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Pathogen-induced Caenorhabditis elegans
developmental plasticity has a hormetic effect on
the resistance to biotic and abiotic stresses
Magali Leroy, Thomas Mosser, Xavier Manière, Diana Fernández Alvarez and Ivan Matic*

Abstract

Background: Phenotypic plasticity, i.e. the capacity to change the phenotype in response to changes in the

environment without alteration of the genotype, is important for coping with unstable environments. In spite of

the ample evidence that microorganisms are a major environmental component playing a significant role in

eukaryotic organisms health and disease, there is not much information about the effect of microorganism-induced

developmental phenotypic plasticity on adult animals’ stress resistance and longevity.

Results: We examined the consequences of development of Caenorhabditis elegans larvae fed with different

bacterial strains on stress resistance and lifespan of adult nematodes. Bacterial strains used in this study were either

pathogenic or innocuous to nematodes. Exposure to the pathogen during development did not affect larval

survival. However, the development of nematodes on the pathogenic bacterial strains increased lifespan of adult

nematodes exposed to the same or a different pathogen. A longer nematode lifespan, developed on pathogens

and exposed to pathogens as adults, did not result from an enhanced capacity to kill bacteria, but is likely due to

an increased tolerance to the damage inflicted by the pathogenic bacteria. We observed that adult nematodes

developed on a pathogen induce higher level of expression of the hsp-16.2 gene and have higher resistance to

heat shock than nematodes developed on an innocuous strain. Therefore, the increased resistance to pathogens

could be, at least partially, due to the early induction of the heat shock response in nematodes developed on

pathogens. The lifespan increase is controlled by the DBL-1 transforming growth factor beta-like, DAF-2/DAF-16

insulin-like, and p38 MAP kinase pathways. Therefore, the observed modulation of adult nematode lifespans by

developmental exposure to a pathogen is likely a genetically controlled response.

Conclusions: Our study shows that development on pathogens has a hormetic effect on adult nematodes, as it

results in increased resistance to different pathogens and to heat shock. Such developmental plasticity of C. elegans

nematodes, which are self-fertilizing homozygous animals producing offspring with negligible genetic variation,

could increase the probability of survival in changing environments.
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Background

Multicellular organisms have evolve powerful controlling

mechanisms to cope with diverse perturbations in order to

assure phenotypically quasi-invariant developmental out-

come [1]. However, development can be influenced by en-

vironmental stimuli, e.g., temperature, nutrients and oxygen

availability, and the presence of predators or parasites. The

exposure to stresses during development can be deleterious

or beneficial to the adults. For example, changes during de-

velopment influence adulthood disease propensity in

humans [2]. The adult Caenorhabditis elegans that transi-

ently passed through the stress-induced dauer larval stage

exhibit an extended lifespan compared to animals with nor-

mal development [3]. Environmental conditions, i.e.,

temperature, and oxygen and carbon dioxide concentrations

[4,5], were shown to direct the development of nematode

Strongyloides ratti to distinct parasitic or free-living adults

whose aging rates can differ by 30-fold [6]. Biotic factors can
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also induce dramatic developmental alterations. For ex-

ample, in response to waterborne cues from predators,

some Daphnia species grow protective helmets [7]. Micro-

organisms, which are a major environmental component,

also have an important impact on development. The effect

of microorganisms on development was established by com-

paring axenic animals against animals colonized with

microbes. In fruit fly and zebrafish, axenic development can

result in slower development, reduced fecundity, and/or

early death [8,9]. Axenic C. elegans have a slower develop-

ment, reduced fecundity, and increased lifespan [10]. In

mammals, microorganisms can affect the maturation of the

mucosal immune system [11], modulate the proliferation

and the differentiation of intestinal epithelia [12], regulate

angiogenesis [13], and play a key role in the extraction and

the processing of nutrients [14].

Microorganisms are classified as commensals when

they are innocuous and/or beneficial for the host, and

pathogens when they are harmful to the host [15]. It

should be noted that pathogens most frequently do not

kill their hosts, but decrease host fitness and increase

host susceptibility to environmental challenges. Adult

hosts mount different responses to various types of

microorganisms, which have a profound effect on the

hosts themselves. While it is clear that presence or ab-

sence of microorganisms can have an important impact

on development, how exposure to different types of

microorganism, i.e. innocuous and pathogenic, during

development affects adult animals health, stress resist-

ance and longevity is unknown. Thus, in this study we

examined the consequences of exposure of C. elegans

nematodes during development to different bacterial

strains. C. elegans was chosen because it is a well-

studied animal model for aging, development, and host-

pathogen interactions, and isogenic populations can be

generated and maintained. The bacterium Escherichia

coli was chosen because it is a well-studied model organ-

ism and a species with a wide virulence spectrum, ran-

ging from innocuous to highly pathogenic in diverse

hosts. It is also of particular importance that the stand-

ard laboratory food for C. elegans is one E. coli strain,

OP50 [16,17]. Survival/longevity of nematodes fed with

OP50 is considered as the baseline for all C. elegans

studies. E. coli strains are among the first colonizers of

the intestinal tract of newborn warm-blooded animals.

E. coli strains are mainly harmless commensals, but

some strains are able to cause intestinal and extra-

intestinal diseases, which by their frequency and poten-

tial severity cause considerable morbidity and significant

health-care costs [18]. We previously demonstrated that

E. coli pathogenic strains can significantly reduce the

lifespan of the adult C. elegans [19,20], and that E. coli

pathogenicity factors are responsible for the observed

lifespan reduction.

For this study, C. elegans nematodes were fed on dif-

ferent bacterial strains during development and then

with the same or different bacteria as adults. We found

that nematodes developed on a pathogen lived longer

when exposed to pathogens as adults than nematodes

that were developed on an innocuous strain. Some of

the findings observed with the pathogenic E. coli were

confirmed using a second pathogen, a Gram-positive En-

terococcus faecalis. The observed increase in nematode

lifespans is controlled by the DBL-1 transforming

growth factor beta-like, DAF-2/DAF-16 insulin-like sig-

naling, and partially by the PMK-1 p38 MAP kinase

pathways. Developmental exposure to one pathogen

increases resistance of adult nematodes to the same and

other pathogens, as well as to heat shock. Hence, devel-

opment on pathogens has a hormetic effect on adult

nematodes. Hormesis is a response of organisms to low

doses of a damaging environmental factor resulting in

resistance to higher doses of the same, but also to other

stressful environmental factors [21,22]. The possible

consequences of the observed hormetic effect in natural

environments are also discussed.

Results

For this study, we used the reference OP50 and patho-

genic 536 E. coli strains, as well as Enterococcus faecalis

OG1RF strain. The innocuity of the OP50 strain was

attested by observation that the mean lifespan of the C.

elegans fer-15 nematodes was the same on the live and

UV-killed OP50 bacteria [20]. fer-15 is a derivative of

the C. elegans N2 strain, which we used in the present

study. Strain 536 is an uropathogenic E. coli isolated

from a patient with acute pyelonephritis [23]. Pathogen-

icity of the 536 strain was previously demonstrated in

the mice sepsis model and in C. elegans [19]. Adult fer-

15 nematodes exposed to strain 536 have a 50% shorter

mean lifespan compared to nematodes exposed to the

OP50 strain [19]. Deletion of pathogenicity islands II

and III significantly reduces the pathogenicity of strain

536 in C. elegans fer-15 [19], while it does not reduce

the bacterial growth rates nor resistance to biologically

relevant stressors [24]. This shows that strain 536

reduces C. elegans lifespan because of its pathogenicity

factors and not because it does not provide an adequate

food source.

N2 nematodes were developed on one bacterial strain

and late L4 stage nematodes were subsequently main-

tained on the same strain or transferred to a different

one. For this reason, the designation of each experi-

mental condition contains: (i) the name of the strain

on which larvae were developed and (ii) the name of

the strain to which adult nematodes were exposed.

For example, OP50/536 indicates that nematodes were
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developed on OP50 and then transferred onto strain

536. All experiments were performed at 25°C.

Lifespan of nematode populations developed on different

bacterial strains

First, we compared the developmental success, defined

as the fraction of nematodes reaching adulthood from

an initial number of eggs, for C. elegans fed either on

the OP50 or on the pathogenic 536 strain. We observed

no significant difference (unpaired t-test, p > 0.7549) in

the fraction of nematodes that reached adulthood be-

tween these two experimental conditions (mean± s.e.m.:

91.6%± 1.7% developmental success on OP50, n = 263;

92.3%± 1.6% on 536, n = 262). Therefore, it can be con-

cluded that nematode development is robust and that

larvae survival is not affected by the pathogen.

Second, we investigated the lifespan of adult nematodes

on the innocuous OP50 strain after they were developed

on OP50 or on the pathogenic 536 strain. For these

experiments, we eliminated bacteria from the L4 nema-

todes by antibiotic treatment and then transferred them

on OP50 strain. No difference (Gehan-Breslow-Wilcoxon

Test (GBWT), p = 0.7334) in lifespan was observed be-

tween OP50/OP50 and 536/OP50 nematodes (Figure 1A).

These results suggest that development on pathogens

produce healthy adult nematodes that, when exposed to

non-stressful conditions, have identical lifespan to that of

nematodes exposed to the innocuous bacterial strain

throughout life.

Third, we investigated the lifespan of adult nematodes

on the pathogenic 536 strain after they were developed

on OP50 or on the 536 strain. As shown in Figure 1B,

the exposure of nematodes to the pathogen during de-

velopment increased median lifespan (TD50) by 50%

(OP50/536 TD50= 4 days and 536/536 TD50= 6 days,

GBWT, p < 0.0001). The increase of survival was also

significant during the reproductive period (days 1 to 4)

(OP50/536 survival at day 4 SD4= 35.8% ± 5.5% to 536/

536 SD4= 67.9% ± 5.3%, chi-square test, p = 1.18×10-7).

The beneficial effect of developmental exposure to pathogen

on the adult nematodes’ lifespan was also observed with

Gram-positive Enterococcus faecalis OG1RF strain, i.e.,

OG1RF/OG1RF nematodes had significantly increased

(GBWT, p = 0.0007) median lifespan compared to

OP50/OG1RF nematodes (Figure 1C).

Observed lifespan extension for nematodes developed

and maintained through adulthood on pathogens could be

explained by adaptation to a particular type of stress

encountered during development, which renders adult

nematodes more resistant to the same stress, i.e., exposure

to the pathogenic 536 strain. In order to verify this possi-

bility, we developed nematodes on E. coli 536 strain, elimi-

nated the bacteria from the L4 nematodes by antibiotic

treatment and transferred them on the E. faecalis OG1RF

strain. Development on E. coli 536 strain significantly

(GBWT, p < 0.0001) increased lifespan of adults exposed

to the E. faecalis OG1RF strain (Figure 1D) to the same

extent as development on OG1RF itself did (Figure 1C).

These results show that the beneficial effect of develop-

mental exposure to pathogens on nematode lifespan was

not due to adaptation to one particular type of strain or

stress, but also provides protection against other bacterial

strains. Developmental exposure to Gram-positive and

-negative bacterial strains has a cross protective effect, in-

dicating that the recognition of membrane lipopolysac-

charides, which are present at the surface of Gram-

negative but not of the Gram-positive bacteria, is not

involved in this phenomenon.

C. elegans signaling pathways involved in lifespan

extension following development on pathogens

We examined the role of different immune signaling

pathways in the nematode lifespan extension following

development on pathogens. We first evaluated if two sig-

naling pathways implicated in C. elegans development

and in adult immunity are involved in the observed

development-induced modulation of the adult lifespan:

the DAF-2/DAF-16 insulin-like pathway [25] and the

DBL-1 transforming growth factor ß-like (TGFß-like)

pathway [26]. These two signaling pathways function

from the first larval stages of nematode development,

are involved in the signaling and regulation of the im-

mune response to pathogens and in stress responses to

environmental factors in adults [27]. When DAF-2/

DAF-16 insulin-like or TGFß-like pathways were inac-

tivated, there were no significant lifespan differences

between adult populations exposed to the pathogen

after development on OP50 or on 536 (Figure 2A-C,

GBWT, daf-16 mutants p = 0.9368 and p = 0.4082 for

alleles mu86 and mgDf50, respectively, dbl-1 mutant

p = 0.1985). We also tested the implication of another in-

nate immunity pathway, the p38 MAP kinase pathway

via the pmk-1 mutant [28]. The difference in lifespan of

the pmk-1 nematodes between OP50/536 and 536/536

conditions was reduced, but still significantly different

(GBWT, p = 0.0106, Figure 2D). The mean lifespan of

pmk-1 nematodes was 25% shorter compared to the two

other innate immunity pathways mutants, which indi-

cates that the lack of differential survival of daf-16 and

dbl-1 mutants was not due to the saturation of our assay

with maximal killing. Thus, it can be concluded that the

observed reduction of the mortality of adult N2 nema-

todes (Figure 1B) is mainly modulated by the DAF-2/

DAF-16 insulin-like pathway and TGFß-like pathway.

Therefore, the observed modulation of adult nematodes

lifespan by developmental exposure to pathogens is likely

a genetically controlled nematode response.
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C. elegans resistance to heat shock following

development on pathogens

Induction of the heat shock response in C. elegans limits

the accumulation of damaged proteins, increases stress

resistance, resistance to pathogens, and lifespan [29-31].

It was also reported that the capacity to induce the heat

shock response early in life correlates positively with the

nematode life expectancy [32]. For these reasons, we

tested whether development on pathogens (i) increases

the capacity of adult nematodes to resist heat shock, and

(ii) if it results in the induction of the heat shock

response.

First, we found that nematodes developed on patho-

gens resist significantly (unpaired t-test, p = 0.0009) bet-

ter than nematodes developed on OP50 to a 10 h heat

shock at 35°C (Figure 3A). Second, we measured the in-

duction of the heat shock response in these two groups

of nematodes. For this, we used a C. elegans strain carry-

ing a fusion of a gene coding for the Green Fluorescent

Protein (GFP) with the hsp-16.2 gene promoter. The

expression of hsp-16.2 gene, which codes for a chaperon,

is regulated by the Heat Shock Factor 1 (HSF-1) and

DAF-16. We observed that development on the 536

strain, compared to development on OP50, induced a

significant (unpaired t-test, p = 0.0138) upregulation of

hsp-16.2 expression in L4 nematodes (Figure 3B). The

observed difference was also highly significant (Tukey’s

Multiple Comparison Test (TMCT), p < 0.001) in 2-day

old nematodes (Figure 3C). The difference in hsp-16.2

induction cannot be explained by the amount of live

bacteria in the intestinal tract, as there was no signifi-

cant difference in the number of live bacteria in the

intestine of 2-day old nematodes exposed to the 536

strain whether they were developed on OP50 or 536

(Figure 3D). Therefore, the induction of hsp-16.2

depends on developmental and adulthood conditions,

and correlates with the resistance to heath shock and

the lifespan extension of adult nematodes exposed to

pathogens, relative to the nematodes developed on the

OP50 strain.

Figure 1 Survival of C. elegans developed on different E. coli strains. (A) Survival of N2 nematodes to the innocuous E. coli OP50 strain

following development on the pathogenic 536 strain (536/OP50 n= 93 and OP50/OP50 n= 90, independent replicates N= 3). There is no

difference in nematodes survival despite the difference in developmental condition indicating that development on the pathogenic 536 strain

has no deleterious effect on survival. (B) Survival of N2 nematodes to E. coli 536 strain following development on the pathogenic 536 strain

(536/536 n= 80 and OP50/536 n= 80, N= 7). N2 nematodes had a significantly greater survival on strain 536 following development on 536 than

on OP50 strains. (C) Survival of N2 nematodes to E. faecalis OG1RF strain following development on E. faecalis OG1RF (OG1RF/OG1RF n = 86,

OP50/OG1RF n= 81, N= 3). As seen with E. coli 536, development on E. faecalis OG1RF prior to adults exposure to the same strain significantly

increases nematodes survival compared to those developed on OP50 strain. (D) Survival of N2 nematodes to E. faecalis OG1RF strain following

development on E. coli 536 (536/OG1RF n= 100 and OP50/OG1RF n= 104, N = 3). Development on E. coli 536 significantly increases survival to

E. faecalis OG1RF strain in a similar manner as development on E. faecalis OG1RF, and is thus not due to adaptation to one bacterial strain during

nematode development. Graphed: ns: not significant, *: p < 0.05, **: p < 0.01, ***: p < 0.001, ****: p < 0.0001.
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Figure 2 C. elegans signaling pathways involved in developmental modulation of longevity. Survival of C. elegans mutants to E. coli 536

pathogen following development on strains 536 (536/536) or OP50 (OP50/536) and life through OP50 control (OP50/OP50). (A & B) C. elegans

daf-16 mutants allele mu86 (536/536 n= 80, OP50/536 n= 80, and OP50/OP50 n= 80, independent repeats N = 4) and mgDf50 (536/536 n = 65,

OP50/536 n= 56, and OP50/OP50 n= 61, N = 3), (C) C. elegans dbl-1 mutant (536/536 n= 127, OP50/536 n= 124, and OP50/OP50 n= 88, N = 4),

and (D) C. elegans pmk-1 mutant (536/536 n= 80, OP50/536 n= 78, and OP50/OP50 n= 77, N = 8). No differential survival of daf-16 and dbl-1

nematodes to E. coli 536 based on developmental conditions was observed, while a small but statistically significant difference in survival to E.

coli 536 strain was observed for C. elegans pmk-1 mutant depending on developmental conditions. Graphed: ns: not significant, *: p < 0.05,

**: p < 0.01, ***: p < 0.001, ****: p < 0.0001.

Figure 3 Heat-shock resistance and hsp-16.2 induction in C. elegans developed on different E. coli strains. (A) Survival proportion of

nematodes developed on OP50 or 536 E. coli strains after a 10 h heat shock at 35°C. Following development on strain 536, 20% more nematodes

survived the 10 h heat shock treatment compared to nematodes developed on strain OP50. (B) Level of fluorescence of the hsp-16.2::GFP

reporter in young adult nematodes (day 0) developed on E. coli 536 pathogen (n=75) or OP50 strain (n=75). (C) Two day-old adult nematodes

exposed to the 536 pathogenic strain had a higher level of induction of hsp-16.2 following development on strain 536 (536/536 n=150) than

those developed on strain OP50 (OP50/536 n=88) and those maintained life through on strain OP50 (OP50/OP50 n=98). (D) Quantity of live

bacterial cells in the intestinal tract of 2-day old nematodes exposed to E. coli 536 following development on strains 536 (536/536 n=5) or OP50

(OP50/536 n=5) and controls maintained life through on strain OP50 (OP50/OP50 n=5). The observed difference in the level of hsp-16.2 induction

cannot be correlated with the amount of live bacteria colonizing the nematode intestinal tracts as there was no significant difference in the

mean bacterial density in the intestine of 2-day old nematodes exposed to E. coli 536 independently of whether they were developed on strains

OP50 or 536. Graphed: mean ± s.e.m., *: p<0.05, **: p<0.01, ***: p<0.001.
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Discussion

We showed that the development of nematodes on bac-

terial pathogens increases the lifespan of adult nema-

todes exposed to the same or different pathogens, and

increases resistance of nematodes to heat shock. It is im-

portant to note that such increased robustness of nema-

todes developed on pathogens is not due to the culling

of weak individuals from the population, as the same

fraction of nematode larvae reached adulthood following

development on pathogenic and innocuous strains. In

addition, there was no difference in the lifespan of adult

nematodes on the innocuous OP50 strain after they

developed on OP50 or on the pathogenic 536 strain,

which indicates that development on a pathogen does

not damage larvae.

Hosts can defend themselves from pathogens using a

variety of strategies [33]. The avoidance strategy mini-

mizes the risk of infection with pathogen and econo-

mizes the nematode’s resources, which otherwise would

be used for the activation of its defenses [34]. The avoid-

ance strategy requires that host first detects pathogens.

In nature, C. elegans is predominantly found in decaying

organic matter where it feeds on microorganisms, which

can be good or harmful food [35]. C. elegans possesses a

complex chemosensory neuronal system that allows dis-

crimination between these two groups of microorgan-

isms based on the detection of a number of volatile

odorant and water-soluble compounds [36-38]. For ex-

ample, nematodes are repulsed by a cyclic lipodepsipen-

tapeptide produced by Serratia marcescens, a bacterium

that is harmful to nematodes [39]. C. elegans also has

the capacity to identify pathogens and harmful xenobio-

tics by monitoring its essential cellular activities, such as

protein translation or oxidative respiration. Perturba-

tions of these functions induce aversion behavior and

defense mechanisms [37]. We did not study the molecu-

lar basis of the discrimination between different bacterial

strains by nematodes. However, the fact that the

observed hormetic effect is not bacterial species specific

suggests that it is more likely induced by the nematode

surveillance of its own essential cellular functions, rather

than by recognition of the specific compounds produced

by bacteria.

Nematodes also have a capacity to memorize, into

adulthood, environmental cues encountered during early

life [40]. Can avoidance behavior based on memory of

past conditions contribute to the longer lifespan of

nematodes developed on a pathogen and exposed to the

same pathogen as adults, compared to nematodes devel-

oped on an innocuous strain and exposed to pathogens

as adults? This is probably not the case in our study be-

cause independently of the developmental conditions,

nematodes have the same amount of the 536 pathogenic

bacteria in their intestine, which indicates that 536/536

nematodes do not live longer than OP50/536 nematodes

because they avoid pathogens and eat less. The fact

that the intestinal pathogen burden is independent of

developmental conditions also suggests that, in our

case, the longer lifespan of nematodes developed on,

and then exposed to, pathogens as adults were not

the result of enhanced capacity to kill bacteria, but

likely due to the increased tolerance to the damages

inflicted by pathogenic bacteria. Tolerance is defined

as the ability to limit negative impact on hosts by in-

creasing cellular repair and maintenance capacity,

without affecting pathogen burden [33,41]. Increased

investment in repair and maintenance function often

comes with a cost for the host. In our study there is

no evidence of such cost as, nematodes developed on

pathogen and then transferred to non-stressful condi-

tions, i.e., innocuous bacterial strain, have lifespans

identical to the lifespan of nematodes exposed to the

innocuous bacterial strain throughout life. However, it

cannot be excluded that the cost of tolerance becomes

evident under experimental conditions that are closer to

those found in natural environments.

From a molecular perspective, increased tolerance to

pathogens of the nematodes developed on pathogens

could be, at least partially, due to the induction of the

heat shock response. We observed that adult nematodes

developed on pathogens induce higher levels of expres-

sion of the hsp-16.2 gene than nematodes developed on

an innocuous strain. The hsp-16.2 gene expression was

shown to be regulated by DAF-16 and HSF-1 transcrip-

tion factors in the N2 nematodes [42-44]. It was previ-

ously observed that the expression level of hsp-16.2 in

individual nematodes exposed to a mild heat shock

was predictive both of thermotolerance and lifespan

[32,45]. Overproduction of HSP-16.2 also suppresses

beta-amyloid peptide toxicity [46]. There are many other

examples of the correlation between increased stress re-

sistance and longevity in nematodes [47]. For example, the

DAF-2/DAF-16 insulin-like pathway mediates stress re-

sistance, longevity and pathogen resistance in C. elegans

[48]. This supports our hypothesis that the nematode’s re-

sponse to developmental conditions observed in this study

is genetically controlled by the DAF-2/DAF-16 insulin-

like pathway. However, it was reported that daf-16 and

dbl-1 mutants have an increased amount of live bac-

teria in their intestine compared to N2 nematodes

when maintained on E. coli OP50 [49]. On the contrary,

a pmk-1 mutant has similar amount of live bacteria in

its intestine when compared to that of N2 nematodes.

Thus, the absence of increased survival for daf-16

and dbl-1 mutants could also be due to an increased

intestinal bacterial load following development on the

pathogen, counterbalancing the beneficial effect of

early pathogen exposure. Further investigation of
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these signaling pathways will be necessary to deter-

mine the direct or indirect involvement of these path-

ways in the control of nematode response to

developmental exposure to bacterial pathogens.

Observed effect of developmental conditions on the

adult lifespan and stress resistance could be described as

hormetic. Hormetic response in C. elegans, i.e., increased

stress resistance and/or increased lifespan, was shown to

be induced with sub-lethal abiotic stresses, like oxidative

and thermal stress [47,50]. However, all forms of stress,

e.g. UV or ionizing radiation, do not produce hormetic

effects in C. elegans [51]. Our study shows that some bi-

otic factors, i.e., bacterial pathogens, can be added to the

list of known hormetic stressors. One possible explan-

ation for the hormetic effects of exposure to low levels

of stress is that the level of response to stress is more

than necessary to repair the damage caused, thus in-

creasing the nematode defense capacity and allowing tol-

erance to future stresses. A particularity of our study,

contrary to other above-mentioned studies of the hor-

metic effect of different stressors on C. elegans, is that

we induced hormetic effect by exposing nematodes to

bacterial pathogens during development as stressors. We

hypothesize that hormetic effects of early exposure to

bacteria are common in nature as they were observed in

a variety of organisms. For example, priming of innate

immunity by pathogens has been reported for inverte-

brates such as C. elegans [52,53] and insects [54]. In

some cases, immune priming can even be trans-gener-

ational, as observed for the mealworm beetle Tenebrio

molitor [55]. It was shown that the presence of bacteria

during the first week of the Drosophila melanogaster

adult life increases the flies lifespan [56]. The early life

interactions between human host and bacteria, which

largely occur through the colonization of the newborn

intestine, are also increasingly recognized as being crit-

ical for the maturation of human immune system as well

as for the metabolic homeostasis of the host [57]. New-

born babies whose intestinal colonization was modified

by the mode of delivery (natural vs. Cesarean section) or

by antibiotic treatments, show a delay in immune re-

sponse maturation [58]. Early exposure of children, up

to five years of age, to non-septic bacteria-rich environ-

ments, has a significant protective effect against the

onset of allergies [59]. Epidemiologic studies also show

an increased occurrence of autoimmune diseases in

human populations in “clean” environments [60]. These

observations constitute the basis of the “hygiene hypoth-

esis,” according to which the lack of exposure to

microbes due to high hygienic conditions commonly

found in the Western world prevents correct maturation

of the immune system and predisposes individuals to al-

lergies and other immune diseases. These observations

also correspond to the programming concept, which

refers to stimuli that during critical periods of develop-

ment may “program” the long-term structure or function

of an organism [61]. Our data establish that, at least in

the C. elegans model, intentional administration of par-

ticular bacterial strains during early life could indeed

modulate disease susceptibility during adulthood.

Our study strongly suggests that variations induced

during development are maintained in genetically identi-

cal adult nematodes, as it was previously reported for

the nematodes that transiently passed through the

stress-induced dauer larval stage [3]. In C. elegans, the

molecular basis of such life-long memory of modifica-

tions of developmental transcription profiles is mediated

by histone modifications [3]. Whether histone modifica-

tions are also responsible for the phenotypes we observed

remains to be determined.

Although natural selection might favor improved sens-

ing and response mechanisms, adaptation could also re-

sult in the emergence of more sophisticated response

strategies. Developmental plasticity allows for the pro-

duction of phenotypically diverse offspring in popula-

tions of genetically identical individuals, which increases

the probability of survival in changing and challenging

environments. The evolution of the ability to mount

such predictive developmental modifications depends on

a number of features, such as the cost of developmental

plasticity, ability to correctly detect and interpret envir-

onmental cues that depends on the frequency by which

various environmental conditions are encountered, and

finally on the long term fitness advantage provided.

Therefore, as described for E. coli plus Saccharomyces

cerevisiae [62], and C. elegans [52], the observed

phenomenon could extend beyond merely sensing and

responding immediately to a given stimulus and could

contribute to a predictive response strategy that uses the

appearance of a stimulus as a cue that future conditions

might be stressful.

Conclusions

Our study shows that development on pathogens has a

hormetic effect on adult nematodes, as it results in

increased resistance to different pathogens and to heat

shock. Such developmental plasticity of C. elegans nema-

todes, which are self-fertilizing homozygous animals

producing offspring with negligible genetic variation,

could increase the probability of survival in changing

environments.

Methods

Nematode and bacterial strains

C. elegans N2 (ancestral) strain used for all experiments

unless otherwise indicated was kindly provided by J.J.

Ewbank (Marseille, France). Strain TJ375 (gpIs1[hsp-

16.2::GFP]) and mutant strains CF1038 (daf-16 (mu86)
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I), GR1307 (daf-16 (mgDf50) I), NU3 (dbl-1 (nk3) V),

and KU25 (pmk-1(km25) IV) were obtained from the Cae-

norhabditis Genetics Center (Minneapolis, Minnesota,

USA). N2 control was included in every experiment with

nematode mutants.

E. coli strains used in this study were pathogenic

strain 536 [23], and the uracil deficient strain OP50

[16]. Genotypic and phenotypic characterization of

these strains was described previously [19]. Entero-

coccus faecalis strain OG1RF [63] (previously named

Streptococcus faecalis OG1-RF1) was kindly provided

by Dr. P. Courvalin (Paris, France).

Nematode maintenance and synchronization

Nematodes were maintained at 25°C on nematode growth

medium (NGM) agar plates seeded with 0.1 mL LB grown

stationary phase bacterial culture, and incubated 18 h at

37°C to densities of 7.3 × 109±3 × 108, 1.4 × 1010±5 ×

109, and 1.5 × 1010±2 × 109 CFU/plate for E. coli OP50,

536, and E. faecalis OG1RF, respectively. Age-

synchronized populations of nematodes were initiated

from eggs recovered following sodium hydroxide (0.5 M

final) and sodium hypochlorite (0.96% final) treatment of

gravid adults maintained at 25°C and fed E. coli OP50. All

assays were carried out at 25°C with nematodes synchro-

nized a second time at the end of development by select-

ing exclusively nematodes at the end of the 4th larval (L4)

stage based on vulva morphology.

Survival assays

Survival assays were carried out at least in triplicate. For

survival assays, all nematode strains were developed and

maintained at 25°C, transferred onto new plates every

day during the first 5 days to eliminate progeny, and

every 2–3 days thereafter. Dead nematodes were scored

every 24 h. A nematode was considered dead when it

failed to move spontaneously or respond to a gentle touch

with a platinum wire. Nematodes buried in the agar or

on the sides of the plates were censured from the ana-

lyses. Lifespan was measured as the time from the end

of L4 larval stage (beginning of adulthood) until death.

Elimination of bacteria from nematodes intestine

When experiments involved nematodes developed on E.

coli 536 or E. faecalis OG1RF and then transfer to a dif-

ferent bacteria strain, L4 stage nematodes were washed

and treated with antibiotics to remove the initial strain

from their intestinal tract. Nematodes were washed in

M9 minimal salts buffer to remove excess bacteria from

their surface and then incubated in NGM for 1 h to

allow them to expurgate intestinal bacteria. Nematodes

were then treated for 1 h with 20 μg/ml Polymyxin B

antibiotic in M9 minimal salts buffer. Finally, nematodes

were washed in M9 minimal salts buffer and transferred

on plates containing the appropriate bacterial strain. The

effect of antibiotic treatment on nematode survival was

taken into account by applying the treatment to all

nematode populations involved in the assays. For sur-

vival experiments, treated nematodes were regularly

checked for the absence of the initial bacterial strain. A

few nematodes were sampled from the survival assay,

crushed in a Dounce homogenizer and the extract plated

on LB agar media for colony observation (see below

quantification of live bacterial cells in nematode intes-

tine for detail on this procedure). Colony morphology

and color allowed for direct visual discrimination be-

tween the different bacterial strains used in this study.

Measurements of nematode heat shock resistance

L4 nematodes developed on OP50 or 536 were washed

in Polymyxin B antibiotic (see above elimination of bac-

teria from nematodes intestine). Then, nematodes were

transferred onto OP50 lawn in order to measure heat

shock resistance using nematodes that have the same

bacterial strain in their intestines. After allowing nema-

todes to recover for 12 h at 25°C, they were transferred

for 10 h at 35°C. Dead nematodes were scored at the

end of the 10 h incubation at 35°C. This assay was per-

formed in triplicate with internal triplicate controls.

Measurements of nematode heat shock protein (HSP)

expression

HSP expression measurement assays were carried out with

C. elegans strain TJ375 carrying a fluorescent reporter

under the control of the hsp-16.2 promoter (gpIs1[hsp-16-

2::GFP]). Nematodes were collected with cold (4°C) sterile

water, fixed immediately by addition of an equal volume of

cold 2% formaldehyde in 2 × Phosphate Buffered Saline

(PBS), and incubated 10 min on ice. Fixed nematodes were

collected by gravity sedimentation and washed in cold 1×

PBS before being loaded into a 96-well plate kept at 4°C in

the dark until analyzed. Two-day old adults were sepa-

rated from their progeny on the first and second day by

gravity sedimentation in 15 ml falcon tubes for 2 min in

M9 minimal salts buffer, the larvae being removed with

the supernatant. The absence of eggs and larvae was veri-

fied under a dissecting microscope. Gene reporter levels

were quantified with the COPAS Biosort (Union Biome-

trica) as described in [64]. Briefly, worms were analyzed

for size (TOF) and green (GFP) fluorescence. Raw data

were filtered on the TOF (200–1000) to exclude dust, bub-

bles, and aggregated worms. Fluorescence data was

acquired from two independent experiments, including in-

ternal replicates.

Quantification of live bacterial cells in nematode intestine

Two-day old nematodes were handled at 4°C to stop

defecation. Nematodes were transferred to a new plate
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without bacteria, recovered in 1.5 ml 10-2 M MgSO4, and

vortexed 30 seconds to remove excess bacteria from

nematode cuticles. Then, individual nematodes were again

transferred to a new plate without bacteria and rubbed

across the plate to remove all bacteria from the cuticle.

Nematodes were then individually crushed in a Dounce

homogeneizer with the fitted mortar (B) in 10-2 M

MgSO4. The amount of live bacteria was determined by

plating of appropriate dilutions on LB agar. After over-

night incubation at 37°C, grown colonies were counted.

Statistical analyses and figures

Statistical analyses and graphic displays were made using

Prism 5.0d from GraphPad Software, Inc. Measurement

assays were analyzed by unpaired t-test for comparison

of two groups or, when more than two groups were

involved, using 1-way analysis of variance (ANOVA)

followed by Tukey’s Multiple Comparison Test (TMCT)

also known as Tukey-Kramer test, comparing all pairs

of group and allowing for unequal sample sizes. Survival

assays were analyzed using the Gehan-Breslow-

Wilcoxon Test (GBWT) comparing conditions by pairs

and allowing for unequal hazard ratios. Data presented

are mean ± s.e.m., unless otherwise indicated. For sur-

vival assays, a typical, representative experiment is pre-

sented, the absence of significant difference between

replicates was verified using GBWT .
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