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ABSTRACT 

Purpose: The natural flavonoid fisetin was recently identified as a lead compound that 

stabilizes endothelial cell microtubules. In this study we investigated the antiproliferative and 

antiangiogenic properties of fisetin in vitro and in vivo.  

Methods: Fisetin cytotoxicity was evaluated using Lewis lung carcinoma cells (LLC), 

endothelial cells and NIH 3T3 cells. Endothelial cell (EC) migration and capillary-like 

structure formation were evaluated using EAhy 926 cells. In vivo tumour growth inhibition 

studies were performed using LLC bearing mice treated with fisetin and/or cyclophosphamide 

(CPA).  

Results: The fisetin IC50 was 59 µM for LLC and 77 µM for EC cells, compared to 210 µM 

for normal NIH 3T3 cells (24 h). Fisetin inhibited EC migration and capillary-like structure 

formation at non-cytotoxic concentrations (22-44 µM). In mice, fisetin inhibited angiogenesis 

assessed using the Matrigel plug assay. In LLC bearing mice, fisetin produced a 67% tumour 

growth inhibition (223 mg/kg, intraperitoneal), similar to the 66% produced by low dose CPA 

(30 mg/kg, subcutaneous). When fisetin and CPA were combined, however, a marked 

improvement in antitumour activity was observed (92% tumour growth inhibition), with low 

systemic toxicity. Tumour histology showed decreased microvessel density with either fisetin 

or CPA alone, and a dramatic decrease after the fisetin/CPA combination.  

Conclusions: We have shown that fisetin not only displays in vitro and in vivo 

antiangiogenic properties, but that it can also markedly improve the in vivo antitumour effect 

of CPA. We propose that this drug combination associating a non-toxic dietary flavonoid with 

a cytotoxic agent could advantageously be used in the treatment of solid tumours. 
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Background  

Tumour vasculature is an attractive target for cancer therapy because a single vessel provides 

oxygen and nutrients to numerous tumour cells and is the main route for metastatic 

dissemination of cancer cells (reviewed in [1]). Tumour angiogenesis is the result of an 

imbalance between pro-angiogenic factors, e.g., vascular endothelial growth factor (VEGF), 

fibroblast growth factor (FGF), platelet-derived growth factor (PDGF), and endogenous 

antiangiogenic factors, such as angiostatin and endostatin [2-4]. Tumour vasculature can be 

targeted at the angiogenesis level to prevent the formation of new vessels using 

antiangiogenic agents, or at the vascular level using vascular disrupting agents on already 

formed vessels [5,6]. The anti-angiogenesis approach has already proven its clinical 

effectiveness in colon, breast, and non-small-cell lung cancer using VEGF antibody in 

combination with cytotoxic drugs [7-9].  

 

Several phytochemicals, or compounds derived from edible plants, have been linked to the 

chemoprevention of cancer [10]. Among these compounds, the natural flavonoids have been 

shown to display pharmacological properties of interest in the prevention and treatment of 

cancer, as cytotoxic and/or as antiangiogenic agents [11-14].  

 

In a program aimed at finding novel antiangiogenic agents, we recently identified the natural 

flavonoid fisetin (3,3',4',7-tetrahydroxyflavone) as an interesting lead that can stabilize 

endothelial cells in vitro at non cytotoxic concentrations (Figure 1) [15]. Fisetin is present in 

several fruits, vegetables, nuts and wine [16,17], and displays a variety of biological effects 

including antioxidant, anti-inflammatory [18,19], anti-carcinogenic and in vitro angiogenesis 

[20]. Fisetin has already been shown to be cytotoxic to various human cancer cell lines 

including leukaemia (HL60) [21], breast (MCF7) [20], colon (HT29) [22], liver (SK-HEP-1, 
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Caco-2) [22,23], neuroblastoma (SHEP, WAC-2) [20], prostate (LNCaP, PC3) [24], and also 

to several endothelial cells [20]. Fisetin has been shown to inhibit several molecular targets, 

including cyclin-dependent kinases [25-27], DNA topoisomerases I and II [28,29], urokinase 

[30], actin [31], and androgen receptor signalling [32]. It has also recently been found that 

fisetin induces a forced exit from mitosis by targeting the mitotic spindle checkpoint 

involving the inhibition of Aurora B activities required for the maintenance of normal spindle 

checkpoint signalling [33].  

 

In the present study, we further tested fisetin’s in vitro antiangiogenic action and evaluated its 

in vivo antitumour activity in Lewis lung carcinoma bearing mice. We report here that fisetin 

displays anti-angiogenic properties in vitro as well as in vivo inhibition of Lewis lung 

carcinoma tumour growth involving an anti-angiogenic mechanism. In addition, when fisetin 

was combined with low dose cyclophosphamide, a remarkable improvement in antitumour 

activity involving an anti-angiogenic mechanism of action was observed. We propose that this 

relatively non toxic drug combination using a dietary phytochemical with low-dose 

cyclophosphamide could advantageously be used in the treatment of solid tumours. 
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Methods 

 

Chemicals 

Fisetin (3,3',4',7-tetrahydroxyflavone) and cyclophosphamide were purchased from Sigma-

Aldrich (Saint-Quentin Fallavier, France). Fisetin stock solution was prepared in 

dimethylsulfoxide (DMSO) and stored at 4°C in the dark. Cyclophosphamide was dissolved 

in sterile water.  

 

Cell viability 

The murine Lewis lung carcinoma (LLC) cell line, the NIH 3T3 murine fibroblast cell line 

and the EAhy 926 endothelial cell line (an immortalized human umbilical vein endothelial 

cell line [34]) were grown in Dulbecco's modified Eagle's medium (DMEM) containing 2 mM 

L-glutamine, 10% foetal bovine serum (FBS), 100 U/ml penicillin and 100 µg/ml 

streptomycin (37°C, 5% CO2). Exponentially growing cells were plated onto 96-well plates at 

5000 cells per well in 200 µl. After 24 hours, cells were exposed to fisetin at the indicated 

concentrations for an additional 48 h. Viability was assessed using the MTT (1-(4,5-

dimethylthiazol-2-yl)-3,5-diphenyltetrazolium) test and absorbance was read at 562 nm using 

a microplate reader (BioKinetics Reader, EL340). Appropriate controls with DMEM only and 

MTT were used to determine background absorbance. Experiments were run in quadruplicate 

and repeated 3 times. Control cells were exposed to 1% DMSO which was not cytotoxic. The 

results are presented as the inhibitory concentration for 50% of cells (IC50). 

 

Cell cycle analysis 

Lewis lung carcinoma and EAhy 926 endothelial cells were seeded in 6-well plates at 10
5 

cells/well. Twenty-four hours later, fisetin was added to the wells at the indicated 
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concentrations and the cells were incubated for 48 h. For each condition, detached and 

adherent cells were harvested, fixed for at least 30 min in 70% ethanol, and incubated with 

propidium iodide (50 µg/ml), sodium citrate (1 mg/ml) and RNase A (50 µg/ml) for 30 min in 

the dark. Nuclei DNA content was determined by flow cytometry (Coulter Epics Beckman, 

Germany) with red emission (FL-2 channel, 570 nm). After debris exclusion using 

forward/side scatter gating, 10
4
 nuclei were acquired and analyzed using the WinMDI 

software. Cells with sub-G1 DNA content were considered to be apoptotic. 

 

Cell migration assay (scratch wound assay) 

EAhy 926 endothelial cells were grown to confluence and a wound was introduced by 

clearing an area of the monolayer using a 100 µl pipette tip. Digital photographs of wounded 

areas were recorded from each well at a magnification of 100x (time 0 h). Following a change 

of medium, basic fibroblast growth factor (bFGF, 10 ng/ml, BD Biosciences) and fisetin at 

the indicated concentrations were added to the medium with 2.5% of FBS. After 24 h 

incubation, digital photographs of the wound areas were recorded for each well. Migration 

was evaluated by manually drawing the distance of the wound area (d) at T0h and T24h. 

Distance values were obtained using the ImageJ software [35]. Results were expressed as a 

percentage of the controls using the following formula: 100  [1-(dT0h-dT24h of treated cells)/( 

dT0h-dT24h of control cells)]. Experiments were performed in triplicate for each concentration 

and were repeated 3 times. 

 

Formation of capillary-like structures 

Fifty μl of gel matrix solution was applied to each well of a 96-well plate and incubated for 30 

min at 37°C. EAhy 926 cells (1 × 10
4
) were suspended in 100 μl of medium, plated onto the 

gel matrix and incubated at 37°C. Adherent cells received bFGF (10 ng/ml) and fisetin at the 
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indicated concentrations. After a 24 h exposure time, in vitro angiogenesis was assessed by 

counting the number of capillary-like structures in each well at 100x magnification with a 

light microscope (Zeiss). The in vitro anti-angiogenic effect was calculated using the 

following formula: 100  [1-(number of capillary-like tubes in treated cells) / (number of 

capillary-like tubes in control cells)]. Experiments were performed in duplicate for each 

condition and repeated 3 times. 

 

Animal experiments 

 

All animal experiments were ethically conducted, according to institutional, French and 

European guidelines, and were approved by the institutional animal welfare committee. 

 

a) Matrigel plug angiogenesis assay. Fifteen 6-week old C57BL/6J female mice (Janvier, Le 

Genest Saint Isle, France) were randomly divided into five groups. LLC cells were 

trypsinized and resuspended at 3 X 10
7
 cells/ml in serum-free medium. Aliquots of cells (0.1 

ml, 3 X 10
6
 cells) were mixed with 0.2 ml of phenol red-free Matrigel and injected into the 

right flank of mice. For the fisetin-treated groups, the cells were injected with four increasing 

concentrations of fisetin: 12.5, 25, 50 and 100 µg/ml (or 22, 44, 87, 175 and 350 µM). 

Controls included cells with equal volumes of solvent, whereas the Matrigel mixed with the 

medium alone was used as a negative control. The Matrigel plugs were removed 14 days after 

the implantation, weighed and measured for haemoglobin content using the Drabkin’s reagent 

kit according to the manufacturer’s instructions (Sigma-Aldrich). Haemoglobin concentration 

was calculated based on a set of haemoglobin standards. The data are presented as mean  

SEM from triplicate experiments.  
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b) Evaluation of antitumour activity in mice. In preliminary experiments with non 

tumoured C57BL/6J female mice, fisetin at 223 mg/kg intraperitoneally (i.p.) was found non 

toxic (based on body weights) when administered for 5 consecutive days in week 1 and for 5 

consecutive days in week 2. Fisetin was dissolved in polyethylene glycol 200 

(PEG200)/DMSO (7:3; v:v) and injected i.p. in a volume of 0.1 ml. For antitumour evaluation, 

Lewis lung tumour fragments (about 3 mm
3
) were injected subcutaneously (s.c.) bilaterally 

into mouse flanks. Tumour growth was assessed every 2 days using bi-dimensional 

measurements with a caliper. Tumour volume (mm
3
) was calculated according to the formula: 

width
2
  length  0.5 (mm). In the first experiment, fisetin was injected i.p. into 5 tumoured 

mice at 223 mg/kg on days 5 to 9 and days 12 to 16 post tumour implantation. In a second 

experiment, 20 mice were randomly divided into 4 groups. Fragments of LLC tumour (3 

mm
3
) were injected bilaterally s.c. into the mouse flanks, and 4 days after tumour 

implantation, the mice were submitted to the following treatments: mice in the fisetin group 

were injected i.p. on days 4 to 8, 11, 12, and 14 with 223 mg/kg of fisetin dissolved in a 0.1 

ml volume of PEG200/DMSO (7:3; v:v); mice in the cyclophosphamide group were injected 

s.c. on days 4, 5, 7 and 8 with 30 mg/kg of cyclophosphamide dissolved in water; mice in the 

combination group were treated with both fisetin and cyclophosphamide as described above; 

mice in the control group were injected with both vehicles. The 30 mg/kg dose 

cyclophosphamide was based on previous work that showed that doses of 10-40 mg/kg can be 

administered daily for prolonged period without undue toxicity [36]. For comparison 

purposes, the maximum tolerated dose of cyclophosphamide in mice is between 186 to 220 

mg/kg when administered as a single dose [37,38] and 170 mg/kg when given every 6 days 

[39]. Therefore, the 30 mg/kg dose for 4 days used in our experiments can be considered a 

low cyclophosphamide dose that was not toxic, based on body weight data. Tumour 
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measurements were recorded three times weekly; the mice were euthanized 15 days after 

tumour inoculation.  

 

Microvessel density evaluation 

Tumour tissues were harvested, weighed, frozen in isopentane, immersed in liquid nitrogen, 

and stored at –70°C until preparation of the histology slides. Ten-micron frozen tissue 

sections were placed on Superfrost Plus slides. Immunostaining of PECAM-1 (monoclonal rat 

antibodies anti-PECAM-1 (platelet endothelial cell adhesion molecule 1), clone MEC13.3; 

BDPharmingen, Le Pont-De-Claix, France) was performed using a three-step procedure as 

previously described [40]. In brief, the sections were washed three times in 1X phosphate 

buffered saline (PBS) and incubated for 10 min in 0.3% hydrogen peroxide/PBS. The slides 

were washed three times with 1X PBS, and incubated with 1% bovine serum albumin (BSA) 

at room temperature for 30 min. The sections were incubated with the rat primary antibodies 

anti-PECAM-1 (1:50) in a humidified chamber at 37°C for 1 h. After three washes in PBS, 

the slides were incubated for 30 min with biotinylated-secondary antibody with goat anti-rat 

IgG (1:400). After 3 rinses, slides were again incubated with the streptavidin-conjugated 

peroxidase according to the manufacturer’s instructions (dilution 1/400). The 3,3’-

diaminobenzidine (DAB) substrate was then added for 5 to 7 min until a brown precipitate 

was visible. Sections were rinsed several times in 1X PBS. Sections incubated with BSA 

instead of the primary antibodies were used as negative controls. Slides were counterstained 

with Gill’s haematoxylin and treated with a 25% ammonia solution to generate a blue nuclear 

stain, dehydrated in graded ethanol solutions and xylene, and mounted with Eukit®. 

Microvessel density was evaluated under the microscope by counting 3 fields at a 

magnification of 100x on two different slides. Microvessel density was expressed as the 

number of PECAM-1 positive microvessels per mm². 
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Statistical analyses 

Results are expressed as the mean  SEM of at least 3 independent experiments. Comparisons 

between means were assessed using the Student t test for unpaired data. If unequal variance 

was observed, Welch's correction was applied. Comparisons between several groups were 

assessed using a one-way analysis of variance (ANOVA) followed by the Dunnett's multiple 

comparison test, using an appropriate control group as the reference. The statistical analyses 

were performed using the GraphPad Prism software. A P value < 0.05 was considered 

significant. 
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Results 

Fisetin effects on cell viability, cell cycle and apoptosis of Lewis lung carcinoma (LLC) 

cells, endothelial cells (EAhy 926), and normal cells (NIH 3T3) 

 

Fisetin induced a dose-dependent decreased viability in both Lewis lung carcinoma (LLC) 

and endothelial cells (EAhy 926), with IC50s of 59 and 77 µM, respectively, for a 24-h 

exposure time (Table 1). Interestingly, normal NIH 3T3 cells were found 3 times less 

sensitive to fisetin than either LLC or endothelial cells, with an IC50 of 210 µM (Table 1). 

When the incubation time was increased to 48 h, the differential sensitivity between normal 

NIH 3T3 cells and LLC or EAhy 926 cells reached a 5-fold difference. 

 

To characterize the mechanism of the cytotoxic/antiproliferative effect of fisetin, apoptosis 

was analyzed on LLC and endothelial cells. Table 2 shows the DNA cell cycle and sub G1 

distribution of fisetin-treated cells after 48 h exposure at the indicated concentrations. Fisetin 

induced apoptosis, measured as cells with sub-G1 DNA content, in a dose-dependent manner 

in LLC cells. At low concentrations (22 and 44 µM), fisetin induced apoptosis in 5% of LLC 

compared to 1% in control cells. Higher fisetin concentrations (175-350 µM) induced higher 

levels of apoptosis (29%). Fisetin also induced a dose-dependent decrease in cells in G1. All 

tested concentrations of fisetin induced an accumulation of cells in the G2/M phase (25-36%) 

compared to controls.  

 

The fisetin effects on the cell cycle distribution of EAhy 926 endothelial cells differed 

markedly from the LLC cell line. Indeed, at low concentrations (22 and 44 µM), fisetin 

already induced a higher percentage of apoptotic cells (11-15%), and at high fisetin 
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concentrations (175 and 350 µM) high levels of apoptosis were achieved (38% and 60%, 

respectively). As sub-G1 apoptosis increased, the percent of cells in G1, S and in G2/M phases 

decreased (Table 2). Contrary to LLC cells, no accumulation of fisetin-treated endothelial 

cells was observed in the G2/M phase. 

 

Fisetin inhibits angiogenesis in vitro 

 

a) Effect of fisetin on migration of EAhy 926 endothelial cells. We next examined the 

possible antiangiogenic effects of fisetin on endothelial cell migration by using the scrape 

wound assay. Figure 2 illustrates that at 24 h post-wounding of confluent EAhy 926 

endothelial cells, control cells migrated and totally filled the scraped area. Fisetin exposure at 

22 and 44 µM (24 h), however, resulted in a significant dose-dependent decrease in EAhy 926 

endothelial cell migration. The calculated IC50 for the anti-migration effect was 45  0.3 µM 

(mean  SEM from 3 independent experiments).  

 

b) Effect of fisetin on capillary-like structure formation on Matrigel. The endothelial cell 

tube formation assay was used to investigate fisetin anti-angiogenesis effect in vitro. EAhy 

926 endothelial cells plated on Matrigel with bFGF formed a capillary-like network within 24 

h, as expected (Figure 3). Fisetin at 22, 44 and 87 µM prevented the formation of the 

capillary-like network in a dose-dependent fashion. The calculated IC50 for the inhibition of 

capillary-like structure formation was 52  7 µM (mean  SEM from 3 independent 

experiments). 

 



 

 

14 

Fisetin inhibits angiogenesis in vivo 

We then investigated fisetin tumour angiogenesis in vivo. LLC cells were mixed with 

Matrigel with increasing concentrations of fisetin (44 to 350 µM) and injected s.c. into the 

right flank of mice. Fourteen days later, the mice were sacrificed and the Matrigel plugs 

removed, weighed, and evaluated for haemoglobin content. The Matrigel plugs were 

significantly smaller in the fisetin-treated groups compared to the controls. Matrigel plug 

weights decreased significantly as fisetin concentrations increased (Figure 4-A). To quantify 

angiogenesis, the haemoglobin content of the Matrigel plugs was assayed. As shown in Figure 

4-B, fisetin treatment led to a dose-dependent decrease in Matrigel plug haemoglobin levels, 

which became significant at 350 µM. These in vivo results indicate that fisetin can decrease 

tumour angiogenesis. 

 

Fisetin antitumour activity in vivo 

To determine whether fisetin could inhibit tumour growth in vivo, fisetin was administered to 

two groups of 5 LLC tumour-bearing mice. Mice in the treated group were injected i.p. with 

fisetin at 223 mg/kg for 5 consecutive days during week 1, and for another 5 consecutive days 

in week 2. Mice in the control group received solvent on the same days as the fisetin-treated 

group. Preliminary experiments showed that fisetin alone was not toxic at this dose level and 

schedule of administration. On day 15, tumours from the mice treated with fisetin were 50% 

smaller than control tumours and appeared less vascularized than the controls (data not 

shown).  

 



 

 

15 

In vivo antitumour activity of the combination of fisetin and cyclophosphamide 

To optimize the in vivo anticancer effect of fisetin found above, fisetin was next combined 

with low dose cyclophosphamide, a cytotoxic drug reported to possess antiangiogenic 

properties [39]. Fisetin was administered i.p. at 223 mg/kg daily for 5 days in week 1 (days 4 

to 8 post tumour implantation), followed by three injections on days 11, 12 and 14 (Figure 5, 

triangles). Fisetin treatment led to a 67% tumour growth inhibition compared to the controls 

(squares). Low dose cyclophosphamide was administered s.c. at 30 mg/kg on four days in 

week 1 only (days 4, 5, 7, 8), and led to a tumour growth inhibition of 66%, similar to fisetin 

treatment (Figure 5, diamonds). When fisetin and cyclophosphamide were combined at the 

same dose levels and schedules as used above, tumour volumes declined dramatically, 

showing 92% inhibition compared to controls on day 15 (Figure 5, solid circles). Over the 

two week treatment, this drug combination was not toxic, showing only a 4.6% loss in body 

weight, similar to that of the fisetin treatment alone (4.3%).  

 

In vivo fisetin antiangiogenic effect 

To verify if the in vivo tumour growth inhibition was due to an antiangiogenic effect, tumour 

sections were stained using PECAM-1 antibodies. PECAM-1 was mainly expressed in 

endothelial cell membranes of microvessels, as expected (Figure 6-A, Control). The number 

of microvessels expressing PECAM-1 in the fisetin- and in the cyclophosphamide-treated 

tumours was significantly diminished compared to those in the control (Figures 6-A and 6-B). 

However, the treatment with the fisetin and cyclophosphamide drug combination led to an 

impressive and significant decrease in microvessel density, as depicted in Figures 6-A and 6-

B. 
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Discussion 

 

Although several phytochemicals have been shown to possess pharmacological properties of 

potential interest in cancer prevention and/or therapy, their activity in the tumour angiogenic 

process is presently not well understood [10-14,20]. Because we recently identified the 

dietary flavonoid fisetin as an interesting lead that can stabilize the cytoskeleton of 

endothelial cells in vitro at non cytotoxic concentrations [15], we were therefore interested to 

evaluate the in vivo antiangiogenic activity of this compound. 

 

The fisetin antiproliferative/cytotoxic activity determined in this study on LLC and 

endothelial cells confirmed its cytotoxic activity reported on other cancer cell lines, e.g., in 

prostate [24], liver [23], colon [25], and leukaemia cells [21]. In this study, normal NIH 3T3 

cells were also found to be about 3-fold less sensitive to fisetin than LLC or endothelial cells. 

It is of interest that the fisetin relative selectivity towards cancer and endothelial cells, 

compared to normal cells, has also been observed in other studies [20], and this selectivity 

was also observed on prostate cancer cells that were shown to be more vulnerable to fisetin 

compared to normal prostate cells [24]. This relatively non frequent cancer cell selectivity 

could therefore confer a valuable advantage of this compound for in vivo treatment.  

 

We also observed that fisetin could block LLC cells in the G2/M phase at low concentrations, 

and could induce apoptosis in endothelial cells also at low concentrations. These observations 

would suggest that fisetin could first act in vivo on endothelial cells forming the tumour 

vasculature and then cause apoptosis of cancer cells in the vicinity of the blood vessel. 

Fisetin-induced G2/M cell accumulation has been previously reported along with decreased 
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activity of several cyclin-dependent kinases [21,23-25]. The signal transduction pathways 

involved in apoptosis include caspase 3 and increased p53 protein [23].  

 

Our data clearly show that fisetin possesses in vitro antiangiogenic effects, preventing both 

the migration of endothelial cells and the formation of capillary-like structures at low 

micromolar concentrations. Previous work on in vitro antiangiogenic effects of fisetin has 

reported this effect at similar concentrations [20].  

 

With regard to the relevance of the in vitro fisetin concentrations used in our experiments, the 

fisetin plasma concentrations achieved in mice are in the range of 10 µM after intraperitoneal 

administration of a dose of 223 mg/kg (Touil YS and Chabot GG, unpublished data). In rats, 

free fisetin plasma concentrations of 50 µM can also be achieved after an i.v. dose of 10 

mg/kg [41]. These plasma concentrations are therefore in the range of the concentration used 

in vitro to show the antiangiogenic effects with the aglycone (free fisetin). In addition, it 

should be mentioned that because of the presence of 4 OH substituents on the fisetin 

molecule, glucuronide and sulphate conjugates are also present at high concentrations in 

plasma [41] (Touil YS and Chabot GG, unpublished data), and these metabolites could also 

play a role in the overall antiangiogenic effects observed in vivo in mice. It is of interest that 

flavonoid sulphates and/or glucuronides of closely related flavonoids (e.g., morin and 

quercetin) have recently been shown to display superior bioactivities compared to their 

aglycones (free forms) [42]. It should also be mentioned that mouse tumours usually have a 

high beta-glucuronidase and sulfatase activities that could hydrolyze locally the conjugates to 

release the aglycone within the tumour, and therefore contribute to the local antitumour effect 

[43]. 
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We next investigated if these in vitro antiangiogenic effects could be translated in vivo using 

Lewis lung carcinoma bearing mice. Fisetin was found to cause significant tumour growth 

inhibition when used as a single agent at non toxic doses. The mechanism of action involved 

in the in vivo fisetin antitumour activity most likely involves an antiangiogenic effect, as 

evidenced by a significant reduction in microvessel density. Although fisetin’s antiangiogenic 

activity has been previously reported in vivo in rabbit eyes, it should be mentioned that it was 

by direct application of an emulsion containing fisetin on the cornea [44] and not by systemic 

administration, as in the present study. To our knowledge this report is the first describing the 

fisetin’s in vivo antiangiogenic activities after systemic administration in mice.  

 

In an attempt to improve fisetin’s in vivo antitumour effects, we next combined this flavonoid 

with low dose cyclophosphamide, because this cytotoxic agent has already been shown to 

improve antiangiogenic therapy [39,45]. This drug combination clearly led to an impressive 

improvement in antitumour effect with a 92% tumour inhibition at non toxic dosages of both 

agents. Although the fisetin-CPA drug combination is leading to a greater effect than either 

drug used alone, the magnitude of this effect could not be analyzed using the Chou and 

Talalay’s method because measurements made with single doses of either drug in a 

combination can never alone determine synergism since the sigmoidicity of dose-effect 

curves and the exclusivity of drug effects cannot be determined from such measurements [46]. 

Because our data present only one dose level of either drug, we therefore cannot claim 

synergism, although there was a marked improvement in the anticancer activity of either drug 

at the single dose level used, as evidenced by tumour growth curves. Moreover, the 

histological examination of the treated tumours clearly showed that the microvessel density 

was significantly reduced in the tumours of mice that received the drug combination, thus 
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showing that an antiangiogenic effect was indeed involved in this impressive antitumour 

activity.  

 

The precise molecular mechanism of action of the increased antitumour and antiangiogenic 

activity observed with the fisetin-cyclophosphamide drug combination is not precisely known 

for the moment. Although the antiangiogenic action of each compound alone is probably 

playing a major role in the improved activity of the combination, other factors could also be 

involved. For instance, a pharmacokinetic interaction would be possible, as was shown for the 

drug combination involving thalidomide and cyclophosphamide [37]. However, it should be 

mentioned that such a pharmacokinetic interaction was observed at a high dose of 

cyclophosphamide (220 mg/kg) [37], which is a 7-fold higher dose that the one used in the 

present study (30 mg/kg). Further studies will have to address this issue. 

 

In addition to the stabilization of endothelial cells cytoskeleton [15], the antiangiogenic effect 

of fisetin and consequent antitumour activity could also involve the inhibition of urokinase 

plasminogen activator (uPA) in endothelial cells, as was recently reported [30]. UPA is over 

expressed in tumour vessels and is involved in extracellular matrix degradation responsible 

for endothelial cell migration and formation of new tumour blood vessels [47]. In addition to 

the Lewis lung carcinoma model, it is of interest to note that fisetin has recently been reported 

to be active in prostate cancer xenografts in nude mice through the inhibition of androgen 

receptor signalling, although angiogenesis was not investigated in this study [32]. Other 

potential mechanisms of action could involve the direct or indirect inhibition of other factors 

involved in the complex tumour angiogenic process. 
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Conclusions  

The data reported here provide the first evidence that the dietary flavonoid fisetin can display 

antiangiogenic and anticancer activities in vivo in mice bearing Lewis lung carcinoma. In 

addition, the remarkable improvement in the anticancer and antiangiogenic activities of the 

combination of fisetin with low dose cyclophosphamide deserves further studies given the 

fact that cyclophosphamide is used in several anticancer drug regimens. Optimization of this 

drug combination by improved scheduling and/or pharmaceutical formulations is therefore 

warranted. It is proposed that the relatively non toxic drug combination studied in this work, 

associating a natural compound and a cytotoxic agent, could be useful in the treatment of 

solid tumours. 
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Table 1 – Inhibitory concentration for 50% (IC50) of Lewis lung carcinoma cells (LLC), 

EAhy 926 endothelial cells and normal NIH 3T3 cells. Cells were exposed to fisetin at 

various concentrations for 24 or 48 h, and viability was evaluated by the MTT test. Mean ± 

SEM of 3 independent experiments each performed in quadruplicate. Statistical significance 

assessed by one-way analysis of variance followed by the Dunnett’s multiple comparison test, 

using the IC50 of NIH 3T3 cells as the reference. * = P < 0.001 

 

 

Incubation time (h) 

Inhibitory concentration for 50% (IC50) of cells (µM) 

LLC EAhy 926 Normal NIH 3T3 

24 59 ± 9* 77 ± 9* 210 ± 14 

48 27 ± 0.3* 28 ± 0.3* 136 ± 13 
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Table 2 – Cell cycle analysis of Lewis lung carcinoma and EAhy 926 endothelial cells 

treated with fisetin. Cells were exposed to the indicated concentrations of fisetin for 48 h. 

Cells were harvested, fixed, incubated with propidium iodide and analyzed by flow 

cytometry. Mean ± SEM of 3 independent experiments. 

Cell line 

Fisetin 

Conc 

(µM) 

Percent cell in the indicated phase 

SubG1 G1 S G2/M 

Lewis Lung 

Carcinoma cells 

0 1 ± 1 70 ± 1 14 ± 0.4 15 ± 1 

22 5 ± 1 51 ± 1 19 ± 0.3 25 ± 1 

44 5 ± 0.1 39 ± 1 22 ± 1 34 ± 1 

87 12 ± 0.1 26 ± 1 26 ± 1 36 ± 1 

175 29 ± 1 13 ± 1 31 ± 0.3 27 ± 2 

350 29 ± 1 14 ± 1 29 ± 0.1 28 ± 0.3 

EAhy 926 

endothelial cells 

0 4 ± 1 66 ± 2 18 ± 1 12 ± 2 

22 11 ± 2 67 ± 0.6 11 ± 1 11 ± 2 

44 15 ± 1 65 ± 1 12 ± 1 8 ± 0.3 

87 35 ± 2 52 ± 0.4 9 ± 1 4 ± 1 

175 38 ± 1 49 ± 1 8 ± 1 5 ± 2 

350 60 ± 0.3 31 ± 1 7 ± 1 2 ± 1 
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Figure legends 

 
Figure 1 – Chemical structure of fisetin (3,3’,4’,7-tetrahydroxyflavone). 

 

Figure 2 – Effect of fisetin on cell migration (scratch wound assay). EAhy 926 

endothelial cells were grown to confluence and an area was cleared using a 100 µl pipette tip 

as described in the Methods. Digital photographs were recorded at a magnification of 100 X 

immediately after the wounding (Time= 0) and at 24 hours (T= 24 h) after the addition of 

bFGF (10 ng/ml) for the control, or with bFGF plus the indicated concentration of fisetin. 

Scale bar, 40 µm. 

 

Figure 3 – Effect of fisetin on capillary-like structure formation. EAhy 926 endothelial 

cells were grown on Matrigel with bFGF (10 ng/ml) in absence (control), or presence of the 

indicated fisetin concentrations for a 24-h incubation period. Digital photographs recorded at 

a magnification of 100 X. Scale bar, 20 µm. 

 

Figure 4 - In vivo Matrigel plug angiogenesis assay. Matrigel plugs containing Lewis lung 

carcinoma cells were implanted s.c. in mice with solvent (control=CTL) or with the indicated 

concentrations of fisetin. Fourteen days later, the Matrigel plugs were removed and weighed 

(A), and the content in haemoglobin was assessed (B), as described in the Methods.  * P value 

< 0.05 and ** P value < 0.01 compared to controls (Dunnett’s t test). The bar indicated 

“Matrigel” indicates the control without Lewis lung carcinoma cells. 

 

Figure 5 - In vivo antitumour activity of the combination of fisetin with 

cyclophosphamide. Twenty mice bearing bilateral Lewis lung tumours were randomly 
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assigned to four groups of 5 mice as follows: control, solvent alone (squares); fisetin, 223 

mg/kg i.p. on days 4 to 8 and days 11, 12, 14 (triangles); cyclophosphamide, 30 mg/kg s.c., on 

days 4, 5, 7, 8 (diamonds); and, the combination of cyclophosphamide and fisetin (solid 

circles), both administered at the same dose and schedule when used alone. Tumour volumes 

were determined as described in Materials and Methods. Mean  SEM. The * indicates a 

significant difference (P<0.05) with the Control group, and the # indicates a significant 

difference with the Fisetin or the Cyclophosphamide group (ANOVA and Dunnett’s multiple 

comparison test). 

 

Figure 6 – Evaluation of microvessel density in Lewis lung carcinoma tumours. A) 

Immunohistochemical evaluation of microvessels in Lewis lung tumours using antibodies to 

PECAM-1 as described in the Methods section. The tumours were treated in vivo with fisetin 

or cyclophosphamide alone, and with the combination of cyclophosphamide and fisetin. Scale 

bar, 100 µm. B) Microvessel density (number of vessels per mm²) in tumours after in vivo 

treatment with the solvent alone (control), with fisetin or cyclophosphamide (CPA) alone, or 

with the combination of fisetin and cyclophosphamide (CPA). Mean  SEM. The asterisks 

indicate a P value < 0.05 compared to controls (Dunnett's multiple comparison test).  

 

 

 

 

 

 

 


