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Maël Primet, Lionel Moisan

To cite this version:
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recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00675083


Preprint MAP5 no. 2012-06 (2012)

Point tracking: an a-contrario approach

Maël Primet · Lionel Moisan

Abstract In this work, we propose a new approach to re-

cover trajectories from points previously detected in a se-

quence of images. In presence of spurious and missing de-

tections, actual trajectories can be characterized by an a-

contrario model, that estimates the probability of observing

a similar trajectory in random data. This results in a sin-

gle criterion combining trajectory characteristics (duration,

number of points, smoothness) and data statistics (number of

images and detected points), which can then be used to drive

a dynamic programming algorithm able to extract sequen-

tially the most meaningful trajectories. The performances

obtained on synthetic and real-world data are studied in de-

tail, and shown to compare favorably to the state-of-the-art

ROADS algorithm.

Keywords point tracking · a-contrario detection · motion

correspondence

1 Introduction

Object tracking plays an essential role in a large variety of

Computer Vision tasks, among which, for example, parti-

cle image velocimetry (Gui and Merzkirch, 1996), moni-

toring cars (Koller et al, 1994), detecting and tracking cells

in microscopy sequences (Smal et al, 2008; Sbalzarini and

Koumoutsakos, 2005), recognizing human activities (Ali and

Aggarwal, 2001), improving human-computer interfaces with

head-tracking (Ashdown et al, 2005), generating special ef-

fects for movies (Pighin et al, 1999), or tracking particles
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in accelerators (Cornelissen et al, 2008). Numerous varia-

tions on this problem have been formulated, and several al-

gorithms have been developed to try to solve them. A com-

mon strategy (see Yilmaz et al (2006) for a recent review)

is to detect the objects in each image and associate them

with a geometric representation, such as points (Veenman

et al, 2003b; Serby et al, 2004), geometric shapes (Comani-

ciu et al, 2003), outlines (Yilmaz et al, 2004), skeletal mod-

els (Ali and Aggarwal, 2001), and with appearance features

decribed, e.g., by templates (Fieguth and Terzopoulos, 1997),

active appearance models (Edwards et al, 1998), or proba-

bility densities of object appearance (Zhu and Yuille, 1996;

Paragios and Deriche, 2000). The detected objects are then

tracked across frames using an algorithm that tightly de-

pends on the object representation. According to Yilmaz et al

(2006), tracking algorithms can be broadly classified in three

categories:

1. Point tracking (Veenman et al, 2003b; Reid, 1979; Bar-

Shalom et al, 1983; Streit and Luginbuhl, 1994; Shafique

and Shah, 2003). Objects are represented as points and

are generally tracked across frames by evolving their

state (object position and motion);

2. Kernel tracking (Comaniciu et al, 2003; Tao et al, 2002;

Black and Jepson, 1998; Avidan, 2001). Objects are rep-

resented by a combination of shape and appearance, for

instance an ellipse with a color histogram. They are then

tracked by computing the motion of the kernel in consec-

utive frames, often modeled with parametric transforms

such as translations and rotations;

3. Silhouette tracking (Blake and Isard, 1998; Bertalmı́o

et al, 2000; Ronfard, 1994; Kang et al, 2004; Hutten-

locher et al, 1993; Sato and Aggarwal, 2004). Objects re-

gions are estimated in each frame, and are usually tracked

by either shape matching or contour evolution.

In this work, we restrict ourselves to the tracking of ob-

jects as points, without appearance information. We assume
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that these points have already been detected in the sequence,

but imperfectly, in the sense that we may have to deal with

both spurious points and missing detections. Given such a

sequence of frames containing the detected points in each

image, the goal is to extract the trajectories as lists of points

appearing in successive frames, possibly separated by holes

(missing detections), while avoiding spurious points. As usual,

we will assume that a given point can belong to only one

trajectory, which means that point collisions are ruled by an

occlusion principle.

1.1 Related work

The most well-known point tracking algorithm certainly is

the Multiple Hypothesis Tracker (MHT) of Reid (1979), which,

in theory, enumerates all possible trajectory combinations of

the observed points, and selects the one having the maxi-

mal likelihood (a probabilistic motion model being given).

This problem is indeed NP-hard, and leads to exponentially

many trajectory combination lookups (if there are n frames

and m points, and we assume there is no occlusion, noise

points, or objects leaving or entering the scene, there are

already m!n−1 possible trajectory combinations), and thus

approximate solutions and heuristics are needed to acceler-

ate the search (often requiring thresholds to prune the search

tree early). Moreover, this complex model implies parame-

ter tuning to optimize the underlying motion model and the

efficiency/coverage tradeoff of the heuristics.

To overcome the exponential growth of the state space,

researchers have proposed a wealth of heuristics and ap-

proximations to the point tracking problem over the years.

Such an approximation is the Joint Probabilistic Data Asso-

ciation Filter (JPDAF) proposed by Bar-Shalom, Fortmann,

and Scheffe (1983), which relaxes the hypothesis that the

points must be disjoint. Instead of assigning each track end-

ing in frame k−1 to a particular object in frame k as in MHT

(and thus having several possible hypotheses, resulting in an

increase of complexity), the JPDAF algorithm assigns to ev-

ery track ending in frame k− 1 a weighted combination of

all points of frame k, depending on a likelihood estimate

with respect to a predicted position. However, this approach

assumes that the number of objects tracked in the images

is constant, and the relaxation of the disjointness hypothe-

sis leads to trajectory mergings, which is often an undesired

feature.

Sethi and Jain (1987) propose to solve the correspon-

dence problem greedily. They initialize the trajectories using

the nearest-neighbor criterion, and then improve the current

solution by exchanging correspondences between frames in

order to minimize the global cost. They also propose a modi-

fied algorithm that alternates between forward and backward

passes through the sequence to help mitigate the problem of

the nearest neighbor initialization. Their approach is much

faster than MHT, but does not permit to take noise, occlu-

sions, entries or exits into account.

Salari and Sethi (1990) address some shortcomings of

the previous method, namely the fact that it assumes a con-

stant number of points in the sequence, and that there can

be no entries or exits of objects in the scene. It therefore al-

lows for occlusion, entry and exit of points, as well as the

presence of spurious points. Each trajectory is made of ei-

ther points detected in a frame, or “phantom points”, which

correspond to added (interpolated) points when there are

missing detections. Note that their approach involves two

parameters (the maximum allowed speed and the maximum

allowed acceleration) which may be difficult to set.

Rangarajan and Shah (1991) propose to solve the prob-

lem by using a proximal uniformity constraint which com-

bines requirements on the maximum speed and the accel-

eration of objects. They propose to make the assigmnent

choices in an order driven by a notion of minimal risk, still in

a greedy way. They use an optical flow algorithm to initial-

ize the point motion between the first two images, and deal

with occlusion and missing detections by using linear inter-

polation. They do not allow for spurious points, or objects

leaving or entering the scene.

Veenman, Reinders, and Backer (2003b) propose a gree-

dy tracking algorithm called ROADS, which is capable of

handling missing and spurious detections, as well as en-

tries and exits of objects. Rather than optimizing a global

cost, they consider a restricted temporal scope (usually two

or three frames forward), and find the optimal assignments

minimizing the cost on these frames. Since the restricted

problem is still NP-hard, they have some heuristics that help

them prune the search tree. They keep the assignment be-

tween the two first frames of the local scope, and iterate the

process on the following frames. The assignment between

the first two frames of the sequence is initialized using the

nearest neighbor criterion, and the effect if this approxima-

tion is mitigated as in (Sethi and Jain, 1987) by a forward

and a backward pass. The ROADS algorithm is an exten-

sion of the previous well-established GOA algorithm (Veen-

man et al, 2001), which itself compares favorably to three

classical algorithms (Salari and Sethi (1990), Rangarajan

and Shah (1991) and Chetverikov and Verestoy (1999)). The

ROADS algorithm has been shown to outperform both GOA

and the MHT algorithm of Reid (1979).

Another state-of-the-art algorithm, developped for flu-

orescence particle tracking, is described in (Sbalzarini and

Koumoutsakos, 2005). However, it addresses a different (and

easier) tracking problem, since it requires information on the

intensity of the detections. Moreover, it uses a prior motion

model (nearest neighbor) that is more adapted to small dis-

placements than to the kind of smooth trajectories (low ac-

celeration) that we will consider in the present paper.
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Fleuret, Berclaz, Lengagne, and Fua (2008) propose to

track multiple persons in multiple camera views using a prob-

abilistic map of the individuals locations, coupled with a

Dynamic Programming algorithm that tracks each person in

isolation, rather than conjointly. They use both an appear-

ance model and a motion model to describe the objects to

track.

In essence, the approaches above try to restrict the search

space either by constraining the optimization to local choices

or by limiting the simultaneous number of objects tracked.

A recent and promising approach introduced in Jiang, Fels,

and Little (2007) tries to solve the original unconstrained

problem by optimizing a global criterion using Linear Pro-

gramming, where the correspondence decisions are not bi-

nary choices, but continuous values in [0,1], rendering the

optimization problem convex, and thus efficiently computa-

ble. In practice, the estimated values are almost always equal

to either 0 or 1, and it is easy to convert them into disjoint

trajectories. The algorithm assumes that the number of ob-

jects in the images is constant, but has been later extended in

Berclaz, Fleuret, and Fua (2009); Berclaz, Turetken, Fleuret,

and Fua (2011) to accommodate a variable number of ob-

jects that can enter and leave the scene in prespecified loca-

tions. The authors also prove that when there exists a unique

global optimum, it is necessarily a boolean optimum.

1.2 Trajectory estimation versus trajectory detection

These algorithms have some common limitations. First, when

they take a varying number of objects into account, as well

as spurious and missing detections, they face the difficulty

of choosing an appropriate global cost for their optimiza-

tion problem. Indeed, they need a penalization for spurious

points, and most of the time they will simply introduce a

fixed cost for them. This creates a subtle (and quite arbi-

trary) interplay between the cost of spurious points and the

cost of detected trajectories, which is not easy to control and

grasp. Second, these algorithms often have many parame-

ters, which is fine in theory, but quickly becomes a hassle

when one needs to set them for each practical use. Last, as

they all try to solve an optimization problem, these algo-

rithms suffer from a classical flaw: they always find some-

thing, since they try to find the best explanation of the data

in terms of some structure, without trying first to prove that

the structure is present. In particular, all these algorithms

will, for some values of the parameters, find trajectories in

random data made of pure random points (without motion

coherence).

In the present work, we propose a new approach for

trajectory detection, which can guarantee that no trajectory

will be found in general in such random data. This work is

based on the a-contrario framework (Desolneux et al, 2008),

which permits to derive absolute detection thresholds. These

thresholds are then used to drive an algorithm that is able to

analyze trajectories globally in time while avoiding the three

aforementionned limitations.

In Section 2, we first consider trajectories without holes,

that is, the case where no data point is missing (but spu-

rious points are expected). After recalling the basic princi-

ples of the a-contrario statistical framework, we derive an

explicit criterion for trajectory detection and present an al-

gorithm based on Dynamic Programming (Bellman, 1954).

We also analyze some theoretical consequences of the a-

contrario thresholds, in particular the link between the num-

ber of points, the number of images and the maximum al-

lowed acceleration. Then Section 3 extends the theory and

the algorithm of Section 2 to the more general case of tra-

jectories that contain holes. In Section 4, the state-of-the-

art ROADS algorithm (Veenman et al, 2003b) is considered

and various experiments (following, for most of them, the

methodology proposed in the original ROADS paper) are led

to compare its performances with the a-contrario algorithm

we propose. Aside from a very convenient reduction of the

number of parameters (1 for the NFA algorithm, versus 4 in

the ROADS experiments), the a-contrario algorithm signif-

icantly outperforms the ROADS algorithm in terms of pre-

cision, robustness, and sensitivity to parameters, both in the

“no-hole” and in the “hole” versions. Experiments are also

conducted on real data, namely a snow sequence (that we

make publicly available online) for which the ground truth

has been manually obtained. Again, the results are clearly

in favor of the a-contrario algorithm. We finally conclude in

Section 5, and comment on the strengths, limitations, and

perspectives offered by the present work.

2 Trajectories without holes

In this part, we consider trajectories without holes, that is,

we assume that there are no missing detections (but possi-

bly spurious detections, and points leaving and entering the

scene).

2.1 Principles of the a-contrario framework

The trajectory detection method that we propose relies on

the a-contrario framework introduced by Desolneux, Moisan

and Morel (see Desolneux et al (2008) for a recent presenta-

tion). The idea underlying its development (dubbed “Helm-

holtz Principle”) is that the human visual system detects

structures in an image as coincidences which could not ap-

pear by chance in a random setting. Conceived at first to

detect structures issued from Gestal Theory (Wertheimer,

1922; Kanizsa, 1980), this methodology has been applied

to a large variety of image processing tasks, aiming at de-

tecting structures like alignments (Desolneux et al, 2000),
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edges (Desolneux et al, 2001), stereo coherence (Moisan

and Stival, 2004), spots (Grosjean and Moisan, 2009), image

changes (Robin et al, 2010), etc. Note that it has also been

used in the context of Motion Analysis to cluster motion-

coherent regions in image sequences (Veit et al, 2007), or to

distinguish moving regions from the scene background (Veit

et al, 2006).

We here recall the formalization of the a-contrario frame-

work as it was presented in Grosjean and Moisan (2009).

The a-contrario methodology is based on two ingredients: a

naive model, and one or several measurements defined on

the structures of interest. The naive model describes typi-

cal situations where no structure should be detected. For in-

stance, when trying to discover alignments of points in an

image, a naive model could consist of uniform and inde-

pendent draws of the point locations, where no interesting

structure would usually appear (see Fig. 1).

Fig. 1 Illustration of Hemholtz principle. Why can’t we help see-

ing an alignment of dots on the left image? According to Helmholtz

principle, we a priori assume that the dots should have been drawn

uniformely and independently as in the right image, and we perceive

a structure (here a group of aligned dots) because such an alignment

is very unlikely to happen by chance. Alignments of three dots can be

found in the right image, but they do not pop out, because they are

likely to happen by chance considering the total number of points. The

formalization of this principle is realized in a-contrario detection mod-

els.

To detect structures (e.g. alignments of points) in data

using Helmholtz Principle, we need to define in what way

an observation can be significant. If the measurement func-

tion is high when the structure is pregnant, we can relate the

“amount of surprise” when observing the measurement x to

the probability P(X > x), where X is the random variable

corresponding to the distribution of x in the naive model.

We will usually have several measurements (xi)i∈I (in the

example above, one for each possible alignment), and in the

classical a-contrario framework the amount of surprise will

be measured by a number of false alarms. More formally,

we have the following

Definition 1 (Number of False Alarms) Let (Xi)16i6N be

a set of random variables. A family of functions
(

Fi(x)
)

i
is

a NFA (number of false alarms) for the random variables

(Xi)i if

∀ε > 0, E
(

#{i, Fi(Xi)6 ε}
)

6 ε (1)

(as usual, the notation “#S” stands for the cardinal of the

set S).

A measurement xi such that Fi(xi) 6 ε is said to be de-

tected at level ε , or ε-meaningful. We say that a measure-

ment is meaningful if it is 1-meaningful. This number of

false alarms ensures that the average number of detections

made in the naive model (that is, false detections) at level ε

is less than ε .

The classical way to construct a NFA is given by the

following proposition (see Grosjean and Moisan (2009)).

Proposition 1 (NFA construction) Let (Xi)16i6N be a set

of random variables and (wi)16i6N a set of positive real

numbers, then the function

NFA(i,xi) = wi ·P(Xi > xi) (2)

is a NFA as soon as
N

∑
i=1

1

wi

6 1 and in particular if wi = N

for all i.

Remark 1 (NFA approximation) If (Fi)i is a NFA, then any

family of functions (Gi)i verifying Fi(t) 6 Gi(t) for all t is

still a NFA. Hence, a function satisfying

NFA(i,xi)> wi ·P(Xi > xi)

will define a NFA as soon as ∑
N
i=1 1/wi 6 1.

2.2 Trajectory detection

We are given a sequence of K images, each containing N

points (to ease the notations we consider a constant num-

ber of points throughout the sequence but everything can

be smoothly extended to the non-constant case as will be

shown later), and whose support domain is taken to be the

square [0,1]× [0,1] (again, the method can be adapted to

arbitrary image sizes, as shown in Section 2.3). Following

Helmholtz Principle, the naive model will here be a random

uniform draw of N points in each of the K images (intu-

itively, we should not see trajectories appearing in the re-

alizations of this model). The associated i.i.d. uniformely

distributed random variables corresponding to the points of

image k (1 6 k 6 K) will be denoted by Xk
1 , ...,X

k
N . We now

define the structures of interest.

Definition 2 (Trajectories without holes) A trajectory T of

length ℓ starting at frame k0 is a tuple T = (k0, i1, ..., iℓ),
where 1 6 ip 6 N for all p and 1 6 ℓ 6 K − k0 + 1. We

will denote by T the set of all trajectories. There is a nat-

ural equivalence between a trajectory T ∈ T and the tuple

of variables XT = (X
k0
i1
, ...,X

k0+ℓ−1
iℓ

) that we shall therefore

sometimes abusively call a (random) trajectory too.
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A realization t of the random variable XT will be called

a realization of the trajectory T . We have to keep in mind

that we are working with the naive model (where points are

randomly distributed), and thus, a realization of XT should

not look like what we would intuitively call a trajectory.

The second ingredient of the a-contrario model is the

measurement function. For most applications, a natural choice

is to define a “good trajectory” as a smooth one, and more

precisely as a trajectory with a small acceleration. The pro-

posed model could as well be easily adapted to a variety of

other measurements; for instance, we could define a “good

trajectory” as one that moves slowly, and take the measure-

ment function to be the maximal speed of the object along

the trajectory. Let us stick to the idea of good trajectories

being those bearing a small acceleration. We still have many

ways to define this, the two most obvious choices being to

control the maximal acceleration, or to control the average

acceleration of a trajectory realization t =(y1, ...,yℓ). Again,

the model can be adapted to both, but for practical reasons

we will choose to control the maximal acceleration which

involve simpler computations, thus leading to the measure-

ment function

Definition 3 (Maximal acceleration) The maximal accel-

eration of a tuple of points t = (y1, ...,yℓ) is

amax(t) = max
26i6ℓ−1

‖yi+1−2yi +yi−1‖. (3)

We will now of course consider only trajectories having

at least 3 points. Let T be a trajectory, Proposition 1 tells us

that we can define a Number of False Alarms by an appro-

priate weighting of the probability P(amax(XT )6 δ ). In the

naive model, this probability only depends on the length ℓ

of the trajectory (and, of course, δ ), and verifies

Proposition 2 (Probability bound) If XT is a random tra-

jectory of length ℓ, and δ is a positive real number, then

P(amax(XT )6 δ )6 (π ·δ 2)ℓ−2. (4)

Proof — Assume that T = (k0, i1, ..., iℓ), and call B̄(x,r)
the closed disc with center x and radius r. Writing X ′p =

X
k0+p−1
ip

, we get

P(amax( XT )6 δ )

= P

(

ℓ
⋂

p=3

{

X ′p ∈ B̄(2X ′p−1−X ′p−2,δ )
}

)

6

ℓ

∏
p=3

P

(

X ′p ∈ B̄(2X ′p−1−X ′p−2,δ ) | X ′p−1,X
′
p−2

)

6 (π ·δ 2)ℓ−2

because the area of B̄(x,δ )∩ [0,1]2 is bounded from above

by π ·δ 2 for all x. ✷

By Remark 1, we know that we can use the upper bound

(4) to construct a NFA, as in (2). There are many possibil-

ities to define the weights (wT )T subject to the constraint

∑T 1/wT 6 1. This gives us a way to adjust the detection

thresholds for each structure. We choose to group trajecto-

ries together according to their length, dividing the set of tra-

jectories into K groups T = T1 ∪ ...∪TK (here, Tℓ denotes

the set of trajectories of length ℓ), and weigh trajectories of

a group uniformely by wT = K · #Tℓ for any T ∈ Tℓ. This

choice is analyzed in detail in Section 2.6.3.

Proposition 3 (Continuous NFA for trajectories without

holes) The family of functions (NFAT )T∈T defined by

∀ℓ,∀T ∈ Tℓ, NFAT (δ ) = K(K−ℓ+1)Nℓ · (π ·δ 2)ℓ−2 (5)

is a Number of False Alarms for the measurement amax.

Proof — Since #Tℓ = (K− ℓ+1)Nℓ, we have

∑
T∈T

1

K(K− ℓ+1)Nℓ
=

K

∑
ℓ=1

∑
T∈Tℓ

1

K ·#Tℓ
= 1,

and thus (5) defines a NFA thanks to Proposition 1. ✷

Let us quickly comment Proposition 3. We can rewrite

(5) into NFAT (δ ) = K(K− ℓ+1)N2 ·αℓ−2 by using the rel-

ative density α = Nπδ 2 (which corresponds to the average

number of points falling in a disc with radius δ ). We see that

for a trajectory to be meaningful, we need to have α < 1.

In other terms, only trajectories with maximal acceleration

δ < 1/
√

Nπ might be detected as meaningful. Such kinds

of bounds will be analyzed more precisely in Section 2.6.

2.3 Data quantization

In many applications, point detection is realized on a dis-

crete grid of integer pixel coordinates, so that it may happen

that three successive points in the sequence have a null ac-

celeration. This is a very strong contradiction to the naive

model, since this event has probability zero. Thus, if a long

trajectory has a subtrajectory with a null acceleration, an al-

gorithm that detects the most meaningful trajectories first

will cut the longer trajectory into chunks to isolate the (op-

timal) null-NFA subtrajectory.

To avoid this kind of behavior we need to handle data

quantization carefuly. There are at least two ways to do this:

assume that the data have been properly quantized on the

integer grid of the image and define a discrete version of

the NFA, or consider a measurement imprecision and al-

ways consider the “worst-case scenario” for the measure-

ments when computing accelerations.

First, we assume that the data have been quantized on an

integer grid, say a rectangle Ω of Z2 containing #Ω pixels.

We can define a discrete version of the NFA by replacing the
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continuous acceleration area π ·δ 2 by its discrete equivalent,

the discrete acceleration area defined by

ad(δ ) =
#Sδ

#Ω
,

where #Sδ is the number of pixels enclosed in the discrete

disc Sδ =Z
2∩ B̄(0, |δ |) (see Fig. 2). In particular, when δ =

0 we obtain a discrete area of 1/#Ω that no longer leads to

a null NFA. This leads to

Definition 4 (Discrete maximal acceleration) The discrete

maximal acceleration of a tuple of points t = (y1, ...,yℓ) is

ad
max(t) = max

26i6ℓ−1
ad(yi+1−2yi +yi−1). (6)

Proposition 4 (Discrete NFA for trajectories without holes)

The family of functions (NFAd
T )T∈T defined by

∀ℓ,∀T ∈ Tℓ, NFAd
T (a) = K(K− ℓ+1)Nℓ ·aℓ−2 (7)

is a Number of False Alarms for the measurement ad
max.

Fig. 2 Discrete discs. A continuous disc and its corresponding dis-

cretization composed of all pixels whose centers lie inside the contin-

uous disc. A discrete measure of area is better suited to the analysis

of quantized data which might result in observing degenerate null-area

continuous disc (the corresponding discrete disc has a non-null area).

We now examine the “worst-case scenario” acceleration.

We assume that we have an estimate η > 0 of the measure-

ments imprecision (corresponding roughly to the radius of

one pixel in the previous example). We keep the same NFA

than in the continuous case (Equation 5), but we replace the

measurement function by

aw
max(t) = max

26i6ℓ−1
aw(yi,yi+1,yi+1), where

aw(x,y,z) = max
dx,dy,dz∈B̄(0,η)

‖(x+dx)−2(y+dy)+(z+dz)‖.

One easily shows that aw(x,y,z) = ‖x− 2y+ z‖+ 4η , and

therefore this amounts to keeping the same measurement

function as in the continuous case and replacing the NFA

(5) with

NFAw
T (δ ) = K(K− ℓ+1)Nℓ · (π · (δ +4η)2)ℓ−2. (8)

We can see that a null-acceleration trajectory will be counted

as an acceleration of 4η , thus incurring a penalty to all ac-

celerations. This is why in practice we assume that the point

positions are quantized in a grid (or force this quantization

if needed), and use the discrete NFA.

2.4 Algorithm

In this section we consider the discrete NFA given in Equa-

tion (7). When a meaningful trajectory is present, any slight

deviation from it (removing or adding a point, for instance)

will usually also be meaningful, so that we expect to detect a

large number of overlapping meaningful trajectories. Hence,

we choose to detect the trajectories greedily, by iterating the

following process:

1. compute the most meaningful trajectory, that is, the one

having the smallest NFA;

2. remove its points from the data.

To compute the most meaningful trajectory in a sequence

of points, that is, K images I1, ..., IK , each containing N points,

we use a dynamic programming strategy. Indeed, we com-

pute for each point x in image Ik the most meaningful trajec-

tory ending in this point (note that in the following, we shall

sometimes write xk instead of x to recall that x belongs to

Ik). Denoting by G (xk,yk−1, ℓ) the minimal acceleration of

a trajectory of length ℓ ending with points yk−1 and xk, we

obtain a Bellman equation

G (xk,yk−1, ℓ) =

{

0 if ℓ= 2,

minz∈Ik−2
G (x,y,z, ℓ) otherwise,

(9)

where

G (x,y,z, ℓ) = max
(

ad(x−2y+ z) , G (y,z, ℓ−1)
)

. (10)

This recursive formulation translates to Algorithm 1.

Algorithm: compute G

input : f1, ..., fK the sets of {nk 6 N}16k6K points contained

in each frame

output: G

for 2 6 k 6 K do

for x in fk do

for y in fk−1 do

G (x,y,2)← ad(0)
for 3 6 ℓ6 k do

G (x,y, ℓ)←+∞

for z in fk−2 do

a←max(ad(x−2y+ z),G (y,z, ℓ−1))
G (x,y, ℓ)←min(a,G (x,y, ℓ))

end

end

end

end

end

return G

Algorithm 1: Dynamic programming computation of

G . We start by computing the values of G (xk,yk−1, ℓ)

for k = 2, then k = 3, ... each time reusing the results

of the previous round according to the recursive for-

mulation given by (9) and (10).
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Now let us write

NFAd
ℓ (a) = K(K− ℓ+1)Nℓ ·aℓ−2, (11)

so that NFAd
T (a)=NFAd

ℓ (a) for any trajectory T with length

ℓ. Since the function a 7→ NFAd
ℓ (a) is monotone, the most

meaningful trajectory with length ℓ is the one having the

least maximal acceleration. Hence we can use Algorithm 1

to compute the smallest NFA of the point sequence (Al-

gorithm 2). Moreover, if B(xk,yk−1, ℓ) represents the most

meaningful trajectory with length ℓ ending with points y→ x

(where t → x denotes the concatenation of trajectory t and

point x), we can write

B(xk,yk−1, ℓ) =

{

y→ x if ℓ= 2,
B(y, ẑ, ℓ−1)→ x otherwise,

(12)

where ẑ ∈ argminz G (y,z, ℓ−1) (strictly speaking, the most

meaningful trajectory might not be unique, so we have to

choose one most meaningul trajectory arbitrarily; to sim-

plify the description we shall nevertheless use the term “the

most meaningful trajectory” throughout the paper). Finally,

for each xk, the most meaningful trajectory ending in xk is

B(xk, ŷk−1, ℓ̂) where

(ŷk−1, ℓ̂) ∈ arg min
(yk−1,ℓ)

NFAd
ℓ

(

G (xk,yk−1, ℓ)
)

.

An algorithm similar to Algorithm 1 can hence be used to

compute a trajectory having the smallest NFA (see Algo-

rithm 2). In practice, we choose an arbitrary tuple (x,y, ℓ)
such that there is an optimal trajectory of length ℓ ending on

points y→ x, and we extract a trajectory by backtracking,

each time selecting the predecessor that minimizes locally

the maximal acceleration among all predecessors that lead

to an optimal trajectory. Note that we could also extract the

trajectory having the minimal average acceleration (for ex-

ample) among all optimal trajectories, simply by rerunning a

similar dynamic-programming algorithm restricted to opti-

mal trajectories. In the end, by applying the process greed-

ily (as mentioned above), we obtain an algorithm that ex-

tracts all meaningful (or ε-meaningful) trajectories from a

sequence of points (Algorithm 3).

It is often possible to save computation time by extract-

ing several trajectories at once without recomputing the func-

tion G each time, because removing points from the current

data set cannot decrease any value of G . This idea can be

used, for instance, when the two most meaningful trajecto-

ries in the sequence do not share any point. The inner loop of

Algorithm 4 does just that: if we have a way to define a set

of disjoint minimal-NFA trajectories (for instance, greedily),

we can extract them all at once (since they are of minimal

NFA, and non-overlapping, we could extract them sequen-

tially with interleaving G function recomputations, but this

would not change the NFA of those trajectories, that would

still be minimal).

Algorithm: minimal NFA

input : G

output: m the minimal NFA of a trajectory

m←+∞

for 3 6 k 6 K do

for x in fk do

for y in fk−1 do

for 3 6 ℓ6 k do

m←min(m,NFAd
ℓ (G (x,y, ℓ)))

end

end

end

end

return m

Algorithm 2: Find the minimal NFA value among all

trajectories.

Algorithm: trajectory detection

input : ε the maximal allowed NFA

f1, ..., fK the sets of points contained in each frame

output: S = t1, ..., tm the extracted trajectories

S← /0

repeat
compute G

m← minimal NFA

if m 6 ε then
t← a trajectory of NFA = m

S← S∪{t}, and remove all points in t from the

corresponding frames

end

until m > ε or there are no more points

return S

Algorithm 3: Greedy trajectories extraction using the

NFA criterion.

Algorithm: trajectory detection accelerated

input : ε the maximal allowed NFA

f1, ..., fK the sets of points contained in each frame

output: S = t1, ..., tm the extracted trajectories

S← /0

repeat
compute G

m← minimal NFA

stop← false

while m 6 ε and stop= false do
U ←{ x, ∃ a traj. with NFA = m ending in point x }
V ← a set of disjoint trajectories of NFA = m ending

on a point of U

S← S∪V

remove all points from the trajectories in V

stop← true if not all points of U have been removed

m← minimal NFA()
end

until m > ε or there are no more points

return S

Algorithm 4: Greedy trajectories extraction, acceler-

ated by extracting several trajectories at once.



8

Then if we have been able to extract a set of disjoint tra-

jectories of minimal NFA that covers every pair of points

where a trajectory of minimal NFA could end, we can con-

tinue doing the extraction for the next minimal NFA without

recomputation. When this is no longer possible (because of

some point removal) we need to recompute the G function

to reactualize the NFAs.

We now examine the space and time complexity of al-

gorithm 3 for an extraction round. The most expensive com-

putation is that of function G . The space (memory) required

is O(N2K2), since we have to store a value for each triplet

(xk,yk−1, ℓ) in each image frame k. Each value computation

takes O(N) operations because we have to consider all the

points in the previous image, leading to a O(N3K2) time

complexity. The search for the minimal NFA and the extrac-

tion of the most meaningful trajectory have negligible time

and space complexities. As the extraction must be repeated

as long as there is any remaining meaningful trajectory, the

global time complexity is O(sN3K2), where s denotes the

number of extracted ε-meaningful trajectories. In practice,

on a standard PC desktop, for K = 50 images, the number N

of points per image can reach several hundreds (and about

one thousand for K = 20).

2.5 Variable number of points

In real data, the number of points is hardly ever constant

throughout the sequence, so that instead of having N points

in each of the K images, we have N1,N2, . . .NK points on

images 1,2, . . .K. Since the NFA is an upper bound on the

average number of false alarms (Remark 1) we can simply

take N = maxk Nk and keep the NFA unchanged. However,

to obtain more accurate results, we can refine Proposition 4

with

Proposition 5 (Discrete NFA for trajectories without holes,

general case) The family of functions (NFAd
T )T∈T defined,

for any trajectory T with length ℓ starting at frame k0, by

NFAd
T (a) = K(K− ℓ+1)

(

∏
k06k6k0+ℓ−1

Nk

)

·aℓ−2, (13)

is a Number of False Alarms for the measurement ad
max.

The proof is very similar to that of Proposition 3, except

that now the set of trajectories Tℓ itself has to be decom-

posed with respect to the index of the starting frame.

2.6 Theoretical analysis

We now examine some theoretical consequences of Equa-

tion (5), which can have very practical consequences in the

design of the data acquisition process. For simplicity rea-

sons, we use the continuous NFA formulation, with a fixed

number of points per image, but (7) or (13) would lead to

similar conclusions.

2.6.1 Relation between the number of points and the

maximal acceleration

Consider, as earlier, a sequence of K frames, each contain-

ing N points. We recall that the Number of False Alarms

associated to a trajectory T with length ℓ > 3 and maximal

acceleration δ is (see Equation 5)

NFAT (δ ) = K(K− ℓ+1)Nℓ · (π ·δ 2)ℓ−2.

Such trajectory is ε-meaningful as soon as

K(K− ℓ+1)Nℓ · (π ·δ 2)ℓ−2
6 ε,

which can be rewritten δ 6 δc, where the upper bound is the

critical acceleration

δc =
1√
Nπ

(

ε

K(K− ℓ+1)N2

)
1

2ℓ−4

. (14)

Hence, as we already remarked at the end of Section 2.2, a

necessary condition for trajectory detection is δ 6 ∆ with

∆ = 1√
Nπ

, which gives an order of magnitude of the typical

accelerations that can be handled by the NFA approach (and,

in some sense, by any approach since accelerations greater

than ∆ would allow detections in pure noise). Since the ac-

celeration is inversely proportional to the squared frame rate

(by doubling the frame rate, one divides accelerations by 4),

this absolute bound can be useful in the design of the data

acquisition process. Indeed, given the expected number of

detected points in each frame (N), and the expected physi-

cal accelerations of objects (δ ), one can compute the critical

frame rate, under which no trajectory detection is possible.

Note, however, that the upper bound ∆ is not very accurate

(see Table 1), thus using the exact value δc (Equation 14) is

probably a better idea.

N 15 50 200 1000

∆ 146 80 40 18

δc (l = 5, K = 20) 23 8.3 2.6 0.7

δc (l = 10, K = 20) 74 35 15 5.4

δc (l = 10, K = 50) 64 30 13 4.7

δc (l = 30, K = 50) 117 61 29 12

Table 1 Acceleration bounds ∆ = 1√
Nπ

and δc (Equation 14) in func-

tion of N, expressed in pixel.image−2 in a 1000×1000 image for some

values of l and K (ε = 1).
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2.6.2 Influence of the trajectory length

A nice property of the a-contrario approach is that it per-

mits us to relate different parameters by observing the way

they are linked in the NFA formula. Table 1 shows that the

trajectory length has a significant impact on the critical ac-

celeration δc (whereas the number of frames, K, has a much

smaller impact). Thus, it could be interesting to study more

precisely how the NFA balances the trajectory length and the

acceleration, that is, how the critical acceleration grows as

the trajectory lentgh increases. Since 1 6 K− ℓ+1 6 K, we

can write log(K(K−ℓ+1)) = 2β (ℓ) logK for some function

β (ℓ) (taking values in [1/2,1]), so that from (14) we get

logδc = log∆ − logN +β (ℓ) logK− log
√

ε

ℓ−2
.

Hence, logδc grows approximately like 1/ℓ, and attains for

ℓ = K a value close to (and below) log∆ . This is illustrated

in Fig. 3.

length (ℓ)
0 10 20 30 40 50

0

−2

−4

N = 15

N = 50

N = 200

log10 δc

Fig. 3 Asymptotic and non-asymptotic critical accelerations. The

critical acceleration δc (here, in base-10 log scale) is an increasing

function of ℓ that approaches its upper bound (dotted line) ∆ = 1√
Nπ

when ℓ = K. Here K = 50 and the three curves correspond to N = 15,

N = 50, and N = 200 respectively.

Last, we show the monotony of the critical acceleration

with respect to the trajectory length (that is, the longer the

trajectory, the looser the constraint on the acceleration).

Proposition 6 If ε 6 1, then the critical acceleration δc given

by (14) increases with respect to ℓ.

Proof — Rather than using (14), we go back to (5) and write,

for ℓ ∈ {1, . . . ,K},

F(ℓ,δ ) = N2K(K− ℓ+1) · (Nπδ 2)ℓ−2

(thus, F(ℓ,δ ) is the NFA associated to a trajectory with size

ℓ and maximal acceleration δ ). Now, if ℓ is such that F(ℓ,δ )

is smaller than 1 (since we assumed ε 6 1), then Nπδ 2 < 1

so that both ℓ 7→ (Nπδ 2)ℓ−2 and ℓ 7→ N2K(K− ℓ+ 1) are

decreasing with respect to ℓ, and so is ℓ 7→ F(ℓ,δ ). Hence,

if ℓ1 > ℓ2, we have, for δ = δc(ℓ2),

F(ℓ1,δc(ℓ2))< F(ℓ2,δc(ℓ2)) = ε,

which proves that δc(ℓ1)> δc(ℓ2) since δ 7→ F(ℓ1,δ ) is in-

creasing. ✷

2.6.3 Asymptotic bounds and the importance of the

combinatorial factor

Now we would like to assess the importance of the combina-

torial factor in the definition of the NFA. As was discussed

above before Proposition 3, there are several ways to de-

fine the weights of the structures. In (5), we chose to weigh

the trajectories uniformely with respect to their length (that

is, such that the expected number of false alarms is equally

shared among all possible trajectory lengths), that is

NFAT (δ ) = K(K− ℓ+1)Nℓ ·P(amax(XT )6 δ ). (15)

Another more classical choice would be to set a uniform

weight wT = #T for all trajectories, thus obtaining

NFA′T (δ ) =

(

K

∑
m=1

(K−m+1)Nm

)

·P(amax(XT )6 δ ).

(16)

Suppose that we observe a trajectory t with length ℓ and

maximal acceleration δ = amax(t), what difference will each

NFA definition make? This trajectory is detected if NFAT (δ )
(or NFA′T (δ )) is below a certain threshold ε , hence it is in-

teresting to estimate the ratio

NFA′T (δ )
NFAT (δ )

=
1

K(K− ℓ+1)Nℓ

K

∑
m=1

(K−m+1)Nm

>
1

K2Nℓ

K

∑
m=ℓ

Nm

>
NK−ℓ

K2
.

This lower bound shows that when ℓ is small, the detection

penalty incurred when using NFA′ is very large and it will

thus be more difficult to detect small trajectories with this

criterion.

In the following, we compare more precisely NFA and

NFA′ and compute asymptotic estimates when the number

of frames (K) becomes large. Let us deal first with the func-

tion NFAT (δ ). We consider a trajectory T spanning #T =

µK images of the sequence for a fixed µ ∈ (0,1], with a

maximal acceleration δ , among N points per frame. We write
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α = Nπδ 2, and propose to determine, when K gets very

large, if the trajectory is meaningful. We have

NFAT (δ ) = K · (K−µK +1) ·NµK · (πδ 2)µK−2

∼
K→∞

π−2δ−4K2(1−µ)αµK ,

so that

logNFAT (δ ) ∼
K→∞

µK logα

and

lim
K→+∞

NFAT (δ )6 1 ⇐⇒ α < 1 (17)

This means that for any µ ∈ (0,1) and any maximal accel-

eration δ < ∆ (that is, such that α < 1), for K large enough,

any trajectory with maximal acceleration at most δ that spans

µK frames among K will be meaningful. In practice, trajec-

tories that lead to values of α near 1 are difficult to detect be-

cause they need to be observed on a large number of images

(large K) to be meaningful. This phenomenon is illustrated

in Fig. 4. Another non-asymptotic relationship between the

acceleration δ , the number of frames K and the number of

points per frame N is illustrated in Fig. 5.

α
0 0.2 0.4 0.6 0.8 1

0

100

200

300

number of frames (K)

Fig. 4 Non-asymptotic counterpart of (17). Theses three curves rep-

resent, as a function of α = Nπδ 2, the minimum number of frames (K)

required for a trajectory with length ℓ = ⌊µK⌋ and maximal accelera-

tion δ to be 1-meaningful according to the NFA criterion (15). Upper

(blue) curve: µ = 0.3; middle (green) curve: µ = 0.5; lower (red) curve:

µ = 1. The number of points per frame is N = 100.

Now we study the asymptotic behavior of NFA′T (δ ) (see

Equation 16). First, we notice that

K

∑
m=1

(K−m+1)Nm = NK
K

∑
m=1

mN−m−1 ∼
K→∞

NK

(N−1)2

and thus

NFA′T (δ ) ∼
K→∞

NK+2−µKαµK−2

(N−1)2
.

Therefore,

logNFA′T (δ ) ∼
K→∞

K
(

(1−µ) logN +µ logα
)

number of points (N)

0 30 60 90 120 150
0

12

24

36

48

60

πδ2 = 0.001

πδ2 = 0.0025

πδ2 = 0.005

number of frames (K)

Fig. 5 Minimal number of frames required for detectability. The-

ses three curves represent, as a function of the number of points N,

the minimum number of frames (K) required for a trajectory with

length ℓ = K and various values of the maximal acceleration δ to be

1-meaningful according to the NFA criterion (15).

and

lim
K→+∞

NFA′T (δ )< 1 ⇐⇒ logα <
µ−1

µ
logN. (18)

Since
µ−1

µ → −∞ as µ → 0+, Equation (18) shows that it

is indeed asymptotically much harder to detect small trajec-

tories with NFA′ than with NFA. This fact is illustrated by

Fig. 6, on which we can see that even when µ is slightly

smaller than 1, NFA permits to detect more trajectories than

NFA′, both asymptotically and non-asymptotically.

trajectory relative length (µ)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

maximal value of α

Fig. 6 Comparison between the NFA and NFA′ models (15, 16).

Each curve represents, as a function of µ , the maximal value of

α = Nπδ 2 allowed for a trajectory with length ℓ = ⌊µK⌋ and max-

imal acceleration δ to be 1-meaningful in a sequence of K images,

among N = 100 points per frame. The red upper curves are obtained

with the criterion NFA, whereas the blue lower curves are obtained

with the criterion NFA′. The full curves correspond to K = 100, and the

dashed curves correspond to the asymptotical estimates obtained when

K→+∞, that is, logα = 0 for NFA and logα = logN · (µ−1)/µ for

NFA′. These curves clearly demonstrate that not only NFA is better

suited to the detection of small trajectories than NFA′ (it allows for

trajectories having a much larger maximal acceleration), but it is also

more efficient even for relatively large values of µ (NFA′ being slightly

better only for almost complete trajectories). Asymptotically, NFA is

always the best choice.
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3 Trajectories with holes

In many practical situations, because of occlusions or acqui-

sition noise, some trajectory points will not be detected in

one or more frames. In this section, we generalize the previ-

ous framework to trajectory detection in the case of missing

points.

3.1 Number of false alarms

The naive model remains unchanged (keeping the notations

of the previous section): we are given K images I1, ..., IK ,

each image Ik containing N points Xk
1 , ...,X

k
N , and we assume

by Helmholtz principle that all random points Xk
i are inde-

pendent and uniformly distributed in [0,1]2.

Definition 5 (Trajectories with holes) A trajectory of size

s is a sequence of pairs T = {(i1,τ1), ...,(is,τs)}, such that

τ1 < ... < τs. We denote by T the set of all trajectories, and

by Ts the set of trajectories of size s. We bijectively associate

to the trajectory T the tuple of random (i.i.d., uniformely

distributed) variables XT = (Xτ1
i1
, ...,Xτs

is
), that we also abu-

sively call a (random) trajectory.

Since the definition above is more general than the spe-

cial case of trajectories without holes (Definition 2), we chose

to keep the same word (trajectory) and the same notations

(T, Ts) as in Section 2. This should not lead to ambiguities,

since we will only consider trajectory with holes in this sec-

tion.

As in Section 2, we would like to build an a-contrario

detection model to detect trajectories (here, with holes). We

consider three parameters of interest for the computation of

the NFA of a trajectory XT = (Xτ1
i1
, ...,Xτs

is
): the trajectory

length, its size and its number of runs. The length is the total

number of frames that the trajectory spans (τs− τ1 +1), the

size is the number of (detected) points it contains (s), and a

run is a maximal set of consecutive points. Note that if we

call hole a maximal set of consecutive missing points, then

the number of runs equals the number of holes plus one.

We first need to generalize the notion of maximal accel-

eration amax (Definition 3) to the case of trajectories with

holes. A natural way to do this consists in interpolating the

missing points of the trajectory and compute its maximal

acceleration. Since we would like to keep using an algo-

rithm based on dynamic programming, we use the most lo-

cal choice, that is, a simple constant speed interpolation.

This leads to the following

Definition 6 (Maximal acceleration with holes) The max-

imal acceleration of the realization t = (yτ1
1 , ...,yτs

s ) of a tra-

jectory T is

ah
max(t) = max

26i6s−1
‖ah(y

τi−1

i−1 ,y
τi
i ,y

τi+1

i+1 )‖, (19)

with, for all points xi,y j,zk (i < j < k),

ah(xi,y j,zk) =
z−y

k− j
− y−x

j− i
. (20)

We now compute, as in Proposition 2, a probability bound

for the maximal acceleration of a random trajectory with

holes.

Proposition 7 (Simple probability bound) If a random tra-

jectory XT with size s has holes of size h1, ...,hp−1, then for

any δ > 0 one has

P(ah
max(XT )6 δ )6 (π ·δ 2)s−2 · ∏

16i6p−1

(hi +1)2. (21)

Proof — We assume that T = {(i1,τ1), ...,(is,τs)}, and write

X ′q = X
τq

iq
and

Mq = X ′q−1 +
τq− τq−1

τq−1− τq−2
(X ′q−1−X ′q−2),

so that

P(amax( XT )6 δ )

6 P

(

s
⋂

q=3

{

X ′q ∈ B̄(Mq,(τq− τq−1)δ )
}

)

6

s

∏
q=3

P

(

X ′q ∈ B̄(Mq,(τq− τq−1)δ ) | X ′q−1,X
′
q−2

)

6 (π ·δ 2)s−2
s

∏
q=3

(τq− τq−1)
2

6 (π ·δ 2)s−2
p−1

∏
i=1

(hi +1)2.

✷

For efficiency reasons, we want to design an algorithm

that can share computations, that is, we want to be able to

reuse the computations made on subtrajectories and extend

them to obtain the results for bigger trajectories. To do this

efficiently, we shall not consider, for a given trajectory, the

individual sizes hi of its holes, but simply its length ℓ, its

size s and its number of runs p. This is why we derive from

(21) the following

Proposition 8 (Practical probability bound) If a random

trajectory XT has length ℓ, size s and number of runs p, then

for any δ > 0 one has

P(ah
max(XT )6 δ )6 (π ·δ 2)s−2 ·

(

ℓ− s

p−1
+1

)2p−2

(22)

with the convention that the right-hand parenthesis equals 1

(( 0
0
+1)0) when p = 1.
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Proof — We consider the maximum value of the right-hand

term of (21) over all possible hole sizes h1, ...,hp−1 that are

feasible for parameters ℓ, s and p. Relaxing the constraint

that the hi have to be integers, we face the optimization prob-

lem

max
(hi)

p−1

∏
i=1

(hi +1)2 ; ∑
i

hi = ℓ− s, and ∀i, hi > 0,

which, denoting ξi = hi + 1, has the same solutions as the

problem max
ξ∈C

E(ξ ), with E(ξ ) =
p−1

∑
i=1

log(ξi) and

C =

{

ξ ∈ [1,+∞)p−1,
p−1

∑
i=1

ξi = ℓ− s+ p−1

}

.

Now if ξ ∈C has not identical coordinates, we can choose

two different values, say 16 ξi1 < ξi2 , and replace them both

by (ξi1 +ξi2)/2 > 1 to form a new ξ ′ ∈C. Then,

E(ξ ′)−E(ξ ) = 2log((ξi1 +ξi2)/2)− log(ξi1)− log(ξi2),

and this quantity is positive by strict concavity of the log

function. Thus, the unique solution of maxξ∈C E(ξ ) satisfies

ξi = (ℓ− s)/(p−1)+1 for all i, and the maximum value of

∏i (hi + 1)2 over feasible hole sizes h1, ...,hp−1 is bounded

from above by

(

ℓ− s

p−1
+1

)2p−2

.

Using this bound in (21) yields the announced result. ✷

Now we need to define the combinatorial term wT that

premultiplies the NFA. Recalling the discussion of the end

of Section 2.2, we choose to group the trajectories by their

length and size, and to use uniform weights in each category.

The number of trajectories of length ℓ and size s that can fit

in K frames is bounded from above by (K−ℓ+1)
(ℓ

s

)

Ns, and

since we cluster the trajectories by their lengths and sizes,

we have to count the number of such clusters. Indeed, it is

bounded from above by Kℓ, since there are less than K ways

to choose the length, and knowing that the length is ℓ there

are less than ℓ ways to choose the size. Combining these

remarks with Proposition 8 establishes the following

Proposition 9 (NFA for trajectories with holes) The fam-

ily of functions (NFAT )T∈T defined for any trajectory T of

length ℓ, size s and number of runs p by

NFAT (δ )=Kℓ(K−ℓ+1)

(

ℓ

s

)

Ns(πδ 2)s−2

(

ℓ− s

p−1
+1

)2p−2

(23)

is a Number of False Alarms for the measurement ah
max.

This new function NFAT is a kind of generalization of

(5). Indeed, for a trajectory T without hole (that is, such that

p = 1, and consequently ℓ= s), we have

NFAT (δ ) = ℓ ·K(K− ℓ+1)Nℓ(πδ 2)ℓ−2

which is, up the a new factor ℓ, the value given in (5). This

new factor simply comes from the fact that we do not know

a priori that the number of runs of the trajectory is one.

3.2 Algorithm

In the practical implementation that we describe below, we

use a discrete version of the acceleration, obtained by re-

placing the norm involved in (19) by a discrete area measure,

exactly as we did in Section 2 (see Definition 4).

We want to compute, for each point x of each image Ii

(that we denote by xi), the most meaningful trajectory that

ends in xi (or, to be more precise, one of such most meaning-

ful trajectories) . This information can be extracted from the

function G (xi,y j, ℓ,s, p), which represents the least maxi-

mal acceleration of a trajectory of length ℓ, size s, and hav-

ing p consecutive runs (that is, p−1 holes), ending with the

point y j in frame j < i followed by the point xi in frame i.

We say that a tuple (i, j, ℓ,s, p) is undefined if there is

no trajectory ending with its two last points in frame i and

j, with length ℓ, size s and having p runs of consecutive

points. For instance, if ℓ < s or s < 2, the tuple is undefined.

We define for i > j

G (xi,y j, ℓ,s, p) =







+∞ if (i, j, ℓ,s, p) is undefined,

0 if s = 2,
minu>1,z∈I j−u

Ḡ (x,y,z, ℓ,s, p) else,

(24)

with the convention, for i > j > k, that

Ḡ (xi,y j,zk, ℓ,s, p) =

max
(

ah(x,y,z), G (y,z, ℓ− (i− j),s−1, p−1i 6= j+1)
)

(25)

and as usual 1a 6=b = 1 if a 6= b and 0 otherwise. Notice that

as in Section 2.4, the superscript k in xk simply reminds us

that the point x belongs to image Ik, so we sometimes omit

it and simply write x.

We deduce from (25) a dynamic programming algorithm

to compute G , similar to the one we presented in Section 2

for the trajectories without holes. We can then backtrack to

find the most meaningful trajectory ending in each point xi

by defining, for i > j, the recursive function

B(xi,y j, ℓ,s, p) =






undefined if (i, j, ℓ,s, p) is undefined,

y→ x if s = 2,

B(y, ẑ j−û, ℓ− (i− j),s−1, p−1i 6= j+1)→ x else,
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where ẑ j−û realizes the minimum in the last line of (24). Fi-

nally, for each xi, the most meaningful trajectory with holes

ending in xi is B(xi, ŷ ĵ, ℓ̂, ŝ, p̂), where

( ĵ, ŷ ĵ, ℓ̂, ŝ, p̂) = arg min
j<i,y j ,ℓ,s,p

NFAd
ℓ,s,p(G (xi,y j, ℓ,s, p)).

We can analyze the spatial and temporal complexities of

the algorithm. As in the case of trajectories without holes,

the most costly operation is the computation of the G func-

tion. Its complexity is O(N2K5) in space and O(N3K6) in

time. Since the extraction must be repeated until there are no

more meaningful trajectories, the global time complexity is

O(sN3K6), where s is the number of extracted ε-meaningful

trajectories. In practice, on a standard PC desktop, for K =
30 images, the number N of points per image can go up

to about one hundred. For long sequences containing much

more than 30 images, the algorithm cannot be used directly

(due to the N6 term in the time complexity), but one could

probably obtain good results by cutting the image sequence

into small parts and applying the algorithm on each part

(raising the issue of long trajectories spanning several parts).

3.3 Variable number of points and rectangular images

As for the NFA of trajectories without holes (Section 2), we

can adapt the NFA given in Proposition 9 to the case of a

variable number of points per image. Let us write Nk the

number of points present in image k. The simplest strategy

consists in applying directly the definition of Proposition 9

with N = maxk NK . If Nk has strong variations, a more sensi-

tive detection can be obtained by replacing in NFAT (δ ) the

term Ns by

max
k0=i1<i2<...<is=k0+ℓ−1

Ni1 · ... ·Nis ,

where T is a trajectory starting in image k0, with length ℓ

and size s. This term is easily computed once the sequence

(Nk)16k6K has been sorted.

As in the case of trajectories without holes, the NFA can

also be adapted to rectangular images (see Section 2.3).

3.4 Theoretical results

We now analyze the asymptotic behavior of the NFA on

some particular cases. They are all composed of one trajec-

tory spanning the K images, and N− 1 additional spurious

points in each frame. The trajectory has a maximal acceler-

ation of δ .

3.4.1 Long trajectory with a single hole

We first study the case where the trajectory is composed

of two parts separated by a unique hole of length h = εK.

We thus have ℓ= K,s = (1− ε)K, p = 2, and we write α =
Nπδ 2 as in Section 2.6.3.

We study under which conditions, when K gets large, the

trajectory is meaningful, and if it is more meaningful than its

first (or equivalently last) part. First we derive an asymptotic

expansion of

NFAT (δ ) = K · (K− ℓ+1) · ℓ ·
(

ℓ

s

)

· αs

(πδ 2)2
· (εK)2(p−1)

= K2

(

K

(1− ε)K

)

α(1−ε)K

(πδ 2)2
(εK)2.

From Stirling’s Formula, one easily derives the expansion

log

(

K

ηK

)

=−Kh(η)− 1

2
logK + O

K→+∞
(1),

where η ∈ (0,1) is fixed, and

h(η) = η log(η)+(1−η) log(1−η).

Hence, we have

logNFAT (δ )=K
(

(1− ε) logα−h(ε)
)

+
7

2
logK+ O

K→+∞
(1),

which proves the asymptotic equivalence

lim
K→+∞

NFAT (δ )6 1 ⇐⇒ log(α)<
h(ε)

1− ε
. (26)

This asymptotic condition on α is illustrated in Fig. 7. We

can notice that the asymptotic limit on logα given by the

righ-hand term of (26) is quite accurate (and almost linear)

as long as the relative hole size ε is not too large. If the

hole size is half the trajectory length (ε = 1/2), then the

asymptotic condition is α < 1
4
.

Now we would like to investigate the condition under

which the complete trajectory is more meaningful than its

starting or ending parts. Writing γ = (1− ε)/2 so that each

small trajectory has a size γK, this condition writes

NFAT1+2
(δ )/NFAT1

(δ )6 1,

that is

K

K
· 1

(1− γ)K +1
· K

γK
·
(

K
2γK

)

(

γK
γK

) · α
2γK

αγK
· ((1−2γ)K +1)2

1
6 1

or equivalently

−Kh(2γ)+ γK logα + logK + O
K→+∞

(1)6 0.
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hole relative length (ε)
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α

Fig. 7 Influence of the hole size. Plot, in function of ε , of the maximal

value of α (in log scale) for a trajectory with a single hole of size

h = ⌊εK⌋ to be meaningful. The total number of points in each frame

is N = 100, and the length of the sequence is K = 100 for the green

lower curve and K = 400 for the blue middle curve. The red upper

curve is the asymptotical limit h(ε)/(1− ε) of logα corresponding to

the case K = +∞. We can see that when the trajectory hole becomes

fairly important, the maximal allowed acceleration for a trajectory to

be meaningful plummets.

Since h(2γ)/γ = 2h(ε)/(1− ε), we thus have the property

that the whole trajectory is asymptotically more meaningful

than its parts when K→+∞ if and only if

log(α)< 2
h(ε)

1− ε
. (27)

Note that this inequality constraint on α is stronger (the

quantities are negative) than the one obtained in (26), hence

the case when a trajectory is 1-meaningful but less meaning-

ful than its parts can be encountered.

3.4.2 Dotted trajectories

If the trajectory is made of a succession of single points and

one-frame holes, what is the condition as K→+∞ to have a

meaningful trajectory? We now have ℓ = K, s = (K + 1)/2

(K being odd), p = (K−1)/2, so that from (23) we can de-

rive the asymptotic expansion

logNFAT (δ ) =
K

2
log(16α)+

3

2
logK + O

K→+∞
(1). (28)

Hence, a dotted trajectory is asymptotically meaningful when

K→+∞ as soon as

α <
1

16
. (29)

3.4.3 Dashed trajectories

In the more general setting of a dashed trajectory made of p

runs of u consecutive points separated by holes spanning v

frames, we have ℓ= K = p(u+ v)− v and s = pu, so that if

u and v are fixed,

logNFAT (δ ) = 2log p+ log

(

p(u+ v)− v

pu

)

+ pu logα

+2p log(1+ v)+ O
p→+∞

(1).

Now we have

pu

p(u+ v)− v
= η + O

p→+∞

(

1

p

)

with η =
u

u+ v
,

so that

log

(

p(u+ v)− v

pu

)

=−p(u+ v)h(η)− 1

2
log p+ O

p→+∞
(1)

and

logNFAT (δ )=
3

2
log p+ pu

(

logα +
2

u
log(1+ v)− h(η)

η

)

+ O
p→+∞

(1).

Hence, a dashed trajectory is asymptotically meaningful when

p tends to infinity if and only if

logα 6
h(η)

η
− 2

u
log(1+ v), (30)

where η = u
u+v

is the asymptotic density of known points.

This formula yields an interesting relation between the den-

sity of known points and the allowed maximum acceleration,

as illustrated in Fig. 8. When u = v = 1, we have η = 1/2,

h(η) = − log2 and the right-hand term of (30) is − log16,

in accordance with (29).

4 The ROADS algorithm, and comparison

4.1 The ROADS tracking algorithm

As we mentioned in Introduction, the state-of-the-art ROADS

algorithm (Veenman et al, 2003b) is an extension of GOA

that compares favorably to most classical tracking algorithms

like MHT (Reid, 1979), Salari and Sethi (1990), Rangara-

jan and Shah (1991), Chetverikov and Verestoy (1999), and

GOA itself (Veenman et al, 2001). It can handle points en-

tering and leaving the scene, as well as missing and spurious

points. It requires the setup of several parameters, which are

listed in Table 2.

The criterion measuring the local smoothness of a tra-

jectory on the consecutive points (x,y,z) is

φ(x,y,z) = w

[

1− v(x,y) · v(y,z)
‖v(x,y)‖ · ‖v(y,z)‖

]

+

(1−w)

[

1−2

√

‖v(x,y)‖ · ‖v(y,z)‖
‖v(x,y)‖+‖v(y,z)‖

]
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density of points (η)
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Fig. 8 Required precision for “dashed” trajectories. Left: The

green lower curve shows the maximal value of α allowed (in log

scale) for a trajectory to be meaningful when it is made of repe-

titions of runs of length u and holes of length v, with u + v = 20

and u = ⌊η(u+ v)⌋. The length of the sequence is K = 100, and

the total number of points in each frame is N = 100. The upper

red curve is the asymptotical limit h(η)/η − 2log(1 + v)/u cor-

responding to p = +∞. (note that the staircasing effect is due to

the definition of u). As long as the density of known points (η)

is large enough, the critical value of logα is quite well approxi-

mated by the asymptotic bound and the relation to η is almost lin-

ear. When the density η becomes too small, the maximal allowed

acceleration for the trajectory to be meaningful quickly plummets.

Right: The asymptotic condition on α given by (30), for a variety of

values of u+v= 10 (lower green curve), 20 (middle blue curve) and 40

(upper red curve). The curves are close, hence showing that the mini-

mal required precision for dashed trajectories to be meaningful mostly

depend on the density η = u/(u+ v) and not much on the period u+ v

of the runs.

w smoothness model parameter

dmax maximal allowed speed

φmax maximal allowed smoothness criterion

s scope width parameter

amax max. # of missing consecutive points on a track

pmin min. # of present consecutive points on a track

F
γ
g ,F

γ
l optimization cut-off constants

hmax max. # of hypotheses made when optimizing

Table 2 Parameters used in the ROADS algorithm.

where v(x,y) = y− x. As we can see, this criterion com-

bines (with a weight parameter w) an angular variation (first

term) and a speed variation (second term). Assume that Mk

objects are tracked until the kth frame, and Nk+1 points are

observed in frame k+1. The trajectories already constructed

can either link to one of the observed points, or to a missing

“slave measurement”, meaning the corresponding object in

frame k+ 1 is missing. Additionally, a point of frame k+ 1

can be tagged as spurious. All these possibilities are called

individual assignments.

Each individual assignment a has a cost c(a). The cost

of linking a trajectory to a point in frame k+1 is the smooth-

ness criterion as defined above (if one of the past measure-

ments is missing, we estimate its position through linear in-

terpolation). The cost of considering a point in frame k+ 1

as spurious and the cost of linking a trajectory to a slave

(missing) measurement are both equal to the value of the

parameter φmax (eg. a missing point has the cost of the worst

possible trajectory continuation). The algorithm restricts its

possible assignments using its cut-off values, for instance,

two points in consecutive frames can be linked only if they

are at most dmax pixels appart.

The local cost of all the individual assignments between

two consecutive frames is obtained by averaging their costs.

Let Ak = {a1, ...,ap} be the set of individual assignments

between frame k and k+1, that is, such that every trajectory

tracked in frame k appears in exactly one of the assignments,

and every measurement in frame k+1 appears in exactly one

of the assignments, then the local cost is

Ck(Mk,A
k) =

1

Mk

p

∑
i=1

c(ai).

The optimization of this cost for a fixed k is a minimum-

weight perfect matching problem, and can be solved effi-

ciently using for instance the Hungarian algorithm (Munkres,

1957). Finally, the global motion model averages costs over

the whole sequence, leading to the minimization of

C(A) =
K−1

∑
k=2

Ck(Mk,A
k)

where A = (A2, ...,AK−1) is a multi-assignment. Other op-

timization objectives are: as many points as possible should

be included in a trajectory, and there should be as few trajec-

tories as possible. In its generality, the global motion model

optimization is a NP-hard problem, thus intractable in prac-

tice. One of the approximation made by the ROADS algo-

rithm is to sequentially optimize the global model on a re-

strained time window (typically using s = 2 or s = 3), hence

computing

Ak:s
min = argmin

Ak:s

Ck:s(Ak:s)

where

Ck:s(Ak:s) =
s

∑
p=1

Ck+p−1(Mk+p−1,Ak:s[p])

and Ak:s = (Ak, ...,Ak+s−1) is a multi-assignment. The ap-

proximation to the global solution is then

A = (A2:s
min[1], ...,A

K−1:s
min [1]).

This approach results in an initialization problem at the

beginning of the sequence: the assignment between the first

two frames is considered given. To mitigate this strong re-

quirement, the ROADS algorithm uses a “minimal-motion”

criterion c(x,y) = ‖y− x‖ to initialize the assignment be-

tween the first two frames of the sequence, and then a suc-

cessive up- and down-processing to reduce the imprecision

of the initial assignments. We refer the reader to Veenman
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et al (2003b) for a detailed explanation, including how tracks

can be ended and started.

The core of the ROADS algorithm (see Algorithm 5)

is the computation of the local scope optimization. In or-

der to compute Ak:s at each frame k, the algorithm recur-

sively enumerates all potential assignments between succes-

sive frames in the scope. Of course, this set of assignments

is too large to be exhaustively enumerated, and therefore the

algorithm uses a branch-and-bound approximation strategy.

It first makes an “optimal cost bound” guess Cb by initial-

izing the global solution on the time scope with the local

solutions of the minimum-weight perfect matching between

each two consecutive frames in the scope. This cost bound

is then gradually lowered.

At each recursion step (that is, each frame in the scope),

the bound on the current optimal matching cost is lowered

by using a cost-bound constraint called γmax. It is derived

from the cost Ck
min = Ck(Mk,A

k
min) of the best possible as-

signment Ak
min between frames k and k + 1 (which can be

obtained by the Hungarian algorithm) and the current global

cost bound Cb by

γmax = min(F
γ
l Ck

min,F
γ
g Cb/s′),

where F
γ
l > 1 is the local cost factor, F

γ
g > 1 is the global

cost factor and s′ is the length of the remaining scope.

The intuition behind this bound is that the cost of the as-

signment at frame k corresponding to the optimal solution

on the time scope cannot be too far from the cost Ck
min of the

optimal (local) assignment between the frames k and k+ 1,

and that the cost of the assignment on the time scope is more

or less uniformly distributed between all pairs of frames,

and thus should not be too far from Cb/s′. To enumerate the

successive best assignment between frames, ROADS uses

Murty’s algorithm (Murty, 1968), which takes a cost ma-

trix Dk and a set of previous assignments Y and returns the

next best assignment not in Y . The set of all assignements

between frames k and k+1 is denoted by Uk.

The costMatrix(Ak−1,k) function returns a matrix con-

taining the cost of each possible assignment between a tra-

jectory of Ak−1 and a point of the kth image.

4.2 Experiments

In the following, we propose to compare the NFA algorithm

with ROADS to evaluate its strengths and weaknesses against

a state-of-the-art solution. We start with experiments on syn-

thetic data, similar to those used by the authors of ROADS

in their presentation papers (Veenman et al, 2003a,b). Let us

first briefly present the way they generate trajectories using

the Point-Set Motion Generation (PSMG) algorithm (exper-

iments having different parameters will be signaled):

Algorithm: ROAD(Ak−1,k,Cb,A
k:s
sol)

input : Ak−1 the previous assignment,

k the current frame number,

Cb the current cost bound,

Ak:s
sol the current best assignment

output: Ak:s
sol the new best assignment

Dk← costMatrix(Ak−1,k)
if s = 1 then

Ak
min = minCostAssignment(Dk)

if Ck(Mk,Ak
min)<Cb then

Ak:s
sol ← (Ak

min)
end

else
Y ← /0

repeat

A← nextBestAssignment(Y,Dk)
Y ← Y ∪{A}
C0←Ck(Mk,A)
Tsol ← Ak:s

sol [2..s]
R← ROAD(A,k+1,s−1,Cb−C0,Tsol)
Ak:s = (A) :: R

if Ck:s(Mk,Ak:s)<Cb then

Cb←Ck:s(Mk,Ak:s)
Ak:s

sol ← Ak:s

end

γmax = min(F
γ
l Ck

min,F
γ
g Cb/s)

until Y =Uk or C0 >Cb or C0 > γmax

end

return Ak:s
sol

Algorithm 5: Core of the ROADS algorithm

– the initial position of each trajectory is chosen uniformly

at random in the first image;

– the initial velocity magnitude is chosen using a normal

random variable v0 ∼N (µ = 5,σ = 0.5) and its angle

β0 is chosen using a uniform distribution in [0,2π];
– the velocity magnitude and angle are updated in each

frame using

{

vk+1 ∼N (µ = vk,σ = 0.2)

βk+1 ∼N (µ = βk,σ = 0.2).

The image domain is divided in 100× 100 pixels, and the

length of the sequence is set to 20 frames (see Fig. 9 for an

illustration of the trajectories generated). Most of the exper-

iments are realized with 20 trajectories (like in the ROADS

paper).

Since the ROADS authors were comparing their algo-

rithm with an algorithm that did not allow trajectories enter-

ing or leaving the scene, they required that all trajectories fit

completely inside the frames and span the whole sequence,

and we will usually do the same (if a trajectory does not fit

inside the frame, we regenerate it). They also impose that

in the experiments where points are missing, all points are

still detected in the first and last two frames. To have exper-

iments coherent with theirs we generally impose the same

constraints, but in some experiments (with a great number

of trajectories in the images) constraining trajectories to stay

inside the frame seemed unnatural since it forced trajectories
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to have a beating and swirling motion inside the frames. We

chose to keep a constant number of trajectories, but to allow

them to leave the image, and when this happens, to gener-

ate a new random trajectory that starts on the border of the

frames (we force all trajectories to have at least three points

in the frame).

Fig. 9 Point-Set Motion Generation (PSMG) algorithm. Here we

display a sample of 20 trajectories spanning 20 frames generated with

the PSMG algorithm, which will be used to produce synthetic data

to assess the performance of the ROADS and NFA algorithms. The

trajectories have an homogeneous and smooth motion. The points of

some trajectories have been highlighted to show the speed.

Additionaly, we impose the following constraints:

– we quantize the trajectory coordinates to the nearest in-

tegers, thus implicitely defining the scale of the measure-

ments to the size of one pixel;

– to avoid ambiguities when comparing the detection re-

sults to the ground truth, trajectories cannot share points

(otherwise we regenerate one of the trajectories) and when

adding noise points we avoid covering already existing

points.

– when we remove points we target solely trajectory points

(we do not remove noise points, so we can make ex-

periments with a varying number of trajectory points re-

moved, while keeping a constant number of noise points).

We choose a certain uniform probability α of removing

a point.

Performance estimates gathered in the experiments be-

low are averages of a measure over 400 runs of the algo-

rithmson random data. However, in some experiment results,

the measure that we compute might be undefined (for in-

stance when no trajectory was detected). In this case, we

only take experiment results that have a defined measure

into account, and measurements might thus consist of av-

erages of less than 400 repetitions.

A well-known interest of a-contrario methods are their

small number of parameters, which simplifies their use and

their study. More accurately, the NFA algorithm has exactly

one explicit parameter, the maximal NFA value of a trajec-

tory we can extract. The effect of this threshold is simple: it

drives the selection of a subsequence of the successively ex-

tracted trajectories. In other words, if ε < η , T(ε) ⊆ T(η),

where T(x) is the set of trajectories extracted by the al-

gorithm for a maximal value of the NFA equal to x. This

implies that changing the threshold will not dramatically

change the results, contrary to methods like ROADS that use

their parameters in the computations. In practice, as usually

done in a-contrario methods (see Desolneux et al (2008))

and unless otherwise specified, we set this threshold ε to 1.

In contrast, ROADS has many parameters, which can be

tuned to set ROADS in different “modes” that may be better

suited to certain types of data. Since these parameters might

(at least in theory) be learned on data, we felt it was fair to

try several sets of parameters and show the best results that

could be achieved in the comparisons.

Here is the way we proceeded: we tested six “modes” for

the ROADS algorithm on a small batch of data (40 repeti-

tions) for each experiment. We then selected the three modes

that would compare the best with the NFA algorithm on the

various experiments. Some of the modes will have strengths

and weaknesses compared to others, but they mostly have

the same global behaviour. In practice, the strengths and

weaknesses of the NFA method when compared to ROADS

do not dramatically change when including several modes,

rather than just the most general parameters for the ROADS

algorithm (mode 1 below). However, we include the results

of the three selected modes for the sake of completeness.

To be fair with the ROADS algorithm, which relies on

knowing the maximal speed and maximal smoothness crite-

rion of the trajectories in the data, we compute these values

and give them to the algorithm. More precisely, for each ex-

periment, and each parameter (eg. number of noise points

added), we compute the maximal speed dmax and maximal

smoothness criterion φmax before crippling (eg. removing

points) across the batch of 400 repetitions (rather than on

a per-file basis), and we feed them to the algorithm when

processing those 400 repetitions.

The first mode is the general ROADS algorithm with the

minimal number of present points set to pmin = 1 and the

maximal number of interpolated points equal to amax =+∞.

The second mode is pmin = 1 and amax = 0, that is, we disal-

low interpolation. The third mode is pmin = 3 and amax = 0,

which means that we disallow interpolation and we expect

to see at least 3 consecutive points on each trajectory seg-

ment. For the three other modes, we set pmin = 3, amax = 3,

but rather than choosing the maximal speed and maximal

smoothness criterion as given by their maximal value on the

batch of 400 repetitions, we select in turn: d4
max = 0.8 ·dmax,

φ 4
max = 0.8 ·φmax for mode 4, d5

max = 0.5 ·dmax, φ 5
max = 0.5 ·

φmax for mode 5 and d6
max = 0.5 ·dmax, φ 6

max = 0.8 ·φmax for

mode 6.

The other default ROADS parameters given in the im-

plementation that was sent to us by its authors were kept

unchanged (w = 0.1, Fℓ = Fg = 1.05, s = 2). We tried to

make some experiments with s = 3, but this would generally
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not change the results (and sometimes even have a negative

impact) and be much more computationally intensive. The

maximal number of hypotheses hmax that ROADS can ex-

plore when trying to find the best assignment in the time

scope has been kept equal to 300 as in the given implemen-

tation.

After running all the ROADS modes on small batches of

repetitions, we selected modes 1 (original ROADS), 3 and 4

as giving the best results. They will now be called modes A,

B and C (see Table 3). Note that these modes are not real al-

gorithms, since their parameters depend on true data values

(dmax and φmax) that are not estimated but computed from

an oracle. In that sense, the methodology we use to com-

pare the NFA and ROADS algorithms minimizes the issue of

parameter selection that is recurrent with ROADS (but this

issue will be discussed later, in particular in Section 4.3.4).

Note also that ROADS results could probably be slightly im-

proved by trying a larger number of parameters, however our

goal is not to make a study of ROADS, but rather to give an

idea of the state of the art performances, to make it possible

for the reader to appreciate the NFA results.

mode pmin amax dmax φmax

A 1 +∞ 1 ·dmax 1 ·φmax

B 3 0 1 ·dmax 1 ·φmax

C 3 3 0.8 ·dmax 0.8 ·φmax

Table 3 Parameters defining the three (best) modes of the ROADS

algorithm in the experiments used for comparison with the NFA algo-

rithm. Note that these three modes are based on an oracle that observes

the values of φmax and dmax on the (supposedly unknown) true trajec-

tories.

4.2.1 Comparison criteria

In the literature, tracking algorithms are generally compared

using two sets of criteria: the qualitative description of the

situations that the algorithm can handle (missing points, en-

try of points, etc), and the quantitative criteria given by the

number of real structures found in the sequence (eg. the

number of real trajectories, of real links between points,

etc.), as well as the precision and recall of the algorithm

for these different structures, defined by

precision =
# of correct structures found

# of structures found
, (31)

and recall =
# of correct structures found

# of actual structures
. (32)

The precision allows to measure the number of false pos-

itives (more precisely, 1−precision is the proportion of false

positives amoung found structures), while the recall is linked

to the number of false negatives (1− recall represents the

proportion of false negatives among actual structures). It is

important to realize that the analysis of an algorithm must

be done by considering simultaneously the precision and re-

call (or equivalent variables), since varying a parameter or a

threshold of an algorithm generally does not improve both

quantities but sets a different trade-off between the two, re-

sulting in a better recall and worse precision or vice-versa.

In some experiments, the presence of noise points limits

the interest of the number of real (whole) trajectories found

as a significant criterion, although it is widely used in the

litterature. Indeed, a well-placed noise point can sometime

better fit the trajectory than its “real” counterpart, thus giv-

ing a realistic and usable trajectory as output, yet one that

will not be counted as a real trajectory. We therefore chose

to generally use the number of correct links as a significant

structure for the precision and recall criteria. A link is simply

two points that appear consecutively on a trajectory (possi-

bly separated by a hole). Thus, if a noise point better fits a

trajectory than its “real” counterpart, we will only “miss”

two correct links (that include the real point), and “create”

two false links (that include the noise point). However, when

using the number of correct links, we do not account for tra-

jectory over-segmentation, under-segmentation, or mixing.

More precisely, if we split a trajectory in half, or if we join

two distinct trajectories, we will barely notice it from the

point of view of the number of correct links criterion, but

we would have noticed it using the number of correct tra-

jectories criterion. The same is true for “mixed” trajectories:

if two trajectories cross at a point in time, we might start

by following trajectory A, and then either choose to con-

tinue with trajectory A or to “hop” on trajectory B. In the

latter case, the number of correct links criterion will barely

be affected, but the number of correct trajectories criterion

would. This particular problem of crossing trajectories ap-

pears however to be difficult to solve properly, and would

certainly requires a priori knowledge. We believe that once

the trajectories have been detected, even if they have been

mixed, a simple post-processing task might be sufficient to

split crossing trajectories in part at the crossing points, and

reconstruct the real trajectories using an a priori (having the

trajectories bounce if we are following billard balls, or hav-

ing them cross if we are looking at fishes in an aquarium).

For the qualitative criteria, ROADS is able to account for

missing and spurious points, as well as points leaving and

entering the scene. The NFA algorithms come in two flavors,

one that allows for missing points, and the other that does

not. The latter is used for computational reasons (it is much

faster) in some of the following experiments. Both NFA al-

gorithms allow spurious points, as well as points leaving and

entering the scene.
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4.3 Trajectories without holes

4.3.1 Variable number of spurious points experiment

First, we investigate the influence of noise (spurious points)

on trajectory detection. We generate sequences spanning 20

frames and having 20 trajectories, and we add 0 to 320 noise

points uniformly at random to each image. Since we do not

remove points, we can use the version of the NFA algorithm

that does not take holes into account (Section 2). Then we

run the NFA (ε = 1) and the ROADS (modes A,B,C) algo-

rithms, and compare the results by computing the average

recall and precision over 400 repetitions. For the precision

estimate, the averaging is limited to the repetitions that lead

to at least one detection, since the precision is not well de-

fined when no structure is found.

As we explained earlier, the precision and recall are com-

puted for two different criteria: the number of correct links

and the number of correct trajectories. For the criterion based

on the number of correct links (Fig. 10), the NFA algorithm

performs much better in terms of precision: the precision re-

mains very high (above 80%) for the NFA algorithm, but

drops very fast for ROADS (under 20% when the number

of spurious points exceeds 140). This illustrates a classical

property of a-contrario detection models: the robustness to

noise. As concerns the recall, the NFA algorithm performs

better than all versions of ROADS up to 200 spurious points,

and is slightly under the C mode of ROADS beyond this

level of noise. Considering the number of false detections

made by ROADS at these levels of noise (the precision is

under 10%), the global comparison remains in favor of the

NFA algorithm. Table 4 clearly illustrates this: if ROADS

manages to find a lot of correct links, it is solely because

it makes a huge number of detections when the number of

noise points increases, whereas the NFA algorithm correctly

finds 20 trajectories in low noise and makes fewer detections

when the noise level increases.

When we look at the number of correct trajectories found

(Fig. 11), we see that ROADS is very good when there are

no noise points. The NFA algorithm is a bit less efficient

(both in terms of precision and recall) when the number of

spurious points is under 40, but for higher levels of noise

it is much more robust than ROADS, whose performances

collapse very quickly (both in terms of precision and recall).

A comparison with Fig. 10 is interesting here, because it

shows that the “number of correct trajectories” is a very spe-

cific criterion that is not very relevant for complex or noisy

data (the performances drop very quickly, much before the

“number of correct links” is significantly affected). As we

remarked before, there are plenty of reasons why a detected

trajectory could be counted as undetected while it is very

near an actual trajectory (a missing endpoint, a noise point

fitting better the trajectory smoothness, trajectory crossings,

# spurious points 0 40 120 200 280 320

NFA 20.1 20.2 18.9 15.5 7.1 6.1

ROADS(A) 20.0 70.0 151.5 227.1 300.9 335.7

Table 4 Average number of detected trajectories depending on the

level of noise. We compare the average number of trajectories detected

by the NFA and ROADS algorithms on data made of 20 real trajectories

spanning the entire sequence plus a varying number of spurious points

(from 0 to 320) in each frame. We see that NFA is very conservative

in its detections (it only detects the trajectories that it considers to be

non-ambiguous), and this results in a high precision (see Fig. 10). On

the other hand, ROADS makes many false detections (it should not find

more than 20 trajectories per sequence).

etc.). Also, it is clear that applications based on data cor-

rupted by a medium or high level of noise are more inter-

ested in a high rate of local point tracks (links) than in the

perfect reconstruction of a very small proportion of the com-

plete actual trajectories. This is why we shall not use the

“number of correct trajectories” criterion any more in the

following, but focus instead on the broader “number of cor-

rect links” criterion.

4.3.2 Variable density experiment

We now test how the algorithms behave when we increase

the number of points. In this experiment, we do not consider

spurious or missing points, so there is no noise and the dif-

ficulty of the trajectory detection problem only comes from

the ambiguities produced by the large number of mixed tra-

jectory points. We generate sequences of 20 frames, contain-

ing 10 to 140 points moving according to the PSMG model,

where we allow trajectories to leave the image frame (when

a trajectory leaves the image frame, we generate a new tra-

jectory starting at a random position in the image frame, in

order to keep a constant number of points throughout the se-

quence). Then we compute the precision and recall for the

correct links criterion (Fig. 12) for the ROADS and NFA

(without holes) algorithms.

When using the standard threshold (ε = 1) in the NFA al-

gorithm, we obtain results which are similar (slightly better)

than ROADS in terms of precision but significantly worse

in terms of recall. However, knowing that there is no noise

in these data, it makes sense to try to set the NFA threshold

to +∞ (that is, no threshold), and in this case the results ob-

tained by the NFA algorithms are similar to the best modes

of ROADS. This is an unexpected good surprise for the NFA

algorithm, which detects trajectories in a greedy way (by

iterating a best-trajectory-detection/trajectory-removal pro-

cess) without considering at all the global inter-frame as-

signment problem like ROADS. In the absence of noise points,

one could have expected this assignment step to bring a sig-

nificant edge to ROADS.
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Fig. 10 Influence of spurious points (# correct links criterion). On synthetic data containing 20 real trajectories spanning the entire sequence

(20 frames) plus a varying number of spurious points (from 0 to 320), we compute the average recall (left) and precision (middle) obtained with

the NFA and ROADS algorithms over 400 realizations, as a function of the level of noise (number of spurious points), or together (right). The

most striking result here is that the precision of the NFA algorithm is almost constant, no matter the number of spurious points. This means that

the NFA algorithm makes very few false detections (which is how we designed it), while keeping a recall rate that is above the one of ROADS as

long as the number of spurious points is under 200 (which is more surprinsing). On the contrary, the poor precision of the ROADS algorithm in

medium or high noise conditions makes its recall values quite unsignificant : if ROADS finds a large number of correct links, it is moslty because

it proposes a high number of links, most of which are false detections (see also Table 4).
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Fig. 11 Influence of spurious points (# correct trajectories criterion). The results of the experiments conducted in Fig. 10 are now analyzed

with a different criterion (the number of correct trajectories, instead of the number of correct links) for the definition of precision and recall. We can

see that the NFA algorithm behaves much better than all ROADS modes as soon as there is a reasonable level of noise, while ROAD gives slightly

better results when the noise level is very low. Note that the “number of correct trajectories” is a very specific criterion that is quite sensitive to

local ambiguities (and to the selection of trajectory endpoints), and for that reason it is not very relevant when dealing with complex and/or noisy

data.
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Fig. 12 Influence of the number of trajectories. The average recall (left) and precision (middle) are computed for the number of correct links

criterion on 400 repetitions of synthetic data made of a given number of random trajectories (varying from 10 to 140) in a sequence of 20 frames.

The analyzed algorithms are the three modes of ROADS (A, B, C), and two variants of the proposed NFA algorithm: the standard variant (threshold

ε = 1 on the expected number of false alarms), and the no-threshold variant (ε =+∞). As we can see, the precision of both NFA variants is very

high (like for ROADS B and C), but the recall of the standard NFA algorithm is significantly worse than the one of ROADS. In this setting where

no noise points are present, these missing detections can be avoided by removing the thresholding process in the NFA algorithm: for this ε =+∞

variant, both recall and precision are as good as the best modes of ROADS.
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4.3.3 Sensitivity to data smoothness

The trajectories generated in the previous experiments are

somehow smooth and quasi-linear (see Fig. 9). In order to

see if the algorithms can cope with trajectories that do not

completely fit the model, we try to detect trajectories having

a potentially high acceleration. For that purpose, we con-

sider different values of σ , the standard deviation of the

acceleration magnitude used in the PSMG synthesis proce-

dure (see the very begining of Section 4.2). The effect of

this parameter on the synthetized trajectories is illustrated in

Fig. 13.

We first reproduce the last experiment (Fig. 12), in which

there are no noise points and the number of synthetized tra-

jectories ranges from 10 to 140, and evaluate the effect of

the σ parameter both for the unthresholded NFA algorithm

(Fig. 14) and the ROADS B algorithm (Fig. 15). Whereas

the performance of the NFA algorithm barely depends on σ

(and remains high), ROADS exihibits a high sensitivity to

this parameter, and its performance quickly collapses as σ

increases. The same conclusion arises from the analysis of

data generated with 10 noise points per frame plus 20 syn-

thetic trajectories (see Fig. 16).

Thus, the sensitivity to data smoothness is a major dif-

ference between the NFA and ROADS algorithms. The poor

results obtained by ROADS for σ = 1 (see Fig. 15) could

probably be improved by a specific choice of the ROADS

parameters (specially adapted to σ = 1), but this kind of op-

timization will not be efficient on most real-world data, since

one can expect to observe a high variability of accelerations

on such data. Conversely, the robustness of the NFA algo-

rithm to the σ parameter is an indication that it can proba-

bly handle well real-world data containing various levels of

acceleration.

4.3.4 Parameter tuning

One major interest of most a-contrario methods is that they

yield “parameterless” detection algorithms, or, more pre-

Fig. 13 Changing the acceleration variance. A sample of 20 trajec-

tories generated using the PSMG algorithm, when the standard devi-

ation of the acceleration magnitude (σ ) is 1 (left) and 4 (right). The

points of two trajectories have been highlighted to show the speed. We

study the sensitivity of the algorithms to data variability by analyzing

their performances when we increase σ .

cisely, algorithms for which there exist natural values of the

parameters that work well in all situations. Both NFA algo-

rithms we propose here (the no-hole and hole versions) have

only one parameter: the threshold ε used to decide whether

a trajectory should be detected or not. Since ε corresponds

to an upper bound on the expected number of false alarms in

pure noise data, its default value is classically set to 1 (see

Desolneux et al (2008)). In Fig. 17, we examine the sensitiv-

ity of the NFA no-hole algorithm with respect to the choice

of ε . We use the same experimental setting as in Fig. 10 (20

frames containing 20 real trajectories plus several spurious

points), and examine how recall and precision are affected

by different choices of ε . The results clearly show that the

default value ε = 1 (log10 ε = 0) is nearly optimal, in the

sense that it is small enough to guarantee a strong precision

control, and large enough to offer good recall performances.

It is nonetheless interesting to notice that slightly better per-

formances (same precision and better recall) can be obtained

with greater values of ε (typically log10 ε = 2 or 3).

In Fig. 18, the average precision/recall curve obtained

with the NFA algorithm for different values of the threshold

log10 ε (in the case of 160 spurious points) is displayed on

the left. On the right, we report the average performances

of ROADS on the same data points, considered for several

values of the two main parameters of this algorithm, namely

the maximal speed and the maximal smoothness. The max-

imum speed parameter varies from the actual value in the

[−50%,+50%] range (from one curve to another) and the

maximum smoothness varies from the actual value in the

[−95%,50%] range (inside each curve). Note that the best

performances of ROADS (−25% speed,−90% smoothness)

are obtained inside these ranges.

As we can see, not only the performances of ROADS are

way under those of NFA on these data, but also the param-

eter tuning is much more difficult and crucial (we have to

explore carefully a bidimensionnal domain, while ε = 1 is

almost optimal for the NFA algorithm).

4.3.5 NFA as a criterion for trajection selection

Contrary to ROADS, which is by nature an algorithm (re-

lying in particular on some heuritics), the NFA we propose

here is first and foremost a criterion to compare trajectories.

The greedy algorithm we described, based on the iteration

of a “best trajectory (minimal NFA) detection / trajectory re-

moval” process, is only one possibility to use the NFA crite-

ria (5) and (23), and it is possible to design other algorithms

based on these criteria. In particular, given a trajectory de-

tection algorithm, it is always possible to use the NFA cri-

terion as a post-processing step that simply keeps from the

output of the considered algorithm the trajectories having a

NFA under a certain threshold ε .
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Fig. 14 Influence of the data smoothness (unthresholded NFA algorithm). We use the same experimental setting as Fig. 12, and examine the

sensitivity of the unthresholded (ε = ∞) NFA algorithm to the smoothness of the analyzed synthetic data. More precisely, we consider several

values of σ , the standard deviation of the acceleration magnitude (a parameter of the synthesis algorithm, PSMG), and estimate the precision and

recall (correct links criterion) as functions of the number of synthetic trajectories. We can see that the NFA algorithm is extremly robust to σ , since

both the precision and recall performance curves remain unchanged when σ varies.
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Fig. 15 Influence of the data smoothness (ROADS B algorithm). We analyze the same data as in Fig. 14, now with the ROADS algorithm, mode

B (the best mode for these data, see Fig. 12). Contrary to what happens for the NFA algorithm, the ROADS method exhibits a severe sensitivity to

σ , since both recall and precision performances, which were at the same level as the NFA algorithm for σ = 0.2 (grey shadow curves), are strongly

affected when σ increases. As we shall see in Section 4.5, the sensitivity/robustness to data variability has strong consequences when real-world

data are analyzed. Note incidentally the strong similarity between the recall and the precision curves, which comes from the fact that in this set of

experiments, the number of detected links is most of the time equal to the number of actual links (see Equation (31) and (32)), probably because

there are no spurious points.
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Fig. 16 Sensitiviy to data smoothness. The average recall and precision of the ROADS algorithm (modes A, B, C) and the standard NFA

algorithm (ε = 1) are compared in synthetic data made of 10 noise points per frame plus 20 random trajectories spanning 20 frames, in function

of the standard deviation of the acceleration magnitude (σ ). These results corroborate the ones obtained in Fig. 14 and 15: the performances of

the NFA algorithm are not too much affected by the increase of σ (except for the recall when the variance becomes large, probably because the

problem of recovering the true trajectories becomes objectively difficult), whereas the performances of all ROADS algorithms collapse, both in

terms of precision and recall.
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Fig. 17 Influence of the NFA threshold (ε). We consider the same experiment as in Fig. 10 (that is, 20 real trajectories spanning 20 frames,

with a given number of spurious points in each frame), and examine the influence of the threshold ε arising in the NFA algorithm. Recall and

precision curves are plotted in function of the number of spurious points, for different values of log10 ε (ranging from -4 to +∞). We can see

that the good precision control predicted by the theory for ε 6 1 (log10 ε 6 0) is well achieved, since the first significant precision losses occur

around log10 ε = 3. Hence, the default value log10 ε = 0 is a good compromise in this experiment, even if slightly better recalls (without significant

precision losses) can be achieved by using greater values like log10 ε = 2.
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Fig. 18 Performance and parameter tuning. We consider a particular case of Fig. 17, that is, synthetic data made of sequences of 20 frames

containing 20 real sequences and 160 spurious points on each frame. The average performances in terms of precision/recall is then evaluated for

the NFA algorithm (left) and the ROADS algorithm (right), with varying values of the algorithm parameters. For the NFA algorithm, the only

parameter is the treshold ε (or log10 ε , as displayed on the figure), and we can see that the default value log10 ε = 0 is very near to be optimal, as

was remarked earlier in the comment of Fig. 17. For ROADS, not only the performances are lower (especially in terms of precision), but they are

also quite sensitive to the choice of the maximum speed and maximal smoothness parameters.

We tested this possibility with the ROADS algorithm,

and reported in Fig. 19 the results obtained on the synthetic

data used in the previous section (parameter tuning). It ap-

pears that the mixed ROADS+NFA algorithm we obtain this

way performs much better than ROADS alone in terms of

precision (because the NFA filtering permits to eliminate

most false detections), but the performances in terms of re-

call do not attain the ones of the NFA algorithm alone. Hence,

the “NFA filtering” strategy is efficient but does not pro-

vide a particularly interesting new algorithm when applied

to ROADS. It is not impossible, however, that such a strat-

egy could be successful, in particular in situations where

only special kinds of trajectories appear and a good detec-

tion algorithm (in terms of recall) exists. In that kind of sit-

uation, one could expect NFA filtering to increase the preci-

sion up to a high level, without damaging to much the recall

performances. Note that such a strategy guarantees, thanks

to the properties of the NFA criterion (1), the control of the

number of false detections in random data.

4.4 Trajectories with holes

We now examine the performances of the second NFA algo-

rithm (Section 3), which is able to handle trajectories with

holes. We compare it to ROADS using the same kind of

conditions as in Fig. 10 (20 real trajectories, 20 frame, sev-

eral spurious points added in each frame), except that we

now consider uncomplete trajectories (20% of the points of

the true trajectories are removed before spurious points are

added). The conclusions made in the no-hole case remain

unchanged (see Fig. 20) : the ROADS algorithm detects true

trajectory links as well as the NFA algorithm, but at the price

of many false detections, whereas the NFA algorithm makes

almost no false detection (the precision remains above 0.9,

even for 70 spurious points per frame).
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Fig. 19 ROADS output filtered by the NFA algorithm. We consider the same synthetic data as in Fig. 18, but now add to the comparison of NFA

and ROADS algorithms a combination of them that consists in detecting trajectories with ROADS and keeping only those having a NFA under a

certain threshold ε . Since each algorithm depends on parameters (1 for NFA, 2 for ROADS, 3 for ROADS+NFA), we explore systematically all

parameter values and compute the upper performance enveloppe (curves named best). As we can observe, the major drawback of ROADS (which

is its high rate of false detections) can be corrected by NFA fitering, which results in a dramatic increase of precision (up to the level of the NFA

algorithm alone). However, this correction does not permit to attain the same level of recall (around 0.75 for NFA, versus 0.6 for ROADS+NFA in

the high precision zone). Note also that the mixed ROADS+NFA algorithm would be much more complicated to use than NFA alone, due to the 3

parameters that have to be set.
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Fig. 20 Influence of spurious points for trajectories with holes. We generate 20 trajectories spanning the whole sequence (20 frames), and

remove randomly 20% percent of the points, before we add a varying number of spurious points (from 0 to 70). On these synthetic data (with

400 repetitions), we estimate the recall (left) and the precision (middle) of the ROADS and NFA algorithms for the “number of correct links”

criterion. The obtained results are very similar to those of Fig. 10: the recall values are roughly the same for all algorithms, but only the NFA

algorithm manages to maintain a high precision (above 0.9) as the number of spurious points increases, while all ROADS variants make lots of

false detections.

4.5 Trajectories of real-world images

4.5.1 The snow sequence

In this part, we evaluate the relative performances of NFA

and ROADS algorithms on a real-world sequence named

snow. To produce this sequence, we filmed falling snowflakes

in front of a dark metal door with a high-speed (210 frames

per second) camera, and then subsampled the high speed se-

quence at 30 fps by taking 1/7 of the original frames. This

way, we obtained a classical 30 fps sequence of 40 images

of 480×360 pixels, on which we ran a simple point extrac-

tion process that we describe below. The high-speed version

was processed in the same way and used in order to build a

hand-made ground truth for trajectories.

We purposefully used a very simple extraction process

to produce data as objectively as possible, without trying to

adapt the detection algorithm in a way that would affect (and

ease) the tracking part. The snowflakes (but also some stains

on the metal door background) were detected in the follow-

ing way: we smoothed the images using a simple Gaussian

kernel, and we computed the mean background image on a

few frames of the subsampled (30 fps) sequence. We then

thresholded the image differences, processed the result with

a morphological closing, and extracted the connected com-

ponents. For each connected component, we kept the cen-

troid position, rounded to the nearest point on the integer

grid, as a trajectory data point.

In the resulting point sequence, many objects were de-

tected as several close points in the sequence (in particular

the stains on the background and some big snowflakes). This
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Fig. 21 An image of the snow sequence (inverted grayscale), with

overlayed detections.

made it sometimes hard to define the ground truth trajecto-

ries. To alleviate this difficulty, we kept only isolated points

by removing all points in the sequence that were below a

certain distance of another point (we chose the smallest ra-

dius that would resolve almost all ambiguities, in practice

12 pixels). An example of detections on one frame of the

sequence is displayed in Fig. 21. We finally extracted the

ground truth trajectories by hand.

The resulting point sequence is interesting because it

presents a mix of difficulties: there are widely varying tra-

jectory types (points in the background which practically do

not move, very slow snowflakes with curvy trajectories, very

fast snowflakes with almost linear trajectories). There are

missing points (missing detections or detections removed

because of the non-isolated point removal process), and a

few noise points (but the relatively high detection threshold

gave more missing points and fewer noise points).

Finally, we subsampled the high-speed point sequence

by keeping only 1/7 of the frames, and subsampled accord-

ingly the ground truth trajectories. The resulting trajecto-

ries containing less than 3 points were eliminated from the

ground truth reference, but the corresponding points were

kept in the data (thus becoming noise points). The final re-

sult of this process (30 fps snow point sequence and associ-

ated ground truth) is available on the website

http://www.mi.parisdescartes.fr/~moisan/astre/

The first row of Fig. 25 gives an idea of the ground truth

trajectories extracted from the snow sequence.

4.5.2 Parameter tuning

There are several parameters to set for ROADS (see Table

2), and different settings lead to varying results. Namely,

we can set the size s of the time scope (we chose 2, giving

the best results), the minimal number pmin of consecutive

present points for a trajectory to be considered (we chose

1, 3, 5 or 7), the maximal length of interpolation amax be-

fore we loose the trajectory (we chose 0, 4, 8 or +∞), the

maximal smoothness criterion φmax and the maximal speed

dmax. The way to choose the best parameters is not obvious,

but it appears in Fig. 22 that the most important parameter

is the maximum allowed speed dmax. The choices pmin = 1,

amax = 0 and φmax = 0.4 are among the best possible for the

snow point sequence, and would probably achieve reason-

able performances on similar sequences too. As concerns

the choice of dmax, the ground truth value (160) is much too

large, and much better results are obtained with dmax = 15.

This fact, which comes from the unability of ROADS to deal

with a variety of trajectory speeds at the same time, is ana-

lyzed more precisely later. Note that the ground truth value

of φmax is 0.58.

On the snow sequence, extracting trajectories using the

two NFA algorithms (the one with holes and the one without

holes) would return trajectories having a value of log10(NFA)

varying from−40 to +10, and the “optimal” precision/recall

values would be obtained (for both algorithms) by threshold-

ing this value with log10 ε =+5 (see Fig. 23). Even without

access to the ground truth, finding this value is relatively

easy, since one simply has to look for values slightly above

the (nearly optimal) default value log10 ε = 0. This strategy

works well in all synthetic experiments we considered ear-

lier, and also in the present case of the snow sequence. In

view of the false detection control offered when log10 ε = 0,

such a strategy is probably efficient on most (if not all) point

sequences.

Thus, as we mentioned before, one great interest of the

NFA algorithm is that the parameter tuning step is much

more easier than in other algorithms like ROADS, for which

it can be a real burden, especially when dealing with com-

plex data (with unknown ground truth) on which the effect

of a parameter change can be very difficult to evaluate. This

relative parameter sensitivity is illustrated in Fig. 24.

4.5.3 Comparison of ROADS and NFA algorithms

To compare the results obtained by the ROADS and NFA

algorithms on the snow sequence, we use for each algorithm

two different settings: the default setting and the best setting.

For ROADS, the default setting corresponds to amax =
+∞, pmin = 1, dmax = 130, and φmax = 0.58. Note that φmax =

0.58 corresponds to the oracle value, that is, the (theoreti-

cally unknown) maximum value of φ on the ground truth

trajectories. For dmax, we chose the value dmax = 130 to al-

low ROADS to detect all the trajectories in the main bulk of

trajectories (choosing dmax as the real maximal speed (160)

would give worse results). The best setting for ROADS was

chosen after a careful (and a bit cumbersome) parameter

analysis (see Fig. 22), which leads to amax = 0, pmin = 1,

φmax = 0.6, and dmax = 20.

Concerning the NFA algorithms, the default and best set-

tings simply correspond to log10 ε = 0 and log10 ε =+5 re-

http://www.mi.parisdescartes.fr/~moisan/astre/
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Fig. 22 ROADS parameter tuning on the snow sequence. We vary all ROADS parameters on the snow point sequence, and show the associated

performances in the (recall,precision) plane using the available ground truth for that sequence. Each column has a distinct amax = 0,4,8,+∞, and

each row has a distinct pmin = 1,3,5,7. Each curve corresponds to a different maximal smoothness criterion value φmax = 0.2,0.4,0.6 and each

point of a given curve corresponds to a different maximal speed criterion dmax = 2,5,10,15,20,25,30,40,80. The big red dot corresponds to the

parameters φmax = 0.4 and dmax = 15, which seem to achieve a good precision/recall compromise for all values of amax and pmin. The numbers

indicate the corresponding recall and precision.
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Fig. 23 NFA parameter tuning on the snow sequence. The per-

formances of the two NFA algorithms (with holes and without holes)

on the snow sequence are represented in the (recall,precision) plane

in function of the threshold parameter log10 ε . While the precision re-

mains merely constant, a good recall is obtained with the default value

(0) of log10 ε , but the results can be improved by choosing a slightly

greater value (log10 ε =+5), which corresponds for the two algorithms

to the “NFA best” point.
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Fig. 24 Comparison of NFA and ROADS algorithms on the

snow sequence. All results obtained on the snow sequence with the

NFA (with holes) and ROADS algorithms are represented in the (re-

call,precision) plane, with a point for each set of parameters (thus, the

optimal performance of each algorithm is the curve obtained as the

upper-right enveloppe of its points). We can see not only that ROADS

is much more sensitive to the parameter choice than the NFA algo-

rithms, but also that its overall performance in terms of recall is signif-

icantly worse, even with an optimal choice of its parameters.
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spectively (see Fig. 23). As for ROADS, the best setting was

chosen a bit arbitrarily, as one of the best recall values avoid-

ing a significant loss of precision. The strong L-shaped as-

pect of the precision-recall curves made that choice quite

easy (in the sense that other possible choices would not dif-

fer much).

The results obtained with ROADS and NFA algorithms

on the snow sequence (for both default and best settings) are

shown in Fig. 25, and the precision-recall performances re-

ported in Table 5. In the best configuration, all algorithms

attain similar performances in terms of precision, but at the

price of a high number of false detections (poor recall) for

the ROADS algorithm. Moreover, the default parameter set-

ting of ROADS gives very poor results, while the default

parameter setting of NFA (ε = 1) achieves a better perfor-

mance than the best ROAD settings. These results are ana-

lyzed in greater details in Fig. 26, where it appears that the

main limiting factor of the ROADS algorithm seems to be its

unability to handle simultaneously (that is, with a same set

of parameters) trajectories with various lengths and speeds.

mode algorithm recall (fg, bg) precision

default
ROADS 0.09 (0.19, 0.00) 0.08

NFA no holes 0.50 (0.44, 0.55) 0.99

NFA holes 0.55 (0.44, 0.64) 0.91

best
ROADS 0.40 (0.13, 0.65) 0.96

NFA no holes 0.71 (0.74, 0.68) 0.95

NFA holes 0.76 (0.78, 0.74) 0.92

Table 5 Performances of ROADS and NFA algorithms on the snow

sequence. The ROADS and NFA algorithms are run on the snow se-

quence with their default and best settings, and their performances are

analyzed in terms of recall and precision. In order to permit a more ac-

curate analysis, separate recall scores are also computed by consider-

ing separately fast foreground (fg) objects (snowflakes) and the almost

static background (bg) objects (staints on the background door). As we

can see, the comparison is clearly in favor of the NFA algorithm. With

the best settings, the obtained precision is roughly the same, but the

ROADS algorithm is unable to achieve an interesting detection rate on

the foreground objects (the snowflakes), which results in a poor overall

recall.

We end this section with a little discussion on computa-

tion times. On the snow sequence, the ROADS algorithms

runs in about 10 seconds for the default parameter values,

and in 0.1 second for the best parameter values (this does

not take into account, of course, the time needed to find these

best parameters values). In comparison, the NFA “no-hole”

algorithm runs in 1.1 second on the same data, while the

NFA “hole” algorithm takes 35 minutes. The speed ratio is

large, but it should be noted that in several applications such

a computation time is not a problem, because the production

of the point sequence may take much more time (consider a

biological experiment relying on cell tracking for example).

Moreover, there is an intermediate way of speeding up the

algorithm while keeping the interesting property of allow-

ing holes (which may be crucial for some data). It consists

in using the NFA with holes criterion (Equation 23) while

limiting the exploration of trajectories to those that do not

have holes longer than h (this requires only a very simple

modification of the algorithm). In this modified algorithm,

the integer parameter h has no influence on the detection

thresholds, but greatly decreases the computation time by

limiting the search to the most common trajectories. It may

be very useful to find a tradeoff in situations where compu-

tation time matters more than full detection performances,

or in a quick-analysis stage used before running the exact

(h = ∞) NFA “hole” algorithm. On Table 6, we reported the

influence of the h parameter on the computation time and

detection performances (precision/recall) for the snow se-

quence (log10 ε = 5).

h 0 1 2 5 ∞

time 1.1 s 1 min 4 min 12 min 35 min

recall 0.71 0.75 0.76 0.76 0.76

precision 0.95 0.94 0.93 0.92 0.92

Table 6 Limiting the size of holes in the NFA algorithm. This table

reports the computation time and the precision/recall performances ob-

tained after running on the snow sequence the NFA “hole” algorithm

(log10 ε = 5) restricted to trajectories having no hole longer than h (for

h = 0, the “no-hole” NFA algorithm is used). As h decreases, the com-

putation time drops quickly, while maintaining a high level of precision

and recall on that sequence.

5 Conclusion

We presented two point-tracking algorithms based on the a-

contrario framework, which are able to detect trajectories in

point sequences without additional information. The first al-

gorithm (NFA “no-hole”) is restricted to complete trajecto-

ries (that is, without holes), while the second (NFA “hole”)

can recover trajectories with missing points. Both algorithm

are very robust to noise, in the sense that they are designed to

avoid halucinating trajectories in noise data. Another strength

of these algorithms, which comes from the a-contrario ap-

proach, is that they do not require to set parameters: even

the only threshold that can be set (ε , which balances be-

tween precision and recall) may be left to its default value

(ε = 1).

When compared to the state-of-the-art ROADS algorithm,

these two algorithms perform very well, both on simulated

and real-world data. In particular, they show a very high

level of precision (that is, a very low rate of false alarms)

while maintaining a good level of recall (actual trajectories

detected). The absence of required parameter setting and the

robustness to trajectory variability (speed, length, acceler-
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(1a) Sample trajectories from ground truth (1b) Ground truth

(2a) NFA default (2b) NFA best

(3a) ROADS default (3b) ROADS best

Fig. 25 Trajectories found by ROADS and NFA algorithms on the snow sequence. First row: trajectories from ground truth (right) and a

sample of ground truth trajectories where successive points are represented as dots to give an idea of the objects speeds. Second row: trajectories

found by the NFA algorithm, for the default parameter value (ε = 1, left) and for the optimal parameter value (log10 ε = 5, right). The well-detected

trajectory links are drawn in black, and the wrong ones in gray. Third row: trajectories found by the ROADS algorithm, for the default parameter

values (left) and the optimal parameter values (right). As we can observe, the ROADS algorithm makes many false detections with the default

parameter values, and very few detections with the optimal parameter values. On the contrary, the NFA algorithm with the default parameter value

finds a large part of the actual trajectories and yields almost no false detection (see Fig. 23). When using the best parameter value, almost all

trajectory links are found, and only a few spurious detections occur.

ation) appears to be a very useful feature when real-world

point sequences have to be processed.

Compared to several classical tracking algorithm, the

two NFA algorithms we proposed have the advantage that

they are based on the exact minimization (and thresholding)

of a simple criterion, without any heuristic or approxima-

tion. This criterion not only permits to rate the quality of

each trajectory, but might also be used in a very simple way

to remove false detections from to the output of another al-

gorithm.

The “no-hole” algorithm is rather fast on standard data,

but the principal limitation of the “hole” algorithm is its high

computational and memory costs. However, these costs may

be mitigated by using the easily parallelizable nature of the
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Fig. 26 Detailed analysis of ROAD and NFA recall performances. The recall performances of ROADS and NFA “hole” algorithms on the

snow sequence (as given in Table 5) are analyzed in function of the maximal trajectory speed, for both best (left) and default parameter settings.

The possible values of the maximal trajectory speed are divided into bins (horizontal axis), and the blue histogramms indicate the number of

corresponding actual trajectories. Then, the recall of each algorithm is analyzed inside each bin, in red for NFA and in dashed green for ROADS.

As we can see, the ROADS algorithm does not manage to handle simultaneously trajectories with various speeds: the detection is focused either

on trajectories with middle-range speeds (default setting), or on very slow trajectories (best setting). The NFA algorithm, which combines the

trajectory smoothness and length into a single NFA criterion (hence avoiding a speed threshold), does not suffer from this dilemma, as it clearly

appears on the left (best setting) graph.

algorithm, or by reducing the size of the trajectory search

space with additional constraints (for example, a bound on

the maximum number of consecutive missing points).

We chose in this paper to use a trajectory smoothness

criterion based on the maximum acceleration, but similar

approaches could be developped as well for other local cri-

teria (speed, angular acceleration, etc.) and for other global

costs (a sum cost instead of a max cost for example). The

presentation was made in a two-dimensional setting, but the

generalization to higher dimensions (3D points, or more)

is straightforward. Note also that the proposed framework

could probably be extended to the case when points come

with features (intensity, shape, etc.), in the same spirit as

Noury et al (2010) extended the framework of Moisan and

Stival (2004) for Fundamental Matrix Estimation.
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