
LLVM-based and scalable MPEG-RVC decoder

Jérôme Gorin, Matthieu Wipliez, Françoise Préteux, Mickaël Raulet

To cite this version:

Jérôme Gorin, Matthieu Wipliez, Françoise Préteux, Mickaël Raulet. LLVM-based and scal-
able MPEG-RVC decoder. Journal of Real Time Image Processing, 2011, 6 (1), pp.59-70.
<10.1007/s11554-010-0169-2>. <hal-00560026>

HAL Id: hal-00560026

https://hal.archives-ouvertes.fr/hal-00560026

Submitted on 27 Jan 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL Descartes

https://core.ac.uk/display/52197491?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00560026

Springer manuscript No.
(will be inserted by the editor)

Jérôme Gorin · Matthieu Wipliez · Françoise Prêteux · Mickaël Raulet

LLVM-based and scalable MPEG-RVC decoder

Received: date / Accepted: date

Abstract MPEG Reconfigurable Video Coding (RVC)
is a new platform-independent specification methodol-
ogy chosen by the MPEG community for describing
coding standards. This methodology aims at produc-
ing Abstract Decoder Models (ADMs) of MPEG de-
coders as programs described in a dataflow language
namely “RVC-CAL Actor Language” (RVC-CAL). RVC-
CAL naturally expresses potential parallelism between
tasks of an application, which makes an ADM descrip-
tion suitable for implementation to a wide variety of
platforms, from uniprocessor systems to FPGAs. MPEG
RVC eases the development process of decoders by build-
ing decoders at a library-component level instead of us-
ing monolithic algorithms, and by providing a library of
coding tools standardized in MPEG. This paper presents
new mechanisms based on the Low Level Virtual Ma-
chine (LLVM) that allow the conception of a decoder
able to dynamically instantiate several RVC decoder de-
scriptions. This decoder, unlike static decoders generated
by RVC tools, keeps de facto the features of an RVC de-
scription namely portability, scalability and reconfigura-
bility.

Keywords Reconfigurable Video Coding · RVC-CAL
Actor Language · Low Level Virtual Machine · Network
scheduling · Dataflow programming · Code synthesis ·

Low Level Virtual Machine · Multi-core systems

Jérôme Gorin
ARTEMIS, Institut Télécom SudParis, UMR 8145, Evry,
France
E-mail: Jerome.Gorin@it-sudparis.eu

Matthieu Wipliez
IETR, INSA Rennes, F-35043, Rennes, France
E-mail: Matthieu.Wipliez@insa-rennes.fr

Françoise Prêteux
ARTEMIS, Institut Télécom SudParis, UMR 8145, Evry,
France
E-mail: Francoise.Preteux@it-sudparis.eu

Mickaël Raulet
IETR, INSA Rennes, F-35043, Rennes, France
E-mail: mickael.raulet@insa-rennes.fr

1 Introduction

In the last two decades, the evolution of video coding
standards has produced outstanding results. The next
challenge of video coding is to speed up adoption of
future coding techniques and to make smoother imple-
mentation of multiple standards support for a single
platform. So as to overcome the limitation of the cur-
rent monolithic MPEG decoder reference description,
the MPEG consortium decides to create MPEG Recon-
figurable Video Coding (RVC) [17]. This framework aims
“at providing a framework allowing a dynamic devel-
opment, implementation and adoption of standardized
video coding solutions with features of higher flexibility
and reusability”

Reconfigurable Video Coding (RVC) has been chosen
by the MPEG community to be an alternative paradigm
for codec deployment. The MPEG RVC paradigm is
based on RVC-CAL Actor Language (RVC-CAL) to
describe decoders at high-level library component us-
ing dataflow descriptions. The main objective of RVC
is to enable arbitrary combinations of fundamental al-
gorithms, without additional standardization steps. By
adding the side-information of the combination descrip-
tion alongside the content itself, MPEG RVC defines the
new concept of RVC decoder. An RVC decoder may cre-
ate, configure and re-configure video compression algo-
rithms adaptively to its content.

Yet, no mechanism has been found to automatically
and dynamically use dataflow description to form an
RVC decoder. This paper proposes to transform the
RVC-CAL description of coding tools into the generic
low-level description called Low-Level Virtual Machine
(LLVM) Intermediate Representation (IR), and to use
the LLVM infrastructure for dynamically and efficiently
instantiating these coding tools to create decoders. By
combining the LLVM and the RVC concepts, we created
a portable MPEG decoder engine that can configure and
reconfigure an MPEG RVC decoder description. After a
brief reminder of the MPEG RVC and CAL concepts in

2

section 2, we present the motivation for using LLVM as
the reference IR for CAL actor in section 3. The section 4
and 5 are devoted to the implementation of our proposed
dynamic RVC decoder. We finally show in section 6 that
the decoder has been successfully tested onto multiple
platforms.

2 MPEG Reconfigurable Video Coding

The MPEG Reconfigurable Video Coding (RVC) [17]
framework is a new ISO standard still under consider-
ation in MPEG. It aims at providing video codec spec-
ifications at the level of library components instead of
monolithic algorithms. The key approach of MPEG RVC
is to produce an Abstract Decoder Models of MPEG stan-
dard suitable for any platform. An ADM is a generic
representation of a decoder, built as a dataflow diagram
expressed with the XML Dataflow Format (XDF). XDF
is an XML dialect that describes the connections be-
tween Functional Units (FUs). Each FU is described in
RVC-CAL Actor Language (RVC-CAL) and defines a
processing entity of a decoder. Connections in an XDF
diagram represent the data flow between FUs.

XML Dataflow

Format

Encoded Video Data Decoded Video Data

N
o

n
-N

o
rm

a
ti

v
e

N
o

rm
a

ti
v

e

Decoding Translation

Video Tools

Library

Fig. 1 A typical use of the MPEG RVC Framework.

The Figure 1 shows a typical use of a normative ADM
description to produce a non-normative decoding solu-
tion that can target either software or hardware plat-
form. MPEG RVC provides both a normative standard
library of FUs called Video Tools Library (VTL) and a
set of decoder descriptions/configurations expressed as
networks of FUs. Such a representation is modular and
helps the reconfiguration of a decoder by modifying the
topology of the network. Adding new coding technolo-
gies in an existing standard is a particularly sensitive
part of a standardization process. RVC mainly focuses on
reusability of standardized coding tools by allowing dif-
ferent decoder descriptions to instantiate common FUs
across standards.

2.1 RVC-CAL Dataflow Programming

RVC-CAL [4] has been chosen by MPEG RVC as the ref-
erence programming language for describing FUs. RVC-
CAL is designed to provide a concise and high-level de-
scription of actors. An actor in RVC-CAL represents an
instantiation of an RVC Functional Unit and an RVC-
CAL dataflow model represents a composition of actors.
RVC-CAL, compared with the CAL Actor Language
(CAL) [8], restricts the data types, and operators that
cannot be easily implemented onto the platforms.

An actor shown in Figure 2 and Figure 4 is a com-
putational entity with input ports, output ports, states,
actions, and parameters. All actors communicate with
others by sending and receiving tokens (atomic pieces of
data) through their ports.

ac to r Abs () i n t (s i z e =16) I
⇒ u int (s i z e =15) O,

u int (s i z e =1) S :

pos : a c t i on I : [u] ⇒ O: [u] end
neg : a c t i on I : [u] ⇒ O: [−u]

guard u < 0
end

unsign : a c t i on ⇒ S : [0] end
s i gn : a c t i on ⇒ S : [1] end

p r i o r i t y
neg > pos ;

end

schedu le fsm s0 :
s0 (pos) −−> s1 ;
s1 (unsign) −−> s0 ;
s0 (neg) −−> s2 ;
s2 (s i gn) −−> s0 ;

end
end

Fig. 2 Description of the Absolute Value actor in RVC-
CAL.

An actor contains one or several actions. Actions de-
fine computations that an actor has to execute (or to
fire). Actions may have a tag, guard, local variables, and
statements. An action is defined by the amount of to-
kens consumed on the input. It may change the actor
state, and may output tokens according to a function of
input tokens and state variables. The guard conditions
specify additional firing conditions, where the action fir-
ing depends on the values of input tokens or the current
state.

When an actor fires, an action is selected according
to the number and value of tokens available, and if the
guard associated to the action is true. Action selection
may be further constrained using a Finite State Machine

3

Actions

State

Fig. 3 A CAL network with details on an actor.

(FSM) and priority inequalities to impose a partial order
among action tags. The reader can refer to [4] for more
details on the RVC-CAL language.

A composition of RVC-CAL actors forms a CAL net-
work, represented in Figure 3. In an RVC-CAL network,
actors communicate via unbounded channels by reading
and writing tokens from and to FIFOs. At a network
level, each actor works concurrently, executing their own
sequential operations. Dataflow programming was once
invented to address the problem of parallel computing.
The strength of using dataflow model is that execution
of concurrent processes is only driven by token availabil-
ity. Actors are able to fire simultaneously regardless of
the environment, allowing the application to be easily
distributed over different processing elements. This fea-
ture is particularly useful in the context of multi-core
platforms.

Another important point of RVC-CAL is that its
dataflow network does not specify any execution mod-
els. Many variants of Dataflow Model of Computation
(MOC) based on restriction of dataflow models (such as
Synchronous Dataflow, Boolean Dataflow...) have been
introduced in the literature [15,21,6,3,5]. RVC-CAL is
expressive enough to specify a wide range of programs
that follow a variety of dataflow models, trading between
expressiveness (the set of programs that can be modeled)
and analyzability. RVC-CAL dataflow program fits all of
those models depending on the environment and the tar-
geted application.

State

Actor

Parameters

-2

State

Actor

Parameters

2

1

Fig. 4 Absolute Value actor before and after firing.

Figure 2 shows a simple multiplexer in accordance
with RVC-CAL semantics. This multiplexer is composed
of three inputs, one output and two actions. Guards pre-
vent to fire the first action when a token on input c is not
true and to fire the second action if token on input c is
not false. The actor in Figure 4 is an execution example
of this multiplexer.

Decoder type-1

or Decoder type-2

or Hybrid decoder

Decoder

type-1
Decoder

type-2

Decoder Descripion

Coded data Decoded video

Fig. 5 Representation of the dynamic MPEG RVC decoder.

2.2 MPEG RVC Framework

CAL is supported by a portable interpreter infrastruc-
ture that can simulate a hierarchical network of actors.
This interpreter was first used in the Moses1 project.
Moses features a graphical network editor, and allows
the user to monitor actor’s execution (actor state and
token values).

The project being no longer maintained, it has
been superseded by the Open Dataflow environment
(OpenDF2 for short). OpenDF is also a compila-
tion framework with a backend for generation of
HDL(VHDL/Verilog) [11], and a backend targeting
ARM11 and embedded C is under development [18] as
part of the EU project ACTORS3. It is also possible to
simulate CAL models in the Ptolemy II4 environment.

Contrary to aforementioned tools dedicated to CAL,
the Open RVC-CAL Compiler5 (Orcc) is a compiler
specific to RVC and its subset of CAL standardized
as RVC-CAL. This framework is based on a platform-
agnostic, language-agnostic Intermediate Representation
(IR) that is both higher-level, more conservative, and
more concise than the existing IR used by OpenDF. This
IR provides a sort of “common ground” between soft-
ware languages (C/C++, Java) and Hardware Descrip-
tion Languages (HDLs) such as Verilog and VHDL. The
Orcc IR is more detailed in section 4.1. Orcc has back-
ends that can transform the IR to C, C++, Java; back-
ends for VHDL and XLIM are being developed. This tool
is available as an Eclipse feature and comes with an IDE
composed of a simulator, a debugger, and an editor with
automatic error reporting.

3 Low level Virtual Machine Infrastructure

MPEG RVC defines an abstract description of decoders
that enhance parallelism scalability, modularity and
generic uses. It also provides synthesis tools that gen-
erate static decoder programs for specific platforms. The

1 http://www.tik.ee.ethz.ch/ moses
2 http://opendf.sourceforge.net
3 http://www.actors-project.eu
4 http://ptolemy.eecs.berkely.edu
5 http://orcc.sourceforge.net

4

generated decoders are made with information from an
ADM description to fully exploit processing resources
but reject unnecessary information for the selected plat-
form.

The main contribution of this article is to propose
a dynamic synthesis and execution of an ADM descrip-
tion integrated inside the targeted platform. It permits
to bring all information from an ADM description to
the decoder and to use a Virtual Machine dedicated to
RVC ADM for dynamically executing the corresponding
decoder. As represented on Figure 5, this decoder may
take the side information of the ADM alongside the con-
tent itself, for a dynamic generation of decoders 1, 2 or
a hybrid version between these two decoders.

Although an actor defined in RVC-CAL looks very
compact and clear, writing a compiler for the RVC-CAL
language is a nontrivial task, and it takes a lot of work-
force to build one from scratch [24]. The Universal Video
Decoder (UVD), a Virtual Machine dedicated to video
decoding with a low-level and specific language, has al-
ready proven the benefits of using dynamic decoding
in [20]. This concept has shown interesting decoding per-
formance but at the cost of developing a dedicated Vir-
tual Machine, only tested and specified in one specific
environment. As for target code portability, we believe
that using an existing infrastructure (such as the Java
Virtual Machine (JVM) or the Common Language Run-
time (CLR)) is mandatory, rather than developing one
from scratch.

Performance and portability is a crucial point for the
choice of a Virtual Machine. High Level Language Vir-
tual Machine that target dynamic language, such as JVM
for Java or CLR for C#, remains more than twice slower
than the equivalent C application [22,23,13,2]. The Low-
Level Virtual Machine fits all of our expectation by pro-
viding excellent application performance, a compiler in-
frastructure tested in a wide variety of platforms and a
strong research infrastructure support.

3.1 Intermediate Representation

One of the key factors that differentiate LLVM from
other systems is the intermediate representation it uses.
The Low-Level Virtual Machine (LLVM) is a low-level
representation of applications, close to assembly lan-
guages, that captures the key operations of ordinary pro-
cessors but avoids machine specific constraints such as
physical registers or pipelines. It has been designed to
be a low-level representation but with high-level type in-
formation for compiler analysis and optimization. The
reader is invited to read [13] that explains the justifica-
tion of LLVM IR design choices.

The LLVM IR is composed of an infinite set of typed
virtual registers that can hold values of primitive types
(integral, floating point, or pointer values). These virtual
registers are in Three Address Code (3AC) form and

Static Single Assignment (SSA) form [13]. We develop
the property of these two forms, widely used for com-
piler optimization, in section 4.2. LLVM programs trans-
fer values between virtual registers and memory solely
via load and store operations using typed pointers.

%X = add i32 4 , 9 ; a f f e c t 4 added to 9 in %X
%Y = c a l l i 32 @hasToken () ; Ca l l hasToken func t i on
%cond = eq i32 %Y, 1 ; Produces a bool va lue
br i 1 %cond , l a b e l %True , l a b e l %False ; Cond . branch
True :
. . .

Fig. 6 LLVM IR coding example.

The LLVM instruction set contains 31 operation
codes (opcode) that can be overloaded (for example, the
add instruction can operate on operands of any integer
size or vector type). The LLVM IR has also a mechanism
for explicit representation of Control Flow Graph (CFG).
Figure 6 provides an example of the LLVM IR. More
information on syntaxes and semantics of each LLVM
instructions are given in the LLVM reference manual [7].

3.2 Just-In-Time Compiler

LLVM also designates a compilation framework that ex-
ploits the LLVM IR to provide a combination of features
not available in any previous compilation approach[14].
These capabilities are:

1. Persistent program information: The compilation
model preserves the LLVM representation through-
out an application’s lifetime, allowing sophisticated
optimizations to be performed at all stages of execu-
tion.

2. Transparent runtime model : The system does not
specify any particular object model, exception se-
mantics, or runtime environment, thus allowing any
language to be compiled using it.

3. Uniform, whole-program compilation: Language-
independence makes it possible to optimize and com-
pile all code comprising an application in a uniform
manner.

The compilation framework corresponds to a col-
lection of libraries and tools that makes easier to
build offline compilers, optimizers or Just-In-Time (JIT)
code generators. LLVM is currently supported on X86,
X86-64, PowerPC 32/64, ARM, Thumb, IA-64, Alpha,
SPARC, MIPS and CellSPU architectures. As LLVM
is becoming a commercial grade research compiler, the
code generated will continually benefit from improve-
ments of its compiling infrastructure.

5

3.3 LLVM-based dynamic decoder

The advantages of LLVM are the properties looked for
MPEG RVC decoders: generic, efficient and dynamic.
As represented in Figure 7, the LLVM JIT Compiler
represents the core of the proposed dynamic MPEG
RVC decoder. The LLVM is surrounded by two RVC-
specific components that bring LLVM compliant with
RVC ADM. The first component corresponds to an
equivalent-representation of a VTL provided by MPEG
RVC, but is described into an LLVM representation. This
VTL, we call it portable VTL, must keep the same in-
formation from an RVC-CAL actor with a lower level of
representation of its computation to be manageable by
LLVM. The section 4 is dedicated to the production of
this portable VTL.

llvm-rvc

Low-Level Virtual Machine

Decoded

VideoCoded

Data

Decoder

Description

Portable

Video Tool Library

Just-In-Time Adaptative

Decoder Engine

Fig. 7 Infrastructure of our dynamic RVC decoder.

The second component works as a layer of the LLVM
JIT Compiler. The Just-In-Time Adaptive Decoder En-
gine (JADE) manages a description/configuration of an
ADM and the portable VTL to produce decoders in
LLVM IR. This LLVM IR of ADM is finally sent to the
JIT Compiler to produce efficient machine code, fitted
to the target platform. JADE is also able to produce
network scheduling instructions and to manage the exe-
cution of the final decoder. The section 5 is dedicated to
the description of this engine.

4 LLVM Code Generation of CAL Actor

networks

actors
RVC-CAL
front-end

intermediate
� les

C back-end .c

Java back-end .java

VHDL back-end .vhd

XLIM back-end .xlim

LLVM back-end .ll

Fig. 8 Infrastructure of llvm-rvc decoder.

The translation of an RVC-CAL FU into LLVM IR
must keep the high-level information from the origi-
nal model, but with a very low-level description of the
FU processing and behavior. We choose to base the
translation process for the portable VTL –i.e. from an

RVC-CAL FU of the VTL into an LLVM-equivalent
representation– on the Orcc Intermediate Representation
(Orcc IR) as this representation is closer to the LLVM
IR. The compilation framework of Orcc for a given RVC-
CAL dataflow program to target a specific language is
made in two-steps:

1. A unique front-end parses the FUs of a given network
and translates them into a an Orcc-specific Interme-
diate Representation (Orcc IR),

2. A dedicated back-end loads the network and the ac-
tors in Orcc IR form to generate code in the targeted
language.

To produce the portable VTL needed by the JADE,
we developed a new LLVM back-end that starts from the
low-level Orcc IR to produce LLVM IR of an entire VTL.

4.1 Orcc Intermediate Representation

The Orcc IR is a conservative representation of a
dataflow program in terms of structure and semantic
while being at a lower level of representation. It is a
common denominator of potential target languages such
as C, C++ or Java without favoring one in particular.

Each actor representation is serialized in JavaScript
Object Notation (JSON) description format. Figure 9
shows the structure of the Absolute Value actor (Fig 2) in
Orcc IR. The JSON description contains name, pattern
and a list of actions of the actor. The FSM of the ac-
tor is translated into a list of state-to-state transitions.
Priorities become a list of action tags sorted by decreas-
ing priority.

"name": "Abs",
"inputs" : ["int", [16] , "I"],
"outputs": ["uint", [15] , "O"],
"actions": [
[

(...)
]
"action scheduler": [

"s0", // Initial states

["s0", "s1", "s2"], // States

[
["s0", [[["b"], "s1"], [["a"], "s2"]]],
["s1", [[["n"], "s0"]]],
["s2", [[["p"], "s0"]]]

]
]

Fig. 9 Description of the structure of Absolute Value actor
in Orcc Intermediate Representation.

The JSON description of an action, provides in Fig-
ure 10, contains the action tag and the number of tokens
produced and consumed. The expressions in the action
are reduced to simple arithmetic expressions. Functional
tests and list generators become imperative statements.

6

The assignment statement is differentiated into assign-
ments (assign) to local variables and load/store to mem-
ory operations. The high-level RVC-CAL functional ex-
pressions containing function calls, conditionals or list
generators are translated into an equivalent lower-level
IR expression.

"pos",false ,[32,54,5],"void" ,[],
[

[["O"],,["List"[1], ["uint" ,[15]]]] ,
[["I"],["List" ,[1], ["uint" ,[16]]]] ,
[["u"],["uint" ,[15]]]

],
[

["read" ,[["I"],"I" ,1]],
["load" ,[["u" ,1],["I"],[0]]],
["store" ,[["O"],[0],["var" ,["u" ,1]]]],
["write" ,[["O"],"O" ,1]]

]

Fig. 10 Description of the action pos of Absolute Value ac-
tor in Orcc Intermediate Representation.

The conditions to fire an action become an
isSchedulable function (Fig. 11), which tests value and
the number of token on the input of the action, as well
as testing guard condition if it exists. If isSchedulable
returns true, it means that the current action can be
fired.

"isSchedulable_pos","bool",
[

[["_tmp" ,1,1],"bool"],
[["_tmp" ,0,1],"bool"],
[["_tmp" ,0,2],"bool"],
[["_tmp" ,0,3],"bool"]

],
[

["hasTokens" ,[],[["_tmp" ,1,1],"I" ,1]],
["if",
["var" ,["_tmp" ,1,1]],
["assign" ,[["_tmp" ,0,1],[true]]],
["assign" ,[["_tmp" ,0,3],[false]]]

],
["join" ,[["_tmp" ,0,2],[["_tmp" ,0,1],["_tmp" ,0,3]]]],
["return" ,["var" ,["_tmp" ,0,2]]]

]

Fig. 11 Description of the firing condition of the action pos
of Absolute Value actor in Orcc Intermediate Representation.

Specific operations dealing with FIFOs become read,
write, hasTokens or peek statements. This is necessary
in Orcc IR because the semantics of RVC-CAL specify
that the input and output patterns may have read/write
several tokens as a list, or may have to reorder tokens.

4.2 LLVM Transformation

The llvm back-end produces a portable VTL by translat-
ing each FU of the VTL in Orcc IR into separate files in

LLVM IR. One VTL generation fits every platform sup-
ported by the LLVM infrastructure. The Orcc IR and
LLVM IR have some similarities that help the transla-
tion process for the LLVM back-end. They are both in
SSA form with an unlimited number of registers. They
have both integer types with arbitrary bit widths. Both
IRs have instructions with similar semantics, those in-
clude assignment to a local variable, load/store memory
operations and φ assignments.

The first main difference between LLVM and the
Orcc IR is that the Orcc IR supports arithmetic ex-
pressions in assignments, load/store, and conditional
branches, while LLVM only has support for three-address
code(3AC) [14]. Three-Address Code (3AC) is a form
used to improve compiler analysis. Each instruction
of the 3AC form is described as a 4-tuple: operator,
operand1, operand2, result. The general form of 3AC
is x := y op z, where x, y and z are variables, constants
or temporary variables and op is an arithmetic operator.
In Orcc IR, each expression that contains more than one
fundamental operation is decomposed into an equivalent
series of instructions fit to 3AC form and SSA constraint.

define void @pod() {
entry:

;Read node
%I = call i8* @getReadPtr (%fifo* @I , i32 1)

;Load node
%u_0 = getelementptr i8* %I, i1 0
%u_1 = load i8* %u

;Write node
%O = call i8* @getWritePtr (%fifo* @O , i32 1)

;Store node
store i8 u_1 , i8* %O
ret void

}

Fig. 12 Description of the action pos of Absolute Value ac-
tor in LLVM Representation.

The other difference between LLVM and Orcc IR is
that conditional branch nodes, namely if and while

nodes, have no equivalent in LLVM IR. The Control Flow
Graph (CFG) of a function in the LLVM IR is a list of
basic blocks, each basic block starting with a label. A
basic block contains a list of instructions, and ends with
a terminator instruction, such as a branch instruction or
function return instruction.

The Figure 12 represents the body of the action pos,
described in CAL on Figure 2 and in Orcc IR on Fig-
ure 10. Its associated firing condition is represented in
LLVM on Figure 13 and in Orcc IR on Figure 11.

LLVM Metadata information is used to carry the
structural information of an FU. Structural information
of an FU is the elements in the Orcc IR that have any
influence on computation, namely name, inputs, outputs,
parameters, actions and FSM of an FU. This structural

7

define i1 @isSchedulable_pos () {
entry:

%_tmp1_0 = call i1 @hasTokens (%fifo* @I , i32 1)
br i1 %_tmp1_1 , label %bb2 , label %bb3

bb2:
br label %bb4 ; Fifo has token

bb3:
br label %bb4 ; Fifo has no token

bb4:
%_tmp0_1 = phi i1 [1 , %bb2], [0, %bb3]
ret i1 %_tmp0_1

}

Fig. 13 Description of the firing condition of the action pos
of Absolute Value actor in LLVM Representation.

information is necessary for the JADE to connect ac-
tors in dataflow programs, to generate schedulers or to
apply actor transformation inside an ADM, for instance
the merging of actors [25]. Figure 14 corresponds to the
metadata description of Absolute Value actor. This rep-
resentation is equivalent to the Orcc IR description given
in Figure 9.

!name = !{!0}
!inputs = !{!1}
!outputs = !{!2}
!actions = !{!3, !4, !5, !6}
!action_scheduler = !{!7}

; Name of the actor
!0 = metadata !{ metadata !"Abs"}

;Description of I
!1 = metadata !{ i32 16, ; Size

metadata !"I", ; Name
%fifo_s ** @I} ; LLVM variable

(...)

;Description of pos
!3 = metadata !{ metadata !"pos", ; Tag

metadata !8, ; isSchedulable function
metadata !9} ; Body function

;Description of isSchedulable_pos
!8 = metadata !{ metadata !"bool", ; Return type

metadata !10, ; Pattern
i1()* @isSchedulable_pos} ; LLVM function

;Description of body
!9 = metadata !{ metadata !"void",

(...)

Fig. 14 Description of the structure of Absolute Value actor
using LLVM metadata.

LLVM variables and functions are incorporated inside
metadata to bound metadata information with their cor-
responding elements in the LLVM IR. Using metadata
allows to have no information lost between Orcc IR and
an LLVM IR of an actor.

5 Just-In-Time Adaptive Decoder Engine

The second step of the approach is to produce a decoder
that dynamically instantiates MPEG decoders according
to a network description/configuration and the portable
VTL. To achieve this goal, the Just-In-Time Adaptive
Decoder Engine manages the LLVM infrastructure for
dynamically translating LLVM IR into optimized ma-
chine code. The JADE also integrates scheduling rules
to execute the generated decoder.

5.1 Decoder Code Generation

XDF Parsing Actors Parsing

Module Generation

Scheduler Generation

Fifo Instanciation

Decoder

Description

Just-In-Time Adaptative

Decoder Engine

Low-Level Virtual Machine

Portable

Video Tool Library

Fig. 15 Infrastructure of the Just-In-Time Adaptive De-
coder Engine.

The role of JADE is to manage the instantiation of
networks. Instantiation of a network designates the ini-
tialization of actors, FIFOs and the network scheduling
from an RVC description. JADE creates LLVM repre-
sentation of decoders in a five steps process described on
Figure 15 :

1. XDF parsing : XDF description is parsed into a Di-
rected Acyclic Graph (DAG) that describes the struc-
ture of the network. This DAG helps analysis based
on dataflow graph as explain in [12]. XDF parsing
also provides information about the list of FUs in
the VTL, the number of instances of an FU and con-
nections in the network to the actor parsing, FIFO
instantiation and scheduler generator.

2. Actor parsing : Required FUs in the VTL are parsed
using LLVM metadata to keep information about ac-
tor behavior and structure. They are stored in mem-
ory in a form of simple structure that will be sent to
the module generation.

3. Module generation: The parsed FUs are duplicated
in an only LLVM module that represents the LLVM
representation of the decoder. This is necessary be-
cause some FUs can be instantiated many times. It
also helps the LLVM JIT Compiler to process opti-
mization on the overall decoder.

8

4. FIFO instantiation: FIFOs are instantiated and con-
nected to every actor’s ports. The FIFOs used are
unidirectional circular buffers that allow actors to
be executed on different threads without the use of
semaphores for data synchronization.

5. Scheduler generation: Scheduling instructions are in-
serted in the decoder module to define how processes
are given access to system resources. The scheduling
part of the decoder has been designed to be modular
and interchangeable to give the choice to developers
to select scheduling algorithms that best fit the tar-
geted platform.

The generated decoder, represented as an only LLVM
module, is finally sent to the LLVM JIT Compiler to
produce efficient machine bytecode of the decoder in a
three steps process:

1. Optimization: The generated single module passes
through aggressive optimizations, selected according
to their efficiency for the targeted platform.

2. Compilation: LLVM module is JIT translated into
machine bytecode. If the targeted platform is not sup-
ported by the JIT Compiler, LLVM also integrates an
interpreter that executes LLVM IR line by line.

3. Execution: Main scheduler function is executed in a
dedicated thread that can be run, stop and partially
reconfigured at any times by the JADE.

5.2 Decoder execution

Network scheduling process corresponds to the most sen-
sitive part of JADE for decoder’s achievement. For the
first implementation of the JADE, we choose to imple-
ment a simple round-robin scheduler that avoids complex
graph analysis and offers abilities for multi-core execu-
tion [1]. This round robin scheduler follows the Dataflow
Process Networks (DPN) model introduced by [16]. DPN
models are dynamically scheduled; hence this scheduler
consists in an endless call of each actor in the network
as represented in Figure 16.

define void @scheduler () {
entry:

call void @actor_1
call void @actor_2
.
.
call void @actor_n
br label %entry ;loop to entry

}

Fig. 16 LLVM representation of a round robin scheduler for
a network of n actors.

An actor is called by executing its associated action
scheduler. An action scheduler is a function added to
each actor at scheduler generation that rules the firing
of actions. Figure 17 represents the action scheduler of

define void @abs() {
entry:

switch i32 @_FSM_state , label %default [
i32 0, label %s0
i32 1, label %s1
i32 2, label %s2

]

s0:
%s0 = call i1 @s0_scheduler ()
br i1 %s0 , label %entry , label %return

s1:
%s1 = call i1 @s1_scheduler ()
br i1 %s1 , label %entry , label %return

s2:
%s2 = call i1 @s1_scheduler ()
br i1 %s2 , label %entry , label %return

return:
ret void

}

Fig. 17 Representation of the action scheduler of the actor
abs in LLVM IR.

the actor pos. The Finite State Machine (FSM) of an
RVC-CAL Actor is translated into an LLVM switch in-
struction. The switch instruction calls a state scheduler
corresponding to the current actor state. Figure 18 repre-
sents the state scheduler of state s1 in actor abs. Actions
are listed according to their priorities in the FSM. Fir-
ing an action corresponds to test if an action is fireable,
namely by calling the associated isSchedulable function.
If an action is defined as fireable, the function corre-
sponding to the body of the action can be called.

define i1 @s1_scheduler () {
entry:

%0 = call i1 @isSchedulable_neg ()
br i1 %0, label %fire_neg , label %skip_neg

fire_neg:
call void @neg()
store i32 s2 , i32* @_FSM_state
ret i1 1

skip_cmd_newVop:
%1 = call i1 @isSchedulable_pos ()
br i1 %1, label %fire_pos , label %return

fire_cmd_textureOnly:
call void @pos()
store i32 s1 , i32* @_FSM_state
ret i1 1

return:
ret i1 0

}

Fig. 18 Representation of the scheduler of the state s0 for
the actor abs in LLVM IR.

The strength of the round-robin scheduler consists in
the preservation of the scalability of the original model.
Indeed, all actors are still considered as independent en-
tities, without any knowledge about the execution se-

9

quence of actions. The execution of the network –i.e.
calls of action schedulers – can be made by one or more
round robin scheduler. A round robin scheduler can con-
tain from one to all the actors of a network. In a case of
multiple cores, a group of FUs can be mapped onto sev-
eral round robin schedulers and each round robin sched-
uler can be affected onto a separate core of the plat-
form. This scheduler enhances parallelism and pipelining
in each process of the whole application.

The strength of our model constitutes also its princi-
pal weakness if we compare the achievement of our de-
coder with an equivalent sequential code for a unipro-
cessor system. As the scheduler does not contain any
information about the order to execute actions for each
actor, every action has to be tested before determining if
it can be executed. This scheduler involves an important
overhead that can be reduced by finding static execution
rules in the original dataflow network. We plan in future
works to reduce this overhead by coupling our scheduler
with analyzing tools for dataflow networks that would
automatically detect sequential execution order of ac-
tions as presented in [10,25]. LLVM metadatas that we
embedd inside LLVM IR of actor enable at runtime such
analysis.

6 Results

This section presents the experimental results led on the
proposed concept. The goals of these experiments are to
show the portability of the VTL, the relevance of using
LLVM as an intermediate representation and the multi-
core ability of the scheduler.

With this aim in mind, we developed the JADE, de-
scribed in Figure 5, in C++6 coupled with LLVM 2.67.
We also used the Orcc LLVM backend to generate a
portable VTL from RVC-CAL standardized FUs.

The FUs currently available in the VTL of MPEG
RVC are the coding tools from MPEG-4 Part-2 Sim-
ple Profile (SP) and MPEG-4 Advanced Video Coding
(AVC) standards. The JADE has been compiled and the
portable VTL copied on several OS with an Intel E6600
Core2 Duo processor at 2.40 GHz running with Windows
7, Mac OS X 10.5 and Linux Ubuntu 9.10.

6.1 Portable VTL generation

The portable VTL has been tested on the MPEG RVC
VTL at its current state of standardization. This VTL is
currently composed of 69 RVC-CAL FUs, 22 are coming
from the MPEG-4 SP standard and 47 are coming from
MPEG-4 AVC standard. The portable VTL generated is

6 C++ implementation of Jade is available at:
http://sourceforge.net/projects/orcc

7 LLVM 2.6 is available at: http://llvm.org/

compared on table 1 with the resulting files of other back-
ends of Orcc, namely the C back-end and Java back-end,
running on the same VTL. The compiling tools used are
gcc V4.3.2 for C, javac V1.6.0 for Java and the llvm
assembler from LLVM 2.6.

C Java LLVM
MPEG-4 SP 1,74 Mb 300 Kb 285 Kb

+ MPEG-4 AVC 2,29 Mb 775 Kb 755 Kb
VTL 4.03 Mb 1,04 Mb 1,01 Mb

Table 1 Comparison of the compilation size without opti-
mization of a same VTL generated in C, Java and LLVM.
The VTL includes FUs from MPEG-4 Simple Profile (SP)
standard and from MPEG-4 Advanced Video Coding (AVC)
standard.

The given results shows the lightness of LLVM
bytecode size comparable to Java bytecode, which allows
the portable VTL to be easily sent or incorporated into
embedded system. All the files include in the resulting
VTLs were compiled independently with no optimization
enabled. The important size of the C compiled version of
VTL is explained by the fact that C files are incorporat-
ing FIFO headers, where Java and LLVM does not use
header and externalize functions.

6.2 Real-Time decoding of CIF video

The second experiment compares the achievement of de-
coders generated by JADE with equivalent static C and
Java decoders with the same round-robin scheduling exe-
cution. The configurations of decoders used are described
in [4] for the MPEG-4 Part-2 Simple Profile (SP) de-
coder and from [9] for the MPEG-4 Advanced Video
Coding (AVC) Constrained Baseline Profile (CBP). We
considered those two configurations of decoder as the
most representative of MPEG RVC as they cover all the
VTL. Some of these FUs are instantiated several times
in decoders, the RVC description of the MPEG-4 SP
decoder contains 64 instances and the RVC description
of the MPEG-4 AVC contains 92 instances. These de-
coders were respectively tested on conformance testing
sequences for SP decoders8 and AVC decoders9.

C Java LLVM
Windows (VS C++) 26,7 fps 7,0 fps 24,9 fps

Linux/MacOsX (GCC) 26,6 fps 9,7 fps 26,4 fps

Table 2 Decoder performance of an MPEG-4 Part-2 Simple
Profile configuration for CIF sequences (352 × 288).

8 Video sequences available at: http://standards.iso.org/
9 Video sequences available at: http://wftp3.itu.int/av-

arch/jvt-site/

10

The integrated development environment (IDE) used
to compile C and Java is namely Microsoft Visual Stu-
dio 2008 Express for C and Eclipse V3.6.0 for JAVA.
The comparison results, on Table 2 and Table 3, shows
that the impact of the LLVM Virtual Machine is un-
seen on Windows and Linux. The static Java versions of
these same decoders running on the Java Virtual Ma-
chine (JVM) are running three times slower than LLVM
decoders. This speed factor can be explained by the fact
that does not allocate local arrays on the stack. Each
fifo access involve new memory allocation, which must
be freed by the garbage collector of the Virtual Machine.

C Java LLVM
Windows (VS C++) 30,9 fps 5,6 fps 31,7 fps

Linux/MacOsX (GCC) 34,9 fps 5,5 fps 34,5 fps

Table 3 Decoder performance of an MPEG-4 Advanced
Video Coding configuration for QCIF sequences (176 × 144).

Preliminary results show that the configuration and
reconfiguration times of the MPEG-4 SP decoder are
about 800 milliseconds and about 1 second for the
MPEG-4 AVC description. This reconfiguration time can
be greatly improved by encapsulating dataflow network
representation into bitstream and by supporting partial
reconfiguration of decoders.

6.3 Scalable execution

This section tests the multi-core abilities of JADE gener-
ated decoders on the Core2Duo processor. The use case
are taken from [1] and applied to the Jade. Two POSIX
threads were used on Linux to implement two round-
robin schedulers, with one round-robin scheduler per
core. Each scheduler was precompiled with a list of ac-
tors manually distributed. The decoders used is the same
configuration of MPEG-4 Part-2 Simple Profile (SP) pre-
sented on Table 2.

Core 1 Core 2 gain

Parser Texture + Motion 1%
Parser + Motion Texture 33%
Parser + Texture Motion 50%

Table 4 Gain by an execution on two threads of the MPEG-
4 Simple Profile decoder compared to a unicore execution.

The performance given on Table 4 shows benefits of
the multi-core (up to 1.5), depending on the configura-
tion used. We considered these results as a proof that
a network analysis is mandatory to obtain a smart and
automatic dispatchment of the actors into several sched-
ulers.

7 Conclusion and perspective

This paper presents a new concept of dynamic decoder
able to fully support ADM from MPEG RVC. It enables
an automatic translation of dataflow programs written in
RVC-CAL into an LLVM representation to take the ben-
efits of the LLVM infrastructure. As a result, generated
decoder can be dynamically compiled and executed with
reasonable impact on the performance, relatively with
a static compilation of the same decoder. Moreover, the
generated decoder contains scalable parallelism based on
a simple mechanism that can be introduced into a wide
range of platform.

The next milestone of this concept of dynamic RVC
decoder is to get an automatic distribution of the actors
from a dataflow program into the processing resources of
the targeted platform. The Dif package [19] shows some
mechanisms to insert more information about decoder
execution, specifically static execution of part of mod-
els, into a decoder description (XDF). Finally, we take
MPEG RVC as the base application for JADE, but the
concept of ADM representation can also be extends to
others Medias that involve signal processing, such as au-
dio, cryptographic or 3D applications.

References

1. Amer, I., Lucarz, C., Mattavelli, M., Roquier, G., Raulet,
M., Déforges, O., Nezan, J.F.: Reconfigurable Video Cod-
ing: The Video Coding Standard for Multi-core Plat-
forms. In: IEEE Signal Processing Magazine(to appear),
Special Issue on Signal Processing on Platforms with
Multiple Cores (2009)

2. Barrett, E.: 3c - a JIT compiler with LLVM.
Tech. rep., Bournemouth University (2009). URL
http://llvm.org/pubs/2009-05-21-Thesis-Barrett-
3c.html

3. Bhattacharya, B., Bhattacharyya, S.: Parameterized
dataflow modeling for DSP systems. Signal Processing,
IEEE Transactions on 49(10), 2408–2421 (2001). DOI
10.1109/78.950795

4. Bhattacharyya, S.S., Eker, J., Janneck, J.W., Lucarz, C.,
Mattavelli, M., Raulet, M.: Overview of the MPEG re-
configurable video coding framework. Journal of Signal
Processing Systems (2009)

5. Bhattacharyya, S.S., Murthy, P.K., Lee, E.A.: APGAN
and RPMC: Complementary heuristics for translating
DSP block diagrams into efficient software implementa-
tions. Journal of Design Automation for Embedded Sys-
tems. In: DSP Block Diagrams into Efficient Software
Implementations, DAES, pp. 33–60 (1997)

6. Bilsen, G., Engels, M., Lauwereins, R., Peperstraete, J.:
Cycle-static dataflow. Signal Processing, IEEE Transac-
tions on 44(2), 397–408 (1996). DOI 10.1109/78.485935

7. C. Lattner and V. Adve: LLVM Language
Reference Manual. Tech. Rep. 4th edition,
ECMA International (2006). Available at:
http://llvm.cs.uiuc.edu/docs/LangRef.html

8. Eker, J., Janneck, J.: CAL Language Report. Tech. Rep.
ERL Technical Memo UCB/ERL M03/48, University of
California at Berkeley (2003)

9. Gorin, J., Raulet, M., Cheng, Y., Lin, H., Siret, N., Sug-
imoto, K., Lee, G.: An RVC Dataflow Description of the

11

AVC Constrained Baseline Profile Decoder. In: Proceed-
ings of ICIP’09 (2009)

10. Gu, R., Janneck, J.W., Bhattacharyya, S.S., Raulet, M.,
Wipliez, M., Plishker, W.: Exploring the concurrency of
an MPEG RVC decoder based on dataflow program anal-
ysis. IEEE Transactions on Circuits and Systems for
Video Technology (2009)

11. Janneck, J., Miller, I., Parlour, D., Roquier, G., Wipliez,
M., Raulet, M.: Synthesizing hardware from dataflow
programs: an MPEG-4 Simple Profile decoder case study.
In: Signal Processing Systems (SiPS) (2008)

12. kwong Kwok, Y., Rol, P., Chin, T., Department, H.O.:
High-performance algorithms for compile-time schedul-
ing of parallel processors. In: 83 - PhD. Thesis, HKUST,
Hong Kong, pp. 90–101 (1997)

13. Lattner, C.: LLVM: An Infrastructure for Multi-Stage
Optimization. Master’s thesis, Computer Science Dept.,
University of Illinois at Urbana-Champaign, Urbana, IL
(2002). See http://llvm.cs.uiuc.edu.

14. Lattner, C., Adve, V.: LLVM: A Compilation Frame-
work for Lifelong Program Analysis & Transformation.
In: Proceedings of the 2004 International Symposium on
Code Generation and Optimization (CGO’04). Palo Alto,
California (2004)

15. Lee, E., Messerschmitt, D.: Synchronous data flow. Pro-
ceedings of the IEEE 75(9), 1235–1245 (1987)

16. Lee, E.A., Parks, T.M.: Dataflow Process Networks. Pro-
ceedings of the IEEE 83(5), 773–801 (1995)

17. Mattavelli, M., Amer, I., Raulet, M.: The reconfigurable
video coding standard [standards in a nutshell]. Signal
Processing Magazine, IEEE 27(3), 159 –167 (2010). DOI
10.1109/MSP.2010.936032

18. von Platen, C., Eker, J.: Efficient realization of a
CAL video decoder on a mobile terminal (position
paper). In: Signal Processing Systems, 2008. SiPS
2008. IEEE Workshop on, pp. 176–181 (2008). DOI
10.1109/SIPS.2008.4671758

19. Plishker, W., Sane, N., Kiemb, M., Anand, K., Bhat-
tacharyya, S.S.: Functional DIF for rapid prototyping. In:
Proceedings of the International Symposium on Rapid
System Prototyping, pp. 17–23. Monterey, California
(2008)

20. Richardson, I., Bystrom, M., Kannangara, S., Frutos,
D.: Dynamic Configuration: Beyond Video Coding Stan-
dards. In: IEEE System on Chip Conference. IEEE
(2008). URL http://www.openvideocoding.org/

21. Ritz, S., Pankert, M., Zivojinovic, V., Meyr, H.: Op-
timum vectorization of scalable synchronous dataflow
graphs. In: Application-Specific Array Processors, 1993.
Proceedings., International Conference on, pp. 285–296
(1993). DOI 10.1109/ASAP.1993.397152

22. Sangappa, S., Palaniappan, K., Tollerton, R.:
Benchmarking Java against C/C++ for interac-
tive scientific visualization. In: JGI ’02: Proceed-
ings of the 2002 joint ACM-ISCOPE conference
on Java Grande, p. 236. ACM, New York, NY,
USA (2002). DOI 10.1145/583810.583848. URL
http://dx.doi.org/10.1145/583810.583848

23. Singer, J.: JVM versus CLR: a comparative study. In:
PPPJ ’03: Proceedings of the 2nd international confer-
ence on Principles and practice of programming in Java,
pp. 167–169. Computer Science Press, Inc., New York,
NY, USA (2003)

24. Wernli, L.: Design and Implementation of a Code
Generator for the CAL Actor Language. Tech.
Rep. UCB/ERL M02/5, EECS Department, Uni-
versity of California, Berkeley (2002). URL
http://www.eecs.berkeley.edu/Pubs/TechRpts/2002/3965.html

25. Wipliez, M., Raulet, M.: Classification and Transforma-
tion of Dynamic Dataflow Programs (in submission). In:
submitted to conference on Design and Architectures for
Signal and Image Processing (DASIP 2010) (2010)

