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recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL Descartes

https://core.ac.uk/display/52197172?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
http://www.hal.inserm.fr/inserm-00597010


Handb Exp Pharmacol . Author manuscript

Page /1 14

AMP-activated protein kinase and metabolic control
Benoit Viollet 1 * , Fabrizio Andreelli 1 2

Institut Cochin    1 INSERM : U1016 , CNRS : UMR8104 , Universit  Paris V - Paris Descartes é , Paris,FR

Service d endocrinologie diab tologie   2 ' é Assistance publique - H pitaux de Paris (AP-HP) ô , H pital Piti -Salp tri re ô é ê è , Universit  Paris VI -é
 Pierre et Marie Curie , 47-83, boulevard de l H pital 75651 PARIS Cedex 13,FR' ô

* Correspondence should be adressed to: Benoit Viollet <benoit.viollet@inserm.fr >

Abstract

AMP-activated protein kinase (AMPK), a phylogenetically conserved serine/threonine protein kinase, is a major regulator of cellular

and whole-body energy homeostasis that coordinates metabolic pathways in order to balance nutrient supply with energy demand. It

is now recognized that pharmacological activation of AMPK improves blood glucose homeostasis, lipid profile and blood pressure in

insulin-resistant rodents. Indeed, AMPK activation mimics the beneficial effects of physical activity or those of calorie restriction by

acting on multiple cellular targets. In addition it is now demonstrated that AMPK is one of the probable (albeit indirect) targets of

major antidiabetic drugs including, the biguanides (metformin) and thiazolidinediones, as well as of insulin sensitizing adipokines

(e.g., adiponectin). Taken together, such findings highlight the logic underlying the concept of targeting the AMPK pathway for the

treatment of metabolic syndrome and type 2 diabetes.
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Introduction

Obesity (defined as a body-mass index (BMI) of >30 kg.m ) and the metabolic syndrome are related conditions that can be2 −

considered as precursors of T2D and increases the risk of developing this disease by >20-fold ( ). Although theseWillett et al. 1999 

conditions clearly have a genetic component, as indicated by the high prevalence in certain ethnic group, the rapid increase in the

prevalence of these conditions in populations throughout the world suggests the contribution of environmental factors. A widely accepted

explanation for the increasing prevalence of these conditions lays on the frequent consumption of processed foods with high energy and

low fibers content and the reduction in physical exercise due to sedentary lifestyle in modern urban environment. Thus, obesity arises due

to an imbalance between energy intake and energy expenditure where caloric excess accumulates preferentially as lipids in adipose tissue

but also into muscle and liver. Disruption of energy balance has led to an increased prevalence of T2D and related comorbidities such as

coronary heart disease, heart failure, hypertension and renal failure ( ).Wing et al. 2001 

Type 2 diabetes (T2D) has a high prevalence worldwide and its treatment produces considerable costs for the health budgets.

Prevention and management of T2D has become a major public health challenge around the world. Diabetes is defined by a fasting plasma

glucose higher than 7 mM ( ). T2D is characterized by altered lipid and glucose metabolism (fasting orAlberti and Zimmet 1998 

postprandial hyperglycaemia, dyslipidemia) as a consequence of combined insulin resistance in skeletal muscle, liver and adipose tissue

and relative defects of insulin secretion by -cells that may arise due to an imbalance between energy intake and expenditure (β Saltiel and

). Insulin is the primary anabolic hormone that stimulates uptake and storage of fuel substrates, while inhibiting substrateKahn 2001 

production in peripheral tissues ( ). It lowers blood glucose levels by facilitating glucose uptake, mainly into skeletalKahn et al. 2006 

muscle and fat tissue, and by inhibiting endogenous glucose production in the liver. Insulin resistance occurs when a normal dose of

insulin is unable to elicit its metabolic responses. Peripheral insulin resistance is associated with lipid partitioning in specific

compartments, i.e. muscle and liver, more than with obesity ( ; ). In the natural history ofper se DeFronzo and Tripathy 2009 Unger 1995 

type 2 diabetes, pancreatic -cells initially compensate for insulin resistance by increasing insulin secretion, but with time, progressive β β
-cell failure leads to insulin deficiency, and hyperglycaemia ensues ( ).Fonseca 2009 

Lifestyle intervention is now recognized as the first-line strategy for the management of T2D and remains important for optimization

of metabolic control. This is supported by observational studies and clinical trials comparing the respective effects of diet, drugs or

exercise, in persons at high risk for type 2 diabetes ( ; ; ). The DiabetesKnowler et al. 2002 Pan et al. 1997 Tuomilehto et al. 2001 

Prevention Program (DPP) Research Group conducted a large, randomized clinical trial involving adults in the United States who were at

high risk for the development of this disease ( ). In this study, the lifestyle intervention was particularly effective (andKnowler et al. 2002 

more than an oral hypoglycaemic drug) to prevent the onset of diabetes. In clinical practice, when lifestyle modification fails to achieve or

sustain adequate glycaemic control, insulin or oral anti-diabetic agents are typically used to manage the disease ( ).Nathan et al. 2009 

Treatment options with oral agents are quite diverse, including metformin, thiazolidinediones (TZDs), -glucosidase inhibitors,α
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sulphonylureas, DPP-4 inhibitors, and GLP-1 analogs. The currently available classes of oral agents differ in mechanism and duration of

action, and the degree to which they lower blood glucose and their side-effect profile (including hypoglycaemia, weight gain, dema,

fractures, lactic acidosis, and gastrointestinal intolerance). Because it is recognized that T2D is a progressive disease worsening with time,

all available drugs can be used alone or in varied associations.

There is a pressing need to develop new therapeutic strategies to prevent and treat T2D. Exciting recent developments have shown that

AMP-activated protein kinase (AMPK), a phylogenetically conserved serine/threonine protein kinase, acts as an integrator of regulatory

signals monitoring systemic and cellular energy balance, thus providing the emerging concept, as first suggested by Winder and Hardie in

( ), that AMPK is an attractive therapeutic target for intervention in many conditions of disordered energy1999 Winder and Hardie 1999 

balance including T2D and insulin resistance.

Rational for a pharmacological management of T2D by targeting AMPK

Physical activity is an important determinant to prevent and control T2D. Current guidelines recommend practical, regular and

moderate regimens of physical activity. The multiple metabolic adaptations that occur in response to physical activity can improve

glycaemic control for individuals with T2D or delay the onset of the disease. Indeed, it is now recognized that beneficial effects of physical

activity are still maintained in insulin resistant populations. This suggests that some metabolic actions of exercise (as increase in muscular

glucose uptake) are dependent of specific intracellular pathways that bypass signalling altered by insulin resistance. In consequence, any

drug inducing favourable changes similar to those of physical exercise on whole body metabolism are attractive candidates for treatment

and prevention of obesity, metabolic syndrome and T2D. Interestingly, it is now well established that muscle contraction is a prototypical

AMPK activator ( ). Thus, it is expected that part of the effect of physical activity in preventing the development ofHayashi et al. 1998 

metabolic disorders related to a sedentary lifestyle is due to activation of AMPK. Indeed, it has been documented that pharmacological

AMPK activation may recapitulate some of the exercise-induced short-term adaptations and is likely to mediate beneficial effects of

exercise on insulin sensitivity and glucose transport in skeletal muscle ( ; ). In addition,Bergeron et al. 1999 Fisher et al. 2002 

pharmacological AMPK activation resulted in long-term adaptation similar to those induced by endurance exercise training with the

induction of genes linked to oxidative metabolism and enhanced running endurance ( ).Narkar et al. 2008 

In the Diabetes Prevention Program (DPP) the incidence of diabetes was reduced by 58  with a low-calorie, low-fat diet, as compared%
with placebo after 3 years of follow-up ( ). The beneficial effect of calorie restriction in reducing T2D incidence wasKnowler et al. 2002 

confirmed by other clinical studies ( ; ). In overweight and obese humans, calorie restrictionPan et al. 1997 Tuomilehto et al. 2001 

improves glucose tolerance, lipid profile and insulin action and reduces mortality associated with T2D ( ; Hammer et al. 2008 Jazet et al.

; ; ). In order to produce a metabolic profile similar to those of calorie restriction in2008 Larson-Meyer et al. 2006 Weiss et al. 2006 

diabetic patients, there is an increased interest in developing pharmacological agents acting as calorie-restriction  mimetics. Such agents“ ”
could provide the beneficial metabolic, hormonal and physiological effects of calorie restriction without altering dietary intake or

experiencing any potential adverse consequences of excessive restriction. To this purpose, phytochemicals mimicking the effects of calorie

restriction (polyphenols) were recently identified as potent activators for AMPK and ( ; ;in vitro in vivo Baur et al. 2006 Collins et al. 2007 

).Zang et al. 2006 

Additionally, it is now recognized that a dysfunction in AMPK signalling pathway might have sustained, deleterious effects at the

systemic levels and might contribute to the events that lead to the metabolic syndrome. It is interesting to note that there is a strong

correlation between low activation state of AMPK with metabolic disorders associated with insulin resistance, obesity and sedentary

activities ( ; ; ; ). Recent studies showed that AMPK is likely to beLee et al. 2005a Lee et al. 2005b Luo et al. 2005 Martin et al. 2006 

under both endocrine and autocrine control in rodents. Thus, in addition to exercise and starvation, AMPK is activated by the

fat-cell-derived hormones adiponectin and leptin ( ; ; ) and interleukin-6Minokoshi et al. 2002 Tomas et al. 2002 Yamauchi et al. 2002 

(IL-6) ( ). Conversely, AMPK activity is suppressed in muscle and liver by sustained hyperglycaemia, in liver byKelly et al. 2004 

re-feeding after starvation ( ) and by increases in the plasma concentration of others adipocyte-derived hormones, resistinAssifi et al. 2005 

( ) and tumor necrosis factor-  (TNF- ) ( ). In addition to its role in the periphery, AMPK alsoBanerjee et al. 2004 α α Steinberg et al. 2006 

regulates energy intake and body weight by mediating opposing effects of anorexigenic and orexigenic signals in the hypothalamus (

; ; ; ). In addition, many therapies that are useful in treatingAndersson et al. 2004 Kim et al. 2004 Kola et al. 2005 Minokoshi et al. 2004 

the metabolic syndrome and associated disorders in humans, including TZDs ( ; ), metformin (Fryer et al. 2002 Saha et al. 2004 Zhou et al.

), calorie deprivation and exercise, have been shown to activate AMPK system. Lastly, the development of transgenic and knockout2001 

(KO) mouse models (see below) have made possible to better understand the physiological role of AMPK and confirm that disruption of

AMPK pathway in various tissues induces various phenotypes mimicking the metabolic syndrome observed in humans.

Taken together the physiological functions of AMPK and the suspected role of AMPK in metabolic disorders, activation of AMPK

pathway appears as a promising tool to prevent and/or to treat metabolic disorders.

Structure and regulation of AMPK
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AMPK is a major regulator of cellular and whole-body energy homeostasis that coordinates metabolic pathways in order to balance

nutrient supply with energy demand. Activation of AMPK switches off ATP-consuming anabolic pathways and switches on

ATP-producing catabolic pathways ( ). This would typically occur when AMPK is activated as a result of energyViollet et al. 2003 

deprivation linked to alterations of the intracellular AMP/ATP ratio (e.g., hypoxia, glucose deprivation, muscle contraction), changes in

calcium concentration as well as the action of various adipocytokines. AMPK is composed of three different subunits ,  and  appearingα β γ
in several isoforms with different action properties ( ). The -subunit contains the catalytic site whereas regulatory - and Figure 1 α β γ
-subunits are important to maintain the stability of the heterotrimeric complex. The  subunit contains a central region that allows AMPKβ
complex to bind glycogen. The  subunit contains four tandem repeats known as cystathionine -synthase (CBS) motifs that bind togetherγ β
two molecules of AMP or ATP in a mutually exclusive manner. Binding of AMP (on  subunit) activates AMPK via a complexγ
mechanism involving direct allosteric activation and phosphorylation of  subunit on Thr172 by upstream kinases as the protein kinaseα
LKB1 (a tumour suppressor whose germline mutations in humans are the cause of Peutz-Jeghers syndrome), the CaMKKβ
(calmodulin-dependent protein kinase kinase ) and TAK1 (mammalian transforming growth factor -activated kinase) ( ).β β Figure 2 

Although it was originally proposed that AMP binding promoted AMPK phosphorylation by upstream kinases, recent work suggested

entirely inhibition of dephosphorylation of Thr 172 to be critical ( ; ) ( ).Sanders et al. 2007 Suter et al. 2006 Figure 2 

Beneficial metabolic effects of targeting AMPK pathway
Mimicking the beneficial effects of physical exercise

It has been confirmed in large scale epidemiological and interventional studies that regular physical activity is of great benefit for the

metabolic control of subjects with metabolic syndrome or impaired glucose tolerance or T2D ( ; ; Knowler et al. 2002 Pan et al. 1997 

). Although appropriate diet and exercise regimes should therefore be the first choice of treatment and prevention ofTuomilehto et al. 2001 

type 2 diabetes, in some patients such management is not appropriate for other medical reasons, or when compliance is difficult because of

social factors or poor motivation. In these cases, drugs that act on the signalling pathways involved in physical activity are attractive

candidates for treatment and prevention. It is now clearly demonstrated that AMPK is activated by physical training in an

intensity-dependent manner both in humans and in rodents ( ). AMPK activation during muscle contraction is aSteinberg and Kemp 2009 

physiological adaptation in front of increased energy demand and ATP turnover. It has been demonstrated that AMPK activation may

recapitulate some of the exercise-induced adaptations and is likely to mediate beneficial effects of exercise not only on insulin sensitivity

and glucose transport in skeletal muscle ( ) but also for additional metabolic benefits coming from AMPK activation byFisher et al. 2002 

exercise in liver and in adipose tissue ( ). Conversely, it has also been demonstrated that disruption of muscular AMPKPark et al. 2002 

signalling can be a key factor in the pathophysiology of metabolic disorders. Indeed, reduction of muscular AMPK activity exacerbates the

development of insulin resistance and glucose intolerance during high-fat feeding, disturbs muscle energy balance during exercise (as

indicated by a reduced muscular ATP content during muscle contraction) and abolishes mitochondrial biogenesis ( ; Fujii et al. 2008 

; ).Jorgensen et al. 2005 Zong et al. 2002 

As a proof of concept, studies with AMPK activators in animal models of T2D have provided promising results. The first evidence

came from treatment with the pharmacological compound AICAR (5-amino-imidazole-4-carboxamide-1 D-ribofuranoside,in vivo β
metabolized to ZMP which is an analog of AMP) of various animal models of insulin resistance, causing improvement in most, if not all,

of the metabolic disturbances of these animals ( ; ; ; ; Bergeron et al. 2001a Buhl et al. 2002 Iglesias et al. 2002 Pold et al. 2005 Song et al.

). In addition, long-term AICAR administration prevents the development of hyperglycaemia in Zucker diabetic fatty (ZDF) rats,2002 

improves peripheral insulin sensitivity in skeletal muscle and delays -cell dysfunction associated with type 2 diabetes ( ).β Pold et al. 2005 

AICAR increases muscle glucose uptake concomitantly with glucose transporter 4 (GLUT4) translocation to the plasma membrane in

insulin-resistant animal models and in humans ( ; ; ). Interestingly,Koistinen et al. 2003 Kurth-Kraczek et al. 1999 Merrill et al. 1997 

AMPK-induced glucose transport occurs through a mechanism distinct from that utilized by the classical insulin signalling pathway

because it is not blocked by inhibitors of phosphatidylinositol 3-kinase, and also because the effects of insulin and AMPK activators are

additive ( ). This metabolic improvement can be also explained partly by increased expression of specific muscleHayashi et al. 1998 

proteins mimicking some of the effects of exercise training following chronic pharmacological activation of AMPK . Thus, AICARin vivo 

or chronic intake of the creatine analogue -guanadinopropionic acid ( -GPA, which competitively inhibits creatine uptake and lowersβ β
ATP content) ( ) in rodent increases muscle expression of glucose transporter GLUT4 and hexokinase II, an effectBergeron et al. 2001b 

partly mediated by the transcriptional coactivator peroxisome proliferator-activated receptor-  coactivator-1  (PGC-1 ) (γ α α Holmes et al.

; ). It has been proposed that the development of skeletal muscle insulin resistance may be partly linked to1999 Michael et al. 2001 

decreased mitochondrial density ( ). Interestingly, chronic activation of AMPK with AICAR or -GPA increasesPetersen et al. 2003 β
mitochondrial content and expression of mitochondrial proteins, leading to a mitochondrial biogenesis ( ; Bergeron et al. 2001b Winder et

; ). All of these data argue for AMPK as a key factor for the metabolic adaptation of skeletal muscle to physicalal. 2000 Zong et al. 2002 

exercise. Supporting this, the effects of chronic activation of AMPK mimicking physical activity on gene expression and mitochondrial

biogenesis are abolished in AMPK 2 knock-out (KO) and mAMPK-KD (transgenic mice overexpressing a kinase-dead AMPK 2 mutant α α [
K45R mutation  in skeletal muscle) mice ( ; ; ). Increased mitochondrial] Holmes et al. 2004 Jorgensen et al. 2005 Zong et al. 2002 

biogenesis after chronic activation of AMPK is partly explained by increased expression of nuclear respiratory factor-1 and -2 (which are



Handb Exp Pharmacol . Author manuscript

Page /4 14

critical regulators of genes encoding electron chain complexes) ( ). Another critical factor for mitochondrialBergeron et al. 2001b 

biogenesis is the inducible coactivator of nuclear receptors, PGC-1 . Regulation of PGC-1  by AMPK is complex. First, it has beenα α
demonstrated that AMPK directly phosphorylates and activates PGC-1  ( ). In addition, activated PGC-1  in turnα Jager et al. 2007 α
increased the expression of PGC-1  and of mitochondrial oxidative genes (cytochrome c, uncoupling protein 1). Interestingly, PGC-1α α
activity and expression are reduced in type 2 diabetes in humans ( ). Thus, AMPK activators could be used in order toMootha et al. 2003 

reverse this defect. Additionally, activation of AMPK in response to physical exercise has been also observed in extra-muscular tissues

such as liver and adipose tissue ( ) and might accounted for additional metabolic benefits. Physical training increasesPark et al. 2002 

circulating adiponectin and mRNA expression of its receptors in muscle, which may mediate the improvement of insulin resistance and the

metabolic syndrome in response to exercise by activation of AMPK.

Lastly, increase in blood supply is critical for physiological adaptation during physical activity. Vasodilatation is a vital mechanism of

systemic blood flow regulation that occurs during periods of increased energy demand. Thus, because AMPK plays a central role in the

adaptation to metabolic stress, it is tempting to speculate that AMPK could be involved in the regulation of metabolic vasomotion. It is

well known that moderate-intensity exercise increases nitric oxide synthase (NOS) activity ( ). Interestingly, it has beenRoberts et al. 1999 

recently reported that mAMPK-KD mice are unable to increase total NOS activity during moderate-intensity exercise and may cause an

impairment in muscle blood flow ( ). This finding is supported by the close association between AMPK and nNOSLee-Young et al. 2009 μ
phosphorylation following moderate-intensity exercise ( ; ) and reduced expression of nNOS  inChen et al. 2000 Stephens et al. 2002 μ
mAMPK-KD mice ( ). This indicates how changes in tissue metabolism can direct blood flow according to demand.Lee-Young et al. 2009 

In addition, the lower skeletal muscle capillarization in mAMPK-KD mice might also contribute to the reduced blood flow during exercise

( ). Nitric oxide (NO) plays a fundamental role in vascular homeostasis and it has been suggested that impaired NOZwetsloot et al. 2008 

efflux from contracting mAMPK-KD mice suppressed exercise-induced vascular relaxation ( ). Furthermore, it hasLee-Young et al. 2009 

suggested that AMPK activation is in part regulated by endogenous NO in a positive feedback mechanism, such that increase NO activates

AMPK, which further augments NOS activity and NO production ( ; ). Accordingly, the exercise-inducedLira et al. 2007 Zhang et al. 2008 

increase in AMPK signalling was ablated in skeletal muscle of eNOS KO mice (Lee-Young et al.). Therefore, AMPK-eNOS interaction

might play an important role in the adaptation processes during exercise in order to maintain cellular energy levels by amending vascular

function.

Mimicking the beneficial effects of calorie/dietary restriction

Excessive calorie intake increases the risk of developing chronic disease such as obesity, metabolic syndrome, T2D, systemic low

grade inflammation, cardiovascular event and premature mortality. Conversely, calorie restriction improves glucose tolerance and insulin

action and reduces mortality linked to type 2 diabetes and cardiovascular diseases ( ; ; Hammer et al. 2008 Jazet et al. 2008 Larson-Meyer

; ). Because it is difficult to maintain long-term calorie restriction in modern society, there has been anet al. 2006 Weiss et al. 2006 

increased interest in developing pharmacological agents that act as calorie-restriction  mimetics. Among them, plant-derived polyphenolic“ ”
compounds, such as resveratrol (which is present in grapes, peanuts, and several other plants) were first recognized as mimicking the

effects of calorie restriction in lower eukaryote ( ). Additionally, resveratrol administration prevents the deleteriousHowitz et al. 2003 

effects of high calorie intake on insulin resistance and metabolic syndrome components in rodents ( ; ; Baur et al. 2006 Lagouge et al. 2006 

; ; ). Resveratrol has been described as a potent activator of the NAD( )-dependentMilne et al. 2007 Sun et al. 2007 Zang et al. 2006 +
deacetylases sirtuins including SIRT1, one of the seven mammalian sirtuin genes ( ). However, recent findings indicateHowitz et al. 2003 

that resveratrol is not direct SIRT1 activator ( ). Resveratrol, like other polyphenols, also activates AMPK (Pacholec et al. 2010 Baur et al.

; ; ). Acute activation of AMPK by resveratrol appears to be independent of SIRT1 (2006 Collins et al. 2007 Zang et al. 2006 Dasgupta

), probably through changes in AMP/ATP ratio as resveratrol inhibits the mitochondrial F1 ATPase (and Milbrandt 2007 Gledhill et al.

). Furthermore, resveratrol increased the NAD( )/NADH ratio in an AMPK-dependent manner, which may explain how it may2007 +
activate SIRT1 indirectly ( ; ). SIRT1 has been suggested to prime the organism in order to reduce theCanto et al. 2009 Um et al. 2010 

deleterious effects of insulin resistance on energy balance and metabolic homeostasis. Thus, SIRT1 activation increases hepatic insulin

sensitivity, decreases whole-body energy requirements ( ; ) promotes adaptation of insulin secretionBanks et al. 2008 Sun et al. 2007 

during insulin resistance development ( ; ) and coordinates lipid mobilization and utilization (Bordone et al. 2006 Moynihan et al. 2005 

). The knowledge of SIRT1 action at the molecular level has been more delineated by using chronic treatments withPicard et al. 2004 

resveratrol and it has been suggested that SIRT1 promotes LKB1-dependent AMPK stimulation through the direct deacetylation and

activation of LKB1 ( ; ). Thus, polyphenols as resveratrol are now recognized as compounds with potentialHou et al. 2008 Lan et al. 2008 

great interest to improve and/or delay or prevent metabolic disorders linked to western life style by activating the complementary

metabolic stress sensors SIRT1 and AMPK ( ). Accordingly, it has been recently established that AMPK acts as the primeCanto et al. 2009 

initial sensor for fasting-induced adaptations in skeletal muscle and that SIRT1 downstream signalling was blunted in the absence of

AMPK ( ). In addition, recent studies demonstrated that resveratrol failed to increase the metabolic rate, insulinCanto et al. 2010 

sensitivity, glucose tolerance, mitochondrial biogenesis and physical endurance in the absence of either AMPK 1 or AMPK 2 (α α Um et al.

).2010 

Mimicking the beneficial effects of hypoglycaemic agents
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AMPK action in liver

T2D is the result of an imbalance between glucose production and glucose uptake by peripheral tissues. Elevated hepatic glucose

production is a major cause of fasting hyperglycaemia in diabetic subjects ( ). From various effectors, AMPKSaltiel and Kahn 2001 

signalling is a key factor that control hepatic glucose production. Indeed, systemic infusion of AICAR in normal and insulin-resistant

obese rats leads to the inhibition of hepatic glucose production ( ). Additionally, short-term hepatic expression of aBergeron et al. 2001a 

constitutively active form of the 2 catalytic subunit (AMPK 2-CA) leads to mild hypoglycaemia in normal mice ( ; α α Foretz et al. 2005 

) and abolishes hyperglycaemia in diabetic and streptozotocin-induced diabetic mice ( ; Viana et al. 2006 ob/ob Foretz et al. 2005 Viana et

) by inhibition of gluconeogenesis ( ; ; ). This effect is achieved at least toal. 2006 Foretz et al. 2005 Lochhead et al. 2000 Viana et al. 2006 

a large extent via the regulation of a transcriptional coactivator, transducer of regulated CREB activity 2 (TORC2) ( )Koo et al. 2005 

which is known to mediate CREB-dependent transcription of PGC1  and its subsequent gluconeogenic targets PEPCK and G6Pase genes.α
AMPK activation causes TORC2 phosphorylation and sequesters the coactivator in the cytoplasm, thus blunting the expression of the

gluconeogenic program ( ). Control of hepatic glucose production by activated AMPK is also demonstrated in resistin KOKoo et al. 2005 

mice and in adiponectin treated rodents ( ; ) suggesting that hepatic AMPK is specifically aBanerjee et al. 2004 Yamauchi et al. 2002 

target of both adipocytokines, the former acting as an AMPK inhibitor, the latter as an activator. This was also demonstrated by lack of

systemic adiponectin infusion effect on hepatic glucose production in liver-specific AMPK 2 KO mice ( ).α Andreelli et al. 2006 

AMPK action in skeletal muscle

After a meal or during the euglycaemic hyperinsulinemic clamp, both situations with high circulating levels of insulin, skeletal muscle

is the main site for glucose disposal in the body. This is sustained by the insulin-dependent translocation of glucose transporter GLUT4

from intracellular vesicles to the cell surface, which is impaired in T2D patients. As described above, it has been clearly demonstrated that

muscular AMPK activation, either by exercise or by AICAR, stimulates muscle glucose uptake. Interestingly, even if AMPK and insulin

acts through phosphorylation of downstream target of Akt (Akt substrate of 160kDa, AS160) ( ), AMPK-dependent andDreyer et al. 2008 

insulin-dependent GLUT4 translocation are distinct pathways ( ). Additionally, exercise-induced muscular AMPKTreebak et al. 2007 

activation and AS160 phosphorylation are both reduced in obese non-diabetic and obese type 2 diabetes subjects ( ) butMusi et al. 2001 

maintained in lean type 2 diabetes patients ( ) suggesting that dysregulation of muscular AMPK is more dependent ofBruce et al. 2005 

obesity than of hyperglycaemia. Discovery of muscular AMPK activators in order to mimic regular physical activity metabolic effects is

an important challenge. It was first demonstrated that some adipokines stimulate glucose transport in skeletal muscle in an

AMPK-dependent manner. Indeed, leptin is known to stimulate glucose uptake in peripheral tissue ( ; Kamohara et al. 1997 Minokoshi et

) by stimulating AMPK 2 phosphorylation and activation in skeletal muscle ( ). Adiponectin, anotheral. 1999 α Minokoshi et al. 2002 

adipokine, has also been shown to increase glucose transport in both lean and obese skeletal muscle, although the effect was less

significant in obese skeletal muscle ( ). It has also recently been recognized that IL-6 (also called myokine  (Bruce et al. 2005 “ ” Febbraio and

)) is released acutely from the skeletal muscle during prolonged exercise, activates AMPK and improves peripheral glucosePedersen 2005 

uptake and insulin sensitivity at the whole body level ( ). In contrast, chronic exposure of IL-6 (as observed in obesity)Glund et al. 2007 

promotes insulin resistance both and ( ). The dual effect of IL-6 on insulin sensitivity probablyin vitro in vivo Nieto-Vazquez et al. 2008 

explains some conflicting results recently discussed in more details elsewhere ( ). Importantly, it has been alsoNieto-Vazquez et al. 2008 

suggested that AICAR, in addition to activating AMPK, suppresses chronic IL-6 release by an AMPK independent mechanism in

insulin-resistant models ( ). This strongly suggested that AMPK activators can act at a multi-tissular level in order toGlund et al. 2009 

restore metabolic inter-organs cooperation.

Interestingly, available hypoglycaemic drugs as metformin and TZDs have been reported to activate AMPK ( ; Fryer et al. 2002 Zhou

). Even if it was postulated that blood glucose lowering effects of metformin are mediated by AMPK activation from studies ofet al. 2001 

mice that are deficient in the upstream AMPK kinase, LKB1, in the liver ( ) recent studies have shown that LKB1Shaw et al. 2005 

phosphorylates and activates at least 12 AMPK-related kinases. These data raised the question whether the glucose-lowering function of

LKB1 is mediated by AMPK-related kinases rather than AMPK itself.

Because circulating levels of adiponectin are decreased in individuals with obesity and insulin resistance, adiponectin replacement in

humans may be a promising approach. It has been demonstrated that full-length adiponectin activates AMPK in the liver, while globular

adiponectin did so both in muscle and the liver ( ). Blocking AMPK activation by the use of a dominant negativeYamauchi et al. 2002 

mutant inhibited the action of full length adiponectin on glucose hepatic production ( ). In addition, lack of action ofYamauchi et al. 2002 

adiponectin on hepatic glucose production when AMPK 2 catalytic subunit is missing, strongly supports the concept that adiponectinα
effect is strictly dependent on AMPK ( ). Awaiting adiponectin analogs development, alternative ways to restoreAndreelli et al. 2006 

adiponectin effects have been suggested recently. Improved metabolic disorders following TZDs administration are in part mediated

through adiponectin-dependent activation of AMPK since activation of AMPK by rosiglitazone treatment is diminished in adiponectin KO

mice ( ). TZDs can markedly enhance the expression and secretion of adiponectin and through theNawrocki et al. 2006 in vitro in vivo 

activation of its promoter and also antagonize the suppressive effect of TNF-  on the production of adiponectin ( ).α Maeda et al. 2001 

Interestingly, in human adipose tissue, AICAR has been shown to increase the expression of adiponectin ( ; Lihn et al. 2004 Sell et al. 2006
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) while no change in serum adiponectin concentration or adipocyte adiponectin content was found in type 2 diabetic patients treated with

metformin ( ).Phillips et al. 2003 

AMPK action in -cellsβ

β-cell failure is a strong determinant in the pathogenesis of type 2 diabetes. This defect inexorably aggravates with time as

demonstrated in prospective clinical studies (1995). According to the glucolipotoxicity hypothesis ( ) chronic highPrentki et al. 2002 

glucose dramatically influences -cell metabolism. Indeed, it has been observed in high glucose condition an increase of cytosolic fattyβ
acyl-CoA partitioning toward potentially toxic cellular products (e.g., diacylglycerol, ceramide and lipid peroxides) leading to impaired

insulin secretory response to glucose and ultimately apoptosis ( ). Indeed, decrease in -cell mass is likely to play a roleDonath et al. 2005 β
in the pathogenesis of human type 2 diabetes ( ) as it does in rodent models of the disease ( ; Butler et al. 2003 Kaiser et al. 2003 Rhodes

).2005 

Pathways regulating -cell turnover are also implicated in -cell insulin secretory function. In consequence, decrease in -cell mass isβ β β
not dissociable from an intrinsic secretory defect. Because AMPK is important for the balance of intracellular energy homeostasis it was

interesting to analyze to what extend AMPK regulates -cell function/survival. AICAR dose dependently improves -cell functionβ β
probably by reducing apoptosis induced by prolonged hyperglycaemia ( ). In addition to AICAR, -cell AMPKNyblom et al. 2008 β
activation (by metformin, TZDs or adenovirus-mediated over-expression of AMPK 1-CA) favours fatty acid -oxidation and preventsα β
glucolipotoxicity-induced insulin secretory dysfunction in -cells ( ; ; ; β El-Assaad et al. 2003 Eto et al. 2002 Higa et al. 1999 Lupi et al.

). In contrast, the role of AMPK in the control of -cell death survival remains controversial ( ; ; 2002 β Kefas et al. 2003a Kefas et al. 2003b 

; ; ).Kim et al. 2007 Riboulet-Chavey et al. 2008 Richards et al. 2005 

Beyond a potential role of AMPK for long-term regulation of -cell function and survival, AMPK may also regulate acutely insulinβ
secretion. Thus, AMPK activity is rapidly decreased when glucose levels increased over the physiological range suggesting that AMPK

could be one of the regulator of insulin secretion through its capacity to sense intracellular energy ( ; da Silva Xavier et al. 2003 Leclerc et

). Interestingly, activation of AMPK by AICAR, berberine, metformin and TZDs or by overexpression of AMPK 1-CA markedlyal. 2004 α
reduced glucose-stimulated insulin secretion in -cell lines and in rodent and human islets ( ; ; β Eto et al. 2002 Leclerc et al. 2004 Wang et

; ). Similarly, activation of AMPK selectively in -cells in AMPK 1-CA transgenic mice decreasedal. 2007 Zhou et al. 2008 β α
glucose-stimulated insulin secretion ( ). This could be considered as a deleterious effect of AMPK activation. But it isSun et al. 2010 

hypothesized that pharmacological activation of AMPK and its subsequent decrease in insulin secretion, could be appropriate in insulin

resistant conditions characterized by high insulin levels. Indeed, it has been suggested that reduction of the pathological hyperinsulinemia

is potentially a mechanism to protect -cell mass. Consistent with this assumption, systemic AICAR infusion in prediabetic Zucker fattyβ
rats prevented the development of hyperglycaemia and preserved -cell mass ( ).β Pold et al. 2005 

Taken together, these data suggest that AMPK is an emergent factor that could protect by different ways -cell function and -cellβ β
mass from the deleterious effects of glucolipotoxicity.

Mimicking the beneficial effects of hypolipidemic agents

Dyslipidemia of both insulin resistance and type 2 diabetes is a recognized risk factor for cardiovascular disease. Diabetic

dyslipidemia is a cluster of potentially atherogenic lipid and lipoprotein abnormalities that are metabolically interrelated. Activated AMPK

inhibits cholesterol and fatty acid synthesis. Thus, AMPK suppresses expression of lipogenesis-associated genes such as fatty acid

synthase, pyruvate kinase and acetyl CoA carboxylase (ACC) ( ; ; ; Foretz et al. 2005 Foretz et al. 1998 Leclerc et al. 1998 Leclerc et al.

; ), and 3-Hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA reductase). HMG-CoA reductase activity2001 Woods et al. 2000 

is inhibited by phosphorylation of Ser-872 by AMPK ( ). Adiponectin activates AMPK and inhibits cholesterolClarke and Hardie 1990 

synthesis suggesting that AMPK is a key regulator of cholesterol pathways ( ). Inhibition of ACC by AMPK leadsin vivo Ouchi et al. 2001 

to a drop in malonyl-CoA content and a subsequent decrease in fatty acid synthesis and increase in fatty acid oxidation, thus reducing

excessive storage of triglycerides. Consistently, overexpression of AMPK 2-CA in the liver or treatment with AICAR, metformin orα
A769662 (a small-molecule AMPK activator) in lean and obese rodents decreases plasma triglyceride levels, concomitantly with an

increase in plasma -hydroxybutyrate levels, suggesting elevated hepatic lipid oxidation ( ; ; β Bergeron et al. 2001a Cool et al. 2006 Foretz

; ). Conversely, liver-specific AMPK 2 deletion leads to increased plasma triglyceride levels and enhancedet al. 2005 Zhou et al. 2001 α
hepatic lipogenesis ( ). These data emphasize the critical role for AMPK in the control of hepatic lipid deposition viaAndreelli et al. 2006 

decreased lipogenesis and increased lipid oxidation, thus improving lipid profile in type 2 diabetes.

It is well documented that changes in adipose tissue mass are frequently associated with alterations in insulin sensitivity (Eckel et al.

; ). AMPK evidenced recently as a regulator of fat mass. Indeed, activation of AMPK in white adipocytes is2005 Katsuki et al. 2003 

concomitant with a decreased expression of genes coding lipogenic enzyme ( ) and leads to a decreased lipogenic flux andOrci et al. 2004 

a decreased triglyceride synthesis ( ; ). In white adipocytes, AMPK activation using AICAR orDaval et al. 2005 Sullivan et al. 1994 

overexpression of AMPK-CA has been shown to inhibit -adrenergic-induced lipolysis ( ; ).β Corton et al. 1995 Sullivan et al. 1994 
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Hormone sensitive lipase (HSL), one of the key protein responsible for the lipolytic activity, is activated by PKA phosphorylation at

serines 563, 659 and 660 ( ). AMPK reduces this activation through phosphorylation at serine 565 (Anthonsen et al. 1998 Garton et al.

; ). This effect has been demonstrated both in white adipocytes and in skeletal muscle in both resting and1989 Garton and Yeaman 1990 

contracting conditions ( ; ; ). Thus, inhibition of HSL by AMPK represents aMuoio et al. 1999 Smith et al. 2005 Watt et al. 2006 

mechanism to limit this recycling and ensure that the rate at which fatty acids are released by lipolysis does not exceed the rate at which

they could be disposed of by export or by internal oxidation.

Beyond its hypolipidemic properties, AMPK system can be also a regulator of ectopic lipids metabolism. Depot of lipids in tissue is a

hallmark defect in metabolic syndrome in humans. According to this lipotoxicity hypothesis, insulin resistance develops when excess

lipids are deposited in insulin-sensitive cell types. The balance between lipids oxidation and lipids storage in cells is mainly regulated by

malonyl-CoA, generated by ACC. Malonyl-CoA is known to inhibit transport of fatty acids into mitochondria via allosteric regulation of

carnitine palmitoyltransferase-1, thereby preventing them from being metabolized. Activated AMPK inhibits malonyl-CoA synthesis and

shifts the balance towards mitochondrial fatty acid oxidation and away from fat storage. Several studies have shown that activation of

AMPK with AICAR, -lipoic acid, leptin, adiponectin and IL-6 enhances muscle fatty acid oxidation ( ; α β Carey et al. 2006 Lee et al. 2005b

; ; ; ). Chronic leptin treatment increases skeletal muscle fatty acidMerrill et al. 1997 Minokoshi et al. 2002 Yamauchi et al. 2002 

oxidation in an AMPK-dependent manner by increasing AMP/ATP ratio in oxidative muscle fibers and by increasing AMPK 2 nuclearα
translocation and PPAR  transcription ( ). Studies in transgenic animals support these observations since expression ofα Suzuki et al. 2007 

the activating AMPK 3 R225Q mutation in muscle increased fatty acid oxidation and protected against excessive triglycerideγ
accumulation and insulin resistance in skeletal muscle ( ). Interestingly, recent data have shown that resistin lowersBarnes et al. 2004 

AMPK signalling in muscle cells and that this reduction is associated with suppressed fatty acid oxidation ( ).Palanivel and Sweeney 2005 

Non-alcoholic fatty liver disease is a serious consequence of obesity increasing the risk of liver cancer or cirrhosis. The origin of this

disease is unknown and probably multifactorial. Nevertheless, because insulin resistance is recognized as an associate and/or promoting

mediator of the disease, management of insulin resistance becomes an important challenge. For this specific point and because AMPK is a

key factor in lipids partitioning (balance between synthesis and oxidation), management of non-alcoholic fatty liver disease by activators

of AMPK represents a new therapeutic strategy. Adiponectin treatment restores insulin sensitivity and decreases hepatic steatosis of obese

mice ( ). This effect is linked to an activation of AMPK in the liver that decreases fatty acid biosynthesis and increasesXu et al. 2003 

mitochondrial fatty acid oxidation ( ). Reduction of liver steatosis when AMPK is activated has been also confirmedYamauchi et al. 2001 

by a decrease in liver triglyceride content in lean and obese rodents during AICAR infusion ( ; ) andBergeron et al. 2001a Cool et al. 2006 

after treatment with small-molecule AMPK activators ( ). The synthesis of triglycerides is regulated by both the supply ofCool et al. 2006 

glycerol-3-phosphate (from carbohydrate metabolism) and of fatty acyl-coenzyme A. The first step of triglycerides synthesis is catalyzed

by glycerol-3-phosphate acyl-transferase (GPAT). AICAR or exercise induced AMPK activation reduces hepatic GPAT activity and

triglycerides esterification ( ; ). Fasting, that increases hepatic AMPK inhibits GPAT activity (Muoio et al. 1999 Park et al. 2002 Witters et

). In the same way, AMPK activation by resveratrol protects against lipid accumulation in the liver of diabetic mice (al. 1994 Zang et al.

) in association with increased mitochondrial number ( ) and SIRT1-dependent deacetylation of peroxisome2006 Baur et al. 2006 

proliferator-activated receptor coactivator (PGC)-1 , a master regulator of mitochondrial biogenesis ( ; α Baur et al. 2006 Rodgers and

). The efficacy of metformin as a treatment for fatty liver disease has been confirmed in obese, mice, which developPuigserver 2007 ob/ob 

hyperinsulinemia, insulin resistance and fatty livers ( ).Lin et al. 2000 

The discovery of new strategies of management of hepatic steatosis in humans is of considerable interest. AMPK activation could be

one of them as suggested by recent clinical studies in type 2 diabetic patients. Indeed, it has been demonstrated that AICAR infusion

results in significant decline in circulating plasma non-esterified fatty acids (NEFA) levels, suggesting stimulation of hepatic fatty acid

oxidation and/or a reduction in whole body lipolytic rate ( ). Management of hepatic steatosis by targeting AMPK is alsoBoon et al. 2008 

suggested by recent successes in treating this disorder with diet, exercise, and TZDs all known as AMPK activators ( ; Carey et al. 2002 

). Other studies are needed to analyze the beneficial effect of AMPK activation for theNeuschwander-Tetri and Caldwell 2003 

management of fatty liver diseases in humans.

Mimicking the beneficial effects of an anti-obesity drug

Weight reduction is best achieved by behavioural change to reduce energy intake and by increasing physical activity to enhance

energy expenditure. Therefore, the AMPK system may be an important pharmacological target to reduce fatty acid storage in adipocytes

and to treat obesity. By inducing fatty acid oxidation within the adipocyte, activation of AMPK would reduce fat cell size and also prevent

fatty acids from being exported to peripheral tissues and cause deleterious effects. Direct evidence linking AMPK activation to diminished

adiposity was first obtained by chronic administration of AICAR to lean and obese rats, an effect attributable, at least in part, to an

increase in energy expenditure ( ; ). Furthermore, the anti-obesity hormone leptin increases fatty-acidBuhl et al. 2002 Winder et al. 2000 

oxidation in skeletal muscle by activating AMPK (this process involves an increase in the AMP/ATP ratio) ( ),Minokoshi et al. 2002 

depletes body fat stores by activating AMPK activity and by increasing uncoupling mitochondrial protein (UCP)-1 and UCP-2 expression (

). 3-adrenoceptor ( 3-AR) agonists were also found to have remarkable anti-obesity and anti-diabetic effects in rodentsOrci et al. 2004 β β
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and these compounds were found to stimulate AMPK in fat cells ( ). In addition, overexpression of UCP-1 inMoule and Denton 1998 

adipocytes leads to an increase in the AMP/ATP ratio and activation of AMPK, inactivation of ACC and a decreased lipogenesis (

). Additionally, a strong mitochondrial biogenesis in response to increased UCP-1 expression in adipocytes has beenMatejkova et al. 2004 

demonstrated ( ; ), features that could enhance the fatty acid oxidation capacity of adipocytes inOrci et al. 2004 Rossmeisl et al. 2002 

response to AMPK activation. During chronic AICAR treatment, activated AMPK increases UCP-3 expression in muscle independently of

changes in mitochondrial biogenesis ( ; ). This effect can also explain changes in energy expenditureStoppani et al. 2002 Zhou et al. 2000 

during AMPK activation.

Benefits of targeting AMPK pathway for metabolic complications
AMPK and ischemic heart

Type 2 diabetes is recognized as an important risk factor for cardiovascular diseases and mortality. In ischemic heart, balance between

glucose and lipids is altered. In this situation, activation of AMPK is considered as a metabolic adaptation to rescue energy supply. Indeed,

AMPK stimulates glycolysis and sustains energy supply during ischemic stress. Convincing evidence suggests that the more AMPK is

activated in ischemic myocardial tissue, the more the size of infarcted tissue is reduced. Because the size of myocardial infarcted tissue is

one of the variables that determine the risk of sudden death and the risk of cardiac insufficiency in humans, reduction of the volume of

ischemic tissue is an important therapeutic challenge. Thus, promotion of glucose oxidation or inhibition of fatty acid oxidation in

ischemic/reperfused hearts could be a promising novel therapeutic approach during myocardial ischemia. Such a mechanism has been

demonstrated during the phenomenon called ischemic preconditioning. This phenomenon (consisting in repeated brief episodes of

myocardial ischemia) ( ) induces endogenous protective mechanisms in the heart which becomes more resistant toMurry et al. 1986 

subsequent ischemic episodes. The molecular mechanism of this protective effect is based on AMPK activation in a PKC-dependent

manner and promotion of glucose utilization in myocardial cells ( ). Attractively, adiponectin protects the heart fromNishino et al. 2004 

ischemia by activating AMPK and increasing the energy supply to heart cells ( ). For example, high blood levels ofShibata et al. 2005 

adiponectin are associated with a lower risk of heart attack, and vice versa ( ). Additionally, adiponectin levels rapidlyPischon et al. 2004 

decline after the onset of acute myocardial infarction. Similarly, in mice, deletion of adiponectin induces increased heart damage after

reperfusion that was associated with diminished AMPK signalling in the myocardium ( ). In addition, it has also beenShibata et al. 2005 

reported that adiponectin attenuated cardiac hypertrophy through activation of AMPK signalling pathway ( ; Liao et al. 2005 Shibata et al.

). These findings clearly show that adiponectin has a cardioprotective role during ischemia through AMPK-dependent2004a in vivo 

mechanisms.

Since AMPK regulates the balance between glucose and fatty acid metabolism at the cellular level, the metabolic response of the heart

to global ischemia was studied in AMPK 2 /  mice. These hearts displayed a more rapid onset of ischemic contracture, which wasα − −
associated with a decrease in ATP content, in lactate production, in glycogen content and in the phosphorylation state of ACC (

). Importance of metabolic adaptation via AMPK activation during ischemia was also documented in anotherZarrinpashneh et al. 2006 

transgenic mouse model overexpressing a dominant negative form of AMPK 2 in the heart ( ). These studies indicateα Russell et al. 2004 

that the 2 isoform of AMPK is required for the metabolic response of the heart to ischemia suggesting that AMPK is cardioprotective.α
Thus, AMPK activators could be of particular interest for the management of myocardial ischemia. Nevertheless, inappropriate activation

of AMPK can have deleterious consequences in the heart. Indeed, in humans, a variety of mutations in the 2 subunit ( ) have beenγ Figure 1 

shown to produce a glycogen storage cardiomyopathy characterized by ventricular pre-excitation, conduction defects and cardiac

hypertrophy ( ). This argues for a restrictive use of AMPK activators during the acute phase of heart ischemiaDyck and Lopaschuk 2006 

and not for a chronic activation of cardiac AMPK. Thus, the balance between benefits and deleterious cardiac effects of AMPK activation

has to be studied in more details.

AMPK and endothelial dysfunction

Endothelial cell dysfunction, as manifested by impaired vascular relaxation or an increase in circulating vascular cell adhesion

molecules, is present in patients with type 2 diabetes, and it is thought to be one component of the inflammatory process that initiates

atherogenesis ( ). Based on studies using genetically modified mice, the production of NO via eNOS is crucial in theVan Gaal et al. 2006 

regulation of vascular tone ( ; ). The activity of eNOS is largely determined by posttranslationalLau et al. 2000 Maxwell et al. 1998 

modifications such as multisite phosphorylation and protein interactions. Interestingly, AMPK enhances eNOS activity by direct

phosphorylation of Ser1177 ( ; ), Ser633 ( ) and by promoting its association with heatChen et al. 2000 Chen et al. 1999 Chen et al. 2009 

shock protein 90 ( ) leading to endothelial NO production. In this respect, metformin has been proposed to improveDavis et al. 2006 

endothelium function in diabetes by favouring phosphorylation of eNOS by AMPK activation ( ). Metformin was alsoDavis et al. 2006 

shown to relax endothelium-denuded rat aortic rings pre-contracted with phenylephrine, showing that AMPK can induce vasorelaxation in

an endothelium- and NOS-independent manner ( ). Accordingly, AMPK activation in response to hypoxiaMajithiya and Balaraman 2006 

or metabolic challenge can induce vasorelaxation of big vessels ( ; ), thereby favouring blood flow.Evans et al. 2005 Rubin et al. 2005 

Interestingly, AMPK-dependent adiponectin vascular effects have been demonstrated for angiogenic repair in an ischemic hind limbs

model ( ). Similarly, -lipoic acid improves vascular dysfunction by normalizing triglyceride and lipid peroxide levelsShibata et al. 2004b α
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and NO synthesis in endothelial cells from obese rat by activating AMPK ( ). Attractively, adiponectin exhibits potentLee et al. 2005a 

anti-atherosclerotic effects and suppresses endothelial cell proliferation via AMPK activation ( ; ).Kubota et al. 2002 Yamauchi et al. 2003 

Beyond the vascular effects of AMPK activation, it has been recently demonstrated that AMPK can regulate blood pressure. Thus,

long-term administration of AICAR reduces systolic blood pressure in an insulin-resistant animal model ( ). In thisBuhl et al. 2002 

process, a potential role for AMPK could be the regulation of ion channels or sodium cotransporters including ENaC and the Na-K-2Cl

cotransporter ( ; ). These data provide additional support to the hypothesis that AMPK activationCarattino et al. 2005 Fraser et al. 2003 

might be a potential future pharmacological strategy for treating the cardiovascular risk factors linked to the metabolic syndrome.

Conclusion

Lifestyle modifications are recognized as an important preventive and therapeutic intervention for impaired glucose tolerance, insulin

resistance and type 2 diabetic patients. AMPK activators are potential new therapeutic agents for the treatment of type 2 diabetes by

mimicking the beneficial effects of physical activity and of calorie restriction. Accordingly, AMPK-activating agents could also be used as

regulators of hyperglycaemia, obesity, lipids disorders, lipotoxicity and cardiovascular risk by targeting specific cellular pathways (Figure

). Resveratrol, metformin, TZDs, adiponectin and leptin are now considered as AMPK activators. However, many other effects of3 

AMPK activation should be carefully evaluated and many questions are not resolved: are new AMPK activators tissue specific? What are

the consequences of a long term pharmacological AMPK activation? Additional studies are required to address these critical points.
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Figure 1
Domain organization of the catalytic  and regulatory  and  subunits of AMPKα β γ
Each AMPK molecule is comprised of a  catalytic ( 1 and 2) and regulatory  ( 1 and 2) and  ( 1, 2 and 3) subunits. The catalytic α α α β β β γ γ γ γ α
subunit is phosphorylated at threonine 172 by upstream kinases (LKB1, CaMKK  and TAK1), leading to enzyme activation. The  subunitβ β
contains a glycogen-binding domain. The  subunit contains 4 nucleotide-binding modules (CBS domains) capable of cooperative binding toγ
2 molecules of either ATP or AMP. Mutations in the human 2 subunit gene (PRKAG2) causing cardiac hypertrophy associated withγ
abnormal glycogen accumulation and conduction system disease are shown.
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Figure 2
Regulation of AMPK by upstream kinases and phosphatases
The major upstream kinase is a complex between the tumour suppressor kinase LKB1 and two accessory subunits, STRAD and MO25 which

appears to be constitutively active. The CaMKK  could also phosphorylate Thr-172 and activate AMPK following a rise in cytosolic Ca . Aβ 2  +

third potential upstream kinase is TAK1 but its physiological significance is uncertain. Thr-172 phosphorylation is removed by PP2C

phosphatase. Physiological, hormonal and pharmacological stimulatory effectors of AMPK complex are listed.

Figure 3
AMPK, a potential therapeutic target in metabolic disease
AMPK pathway has become the focus of a great deal of attention as a novel therapeutic target in metabolic disease because it has been

demonstrated that physiological and pharmacological activation of AMPK results in remodelling different metabolic pathways. AMPK has

several important metabolic effects, mimicking the beneficial effects of exercise, including modulation of lipid metabolism, enhanced muscle

glucose uptake, increased mitochondrial biogenesis, improvement in insulin sensitivity and reduction in blood glucose. Activation of AMPK

by pharmacological agents presents a unique challenge to prevent and treat the metabolic abnormalities associated with the metabolic

syndrome.


