1;

e the fization of soluble PAI-1 on the matrix when no cell is present, producing matrix-
bound PAI-1 with a rate (1 — o(7,t))k,, which vanishes at maximal cell density o = 1;

e the deactivation of soluble PAI-1 or its internalization; this process is much different
from the internalization of matrix-bound PAI-1 with regards to cell physiology: it has
no signaling role and does not trigger any pathway, having finally no consequence on the
overall state of the cell; hence it should not be taken into account in the internalization
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flux J; introduced as a control parameter of the mesenchymatous-amoeboid transition.
Both deactivation and internalization merely amount to a degradation of soluble PAI-1
and are jointly accounted for by a first order kinetic —okgcs. They correspond to the
only possible fate for soluble PAI-1 at maximal cell density, when o = 1 and diffusion
or matrix-binding are no longer a possible option.

e the internalization of matriz-bound PAI-1 with a rate k; when a cell is present. This
process generates the internalization flux J; per cell, related according to an effective
single-order kinetics J; = k;c,,. As in first-order kinetic terms introduced above, the
rate k; is an effective parameter possibly depending on factors not explicitly described
in this basic model; only matters here the proportionality between the concentration
¢m and the flux J. This flux triggers mesenchymatous-amoeboid transition when
it exceeds a threshold J;. Internalized PAI-1 molecules are degraded after having
influenced internal pathways controlling the transition of the cell state.



In terms of regular deterministic fields, these different processes, individually well-established
experimentally, together lead to the system:

Jojot = kg H(1—o0) / (D7 — 7)di (1)
RS

0c; /ot = of(c)— ksoc; (2)

Ocs /Ot = (1 —0)DAcs + ksoc; — k(1 — 0)es — kqgoes  (3)

Ocm /Ot = kp(l—o0)cs — kjoep, (4)

Ji = kicm for 0 >0 (5)

where H(.) is the Heaviside step function such that H(z) = 1 if z > 0, and H(z) = 0
otherwise. Due to intra-cellular synthesis and degradation of PAI-1, there is no conservation
of the total amount of PAI-1 in the system and Eq. (2) to (4) describe more than a mere
interchange between three different forms of the same molecular species.

Here arise a major problem for modeling: the difficulty, if not total impossibility of
getting any insight about the actual values of the kinetic rates; this would require single-cell
measurements out of reach with the sensitivity of the technologies of today. For this reason,
we adopt a semi-quantitative viewpoint aiming at providing robust proof-of-principles of the
dominant mechanisms, despite this lack of quantitative biological data.

Qualitative insights about the dynamic behavior captured by the above coupled partial
differential equations can be gained from a mere inspection of their form and terms. Eq.(2)
and features of the function ¢; — f(c¢;) show that de¢; /0t is strictly positive for ¢; close to
0 and decreases monotonously as ¢; increases, reaching negative values dc¢; /0t < 0 for ¢;
large enough; hence we expect to observe a stationary value ¢; where cells are persistently
present (o > 0). This ¢; is determined as the unique solution of f(¢;) = ks¢;. In Eq. (3), the
degradation term ensures that cs remains bounded. In regions where o < 1, the diffusion
term describes how the soluble PAI-1 produced by the tumor cells diffuses in the extracel-
lular space toward the tumor boundary and beyond, in the outer shell, where it binds the
extracellular matrix and increases the concentration of matrix-bound PAI-1, while ¢4 tends
to 0 far away from the tumor in the regions not reached yet by the diffusion. Eq. (4) shows
that dc,, /0t < 0 in regions where cells are dense (o close to 1) while dc,, /0t > 0 at the
tumor outer boundary, that is, in a region almost devoid of cells (o close to 0) but not too
far from the cells producing PAI-1, so that ¢, > 0. We expect that ¢,, = 0 in the tumor
bulk while reaching its maximum value in the tumor outer shell, before decreasing to 0 far
away from the tumor: matrix-bound PAI-1 is mainly located in the tumor boundary regions
where both o and 1 — o are non zero. An obvious steric argument (core tumor cells can
neither escape nor even move) reinforces the claim that only tumor boundary regions are
1nvolved in the metastatic escape process.

J; given by Eq. (5) is defined as an internalization flux per cell. As the mesenchymatous-
amoeboid transition occurs at the cell level, its relevant control parameter should correspond
to a cell as a whole, notwithstanding its spatial extent. The biological relevant question is to
determine whether this flux J; could overwhelm the transition threshold in some cells, that
is, J; > J with Jf = k;c},. Such an occurrence requires the conjunction of soluble PAI-1
production by tumor cells, diffusion of soluble PAI-1 in the vacant extracellular space, bind-
ing of a large amount of soluble PAI-1 at a given empty location of the extracellular matrix,
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and growth or division of a cell to cover this location, internalize the underlying matrix-
bound PAI-1 and experience the mesenchymatous-amoeboid transition. This sequence of
events should follow a coordinated time ordering, namely soluble PAI-1 binds the matrix
and ¢,, reaches a high level before a cell invades the corresponding location. This heuristic
analysis shows the importance of the precise spatio-temporal geometry of the tumor, the
history of its growth and the relative timing of the various events occurring at its boundary.
Accordingly, consistency and relevance of the approximations leading to Eq. (1-5) must be
reevaluated. Such a feedback of the predictions of the model onto its very design provides
internal quality assessment (another assessment of quality relies on experimental data).

In this deterministic setting, the most rigorous way of accounting for the constraint
that soluble PAI-1 diffuses only in the extracellular medium would be to impose boundary
conditions on the bare diffusion equation (that is, involving a bare diffusion term DAcy)
delineating the space available for diffusion. However, cell division is a random event at the
cellular level of description so that the precise tumor boundary geometry is itself random
and highly irregular. A precise account of the boundary conditions would require a full
description of the random growth of the tumor and history of the cell population, hence
the extension to a stochastic setting. On the contrary, Eq. (1-5) provide an homogeneous
description which involve an average version o of the actual Boolean function indicating
precisely where cells are present, and accounts for the geometrical constraints through an
effective diffusion coefficient (1—o)D. A flaw of this average description is to ignore inhomo-
geneities whereas they are likely to play a central role, being reinforced by the heterogeneous
growth dynamics and the geometry-dependent interplay between intra-cellular and extra-
cellular processes. This would prevent the solution for ¢, to reach very locally the very
high level required to exceed the mesenchymatous-amoeboid transition threshold. A rough
estimate from Eq. (2-4) in the outer shell where o ~ 1 — o &~ 1/2 yields the stationary and
spatially uniform concentrations ¢; & ¢;, ¢ & ¢s = ksC;/(km + kq) and ¢, = €, = ks / ki
¢m would either always or never exceed the threshold ¢}, of the mesenchymatous-amoeboid
transition, depending on the values of the kinetic rates in Eq. (1-5) . Either all cells or
none would display the mesenchymatous-amoeboid transition and escape. That does not
correspond to the metastatic escape where only a very few cells emerging spontaneously
manage to escape.

Moreover, as the basic mechanisms involve only few cells, statistical fluctuations of the
total number of cells are likely to play a key role. In particular, the invasion by a new cell
of an extracellular matrix site coverred by PAI-1 is mainly a random event, whereas we
consider here that it is fully controlled by an homogeneous and deterministic spreading of
a smooth field o(7,¢). Even the description of molecular diffusion and transformations in
terms of deterministic concentrations is questionable and lead us to investigate the role of
the fluctuations of the total number of molecules, and the stochasticity of their motion and
interactions.

Hence partial differential equations model are ill-suited to take into account the geometry
of the tumor boundary, in the first place the heterogeneous accumulation of the matrix-
bound PAI-1. Although this model provides a concise and tractable description to identify
elementary mechanisms involved in the metastatic process, its resolution does not yield a
relevant picture of the resulting biological process. If an explicit description of the occupied
region were preferred to the homogenized description by the field o, curing the singularities
introduced by the sharp distinction between cells and extracellular medium would require
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a recourse to regularizing kernels. Moreover, consistency in the level of details requires
an explicit stochastic model for cell growth and division. These two refinements would
introduce a large number of arbitrary parameters, to the detriment of the robustness of the
model, its significance, and its discriminating power. For this reason, we rather turn to a
numerical modeling using complementary cellular-automata and agent-based simulations,
both accounting for the full random history of tumor growth and tumor boundary location,
better suited to account for the interplay between the evolving geometry of the tumor
boundary and the accumulation of matrix-bound PAI-1 with its related stochastic aspects.

3.3 Cellular-Automata and Agent-Based Simulations

In order to circumvent the aforementioned inadequacies of the partial differential equations
model, we implemented two complementary numerical approaches: cellular-automata and
agent-based simulations.

The cellular-automata simulation implements the same mechanisms as partial differen-
tial equations, see Figure 3, but explicitly accounts for the cell discreteness and stochas-
ticity of cell division. Its main goal is to provide a proof-of-principle that stochasticity
in cell division and tumor growth are sufficient to produce heterogeneous accumulation of
matrix-bound PAI-1 at the tumor boundary. The agent-based simulation provides a phe-
nomenological description accounting for stochasticity not only in cell division but also in
the diffusion and transformations of PAI-1 molecules; it also includes vitronectine (a molec-
ular species) and comprises more cell states. This makes the agent-based model closer to
the biological reality but could obscure its interpretation; we rather use it as a complement
of the cellular-automata simulation in order to check that its conclusions are not affected
when supplementing the scheme of Figure 3 with auxiliary species, reactions and cellular
processes.

Both simulations predict a heterogeneous accumulation of matrix-bound PAI-1, yielding
supra-threshold concentration peaks, leading in turn to high internalization fluxes of PAI-1 in
novel cells reaching these very specific locations; in the ensuing step (not included in the sim-
ulations) these few cells would experience the amesenchymatous-amoeboid transition and be
plausible candidates for the metastatic escape. We shall first describe the cellular-automata
simulation then discuss the additional insights provided by the agent-based simulation.

3.3.1 Cellular Automata

The cellular automata simulation accounts for stochasticity of cell division and spatial con-
straints on tumor growth: the tumor boundary will now evolve in a random and history-
dependent way. The simulation aims at investigating the possible heterogeneous features
in the distribution of matrix-bound PAI-1, in particular whether ¢,, could locally reach the
transition threshold c¢},. The simulation takes place on a 2-dimensional grid, where the
spatial extent of each cancer cell corresponds to a unit grid cell (to avoid confusion between
numerical cells of the simulation grid and biological cells of the tumor, we use the term grid
cell for the former and simply cells for the former). The concentrations ¢;, ¢, and ¢, are
defined on the discrete space-time {(7,t) € IN* x IN} and take any real positive value; o (7, t)
is similarly defined on IN* x IN but takes only values 0 or 1 according to whether a cell is
absent or present in 7 at time ¢. The simulation is synchronous, the state of each grid cell

12



is updated at a step of the simulation. The growth of the tumor and the coupled variation
of the different forms of PAI-1 (internal, soluble, and matrix-bound) are implemented ac-
cording to the same kinetic scheme as in Figure 3. Based on the qualitative analysis of this
scheme, an additional simplification was made, considering that all tumor cells release the
same amount of soluble PAI-1; with the notations of the previous subsection, this amounts
to consider that ¢; attains its stationary value ¢; fast enough and ¢; = ¢; in all cells; ac-
cordingly, ks is replaced by an effective coefficient ks e (with the relationship ks e = ksG;
to the previous model). As we have no experimentally supported expression of the function
f(¢;) (an intricate biochemical analysis would be necessary), the simplification ¢; = ¢; =
constant strengthens the robustness of the simulation: the influence of f appears in the
value of ks ox. Keeping an equation for ¢; with an unreliable term f(¢;) would be illusory.
Omitting the argument (7, ¢) in all right hand side quantities ¢;, ¢s, ¢, Acs and o, a basic
step of simulation writes explicitly:

em(Fit+1) = ¢+ kn(l—0)cs — kioenm (6)
cs(Mit+1) = D —o0)Acs +ksero +cs (1 — k(1 —0) — kqo) (7)

Denoting 7 = (z,y), the standard discretization of the Laplacian involved in describing the
diffusion of soluble PAI-1 is:

Acs(z,y,t) = (1/4) (cs(z + Ly, 1) +es(@ — Ly, t) +cs(z,y + Lt) + es(z,y — 1,8))—cs(2, 9, 1)

(8)
This implementation corresponds to a space-time discretization of the partial differential
equations except what concerns the growth of the tumor, now described as a stochastic
process involving discrete cells: at each time step, one cell is created at the periphery of the
tumor and its location is chosen at random among the empty sites around the tumor. At the
beginning of the simulation, ¢,, = 0 and ¢, = 0 for each grid cell, and one cell is located at
the center of the grid. We consider the internalization flux .J; as the control parameter of the
mesenchymatous-amoeboid transition, namely the transition occurs in a given cell when its
flux J; overwhelms a threshold J*. This overshoot is controlled directly by the concentration
of matrix-bound PAI-1 at the location of the cell, established before a cell is created at this
location. In the course of the simulation, we record the spatio-temporal variation of the
internalization flux and the various concentrations. We expect a realistic metastatic effect
if the mean-field internalization flux J; ~ k¢, is below J¥. The meaning is that, on
average, the bifurcation threshold is not reached, otherwise most cells would experience
the transition, at odds with experimental observations. In this case, only a non trivial
localization could allow a few cells to encounter high enough levels of matrix-bound PAI-
1. The resulting internalization would be enough to display a mesenchymatous-amoeboid
transition. Figure 4 shows the concentration of matrix-bound PAT after a typical trajectory
of 500 simulated steps on a 40 x 40 cell grid. In agreement with our qualitative analysis,
matrix-bound PAI-1 is mainly located at the tumor outer boundary. Moreover, several peaks
appear at the periphery of the tumor; their locations vary from one simulation to another,
and their heights are highly variable form place to place, with a standard deviation of the
order of their mean value. In agreement with our scenario, peaks are observed to correlate
with “gulfs” on the tumor boundary. These gulfs favor the localized accumulation on a single
site of PAI-1 produced by several neighboring cells.
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Figure 4: Concentration of matrix-bound PAI-1 (vertical axis) after 500 steps of simulation,
starting from a null concentration in the whole unit square (z € [0,1], y € [0,1]) and one
tumor cell at the center, with kg = 0,k; = 0.1 and (left) ks = 1, k,,, = 1 or (right) ks = 0.5,
k., = 0.25. The insets describe the corresponding shape of the tumor. In a wide range of
values of k,, and kg, matrix-bound PAI-1 displays a heterogeneous distribution, localized at
the tumor boundary whose peaks correlate with the gulfs in the geometry of the boundary.
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Figure 5: Sensitivity analysis of the cellular-automata simulation results. (left) mean and
(right) standard deviation of the spatial distribution of matrix-bound PAI-1, with respect
to kinetic rates k,, (horizontal axis) and k, (vertical axis). Increasing k; would only increase
the internalization rate and decrease matrix-bound PAI-1 concentration wherever cells are
present; altogether, this would localize peaks of concentration in the outer boundary of
the tumor, without changing significantly their average height and standard deviation (see
Figure 6).

The simulation shows that the interplay of transformation and degradation kinetics of
PAI-1, the molecular diffusion of soluble PAI-1 collectively secreted by the tumor boundary
cells in the extracellular medium, and the randomly changing geometry of the tumor can
induce a localized accumulation of matrix-bound PAI-1 at a few places strongly dependent on
the random growth history. Correlatively, it produces peaks in the flux J; of internalization
1 by the cells of the matrix-bound PAI-1. The secretion of PAI-1 by the set of tumor cells is a
collective effect. It allows the internalization flux .J; of a few single cells to reach values which
would never be reached if the cells were functioning in isolation. Spontaneously, some cells
might benefit from the PAI-1 secretion of the other ones. In particular, J; might now locally
reach large enough values J; > J to trigger the mesenchymatous-amoeboid transition of a
few single cells and allow their amoeboid move away from the tumor. Due to the inherent
stochasticity of tumor growth and boundary location, self-consistently coupled with PAI-1
reactions, this overshoot J; > J is basically a random event, occurring at history-dependent
moments and locations.

Altogether, this numerical implementation supports the claim that only tumor boundary
regions are involved in metastatic escape. It highlights an emergent situation leading to the
spontaneous heterogeneous accumulation of matrix-bound PAI-1 at the tumor boundary,
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which in turn promotes the amoeboid-mesenchymatous transition and the metastatic escape
of a few single cells, selected in a random and history-dependent way. This mechanism
accounts for both the possibility and the rarity of mesenchymatous-amoeboid transition
events, and it relies on very few ingredients.

3.3.2 Agent-Based Simulation

A cellular-automata model, although introducing cell discreteness and some stochasticity in
partial differential equations, might a priori lack realism and suffer from over-simplification.
A structural stability analysis helps delineate the validity of the model. Inferring possible
additional contributions quantitatively and investigate their importance are difficult experi-
mentally because of the rarity of the phenomenon. We rather challenge the hypotheses and
simplifications underpinning the cellular-automata simulation, for instance a minimal num-
ber of species, effective kinetics and drastically simplified cellular processes, by considering
a biologically more detailed agent-based model.

Three kinds of entities are now considered: tumor cells, PAI-1 molecules in their three
different forms, and additional vitronectine molecules bound to the extracellular matrix
and promoting soluble PAI-1 matrix binding upon encounter. Moreover, cells are modeled
as autonomous entities evolving in a continuous space and endowed with more realistic
behaviors: by contrast to the cellular-automata simulation, cell modeling is now dissociated
from the topology of underlying space. Cells can be in one of the following states:

e Active: an active cell may proliferate, internalize PAI-1, and release soluble PAI-1;
cells are created in this active state.

o Quiescent: cells become quiescent if they lack basic nutrients and proliferation is
paused; however, they continue to release and internalize PAI-1 molecules.

e Necrotic: if environmental conditions are even harsher, cells become necrotic and die.

PAI-1 molecules are modeled by accounting for discreteness and stochasticity of molecu-
lar events and diffusion, thus no longer relying on the mean-field description in terms of
smooth deterministic concentration fields considered in both partial differential equations
and cellular-automata. Molecules of vitronectine are described on average, in terms of a lo-
cal concentration of molecules in each cell of a regular grid. Molecules of PAI-1 are modeled
as autonomous agents produced and released by cells. These molecules can be in one of
the aforementioned states: internal, soluble (either active or inactivated) or matrix-bound
(when entering a cell-free region with a sufficient concentration of vitronectine so that it
encounters a vitronectine molecule almost surely and binds to it); in the soluble state, they
diffuse according to a random walk into the extracellular medium. Molecules of vitronectine
have neither active behavior nor diffusive motion (for this reason are not modeled individu-
ally) but their concentration in a given grid cell is updated each time a PAI-1 molecule gets
bound to the matrix in this grid cell.

Starting from a single active mesenchymatous cell, an homogeneous distribution of vit-
ronectine, and no molecules of matrix-bound PAI-1, the agent-based simulation evolves
toward a final state in which the initial cell has generated a full-grown tumor, surrounded
by an irregular accumulation of molecules of matrix-bound PAI-1. This observation in-silico
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Figure 6: Comparison of the (left) agent based and (right) cellular-automata simulation
results. Both simulations support the spontaneous heterogeneous accumulation of matrix-
bound PAI-1 at the tumor boundary. In the agent-based simulation, tumor growth results
from several physiological reactions whereas it follows from a random choice of a dividing cell
in the cellular-automata simulation. Here this choice is constrained by enforcing the final
shape in order to obtain a tumor geometry comparable to that obtained in the agent-based
simulation. The difference with Figure 4, in which the simulation follows a plain random
growth as described in § 3.3.1, shows that both tumor growth history and geometry matter.

holds true for a wide range of kinetics and parameter settings, a fact which testifies for
the robustness of the modeling. It may also indicate a robustness of the phenomenon itself
with respect to change in the surrounding conditions or in any metabolic or signaling factor
influencing the parameters. Our numerical results suggest that:

e the amount of matriz-bound PAI-1 in a given location on the tumor border varies
greatly in time; this is because of an alternation of phases during which PAI-1 ac-
cumulates by binding to a cell-free extracellular matrix (through forming a complex
with vitronectine) and phases during which, because of tumor growth, one or more
cells come in contact and internalize matrix-bound PAI-1; vitronectine molecules do
not appear here as a limiting factor, that justifies a posteriori their omission in the
two models with partial differential equations and cellular automata;

e the amount of matriz-bound PAI-1 varies greatly from one point to another along the
tumor border; this is because the tumor growth is not spatially homogeneous and does
not occur simultaneously all around the tumor;

e the amount of matriz-bound PAI-1 is inversely correlated to the speed of the tumor
growth; this is because the slower the proliferation, the longer the phases during which
matrix-bound PAI-1 can accumulate; this suggests that the environment of the tumor,
by differentially influencing tumor growth (for instance if the medium is more dense
on one side of the tumor), may play a major role in the initiation of amoeboid escape.
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This agent-based simulation, aiming at a realistic account of the different factors in-

volved, recovers several acknowledged results e.g. the appearance of a necrotic core while
proliferation activity is highest close to the tumor boundary; it also shows a spontaneous
and heterogeneous accumulation of matrix-bound PAI-1 in the outer shell of the tumor.
Interestingly, when the simulation is performed with simpler rules, within a mean-field ap-
proximation in which the growing tumor is assumed to keep a circular shape and the secretion
of PAI-1 is homogeneous, no such strong heterogeneities appear in the PAI-1 ring around
the tumor (low variance in the ring concentration, data not shown): this confirms the result
of the cellular-automata simulation that fluctuations in the shape of the tumor boundary as
it grows, originating from the random cell divisions, play en essential role in the distribution
of matrix-bound PAI-1 molecules.
These results, obtained with a simulation model that stands close to biological reality,
strengthen those obtained with cellular automata model; the latter, being more abstract and
minimal, better delineates the essential mechanism. Both simulations support the occur-
rence of a spontaneous heterogeneous accumulation of matrix-bound PAI-1 at the boundary
of a growing tumor, where it favors the rare event of In both simulations, the fact that the
standard deviation of the concentration of matrix-bound PAI-1 is of the same order of its
mean is a very robust feature, observed in a wide range of the parameter values.

We have considered only a 2-dimensional lattice, mimicking a locally plane substrate.
In vivo, amoeboid migration would rather occur through a porous 3-dimensional extra-
cellular medium, with various effects of geometrical concentration. One advantage of the
2-dimensional simulation is to be directly comparable to in vitro experiments. Experimental
setting monitoring 3-dimensional geometry and functionalized porous substrate are in their
design stage still.

4 Insights from Bifurcation Theory

4.1 PAI-1-controlled Bifurcation Diagram

Our numerical simulations favor the explanation that both the metastatic escape and its
rarity originate in the control by the internalization flux of matrix-bound PAI-1 of the switch
between mesenchymatous and amoeboid states. We suggest now an integrated scenario
accounting for the molecular, cellular, extracellular, and population features of metastatic
escape and secondary tumor growth.

A first option could be to implement an extended agent-based simulation of the context-
dependent transformations of all tumor cells, their migratory motions, their divisions, their
interactions with their surroundings and metabolic changes as they move. Such an extensive
simulation could include a wealth of ingredients presumably at work in the real system; its
quality would be to use raw and elementary ingredients directly. It however does clarify
neither the appearance of secondary tumors nor the major mechanisms. The parameters
are too many to perform any sensitivity or structural stability analysis.

That is why we focus on the fate of one of the privileged cells having encountered a
supra-threshold concentration of matrix-bound PAI-1 and experienced the mesenchymatous-
amoeboid transition. The modifications of its microenvironment due to neighboring cells
(including itself) will be tracked and taken into account in an effective way, through its
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consequences on the concentration c¢,, of matrix-bound PAI-1 at the cell location or in a
still more effective way through its consequence on the PAI-1 internalization flux J; of the
selected cell. The experimental investigation of the mesenchymatous-amoeboid transition,
Figure 2, led us to formulate our basic claim that this cell change is not due to accumulated
mutations but corresponds to a change in the physiological state of the cell, that is, to
a bifurcation in the intracellular dynamics. The metabolic network formed with all the
species and pathways connected somehow to PAI-1 or PAI-1-regulated reactions experiences
a qualitative change of regime, with observable consequences on the cell state in the form
of a bi-stable switch.

The generic instance of first-order bi-stability (that is, associated with a discontinuous
transition between two stable states) is the S-shaped diagram (Ruelle, 1989) sketched on
Figure 7. The horizontal axis represents the control parameter, here the concentration ¢, of
matrix-bound PAI-1 at the cell location or the internalization flux J; related to ¢, through
Eq.(5). The vertical axis represents a quantitative feature discriminating the mesenchyma-
tous and amoeboid states and affected in the mesenchymatous-amoeboid transition, notably:

e the cell morphology (observed shape, organization of the cytoskeleton, blebbing fea-
tures appearing as J; increases);

e the nature of the adherence points with or without integrins; the contribution of inte-
grins decreases as J; increases, replaced by a PAl-dependent mechanism (Czekay and
Loskutoff, 2004);

e the force of adherence exerted by the cell, decreasing as J; increases;
e the cell proteolytic activity (decreasing as J; increases)

e the activation or inhibition of internal pathways related to PAI-1, typically the RhoA
pathway, involving ROCK activation as J; increases (Sanz-Moreno et al. 2008; Mc-
Carthy, 2009).

The S-shaped curve represents the possible states of a tumor cell in this plane, with bi-
stability in a horizontal range [J,;™", J*]. The lower branch corresponds to the mesenchy-
matous state and the upper branch to the amoeboid state. We are dealing with dynamic
states, which are stable in the sense that they persist and correspond to stationary fea-
tures. The intermediary dotted branch is unstable. This bifurcation diagram represents
the abrupt mesenchymatous-amoeboid transition for J; = J;; the mesenchymatous state
no longer exists for J; > J'. It also predicts the occurrence of a reverse transition,
the amoeboid-mesenchymatous one, when J; has decreased back to a value J;™ smaller
than J*. This S-shaped bifurcation is termed a subcritical bifurcation to indicate that the
amoeboid-state domain of existence and stability, in the control parameter space, overlaps
the mesenchymatous-state domain of existence and stability, and covers a region [J,™", J¥]
below the bifurcation threshold J;. In biological terms, such a bifurcation diagram relies
on the property that the threshold for triggering mesenchymatous-amoeboid transition is
higher than the threshold required to simply maintain the amoeboid state once it is es-
tablished. Reducing to a “plane” diagram (codimension one) is justified by the well-known
generic irrelevance of stable components of the dynamics near the bifurcation point: the

19



amoeboid state

mesenchymatous state /

Jmin J* J

Figure 7: Generic bifurcation diagram of a bi-stable switch, here the transition between
the mesenchymatous state (lower branch of the S-shaped curve) and the amoeboid state
(upper branch) for a given cell as the internalization flux J; of matrix-bound PAI-1 varies
(horizontal axis); this flux is proportional to the concentration of matrix-bound PAI-1at
the cell location and triggers several intracellular pathways altogether responsible for the
transition. The vertical axis represents any quantitative feature discriminating the two
states.

observed qualitative change is controlled by the parameter which is at the stability thresh-
old, here the concentration of matrix-bound PAI-1, while other parameters and factors are
inessential. Of course these arguments do not completely rule out the possibility of a non-
generic, higher-dimensional and more complex bifurcation diagram but we have today no
experimental clue indicating such a situation nor any inconsistency in our scenario requiring
to envision a more complex diagram.

This bifurcation viewpoint integrates, within a dynamic framework, the exclusive prolif-
erative and migratory capacities of the metastatic cells: the concentration of matrix-bound
PAI-1 (which directly controls the internalization flux J;) is critical in the choice between
migration and proliferation, with a higher threshold for the transition from proliferation to
migration than for the transition from migration to proliferation. Such a subcritical nature,
supported by first-order nature of the transition from mesenchymatous to amoeboid states,
suggests a protocol for observing the amoeboid-mesenchymatous transition at a decreasing
concentration ¢,,, which is the quantity monitored in in wvitro experiments (Malo et al.,
2006).

The predictions of our study motivated systematic and quantitative experimental explo-
ration of this transition and its control. The description in terms of a bifurcation diagram
leads to predict its reversibility, that would provide a discriminating feature with explana-
tion in terms of accumulated mutations as mutation-driven transitions are irreversible. As
shown on Figure 8, the results of these experiments actually prove the existence of the
reverse transition from amoeboid to mesenchymatous state (Cartier-Michaud et al., 2009).
They provide an internal check of consistency of our scenario in supporting the bifurcation
diagram on which it relies. In particular, they evidence both the reverse transition threshold
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Figure 8: (left) Time-lapse photography of cells seeded on PAI-1 or collagen substrate;
blebbing cells becoming elongated show the reversibility of the mesenchymatous-amoeboid
transition. (right) The proportion of blebbing and spindle-shape MDA-MB-231 breast cancer
cells seeded on a weakly PAI-1-enriched microenvironment (20 ug/cm?, below the threshold
of the mesenchymatous-amoeboid transition) is shown at successive time points (3, 6, 19, 24
hours). The proportion of blebbing cells (horizontal axis) decreases in favour of spindle-shape
morphology indicating that a reverse amoeboid-mesenchymatous transition takes place.

cmin > 0 and the fact that is is lower than the threshold for the direct transition 2™ < cx.
The cell state is fully resilient and it recovers the mesenchymatous state at low matrix-bound
PAI-1 concentration ¢ < cjy™.

4.2 Metastatic Cycle

A cycle is usually associated with the subcritical bifurcation diagram sketched on Figure 7,
and we shall now discuss its biological interpretation and conditions for its observation.
We suggest a complete scenario of the recurrent hiving-fixation-growth cycle generating
secondary tumors.

History- and geometry-dependent heterogeneities in the concentration ¢, of matrix-
bound PAI-1 could build up at the boundary of a proliferating tumor. A mesenchymatous
cell reaching one of these privileged locations would follow the lower branch up to the critical
value ¢, at which it switches to the upper branch into the amoeboid state. Once the cell
has switched to the amoeboid state, it starts to migrate away from the tumor. Before
entering a proliferative state, a migrating cell into the amoeboid state has first to stop and
settle, and its metabolic and transcriptional states shift to a regime promoting growth and
division. We saw that such a transition back to the mesenchymatous state could be promoted
by the surrounding. The diffusion-limited concentration of soluble PAI-1 decreases as the
distance from the tumor cells producing PAI-1 increases, and so does the concentration of
its matrix-bound form. The escaping cell soon reaches regions where the concentration of
matrix-bound PAI-1 is low. This lowers its internalization flux .J;. Moreover, due to a
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Figure 9: Metastatic cycle. The control parameter is the local and instantaneous value ¢,
of the concentration of matrix-bound PAI-1 at the cell location. The bold lines represent the
stable states and the dotted one the unstable branch (bifurcation diagram as in Figure 7);
the dashed line represents the typical path of the cell-state trajectory when the quasi-
approximation is no longer valid and ¢,,, varies before the cell has relaxed toward the stable
branch.

negative self-regulation of the expression of PAI-1 at the transcription level, the secretion
of PAI-1 is reduced in the amoeboid state (while being maximal in the mesenchymatous
state). The migrating cells cannot by themselves modify their microenvironment into a
track covered with a high quantity of matrix-bound PAI-1. Subsequently, the amoeboid
state cannot be sustained and the cell switches back to the mesenchymatous state. It could
then start proliferating again and generate a metastasis. As the secondary tumor grows, the
same metastatic cycle could occur for a small fraction of its cells. Figure 9 represents how
the metastatic cycle could originate in an intrinsic hysteretic cycle between two states for a
single cell (bold lines). The point is that the control parameter c,, is not tuned from outside
the cell but that its variations reflect the modifications of the cell microenvironment during
proliferation and migration.

After a few metastatic cycles, the newly born metastasis is far enough from the original
tumor and its cells descend from a minute fraction of the cells of the primary tumor, in
agreement to in vivo observations. The metastatic escape of a single cell is in fact the
consequence of a collective effect involving many cells, mainly through their contributions to
the release of PAI-1 in the extracellular medium and fixation to the matrix: the consequence
is observed at a single cell but originates at the cell population level. The probability that
an escaping metastatic cell reaches blood circulation increases at each cycle, opening the
way to other modes of metastatic processes.

In vitro experiments and the determination of quantitative bounds on the upper and lower
thresholds should allow us to check the biological reality of the hysteretic cycle predicted here
using generic arguments of bifurcation theory. Direct in vivo validation is today intrinsically
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impossible yet, due to the too low probability of the escape and the too low fraction of cells
involved in this cycle, yielding too low a signal-to-noise ratio. An additional difficulty is the
limited duration in which the few emerging cells remain in the amoeboid state, although
this transient stage with its associated migration appears to be a determinant event in the
metastatic process.

4.3 Quasi-Stationary or Transient Cell States

We described the cell trajectory as a succession of well-defined states controlled by the
local concentration c¢,, of matrix-bound PAI-1 or equivalently by the instantaneous value
J; of the cell internalization flux of PAI-1. This paradoxical description (a succession of
stationary states), called “quasi-stationary approximation” (also “adiabatic approximation”
in physics), is justified by the difference between the time scale of the modification of the
microenvironment (and the ensuing modification of ¢, and J;) and the faster time scale
of the cell response: the cell is almost always observed in a stationary state, following the
stable branches of the bifurcation diagram as ¢,, or J; slowly vary.

When this quasi-stationary approximation fails to be valid, for instance in the presence of
memory or slow relaxation, the bifurcation diagram nevertheless provides bounds and qual-
itative guidelines about the trajectory of the cell state. Consider for instance an amoeboid
cell reaching a region poor in PAI-1, with ¢, < ¢},. If a non negligible duration (compared to
other relevant characteristic times) is required before the PAI-1 signal comes down, the cell
relaxes to the mesenchymatous state with a delay: it first remains in a transient regime and
its trajectory, represented by the dashed line on Figure 9, then deviates from the branches
of stationary states forming the S-shaped curve. This trajectory presumably depends on the
specific cell history, but lies above the upper branch. Whether the cell behavior is an adia-
batic response following a stable branch of the bifurcation diagram or an out-of-equilibrium
response depends on the relative values of the characteristic time of variation of the value
¢m at the cell location (which corresponds to the characteristic time of migration toward the
region poor in matrix-bound PAI-1 and depends on both the gradient of matrix-bound PAI-1
and the migration velocity) and the characteristic time of relaxation of the PAI-1-signaling
activity triggered by the passage of the cell into a region rich in matrix-bound PAI-1.

It could be argued that a relaxation lag after the cell displays an amoeboid morphology
and that ¢, gone back under ¢}, is sufficient, by itself, to reproduce the metastatic cycle,
without the existence of a stable amoeboid branch extending down to ¢,, = c™®. During
this lag, the cell could move far away from the tumor, before it recovers proliferative abilities
and gives rise to metastasis. Because a stable amoeboid state was observed experimentally,
the mesenchymatous-amoeboid transition cannot correspond to a mere transient excursion
away from the stable mesenchymatous branch and the mesenchymatous-amoeboid transition
would correspond in the bifurcation diagram to a jump to a degenerate amoeboid branch
reduced to a point. Such a situation is non generic and it can be observed only for highly
peculiar kinetics. The experimental observations of a discontinuous and reversible transition
between two stable stationary states of the cell support the S-shaped of the bifurcation
diagram of Figures 7 and 9.

No specific genetic mutation is necessary to our explanation of the metastatic cycle,
where the passage from the mesenchymatous to the amoeboid state is a a bifurcation rather
than an event triggered by a mutation. The reverse transition for the same cell when
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external conditions have changed enough is an event that would be hard to observe if the
transition were determined genetically. Its existence seems to be confirmed by our first
experiments. Our scenario does not conflict with the accumulation of mutations associated
with the metastatic process. We suggest that mutations observed in metastatic cells are
neither specific to these cells nor sufficient to explain the move away from the tumor. In
our scenario, tumor cells are genetically identical but made functionally different by their
different microenvironments. The mutations arising as cancer develops and tumor ages
are shared by a large fraction of tumor boundary cells. They are likely to influence the
bifurcation diagram. Only a few candidates selected among the population of mutant cells by
a dynamic and multilevel process move away. Our model leads to suggest a new experiment,
to test our prediction that cells in a nascent secondary tumor and cells at the outer boundary
of the primary tumor have the same genome and mutation load. We here see how modeling
allows to carry a qualitative scenario into experimental testable prediction.

4.4 Oncogenesis and Metastatic Catastrophe

Looking for the changes of metastatic features during cancer progression leads us to situate
normal cells or early cancer cells (having just experienced the epithelial-mesenchymatous
transition) in the above biifurcation viewpoint. The bifurcation diagram of Figure 7 can
be put in a 3-dimensional space where the third axis Z represents the cell type. It repre-
sents the topological changes altering the S-shaped bifurcation diagram as the cell type is
modified during oncogenesis, mainly by accumulating mutations: a relevant choice for Z is
the total number of mutations. Thom (1975) established the possible generic changes in
a bifurcation diagram seen as various singularities of the corresponding hypersurface (here
a 2-dimensional surface, with S-shaped section, in a 3-dimensional space {(X,Y,Z)}). He
termed "catastrophes" these generic singularities. In the present case, two situations can be
encountered:

1) the bifurcation diagram, on Figure 7, is qualitatively the same for normal cells, early
cancer cells, and advanced tumor cells. This means that both thresholds J;* and .J;™" both
exist, keeping finite and distinct values when the cancerous stage of the cell changes;

2) no such bi-stability exists for normal cells, where a single stable state would change
continuously as J; increases. Genericity ensures that the bi-stability observed for cancer
cells arises through a fold catastrophe (Thom, 1975), as represented on Figure 10.

The failure to observe the mesenchymatous-amoeboid transition for normal cells prevents
one from discriminating the two cases. Perhaps the first case holds and the threshold for
the mesenchymatous-amoeboid transition cannot be reached in normal or early cancer cells,
either because the value J is larger than in cancer cells, or because the concentration c,,
of matrix-bound PAI-1 cannot reach high enough values around normal cells, or because
their rate of internalization k; (such that J; = k;c,,) is too low. The rate k; depends on
the total number and the activity of uPA receptors, which are known to be far higher in
cancer cells, all the more that cancer is advanced. During oncogenesis, k; increases and
PAI-1 is released by the cells, expectedly surrounded with higher ¢,, values. This is enough
to explain how cancer cells can have higher internalization flux. The second case is described
by a 3-dimensional extension of the bifurcation diagram into a fold catastrophe. The third
dimension is associated with long-term evolution and accumulation of mutations, leading to
metastatic potentialities in agreement with the cancer multistage theory presented in the
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cell
state

cell type
(mutation load)

Figure 10: Unfolding of the bifurcation diagram of Figure 7 in a 3-dimensional space. The
X-axis is the control parameter, namely the internalization flux J; of matrix-bound PAI-1,
controlled itself by the concentration ¢,, of matrix-bound PAI-1at the cell location. The
Y-axis represents any measurable feature of the cell state discriminating mesenchymatous
from amoeboid states. The Z-axis represents the cell cancerous stage, directly related to its
mutation load. Bi-stability arising as the surface folds onto itself (fold catastrophe) occurs
only for the cells having enough marked cancerous features.
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paper by Gerstung and Beerenwinkel in this issue. A main result of catastrophe theory is
the existence of only a few archetypal ways of fixed-point destabilization as the evolution
law varies, here the ‘fold’ type represented on Figure 10. Right after the catastrophe, J
and J,™" are close to each other; they coincide at the catastrophe point. The difference
between the two stable states in the bi-stable region is weak: a mesenchymatous-amoeboid
transition can occur but the cell would show only a transient blebbing morphology, with no
consequences on its fate. In particular, the cell remains in the amoeboid state too briefly to
have a metastatic escape. Preliminary qualitative experiments (Cartier-Michaud et al., 2009)
bring some evidence to such behavior. Further experiments are necessary to discriminate
the two cases for the bifurcation landscape.

Once the proper bifurcation diagram is established, another matter is to describe the
joint dynamics of the cell physiological state (variable Y'), control parameter (variable X),
and cell genetic state (variable Z), in order to obtain a scenario at the cell population
level with possible collectively-driven and out-of-equilibrium behavior at the cell level. For
instance, in any bi-stable situation, the time variation of J; would determine the observed
behavior entirely, depending on whether .J; reaches J* or not. If it reaches J; , does it reach
J ™1 back or not, leading either to a restricted back-and-forth motion on a single stable
branch or to a full cycle? Time scale and the range of variation of J; determine whether the
motion follows adiabatically the stable branches or behaves out of equilibrium. In any case,
a therapeutic target can be to modify the bifurcation diagram so as to weaken its metastatic
possibilities and the efficiency of the metastatic cycle.

5 Conclusion

Our scenario of metastatic process underlines a novel idea: although the accumulation of
mutations plays an essential role in the metastatic process, the actual determination of the
cell experiencing a metastatic escape is the consequence of a complex sequence of stochastic
and multiscale events involving a whole population of “potentially metastatic” cells all dis-
playing the same mutation load. Four models (multi-agent simulation, cellular automata,
bifurcation theory, catastrophe theory — partial differential equations are useless) are jointly
required to capture the interplay between different levels, as well as the role of stochastic-
ity and system history, and turn biological hypotheses into numerically and experimentally
testable predictions. Because detailed factors and values of kinetic rates are not available
experimentally, we chose to remain at a semi-quantitative level, which is sufficient to obtain
robust proof-of-principles.

We first showed numerically that collectively induced heterogeneities in the concentration
of matrix-bound PAI-1 can develop and induce the transition of a few cells to the migratory-
prone amoeboid state. Our scenario is based on an experimentally supported alternation
of mesenchymatous and amoeboid states, corresponding respectively to the proliferation
and migration for a few cells. They are selected among other cells of the population by a
rare, stochastic, and history-dependent conjunction of molecular events. This scenario is
a cellular version of hiving: amoeboid migration involves a very small number of cells and
is a very transient stage during which cells exchange their proliferative capacities against
migratory abilities. We suggest that all cells of the outer shell of the tumor contribute
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to this process because their mutualized production of PAI-1 is necessary to trigger the
transition to the amoeboid state of a few cells. All cells of the outer shell of the tumor have
the same metastatic potentiality on genetic grounds, but only those encoutering a localized
accumulation of matrix-bound PAI-1 will be in position to express this potentiality. A single
species, PAI-1 would coordinate events at different scales, from molecular determinants up
to the consequences for the tissue. The metastatic cycle would involve both intra-cellular
and extracellular processes, as well as a collective modification of the microenvironment, in
agreement with recent observations (Albini et al., 2008; Bidard et al., 2008). Modeling thus
requires to consider jointly the different levels, to focus on their interplay, and to explicitly
describe the circular loop between the individual cells and the population so as to account for
both the observed rarity and robustness of the metastatic process. Amoeboid migration is
too rare and transient to be easily observed in vivo or in vitro but it is likely to have dramatic
consequences on metastatic spreading. The benefit of modeling, in such a situation where
the biologically determinant event cannot be detected due to its too low relative weight and
frequency, deserves to be underlined.

The acknowledged reaction-diffusion modeling with partial differential equations, cur-
rently used in growth and cell population studies, here appears to be irrelevant, leading
us to develop numerical simulations and a minimal model in the framework of bifurcation
theory. The present study underlines the distinction between a scenario and its mathemati-
cal or numerical implementation: our different modeling approaches are based on the same
mechanisms and couplings, but differ in the framework used for their implementation. In
our scenario, cells modify their microenvironment, which in turn influences the state of some
cells through the activation of specific signaling pathways. Such multiscale couplings, both
bottom-up and top-down, are the hallmark of complex systems. Our modeling approach pro-
poses guidelines to handle such systems. It has to involve several different frameworks (here
partial differential equations, cellular automata and agent-based simulations, bifurcation
theory) so as to validate the determination of essential variables, parameters and mecha-
nisms retained in the explanation. Moreover, complementary models have to be developed
at several levels (here, bifurcation theory at the cell level, simulation at the population level).
Each one implements specifically a given set of working hypothesis to be tested in view of the
model outcome and predictions. They are matched, bottom up, using effective variables and
parameters and, top down, using effective inputs and boundary conditions (Lesne, 2008b).

Because the metastatic process originates from a coordinated alternation of proliferation
and migration, it articulates single cells and the cell population. It is difficult to observe
this process not only in vivo, but also in vitro. Only partial knowledge can be gained, each
piece coming from a dedicated experiment. Modeling is here essential to bridge different
experimental investigations. Our scenario accounts for available biological facts and suggest
a protocol for investigating the mesenchymatous-amoeboid and amoeboid-mesenchymatous
transitions with normal cells and cancer cells taken at different stages after the epithelial-
mesenchymatous transition. The purpose is to reconstruct the multivariate bifurcation di-
agram and discriminate the two possible transformations of the bifurcation diagram along
the progression of the cancer.

In our scenario, reducing matrix binding of PAI-1 would modify the migratory abilities of
the amoeboid state or some other factor so as to decrease k; or increase the threshold J; of
the mesenchymatous-amoeboid transition; reducing PAI-1 synthesis is not an option because
it might have undesired side effects due to other intracellular roles of this molecule. It also
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suggests to reduce the matrix binding ability of PAI-1, targeting the microenvironment
rather than the tumor cells themselves (Whiteside, 2008).
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