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ABSTRACT 

Mutations of LAMB2 typically cause autosomal recessive Pierson syndrome, a disorder 

characterized by congenital nephrotic syndrome, ocular and neurologic abnormalities, 

but may occasionally be associated with milder or oligosymptomatic disease variants. 

LAMB2 encodes the basement membrane protein laminin β2 which is incorporated in 

specific heterotrimeric laminin isoforms and has an expression pattern corresponding to 

the pattern of organ manifestations in Pierson syndrome. Herein we review all 

previously reported and several novel LAMB2 mutations in relation to the associated 

phenotype in patients from 39 unrelated families. The majority of disease-causing 

LAMB2 mutations are truncating, consistent with the hypothesis that loss of laminin β2 

function is the molecular basis of Pierson syndrome. While truncating mutations are 

distributed across the entire gene, missense mutations are clearly clustered in the N-

terminal LN domain, which is important for intermolecular interactions. There is an 

association of missense mutations and small in frame deletions with a higher mean age 

at onset of renal disease and with absence of neurologic abnormalities, thus suggesting 

that at least some of these may represent hypomorphic alleles. Nevertheless, genotype 

alone does not appear to explain the full range of clinical variability, and therefore 

hitherto unidentified modifiers are likely to exist. 

 

Key words: LAMB2, Pierson syndrome, nephrotic syndrome, autosomal recessive, 

podocyte, laminin, ocular malformation 

Page 6 of 46

John Wiley & Sons, Inc.

Human Mutation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 6 

BACKGROUND 

Mutations of LAMB2 (MIM# 150325), the gene encoding laminin β2, were first detected 

in patients who suffered from congenital nephrotic syndrome (NS) histologically 

presenting as diffuse mesangial sclerosis, in combination with a complex ocular 

maldevelopment the most impressing clinical sign of which is extreme and fixed 

narrowing of the pupils (microcoria) (Zenker et al., 2004a). This unusual association 

was first described by Pierson et al. in 1963 (Pierson et al., 1963), and therefore the 

term Pierson syndrome was coined for this disorder (MIM# 609049) (Zenker et al., 

2004b). Microcoria-congenital nephrosis syndrome is a synonym. Patients with Pierson 

syndrome are also at risk for severe neurodevelopmental deficits including congenital 

muscular weakness / myasthenia and developmental retardation (Maselli et al., 2009; 

Wuhl et al., 2007). The clinical manifestations in Pierson syndrome correspond well to 

the defects observed in mice deficient of laminin β2, who display severe glomerular 

kidney disease, ocular and neurologic abnormalities (Miner et al., 2006; Noakes et al., 

1995a; Noakes et al., 1995b). 

Laminins represent a group of cross-shaped heterotrimeric proteins each consisting of 

α, β and γ subunits joined together through a coiled coil. Laminins are indispensable 

basement membranes constituents with important roles in cell adhesion, proliferation, 

differentiation and migration (Miner and Yurchenco, 2004; Ryan et al., 1996; Tunggal et 

al., 2000). Laminin-521 (consisting of α5, β2, and γ1 subunits; formerly called laminin-

11) is the most common laminin isoform that contains a β2-chain (Miner and Patton, 

1999). This isoform is specifically expressed at distinct sites such as the glomerular 

basement membrane, various ocular structures, and the neuromuscular system, 
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consistent with the pattern of organ involvement in Pierson syndrome (Zenker et al., 

2004a).  

The human LAMB2 gene maps to chromosome band 3p21 and is composed of 32 

densely packed exons spanning about 12 kb of genomic DNA (Fig. 1a). The gene 

encodes a protein of 1,798 amino acids, containing the typical laminin domains: the N-

terminal globular laminin domain (LN) making interactions with neighboring laminins, 

multiple EGF-like repeats (LE) with an interjacent second globular domain (LF) whose 

function is currently unknown, and a coiled coil domain (LCC) (Fig. 1b). The most N-

terminal 32 amino acids represent a cleavable signal peptide. 

Although Pierson syndrome was not recognized as a separate entity before 2004, 

several reports on single cases and a few patient series have appeared in the years 

since then (Bredrup et al., 2008; Choi et al., 2008; Hasselbacher et al., 2006; Kagan et 

al., 2008; Maselli et al., 2009; Matejas et al., 2006; VanDeVoorde et al., 2006; Wuhl et 

al., 2007), indicating that this disease had likely been overlooked before. The current 

literature also includes some descriptions of milder variants of the disease as well as 

two observations of apparent isolated infantile NS caused by homozygous or compound 

heterozygous mutations of LAMB2 (Choi et al., 2008; Hasselbacher et al., 2006; Kagan 

et al., 2008; Matejas et al., 2006). Based on the finding of missense mutations or small 

in frame deletions at least on one allele in these cases in contrast to the predominance 

of biallelic truncating mutations in the classic Pierson syndrome, it has been proposed 

that the level of residual laminin β2 function/expression is the main modifier of the 

phenotype (Hasselbacher et al., 2006; Kagan et al., 2008). Herein we review a total of 
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49 mutations of LAMB2 including 12 novel ones, we summarize clinical findings and 

discuss genotype phenotype correlations. 
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VARIANTS IN THE LAMB2 GENE 

All LAMB2 sequence changes published thus far, together with the novel variants 

characterized in our laboratories since 2004, are divided into three subgroups and listed 

in Tables 1, 3, and 4.  The genotype and phenotype features of patients with LAMB2  

mutations are listed in Table 2. 

 

Mutations 

Sequence changes regarded as disease-causing mutations are presented in Table 1. 

They comprise missense, nonsense, and splice site mutations, as well as small 

deletions and insertions, found either as homozygous or compound heterozygous 

sequence changes in patients affected by typical Pierson syndrome or its milder 

variants (Choi et al., 2008; Hinkes et al., 2007; Kagan et al., 2008; Maselli et al., 2009; 

Matejas et al., 2006; VanDeVoorde et al., 2006; Wuhl et al., 2007; Zenker et al., 2004a, 

2005), as well as in two previously published siblings with isolated NS (Hasselbacher et 

al., 2006). The 12 novel mutations were identified by automated sequencing of PCR 

products of genomic DNA as described previously (Zenker et al., 2004a). All coding 

exons and flanking intronic regions were analyzed in each patient. Sequence changes 

were classified as causative mutations, if they produce a premature translational stop 

codon, if they affect the conserved nucleotides at the splice acceptor and donor sites, 

respectively, or if they delete or substitute a conserved amino acid and were observed 

together with a mutation on the second allele. 

The majority of mutations (35 out of 49) are predicted to lead to a premature 

translational stop codon. These mutations include 14 nonsense, 19 frameshift, and two 
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splice site mutations whose consequences on splicing could be confirmed on the mRNA 

level. The precise effect of four additional splice site mutations (c.1036+6_9delTGAG; 

c.3798-2A>C; c.3982+1G>T; c.4573+1G>A) has not been determined experimentally, 

because no appropriate material from the respective patients was available. However, 

in all of them the most likely consequence predicted by in silico analysis is either exon 

skipping or intron inclusion, shifting the reading frame. This is also true for the mutation 

c.1036+6_9delTGAG, the only identified splice site mutation that does not affect the 

invariant nucleotides +1 or +2 of the splice donor, but which is nevertheless predicted to 

lead to loss of splice donor function. Only eight missense changes and two in frame 

deletions leading to the loss of a single amino acid have been identified as likely 

causative mutations, to date. All of them affect highly conserved amino acid residues of 

the laminin β2 protein (Supp. Figure S1) and were found either in the homozygous state 

or in compound heterozygosity with another bona fide mutation on the second allele 

(Table 2). All missense mutations except for two (p.L139P, p.S80R) have been reported 

previously (Choi et al., 2008; Hasselbacher et al., 2006; Kagan et al., 2008; Matejas et 

al., 2006; Zenker et al., 2004a). None of these changes was found in over 200 controls.  

Five mutations were recurrent (Table 2). Four of them (c.1405+1G>A, c.1477delT, 

c.3174_3175delTG, and c.4504delA) were found in two unrelated families each, while 

the mutation p.R246W was independently observed in 5 unrelated families. The 

remaining changes are “private mutations” observed only in single families.  

Mutations creating premature stop codons are almost evenly distributed along the 

LAMB2 gene (Fig. 1a). They may either lead to nonsense mediated mRNA decay or 

result in truncated proteins. Notably, the mutation c.5258dupA, which is predicted to 
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produce the premature translational stop located most closely to the 3’ end of the 

mRNA and to delete only 39 amino acids from the protein, has been demonstrated to 

result in complete lack of protein expression (Zenker et al., 2004a). This may be due to 

the fact that the C-terminus of laminin β2 is important for the proper assembly of the 

laminin chains. Mutant laminin β2 chains that cannot be stably assembled into a trimeric 

laminin complex are probably degraded (Utani et al., 1994). Consequently, all truncating 

mutations known to date likely represent functional null alleles. 

In contrast, missense mutations and small in frame deletions obviously cluster in the LN 

domain of laminin β2 (Fig. 1b). This protein domain is critical for interacting with the LN 

domains of α and γ chains of neighboring laminins to form the monolayer network which 

represents a scaffold for basement membrane assembly (Colognato et al., 1999; 

Yurchenco and Cheng, 1993). This suggests that changes of highly conserved amino 

acid residues in that domain might perturb laminin polymerization. However, it has also 

been shown that the mutation p.R246W leads to significant reduction in protein 

expression (Zenker et al., 2004a). This may be due to disturbances at various stages of 

protein processing. Consistently, studies on a mouse model expressing the laminin β2 

mutant R246Q suggested that the impact of this mutant on glomerular function stems in 

part from impaired laminin secretion (Cheng et al., 2008). The missense mutation 

p.C321R affects one of the invariant cysteines in the first EGF-like domain, LEa1 (Fig. 

1c). As these cysteine residues form disulfide bonds that stabilize the structure of the 

EGF-like domains, substitution by other amino acids probably result in alteration or 

destabilization of protein structure. The consequences of the missense change 

p.L1393F affecting the LCC domain remain elusive (Hasselbacher et al., 2006). 
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In our own study population, the causative sequence changes were identified on both 

alleles in 29 out of 30 unrelated patients with typical Pierson syndrome (as defined by 

the presence of congenital microcoria plus NS). In a single patient (case 3.1, Table 2) 

only one allele, a nonsense mutation (p.Q125X) was identified, while the second allele 

has remained undetected despite sequencing of all introns and the presumed promoter 

region as well as screening for larger genomic deletions (using long range PCR 

covering the entire gene). RT-PCR on mRNA from kidney tissue of this patient, 

however, showed severely reduced LAMB2 mRNA expression from the allele that was 

not affected by the nonsense mutation (data not shown). These findings strongly 

support the existence of a mutation on the second allele, which escaped the employed 

screening methods (maybe an inversion or translocation affecting the LAMB2 locus). 

Together, these results provide clear evidence that Pierson syndrome is not 

heterogeneous and that LAMB2 mutation detection rate reaches 98-100% in typical 

cases.  

 

Polymorphisms 

Table 3 lists sequence variants that likely do not lead to development of Pierson 

syndrome or NS. These changes were quoted as probable neutral polymorphisms 

because they have been found either in homozygous state in healthy controls, in 

compound heterozygosity together with a clearly disease causing mutation in healthy 

Pierson syndrome carriers, or together with two bona fide mutations in patients. 

Altogether, 26 polymorphisms have been detected by sequencing of more than 200 

individuals of various ethnic backgrounds (Table 3). Eight of them are known 
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polymorphisms listed in the dbSNP database, while 18 variants are novel. 15 of the 

latter are either intronic with no obvious effect on splicing or do not cause changes on 

the protein level and, thus, are not supposed to affect the protein structure or function. A 

heterozygous variant in exon 24, predicting a substitution of glycine by arginine 

(p.G1243R) was identified in a patient with Pierson syndrome together with the mutation 

p.G1693VfsX20 on the same allele. Moreover, interspecies alignment revealed only 

poor conservation of the glycine at position 1243, together suggesting that this change 

likely represents a neutral polymorphism. Similarily, the sequence variant c.4140C>A in 

exon 26 leading to an exchange of asparagine by lysine (p.N1380K) was detected in a 

patient together with the mutation p.L1393F on the same allele. Based on evolutionary 

conservation and on the fact that p.N1380K but not p.L1393F was also found in one of 

96 controls, the former was regarded as a probable polymorphism and the latter as the 

disease-causing mutation (Hasselbacher et al., 2006). The c.5293G>A variant 

(predicting the change p.A1765T) was found repeatedly in both patients and healthy 

controls, and it was found in one family to be located on the same allele as a truncating 

mutation (p.Q1006NfsX144) (Matejas et al., 2006). For evolutionary conservation of 

these missense variants see Supp. Figure S2. 

 

Sequence Variants of LAMB2 with Unknown Phenotype Effect 

For nine missense variations in the LAMB2 gene and three variations located 5’ to the 

start codon in the potential promoter region, the pathogenetic significance could not 

definitively be determined. These changes are listed in Table 4. All but two of them have 

been found as heterozygous changes in patients with NS who lacked other typical 
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features of Pierson syndrome. None of these patients was found to have a disease-

causing change on the second allele. Nevertheless, we cannot exclude the possibility 

that the LAMB2 alteration might have contributed to the renal disorder in these patients. 

The amino acids affected by those changes show various levels of evolutionary 

conservation (Supp. Figure S2). Three variations are located in the putative LAMB2 

promoter region. Two of them were heterozygous (c.-1925G>C and c.-

408_404delTAGTT) while the c.-165C>A substitution was found in a homozygous state 

in a patient with isolated NS. Their significance cannot be determined clearly, since the 

LAMB2 promoter is poorly characterized, so far. The heterozygous variant p.P37A 

affects the relatively conserved signal peptide cleavage site and is predicted to possibly 

favour aberrant cleavage 4 amino acids more downstream (SignalP 3.0 Server at 

http://www.cbs.dtu.dk/services/SignalP/), thus leading to a protein that is slightly 

shortened at its N-terminus. A heterozygous substitution p.H882Y was found in a 

healthy carrier for Pierson syndrome, who was heterozygous for the mutation p.C374X, 

but whether the variation p.H882Y was on the same allele could not be determined, 

because the affected children were not available for genetic testing (Zenker et al., 

2005). Since His-882 is relatively conserved (Supp. Figure S2) and we cannot 

absolutely exclude the possibility of two clinically significant sequence changes on the 

same allele, we conservatively classified p.H882Y in this category. 

 

Haplotype Analysis of Recurrent LAMB2 Mutations 

In patients harbouring the five recurrent LAMB2 mutations we determined haplotypes by 

genotyping 13 microsatellite markers within a range of 15 Mb flanking the LAMB2 gene 
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as well as 5 to 6 common intragenic single nucleotide polymorphisms in the index 

patient and his/her parents, as far as parental DNAs were available (Supp. Figure S3). 

The mutation p.R246W, which has been observed in 5 unrelated families, was found on 

the same haplotype in three families of Portuguese origin (two from Portugal and one 

from Brazil), thus suggesting a founder effect in this population. However, the same 

mutation was also found in one family of Asian origin on a different haplotype and in a 

patient of African origin. Shared haplotypes were also found in two families with Slavic 

background (originating from Poland and the Czech Republic), who carried the mutation 

c.4504delA, two families of German/French ancestry (mutation: c.1477delT), and two 

families of Middle European origin (mutation: p.C1058X), respectively. In all cases the 

shared haplotypes encompassed about 5 Mb. However, the precise extent could not be 

determined because it is impossible to distinguish identity by descent from identity by 

state for individual markers.  

 

GENOTYPE-PHENOTYPE CORRELATIONS 

All individuals carrying homozygous or compound heterozygous LAMB2 mutations were 

affected by NS in the first decade, the vast majority in the first year of life. All but two 

patients (affected siblings from family 13) had ocular anomalies (Table 2). Although an 

ascertainment bias cannot be excluded, the current data suggest that kidney 

involvement is an invariant manifestation of genetic defects of the LAMB2 gene. 

However, some patients may be recognized because of their eye findings, and the renal 

symptoms only arrive thereafter (Bredrup et al., 2008). As mentioned above, there is 

strong evidence that truncating mutations, even those creating truncations of less than 

Page 16 of 46

John Wiley & Sons, Inc.

Human Mutation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 16 

50 amino acids from the C-terminal part of the protein, represent functional null alleles. 

Comparison of the group of patients with biallelic truncating mutations versus those with 

non-truncating mutations on at least one allele reveals a somewhat earlier onset of 

nephrotic symptoms and delayed occurrence of end stage renal disease (ESRD) at 

least in some of them (Fig. 2). Patients with two putative functional null alleles typically 

develop ESRD within the first year of life. ESRD may already be present at birth and 

mask nephrotic symptoms (hypoproteinemia, edema) through the limitation of renal 

protein waste in the presence of oliguria. However, in two patients with biallelic 

truncating mutations and presumed complete loss of laminin β2 production, ESRD was 

delayed until childhood age (patients 24.1 and 29.1) (Choi et al., 2008 and unpublished 

observation). Regarding ocular manifestations, all patients harboring biallelic nonsense 

or frameshift mutations exhibited congenital microcoria in association with variable other 

eye abnormalities as reviewed previously (Bredrup et al., 2008), except for one 

unpublished case (patient 29.1). With this single exception, patients who lacked this 

typical ocular sign of Pierson syndrome, including the two reported families with initial 

presentation of isolated NS (Choi et al., 2008; Hasselbacher et al., 2006), had at least 

one non-truncating allele or a splice site mutation whose effect on protein expression 

could not be definitely determined. This may suggest that only little residual function of 

laminin β2 is required for an apparently normal development and maintenance of the iris 

muscles. Notably, those patients who presented initially with only minor or without 

ocular changes appear to remain at high risk of developing serious ocular 

complications, e.g. retinal detachment, in later infancy or childhood (Bredrup et al., 

2008; Choi et al., 2008; Matejas et al., 2006). Generally, isolated NS is rarely caused by 
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LAMB2 mutations (Hinkes et al., 2007). In addition to what was published before (Choi 

et al., 2008; Hasselbacher et al., 2006; Hinkes et al., 2007), we have meanwhile studied 

more than 70 further cases with isolated NS without detecting another LAMB2 mutation-

positive individual in this cohort. The same is true for nonspecific syndromic NS cases 

lacking ocular abnormalities of the Pierson syndrome spectrum. Significant 

neurodevelopmental abnormalities (muscular weakness / myasthenia, global delay, 

presumed retinal blindness) have been described repeatedly in patients with presumed 

complete deficiency of laminin β2 (Maselli et al., 2009; Wuhl et al., 2007) . However, the 

nature of these deficits is not well characterized, and only few patients with the classic 

Pierson syndrome phenotype survived beyond the age of 2. One long-term survivor has 

recently been described with a neurologic picture resembling congenital myasthenia 

(Maselli et al., 2009). In contrast, we are aware of several patients (case 21.1, 24.1, 

29.1, 31.1, 32.1, and 35.1; Table 2) with either truncating or splice site mutations on 

each allele, who had a normal neurologic and cognitive development up to the age of 4-

21 years (Bredrup et al., 2008; Choi et al., 2008; Wuhl et al., 2007). In one of them, 

possible residual function of one allele carrying a de novo splice site mutation (c.3798-

2A>C) was discussed but could not be demonstrated (Wuhl et al., 2007). Most patients 

who showed a favourable neurodevelopmental outcome despite the presence of 

biallelic mutations predicting probable complete loss of function also had delayed onset 

of ESRD. This observation would be compatible with the existence of genetic modifiers 

that may to some extent compensate for the laminin β2 defect, thereby rescuing the 

neurologic deficits and ameliorating the renal phenotype. Admittedly, considering 

truncating mutations as functional null alleles may be an oversimplification and does not 
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account for possible rescue mechanisms on the transcriptional level (Kellermayer, 

2006).  

Taken together, the current data provide evidence of significant genotype phenotype 

correlations. On the other hand, it is has become obvious that the genotype alone does 

not explain all the clinical variability among LAMB2-associated disorders. The 

neurological manifestations of Pierson syndrome remain the most enigmatic part of the 

disease spectrum and require further elucidation. 

 

CLINICAL AND DIAGNOSTIC RELEVANCE 

The diagnosis of Pierson syndrome is based on the recognition of the typical 

association of glomerular kidney disease and ocular abnormalities. In the typical cases 

with microcoria and early onset NS the diagnosis is obvious. Molecular testing of 

LAMB2 will very likely confirm the diagnosis in such patients. Mutational screening by 

sequencing of all coding exons and flanking intronic regions should particularly be 

attempted, if the parents wish to have prenatal testing in a further pregnancy. Although 

affected fetuses may also present with kidney abnormalities on prenatal ultrasound 

(Mark et al., 2006), only molecular genetic testing allows an early and reliable prenatal 

diagnosis. Molecular analysis of the LAMB2 gene may also be indicated to identify a 

familial mutation in order to offer subsequent carrier testing in healthy family members, 

although the risk of having a child with Pierson syndrome in relatives of a patient is very 

small (excluding consanguinity of the partners), given a presumably low carrier 

frequency in the general population. In cases with congenital or infantile NS and less 

specific ocular symptoms, molecular analysis of the LAMB2 gene provides a clue in the 
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differential diagnosis. Among patients with isolated NS LAMB2 mutations are apparently 

rare (Hinkes et al., 2007 and unpublished results). Analysis of this gene may however 

still be justified in patients with congenital or infantile nephrosis, mesangial sclerosis on 

biopsy, and negative results upon testing for mutations in the genes NPHS1, NPHS2, 

WT1, and PLCE1. Early development of ESRD (from birth or in the first 3 months of 

life), which is unusual in other types of congenital NS, may be a further indication for 

testing for LAMB2 mutations. Considering the fact that microcoria may be the first 

presenting symptom of Pierson syndrome, LAMB2 testing may be of important 

diagnostic and prognostic value in any child with congenital microcoria. 

Considering the clinical variability of LAMB2-associated disorders, predictions on the 

phenotypic expression on the basis of the genotype should be made with caution. 

Unfortunately, this is particularly true with respect to the possibility of relevant 

neurologic involvement which is an important determinant of long-term prognosis. 

Within the same family, however, our current experience suggests a rather high 

consistency of the phenotype. 

Patients with Pierson syndrome are mainly taken care of by pediatric nephrologists and 

ophthalmologists. There is so far no specific treatment available. Nephrectomy for the 

treatment of severe renal protein waste may be considered similar to the management 

of patients with Finnish type nephrosis (Holmberg et al., 1995), but it should be taken 

into account that ESRD, which usually occurs much earlier in patients with Pierson 

syndrome compared to Finnish type nephrosis, will spontaneously limit protein loss. 

Kidney transplantation is currently the only long-term renal treatment option. There is so 

far no evidence of recurrence of mesangial sclerosis in the transplant, but the number of 
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successfully transplanted patients who could be monitored for a longer time is very 

small. Of note, patients with a proven laminin β2 defect should receive careful 

ophthalmological follow-up, as they are obviously at high risk of retinal detachment even 

in the absence of significant congenital ocular anomalies. High grade myopia seems to 

be another common feature developing in infancy and early childhood (Bredrup et al., 

2008). 

An important differential diagnosis to Pierson syndrome is the nephrosis-microcephaly 

syndrome (Galloway-Mowat syndrome; GMS; MIM# 251300). Microcephaly which is a 

key finding in GMS has also been described in some patients with Pierson syndrome 

(Wuhl et al., 2007). However, in the latter microcephaly is usually not congenital, but 

may develop during the first year of life. Moreover, other features, such as structural 

brain anomalies, epilepsy, and hiatus hernia usually allow distinguishing GMS from 

Pierson syndrome clinically. Notably, however, there have been a few reports on 

patients with GMS and ocular changes resembling the manifestations in Pierson 

syndrome (Mildenberger et al., 1998; Shapiro et al., 1976). Despite the obvious clinical 

overlap, we have found no evidence that GMS and Pierson syndrome are allelic 

disorders (Dietrich et al., 2008). 

There is so far no evidence for isolated ocular anomalies or ocular plus neurologic 

abnormalities without kidney involvement being caused by mutations in LAMB2. 

Isolated microcoria was been reported as an autosomal dominant trait (MIM# 156600). 

A provisional locus has been assigned to 13q31-q32 (Rouillac et al., 1998), thus ruling 

out LAMB2 as the causative gene for families linked to this locus. However, genetic 

heterogeneity is not excluded and studies of a possible significance of LAMB2 
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mutations in sporadic cases with isolated microcoria or related iris symptoms as well as 

in families unlinked to 13q31-q32 are warranted. 
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FUTURE PROSPECTS 

Future research will be directed towards the identification of possible modifiers of the 

phenotype caused by laminin β2 defects. Considering that a lack of expression on the 

β2-chain probably leads to the expression of aberrant laminin isoforms in the basement 

membrane rather than the complete absence of laminin (Noakes et al., 1995b), it is 

tempting to speculate that laminin β1 (or other laminin β isoforms) might to some extent 

be able to compensate for the lack of β2. Treatment prospects might arise from the 

knowledge on modifying factors. As a significant proportion of LAMB2 mutations are 

nonsense mutations, aminoglycosides which are known to be able to induce 

translational stop codon readthrough (Allamand et al., 2008; Linde et al., 2007), and 

which reach high concentrations particularly in the kidney, may be evaluated as a 

therapeutic target in the future. 

 

A locus-specific mutation database is available at: http://www.med.uni-

magdeburg.de/LAMB2mutdb.  
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LEGENDS TO FIGURES 

Figure 1.  LAMB2 gene, laminin β2 protein domains, and distribution of known 

mutations. a, Genomic representation of the human LAMB2 gene. Vertical 

bars represent exons. Untranslated regions are shown in reduced height. 

Coloring corresponds to functional protein domains with grey color in parts 

of exon 1 and 2 encoding the signal peptide. Numerals within the boxes 

indicate exon numbers. Location of truncating mutations (nonsense, 

frameshift) and splice site mutations are indicated by arrows on top of the 

cartoon in black and blue, respectively. Positions of missense mutations and 

small in frame deletions are indicated by arrows at the bottom of the cartoon 

and show obvious clustering in exons 2 to 7. b, In its biologically active form 

laminin β2 is part of a heterotrimeric complex shown here exemplarily as 

laminin-521. Laminin α5 and γ1 chains are depicted in light and dark grey, 

respectively. Coloring of the human laminin β2 chain corresponds to 

functional protein domains: LN, laminin N-terminal globular domain; LEa/b, 

laminin EGF-like modules; LF, domain IV, globular domain; LCC, laminin 

coiled coil domain; Lβ, Laminin β loop; LG, C-terminal globular modules 

(belonging to α chain). Positions of non-truncating mutations are indicated 

by asterisks. Most of them affect the LN domain (yellow asterisks), while 

one is located in the first EGF-like module (pink) and another one in the 

LCC domain (orange). c, The first EGF-like module (LEa1) is shown in 

detail with letters corresponding to the one letter amino acid code. The 
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highly conserved cysteine residues are highlighted and connecting lines 

indicate disulfide bonds. The mutated Cys-321 is shown in pink. 

 

Figure 2. Age of onset of gross proteinuria / nephrosis (a) and age of onset of end 

stage renal disease (ESRD) (b) are plotted on the Y axis in two genotypic 

classes: patients with either nonsense or frameshift mutations on both 

alleles (“truncating”) and patients with a missense mutation or small in frame 

deletion on at least one allele (“missense”). Each bullet represents one 

individual patient. Grey filled circles indicate the age when the respective 

patient developed NS and ESRD, respectively, while open circles represent 

patients who have not developed this feature (nephrosis or ESRD) at the 

given age of their last follow-up examination. Black bullets in (b) represent 

the age of death of those patients who died without having developed 

ESRD. Boxes indicate the range between upper and lower quartiles. Black 

horizontal line represents median. Whiskers reach from maximum to 

minimum excluding outliers. Arrowheads represent observations out of the 

range of the diagram (age in months given in parentheses). 
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Table 1. Mutations in the LAMB2 gene causing Pierson syndrome and milder disease 
variants* 

Exon/Intron DNA Variant
a
 Predicted and/or 

Demonstrated Effect 
Family-ID Previous Publications 

Exon 2 c.235_237delGTC p.V79del 1 Matejas et al. [2006] 

Exon 2 c.240T>G p.S80R 2 This report 

Exon 3 c.373C>T p.Q125X 3 Bredrup et al. [2008] 

Exon 4 c.416T>C p.L139P 4 This report 

Exon 4 c.447_449delTAT p.I149del 5 Bredrup et al. [2008] 

Exon 5 c.499G>T p.D167Y 6 Kagan et al. [2008] 

Exon 5 c.536C>T p.S179F 7 Choi et al. [2008] 

Exon 7 c.736C>T p.R246W 8, 9, 10, 11,12 Zenker et al. [2004] 

Exon 7 c.737G>A p.R246Q 13 Hasselbacher et al. [2006] 

Exon 7 c.825T>A p.Y275X 14 This report 

Exon 8 c.961T>C p.C321R 15 Hasselbacher et al. [2006] 

Intron 8 c.1036+6_9delTGAG No mRNA studies 16 This report 

Exon 9 c.1122T>A p.C374X 17 Zenker et al. [2005] 

Exon 10 c.1241_1242dupCC p.M415PfsX83 18 Wühl et al. [2007] 

Exon 10 c.1252C>T p.Q418X 18 Wühl et al. [2007] 

Intron 10 c.1405+1G>A p.S409X 19, 20 Bredrup et al. [2008] 

Exon 11 c.1477delT p.C493AfsX4 21, 22 Wühl et al. [2007] 

Exon 11 c.1478delG p.C493SfsX4 23 Maselli et al. [2009] 

Exon 11 c.1503_1504delAT p.C502X 24 Choi et al. [2008] 

Exon 13 c.1723C>T p.R575X 9 Bredrup et al. [2008] 

Exon 14 c.1875_1879delGCGCT p.L627AfsX5 25 Bredrup et al. [2008] 

Exon 16 c.2067C>G p.Y689X 17 Zenker et al. [2005] 

Exon 17 c.2283_2286delCTCT p.S762RfsX29 7 Choi et al. [2008] 

Exon 18 c.2422delG p.V808WfsX343 26 Bredrup et al. [2008] 

Exon 19 c.2602C>T p.Q868X 27 Bredrup et al. [2008] 

Exon 21 c.3015delG p.Q1006NfsX145 28 Zenker et al. [2004] 

Exon 21 c.3015dupG p.Q1006AfsX49 29 This report 

Exon 21 c.3094C>T p.R1032X 30 Bredrup et al. [2008] 

Exon 22 c.3174_3175delTG p.C1058X 27, 31 Bredrup et al. [2008] 

Intron 22 c.3327+2T>C p.R1037LfsX18 21 Wühl et al. [2007] 

Exon 24 c.3440dupC p.R1148SfsX27 29 This report 

Exon 24 c.3780_3781delGG p.E1260DfsX8 19 Bredrup et al. [2008] 

Intron 24 c.3798-2A>C No mRNA studies 31 Bredrup et al. [2008] 

Exon 25 c.3902delA p.E1301GfsX58 22 Wühl et al. [2007] 

Intron 25 c.3982+1G>T No mRNA studies 32 This report 

Exon 26 c.4177C>T p.L1393F 15 Hasselbacher et al. [2006] 

Exon 27 c.4267delT p.C1423VfsX29 24 Choi et al. [2008] 

Exon 27 c.4504delA p.R1502GfsX18 33, 25 Zenker et al. [2004] 

Exon 27 c.4519C>T p.Q1507X 33 Zenker et al. [2004] 

Exon 27 c.4534delC p.L1512FfsX8 34 This report 

Intron 27 c.4573+1G>A No mRNA studies 35 This report 

Exon 28 c.4684C>T p.R1562X 36 Zenker et al. [2004] 

Exon 28 c.4780dupA p.R1594KfsX5 37 This report 

Exon 29 c.4804delC p.Q1602RfsX52 23 Maselli et al. [2009] 

Exon 29 c.4907_4908delAG p.E1636AfsX22 38 This report 

Exon 30 c.5078delG p.G1693VfsX21 5 Bredrup et al. [2008] 

Exon 31 c.5182C>T p.Q1728X 1 Matejas et al. [2006] 

Exon 31 c.5197C>T p.Q1733X 10 This report 

Exon 31 c.5258dupA p.E1754GfsX7 39 Zenker et al. [2004] 

*The numbering for the nucleotide changes are based on cDNA sequence in accordance with the GenBank entries 
NM_002292.3, NP_002283.3, and NT_022517.18 (Genome Reference Consortium Human Build 37). Novel 
mutations are printed in bold. 
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a
For cDNA numbering, +1 corresponds to the A of the ATG translation initiation codon in the reference sequence 
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Table 2. Patients with LAMB2 mutations*: genotype and phenotypic features  
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1 1.1 [p.V79del]+[p.Q1728X] 7 20 y NA 4 y NA - NA - - Matejas et al.  

 1.2   8 y (�) NA 5 y DMS - C, R, VI - -  

 1.3   NA 4.5 y 16 y FSGS - Mi, C, R, VI - -  

2 2.1 [p.S80R]+ [p.S80R] 1 12 y 6.5 - 
atypical 

DMS 
- My, R - - This report 

3 3.1 [p.Q125X] + ? 1 2 m (�) 1 w 2 w DMS, MGN + L + H 
Bredrup et 
al.[2008] 

4 4.1 [p.L139P] + [p.L139P] 3 12 m (�) 3 m - DMS? + L, VI - H, M, C This report 

 4.2   1.5 w (�) < 1 w - NA - VI - NA  

 4.3   5 m (�) < 1 w - NA - L, VI - H, M  

5 5.1 [p.I149del]+[p.G1693VfsX21] 1 2m (�) 1 w < 1m NA + VI - H 
Bredrup et 
al.[2008] 

6 6.1 [p.D167Y]+ [p.D167Y] 2 3.7 y 1 m 19 m MCD - My, R, VI - - 
Kagan et al. 
[2008] 

7 7.1 [p.S179F]+[p.S762RfsX29] 1 1.5 y 2 w 1.5 y FSGS - R, VI - - 
Choi et al. 
[2008] 

8 8.1 [p.R246W]+[p.R246W] 2  8 m (�) 5 m - DMS + L - H, M 
Zenker et al. 
[2004]

2
 

 8.2   8 m (�) 1 w - DMS + L - H. M  

9 9.1 [p.R246W]+[p.R575X] 2 16 m 1 w 5 m NA + L, VI + H, M, C 
Bredrup et 
al.[2008] 

 9.2   1 y (�) < 1 m - DMS + N, My - H, M, C  

10 10.1 [p.R246W]+[p.Q1733X] 1 2 m 1 m - NA + NA - NA This report 

11 11.1 [p.R246W]+[p.R246W ] 1 19 m (�) 2 w 13 m FSGS + L - M 
Bredrup et 
al.[2008] 

12 12.1 [p.R246W]+[p.R246W] 5 3 m (�) < 1 m NA NA NA N - NA This report 
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13 13.1 [p.R246Q]+[p.R246Q] 2 5 y (�) 1 m < 12m FSGS - - - - 
Hasselbacher 
et al. [2006] 

 13.2   3 y 1 w < 12 m NA - - - -  

14 14.1 [p.Y275X]+[p.Y275X] 2 1 m < 1 w < 1 w DMS + VI - NA This report 

15 15.1 [p.C321R]+[p.L1393F] 2 7 y 3 m 5.7 y MCD - 
N, My, R, 

VI 
- - 

Hasselbacher 
et al. [2006] 

 15.2   3.5 y 1 w 8 m O (+) R, VI - -  

16 16.1 [c.1036+6_9del]+[c.1036+6_9del] 1 2 m 7 w 7 w NA + Mi, R - M, S This report 

17 17.1 [p.C374X]+[p.Y689X] 2 2 w (�) 1 w 1 w DMS + L - H 
Zenker et al. 
[2005] 

 17.2   1.5 w (�) 1 w 1 w DMS + L - NA  

18 18.1 [p.M415PfsX83]+[p.Q418X] 1 15 m (�) < 1mo 3 m NA + Mi, L, VI + H, M, C 
Wühl et al. 
[2007] 

19 19.1 [c.1405+1G>A]+[p.E1260DfsX8] 2 6 w (�) < 1w 1 m NA + L, VI NA NA 
Bredrup et 
al.[2008] 

20 20.1 [c.1405+1G>A]+[c.1405+1G>A] 1 16 m (�) 1 w 3 w DMS + N, R, VI - H, M, C 
Bredrup et 
al.[2008] 

21 21.1 [p.C493AfsX4]+[c.3327+2T>C] 1 8.3 y 1.5 m 2.9 y DMS + My, L, VI - - 
Wühl et al. 
[2007] 

22 22.1 [p.C493AfsX4]+[p.E1301GfsX58] 1 5 y < 1m < 1m DMS + VI - H, M, C 
Wühl et al. 
[2007] 

23 23.1 [p.C493SfsX4]+[p.Q1602RfsX52] 1 20 y 1 w 12 m DMS + My - H, M 
Maselli et al. 
[2009] 

24 24.1 [p.C502X]+[p.C1423VfsX29] 1 7.5 y 8 m - MCD + N, My, VI - - 
Choi et al. 
[2008] 

25 25.1 [p.L627AfsX5]+[p.R1502GfsX18] 2 4 w (�) 1 w 2 w DMS + L, Mi, VI - H 
Bredrup et 
al.[2008] 

26 26.1 [p.V808WfsX343]+[p.V808WfsX343] 2 8 m (�) 1 w 2 m DMS + N + H, M, S 
Bredrup et 
al.[2008] 

27 27.1 [p.Q868X]+[p.C1058X] 1 4.5 m (�) 2 w 4 m 
atypical 

DMS 
+ N, VI - H 

Bredrup et 
al.[2008] 

28 28.1 [p.Q1006NfsX145]+[p.Q1006NfsX145] 8 2-8 w < 1m < 1m DMS + NA  NA 
Zenker et al. 
[2004]

1
 

29 29.1 [p.Q1006AfsX49]+[p.R1148SfsX27] 1 18 y 3 m 3 y DMS 
- 

 

VI 
(glaucoma) 

- 

 

- 

 

This report 
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30 30.1 [p.R1032X]+[p.R1032X] 1 4 m (�)  1 w 1 m DMS + L + NA 
Bredrup et 
al.[2008] 

31 31.1 [p.C1058X]+[c.3798-2A>C] 1 10 y 2 m 3 m NA + N, My, VI - - 
Bredrup et 
al.[2008] 

32 32.1 [c.3982+1G>T]+[c.3982+1G>T] 2 5 y < 3 y - DMS + L, N, Mi, VI - - This report 

 32.2   6 m (�) < 6 m 6 m NA NA NA NA NA  

33 33.1 [p.R1502GfsX18]+[p.Q1507X] 1 2 m (�) 1w 2 m DMS + N, VI, L - NA 
Zenker et al. 
[2004]

2
 

34 34.1 [p.L1512FfsX8]+[ p.L1512FfsX8] 1 1m < 1w 2 w DMS + - - - This report 

35 35.1 [c.4573+1G>A]+[c.4573+1G>A] 3 5 y < 1 w - NA - N, My, R - - This report 

 35.2   21 y 3 y 21 y MGN - N, My, R - -  

 35.3   15 y 5 y 9 y FSGS - N, My, R - -  

36 36.1 [p.R1562X]+[p.R1562X] 3 1 m (�) < 1m < 1m DMS + L  H 
Zenker et al. 
[2004]

1
 

37 37.1 [p.R1594KfsX5]+[p.R1594KfsX5] 1 1m (�) < 1w < 1m NA + L - C This report 

38 38.1 [p.E1636AfsX22]+[p.E1636AfsX22] 1 6  w (�) 1 w < 1 m DMS + L - H, M This report 

39 39.1 [p.E1754GfsX7]+[p.E1754GfsX7] 1 19 m (�) < 1m < 1m DMS + L, N, VI + H, M 
Zenker et al. 
[2004]

2
 

*The numbering for the nucleotide changes are based on cDNA sequence in accordance with the GenBank entries NM_002292.3, NP_002283.3, and NT_022517.18 
(GRCh37). 
a
For cDNA numbering, +1 corresponds to the A of the ATG translation initiation codon in the reference sequence 

y, year(s); m, month(s); w, week(s); NA, not done / not available; MCD, minimal changes; DMS, diffuse mesangial sclerosis; FSGS, focal and 
segmental glomerulosclerosis; MGN, membranous glomerulonephritis; O, other; +, present; -, not present / none; Mi, microphthalmia; My, high 
myopia (> 5 diopters); N, nystagmus; L, abnormal lens (either lenticonus or cataract); R, retinal detachment; VI, severe visual impairment of any 
cause and despite correcting glasses; H, significant hypotonia / muscular weakness / myasthenia; M, significant motor delay; C, suspected or 
proven cognitive deficits, speech delay; S, seizures; MR, mental retardaion 

Page 35 of 46

John Wiley & Sons, Inc.

Human Mutation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 
Table 3. Single nucleotide polymorphisms in the LAMB2 gene 

Exon/Intron DNA variant
a
 Predicted and/or 

demonstrated effect 
on protein 

Status Protein domain 

Exon 3 c.306C>T p.= novel LN 
Intron 3 c.250-97A>G - novel - 
Exon 8 c.1014C>T p.= novel LEa1 
Exon 14 c.1764C>T p.= rs33942096 LF 
Intron 14 c.1890+25G>A - rs9865051 - 
Exon 16 c.2034T>C p.= novel LF 
Exon 17 c.2307C>T p.= novel LF 
Intron 18 c.2489-62C>T - novel - 
Exon 19 c.2673C>T p.= novel LEb3 
Exon 20 c.2740G>A p.G914R rs35713889 LEb3 
Exon 20 c.2754G>T p.= novel LEb3 
Exon 21 c.2959G>A p.E987K rs34759087 LEb5 
Intron 21 c.3110-15T>C - novel - 
Intron 22 c.3327+28T>C - novel - 
Intron 22 c.3328-36T>G - novel - 
Exon 23 c.3387A>G p.= rs34290943 LEb7 
Exon 24 c.3645G>A p.= rs13082063 LCC 
Exon 24 c.3727G>C p.G1243R novel LCC 
Exon 25 c.3858G>T p.= rs34967349 LCC 
Exon 26 c.4140C>A p.N1380K novel LCC 
Intron 26 c.4224+19G>A - novel - 
Intron 27 c.4573+26A>G - novel - 
Intron 29 c.4923+17A>G - novel - 
Intron 29 c.4923+49G>A - novel - 
Intron 29 c.4924-35G>A - rs72936885 - 
Exon 32 c.5293G>A p.A1765T novel LCC 

*The numbering for the nucleotide changes are based on cDNA sequence in accordance with the GenBank 
entries NM_002292.3, NP_002283.3, and NT_022517.18 (GRCh37). 
a
For cDNA numbering, +1 corresponds to the A of the ATG translation initiation codon in the reference sequence 
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Table 4. LAMB2 sequence variants with unknown phenotypic effects 

Exon/Intron DNA variant
a
 Predicted and/or 

demonstrated effect 
on protein 

Status Protein Domain 

5´UTR c.-1925G>C - novel - 
5´UTR c.-404_408delTAGTT - novel - 
5´UTR c.-165C>A - novel - 
Exon 2 c.109C>G p.P37A novel Signal peptide 

cleavage site 
Exon 9 c.1193C>T p.T398I novel LEa2 
Exon 10 c.1403G>T p.R468L novel LEa3 
Exon 13 c.1724G>A p.R575Q novel LF 
Exon 16 c.2099G>A p.G700E novel LF 
Exon 19 c.2644C>T p.H882Y novel LEb3 
Exon 22 c.3155_3157delCTC p.P1053del novel LEb6 
Exon 26 c.4118A>G p.D1373G novel LCC 
Exon 27 c.4370G>A p.R1457Q novel LCC 

*The numbering for the nucleotide changes are based on cDNA sequence in accordance with the 
GenBank entries NM_002292.3, NP_002283.3, and NT_022517.18 (GRCh37). 
a
For cDNA numbering, +1 corresponds to the A of the ATG translation initiation codon in the reference 

sequence 
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Supp. Figure S1. LAMB2 missense mutations. Localization of missense mutations and small deletions are shown in a 
schematic of the laminin β2 protein (corresponding to Fig. 1), and evolutionary conservation is demonstrated in partial 
amino acid sequence alignments created according to outputs of BLAST (http://www.ncbi.nlm.nih.gov/BLAST) and the 
Conserved Domain Database (http://www.ncbi.nlm.nih.gov/Structure/cdd). Conserved amino acids are shown with black 
background and similar amino acids with a grey background. H.s., Homo sapiens; M.m., Mus musculus; R.n., Rattus 
norvegicus; C.f., Canis familiaris; G.g., Gallus gallus; D.r., Danio rerio; A.a., Aedes aegypti; hL1, human Laminin β1; hL4, 
human Laminin β4.  PP, PSIC score differences calculated by PolyPhen (prediction of functional effect of human nsSNPs  
available at http://genetics.bwh.harvard.edu/pph/). Scores above 1.5 suggest that the change is probably damaging. 
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Supp. Figure S2. Evolutionary conservation of amino acid residues affected by 
changes classified either as polymorphisms or variants with unknown phenotypic 
effect (Tables 3 and 4). 
 
P37A 
 

Homo sapiens 21  GLLLSVLAATLAQAPAPDVP-GCSRGSCYPATGDL  54 
Macaca mulatta 20  ELLSPVLAATLAQAPAPDVP-GCSRGSCYPATGDL  53 
Rattus norvegicus 24  GLLLSVLAATLAQVPSLDVP-GCSRGSCYPATGDL  57 
Canis familiaris 24  GLLLSVLATALAQALAPDMP-GCSRGSCYPATGDL  57 
Gallus gallus 20  VPLPSGPGGTAWAASSPDSPQGCAAGSCYPATGDL  54 
Danio rerio  1   MVRKVLSAVSAQE--PDAAHGCTHGSCYPATGDL  38 
Aedes aegypti  1   MLNTNRRPPTTNKQPIHRVHPCEQSSCYPATGNL  34 
human LAMB1  8  AFSFLALCRARVRAQEPEFSYGCAEGSCYPATGDL  42 
human LAMB4  6  TLFLHLGWLSYSKAQD-----DCNRGACHPTTGDL  35 
 
 
T398I 
 

Homo sapiens 383  GRHCELCRPFFYRDPTKDLRDPAVCRSCDCD  413  
Macaca mulatta 382  GRHCELCRPFFYRDPTKDLRDPAVCRSCDCD  412 
Rattus norvegicus 386  GRHCELCRPFFYRDPTKDMRDPAACRPCDCD  416 
Canis familiaris 386  GRHCELCRPFFYRDPSKDLRDPAMCRSCDCD  416 
Gallus gallus 383  GRHCHLCKPFYYKDPSKDLRDPTVCRACNCY  413 
Danio rerio 361  GSNCESCKPFYYQDPTRDIRDPGVCVACDCD  391 
Aedes aegypti 359  GYHCEECSPFFYRDPLEDIQSPYVCKPCDCD  389 
human LAMB1 371  GRNCEQCKPFYYQHPERDIRDPNFCERCTCD  401 
human LAMB4 368  GQHCDRCRPLFYRDPLKTISDPYACIPCECD  398 
 
 
R468L 
 

Homo sapiens 452  CRDGFFGLSISDRLGCRRCQCNARGTVPGST  482 
Macaca mulatta 451  CRDGFFGLSISDPLGCRRCQCNARGTVPGST  481 
Rattus norvegicus 455  CRDGFFGLSASNPRGCQRCQCNSRGTVPGGT  485 
Canis familiaris 455  CRDGFFGLSASDPAGCRRCQCDARGTVPGTT  485 
Gallus gallus 452  CKAGFFGLSAANPQGCQRCRCDPRGTVADGS  482 
Danio rerio 430  CKPGFFGLSASDPRGCQPCKCDPRGTVSGSS  460 
Aedes aegypti 428  CKEGFWNFDENNPDGCQTCSCNILGTVDNAG  458 
human LAMB1 440  CKEGFYDLSSEDPFGCKSCACNPLGTIPGGN  470 
human LAMB4 437  CKPNHYGLSATDPLGCQPCDCNPLGSLP-FL  466 
 
 
R575Q 
 

Homo sapiens 560 FRPFLDHLIWEAEDT---------------RGQVLDVVERLV 586 
Macaca mulatta 559 FRFPLDHLTWEAEDT---------------RGQVLDVVERLV 585 
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Rattus norvegicus 563 FRPFLDHLTWEAEGA---------------HGQVLEVVERLV 589 
Canis familiaris 563 FRPFLDHLTWEAEDT---------------RGQVLDVVERLV 589 
Gallus gallus 560 YRINLDHYTYEAEDA---------------RLHMGSVVEREP 586 
Danio rerio 538 FFMALDHYIYEAETAK--------------LGQVRDFFEREY 565 
Aedes aegypti 535 FIPTL-HQVLEAEFPGTVN--------CTHLSQNCSAVIREH 567 
human LAMB1 548 YFATLDHYLYEAEEAN--------------LGPGVSIVERQY 575 
human LAMB4 544 FFAPLNFYLYEAEEATTLQGLAPLGSETFGQSPAVHVVLGEP 585 
G700E 
 

Homo sapiens 684  EPGISYKLHLKLVRTGGSAQPETPYSGPGLLID  716 
Macaca mulatta 683  EPAISYKLHLKLVRTGGSAQPETPYSGPGLLID  715 
Rattus norvegicus 687  EPGLSYKLKLKLTGTGGRAHPETPYSGSGILID  719 
Canis familiaris 687  EPGISYKLLLKLVRTGGSAQTEAPYSGPSLLID  719 
Gallus gallus 684  ERGVSYTIRLELGCATGQQDP-TAS----VLID  711 
Danio rerio 663  ESGVSYKLRVELIRYADRNSIITSTNA-FVLVD  694 
Aedes aegypti 666  ENGKTYKFIVTFQR----HDPYRDNGAAQILID  694 
human LAMB1 673  EKGTNYTVRLELPQYTSSDSDVES---PYTLID  702 
human LAMB4 679  EPDVQYSIDVYFSQPLQGESHAHS----HVLVD  707 
 
H882Y 
 

Homo sapiens 870  GFPSCRPCVCNGHADECNTHTGACLGC  896 
Macaca mulatta 869  GFPSCRPCVCNGHADECDTHTGACLGC  895 
Rattus norvegicus 873  GFPNCRPCVCNGRADECDAHTGACLGC  899 
Canis familiaris 873  GFPSCQPCVCNGHADECDTHTGACVGC  899 
Gallus gallus 865  GFPTCRPCQCNGHAEECDPQTGSCLRC  891 
Danio rerio 848  GFPNCRPCQCNGHADECHQRTGACLNC  874 
Aedes aegypti 848  NFPNCQMCECNGHTPTCNSKTGECSQC  874 
human LAMB1 860  GFPSCQPCQCNGHADDCDPVTGECLNC  886 
human LAMB4 856  GFPSCHPCPCNRFAELCDPETGSCFNC  882 
 
 
P1053del 
 

Homo sapiens 1038  CTCNLLGTNPQQCPS-PDQCHCDPSSGQCPCLPNV  1071 
Macaca mulatta 1037  CTCNLLGTNPQQCPS-PDQCHCDRSSGQCPCLPNV  1070 
Rattus norvegicus 1041  CTCNLLGTDPQRCPS-TDLCHCDPSTGQCPCLPHV  1074 
Canis familiaris 1041  CTCNLLGTDPQQCPS-IDRCNCDPSSGQCPCLPNV  1074 
Gallus gallus 1033  CSCNTLGTDPNTCG--PQQCQCDQRSGQCHCLPHV  1065 
Danio rerio 1016  CTCNFLGTERSQCLS-RDDCVCQRATGQCQCLPNV  1049 
Aedes aegypti 1016  CDCNVLGTN-------QTVQHCDRFTGQCPCLANV  1043
human LAMB1 1028  CVCNYLGTVQEHCN--GSDCQCDKATGQCLCLPNV  1060 
human LAMB4 1022  CSCHASGVSPMECPPGGGACLCDPVTGACPCLPNV  1056 
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G1243R 
 

Homo sapiens 1128  ESSFWHMQEKLGIVQGIVGARNTSAAST  1255 
Macaca mulatta 1127  ESSFWHMQEKLGIVQGIVGARNTSAAST  1254 
Rattus norvegicus 1131  ESSFLNLQGKLGMVQAIVAARNTSAAST  1258 
Canis familiaris 1131  ESSFWRIQEKLGTVQGIVGARNTSAAST  1258 
Gallus gallus 1122  EGTFRRLEESLATIRDAVAARNATAATA  1249 
Danio rerio 1206  ERRFKELEDMLAQARDIVNARNATAEAV  1233 
Aedes aegypti 1200  KKEFDSMGKKIDIIKGLLTNTISDRE-I  1226 
human LAMB1 1217  RETVDSVERKVSEIKDILAQS-PAAEPL  1243 
human LAMB4 1214  EADFKDLRGNVSEIERILKHPVFPSGKF  1241 
 
 
D1373G 
 
Homo sapiens 1356  SPVSNSASARHRTEALMDAQKEDFNSKHMANQRAL  1390
Macaca mulatta 1355  SPVSNSASARHRTEALMDAQNEDFNSKHMANQRAL  1389
Rattus norvegicus 1359  SPVSNSADTRRRAEVLMGAQRENFNRQHLANQQAL  1393
Canis familiaris 1359  SPVSNSADTRHRTEVLMSAQREDFNRKHKANQQAL  1393
Gallus gallus 1350  SPVSASSATRHHTEQLLASRRDAFNRQNAASRRAL  1384
Danio rerio 1334  STVSQSADTRKKTERLIGQKRDDFNRKNAANKRTL  1368
Aedes aegypti 1323  ELNDNAERQCKRTEILLKKQQDHFDHLHDTNEASF  1357
human LAMB1 1344  STVEQSALMRDRVEDVMMERESQFKEKQEEQARLL  1378
human LAMB4 1330  STINTSANTRNDLLTILDTLTSKGN--------LS  1356
 
 
N1380K 
 
Homo sapiens 1365  RHRTEALMDAQKEDFNSKHMANQRALGKLSA  1395 
Macaca mulatta 1364  RHRTEALMDAQNEDFNSKHMANQRALRKLSA  1394 
Rattus norvegicus 1368  RRRAEVLMGAQRENFNRQHLANQQALGRLST  1398 
Canis familiaris 1368  RHRTEVLMSAQREDFNRKHKANQQALGKLSA  1398 
Gallus gallus 1359  RHHTEQLLASRRDAFNRQNAASRRALTELAA  1389 
Danio rerio 1343  RKKTERLIGQKRDDFNRKNAANKRTLTDLNA  1373 
Aedes aegypti 1332  CKRTEILLKKQQDHFDHLHDTNEASFLKYQN  1362 
human LAMB1 1353  RDRVEDVMMERESQFKEKQEEQARLLDELAG  1383 
human LAMB4 1339  RNDLLTILDTLTSKGN--------LSLERLK  1361 
 
 
R1457Q 
 
Homo sapiens 1438  GGLSCN-GAAATADLALGRARHTQAELQRALAEGGSILS  1475 
Macaca mulatta 1437  GGLNCN-GAVATADLALGRARHTQAELQRALAEGGSILS  1474 
Rattus norvegicus 1441  GGLGCS-GAAATADLALGRARHTQAELQRALVEGGGILS  1478 
Canis familiaris 1441  GGLGCN-GAVAMADLALGRARHTQAELQRALAEGGGILS  1478 
Gallus gallus 1432  GGLSCS-GAVSTADSALDRARHAQEELRRAAGEVAQ-LS  1468 
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Danio rerio 1416  GGLNCN-GAVAVADTALDRSKHAEKELDKAMGVVEELFK  1453 
Aedes aegypti 1400  GGLTCDKGALTRSEKALQYAKKTEQTIKEKEELADDILR  1438 
human LAMB1 1426  GGPGCG-GLVTVAHNAWQKAMDLDQDVLSALAEVEQLSK  1463 
human LAMB4 1404  RGPGCH-GSLTLSTNALQKAQEAKSIIRNLDKQVRGLKN  1441 
 
 
A1765T 
 
Homo sapiens 1748  KLQRLQELEGTYEENERALESKAAQLDGLE  1777 
Macaca mulatta 1747  KLQRLQELEGTYEENERALESKAAQLDGLE  1776 
Rattus norvegicus 1751  KLQRLQELEGTYEENERELEVKAAQLDGLE  1780 
Canis familiaris 1751  KLQRLQELEGTYEENERALEGKAAQLDGLE  1780 
Gallus gallus 1742  KLQKLRALEEAYERNERVLDAKVAQLDGLE  1771 
Danio rerio 1726  KLQRLAELEKDYEENQKVLEGKARQLDGLE  1755 
Aedes aegypti 1710  QLNKLHDLYKTYEQNQNELGSLETNIQGLT  1739 
human LAMB1 1736  KLQLLKDLERKYEDNQRYLEDKAQELARLE  1765 
human LAMB4 1710  KIRRITDLERKIQDLNLSRQAKADQLRILE  1739 
 
 
Alignment of human laminin β2 and laminin β2 orthologues from various species, as well 
as the human β-laminin paralogues showing the degree of conservation of the 
respective amino acid residues affected by variants. Conserved amino acids are shown 
with black background and similar amino acids with a grey background. Alignments 
were created according to outputs of BLAST (http://www.ncbi.nlm.nih.gov/BLAST) and 
the Conserved Domain Database (http://www.ncbi.nlm.nih.gov/Structure/cdd). 
Reference sequence information: 
Homo sapiens: NP_002283.3 laminin, beta 2 precursor 
Macaca mulatta: XP_001109982.1 lamb2, isoform 1 / lamc1 
Rattus norvegicus: NP_037106.1 laminin, beta 2 GENE ID: 25473=P15800 
Canis familiaris: XP_533831.2 similar to Laminin beta-2 chain precursor 
Gallus gallus: NP_989497.1 laminin, beta 2 
Danio rerio: XP_689856.2 similar to LOC494988 
Aedes aegypti: Q17EW2  laminin, beta-2 chain 
Human LAMB1: NP_002282.2 
Human LAMB4: NP_031382.2 
 
 
 
 
2 
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Supp. Figure S3. Haplotype analysis in families harbouring recurrent mutations. Haplotype analysis, including microsatellites 
flanking the LAMB2 locus (black) and intragenic SNPs (grey), in families with the recurrent LAMB2 mutations p.R246W, p.C1058X, 
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c.1477delT and c.4504delA. Red lettering marks the shared haplotype containing the respective mutation. Haplotype of parents 
and siblings are not shown. a, Haplotypes of three patients of Portuguese origin. The alleles highlighted in red represent the shared 
haplotype of at least 5,5 Mb (D3S3560 to D3S1578) harboring the missense mutation p.R246W. het, heterozygous, phase 
indefinable in abscence of parental samples. b, Haplotypes of two affected with Slavic background. Alleles highlighted in red 
indicate the shared haplotype of at least 5,4 Mb (D3S3624 to D3S3604) containing the mutation c.4504delA. n.i., not informative. c, 
Haplotypes of two affected with German-French origin, respectively. Shared haplotypes of at least 5,5 Mb (D3S3560 to D3S1578) 
bearing the mutation c.1477delT are coloured in red. d, Haplotypes of two patients with mixed European background. Alleles 
highlighted in red demonstrate the shared haplotype of at least 5,1 Mb (LAMB2 gene to D3S1578) containing the nonsense 
mutation p.C1058X. 
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