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Abstract—Object recognition methods usually rely on either
structural or statistical description. These methods aim at de-
scribing different types of information such as the outer contour,
the inner structure or texture effects. Comparing two objects
then comes down to averaging different data representations
which may be a tricky issue. In this paper, we introduce an
object descriptor based on the spatial relations that structures
object content. This descriptor integrates in a single homoge-
neous representation both shape information and relative spatial
information about the object under consideration. We use this
description in the context of image retrieval and show results on
a butterfly image database compared with both GFD and dense
SIFT descriptors. These results show that our method is more
efficient to distinguish the objects where the spatial organization
is a discriminative feature.

I. INTRODUCTION

Many computer vision applications rely on the automatic

description of an object image. For instance, object recognition

and image classification usually use features that endeavour

to describe different types of information such as the outer

contour, inner structure or texture effects. These different

image informations often lead to different types of data which

can be tricky to combine and may lead to inhomogeneous

mixing of data [8].

A. Our Contribution

In this paper, we introduce a new image representation that

capture these heterogeneous information in a single homo-

geneous representation. Given a decomposition of an object

image into several disjoint layers of pixels, representing the

different patterns presented by the object, the key idea of our

method is to encode the pairwise spatial relations between all

these layers. When applied to each layer with itself, the spatial

self-relations encode first order shape information whereas

for two different layers, the spatial relations encode relative

structure and texture aspects. We show that a simple image

decomposition such as the quantized level sets of the image

gives interesting results, thus preventing from considering

complex segmentation techniques.

B. Related Works

1) Spatial Relations: A core aspect of our method is the

encoding of the pairwise spatial relations. Literature in this

domain can be structured in two main categories : qualitative

and quantitative approaches. Qualitative approaches use sym-

bolic relations such as positioning relations (left, right, below,

above, etc.) and topological relations (inside, outside, etc.), see

for instance [7] [6]. In this paper, we seek to capture a precise

description of possibly complex objects and to characterize

both large-scale and low-scale directional relations. Depending

on the content meaning, the object patterns may also contained

unconnected subsets of pixels. Therefore, in our context the

spatial relations cannot be summarized in a symbolic manner.

Quantitative approaches gather methods that precisely de-

scribe the relative positions between two binary objects. Fuzzy

quantitative methods are popular in different application do-

mains such as spatial reasoning in medical images [2] and

handwritten symbol recognition [5]. These methods produce a

fuzzy landscape per considered potential direction. Combining

these landscapes in order to capture the omnidirectional spatial

organisation of possibly sparse object is not obvious. In this

paper, we build on a quantitative model called force histogram

[10], thereafter noted F-histograms. This model straightfor-

wardly handles sparse objects and summarize their relative

position in every directions in a single histogram. Basically,

a F-histogram between two objects is a circular distribution

measuring the relative attraction between these objects along

every desired directions.

2) Object Recognition: Aside from spatial relations rea-

soning, object recognition is an attested issue with many

approaches offering good results irrespective of the spatial

relations of the object patterns. Among them, the Generic

Fourier Descriptors [16], hereafter named GFD, measure a

shape descriptor. This descriptor belongs to the MPEG-7

standard and its key idea is to compute several polar Fourier

transform of the image for several angular and radial frequen-

cies, the descriptor being the normalized histogram composed

by the values of these transforms.

Another classical method is the SIFT descriptor [9] which

consists in a 128-dimensional vector containing a set of gra-

dient orientation histograms computed. The keypoints where

histograms are computed are either extracted using the SIFT

detection algorithm or consist in a matrix of points regularly

spaced on the image (dense SIFT). Around every keypoints, a

neighbourhood, divided in 4x4 smaller areas, is considered. On

each areas histograms with 8 intervals are then computed. The

final descriptor for each keypoint consists in a concatenation

and a normalisation of the 16 histograms.

In this paper, we compare our proposed descriptor to these

two generic and widely used methods. Our aim is to show



Fig. 1. Overview of the proposed descriptor. A query image (a) is first decomposed into its N grey level sets Si (b), N = 3 on this Figure. Based on
the set of Si, we then compute all F-histograms between every pairs (Si, Sj) for all 1 ≤ i ≤ j ≤ N inside a symmetric table (c). Each F-histogram in this
table represents the description of the spatial relations between each considered pair of layers. Note that the diagonal part of the table represents self-relations,
hence encoding shape information. The upper triangular of this symmetric structure embeds pairwise relations information between different layers.

the interest of our proposed model considering the inner

spatial relations to efficiently recognize objects, compared to

methods such as the GFD, that encodes exclusively shape

information and as the SIFT, that models the organisation of

local information.

C. Method Overview

Our goal in this paper is to demonstrate the descriptive

strength of the inner pairwise spatial relations of an object

content. We therefore assume that the objects we consider have

been preprocessed using a background-foreground segmenta-

tion step. That is, the background pixels are not considered in

our computations. As summarized in Figure 1b, our method

first decomposes the object into N layers Si of its level sets.

We then build a table formed by all the F-histograms computed

between every pairs (Si, Sj), ∀i ∈ {1..N}, ∀j ∈ {i..N} (see

Figure 1c). Consequently, this structure contains two types of

information encoded in a single homogeneous representation.

First the upper triangular encodes the pairwise spatial relations

between every different layers. The diagonal encodes self

spatial relations, which naturally models shape information of

each considered layer.

II. F-HISTOGRAM DECOMPOSITION

In this section, in order to keep the paper self-contained, we

first recall the definition of a F-histogram between two binary

objects. Then, we will introduce the proposed object image

representation based on a table of F-histograms.

A. F-Histograms

Originally, force histograms were introduced to solve the

problem of measuring the fuzzy relative direction between two

objects [10]. Basically, these are circular histograms measured

along the directions θ ∈ [0, 2π[. Looking for the principal

mode of this histogram is somehow equivalent to find the best

θ that support the proposition "the first object is in direction

θ from the second one".

To compute such a F-histogram, the objects are immersed in

a space where an attractive force ϕr operates. The definition of

this force can vary widely, depending on the feature searched

inside the objects. In order to have an intuitive representation

of the involved spatial relations, this attractive force ϕr is

typically defined by a gravitational force based on the pairwise

point distance:

∀(x, y) ∈ R
2 × R

2, ϕr(x, y) =
1

(dxy)r
(1)

where dxy is the Euclidean distance between two points x
and y.

The F-histogram value along a direction θ between two

objects A and B corresponds to the global force exerted by

A with regard to B in the direction θ. In other words, this

force FAB
r (θ) is the integral sum of the infinitesimal forces

ϕr(a, b) where (a, b) ∈ A × B and the vector ab is along

direction θ. Due to computational considerations, this global

force is calculated on a set Cθ of θ-oriented longitudinal cuts

of the objects. Each of these longitudinal cut is built upon a

straight line δθ along direction θ, and is composed of two sets

cA and cB of possibly disjoint segments (see Figure 2):

cA = δθ ∩A

cB = δθ ∩B

The force exerted along δθ by every points of cA with regards

to every points of cB can be written as:

fθ(δθ) =

∫

cA

∫

cB

ϕr(a− b) db da (2)

The F-histogram value between A and B along the direction

θ is then:



FAB
r (θ) =

∑

δθ∈Cθ

fθ(δθ)

=
∑

Cθ

∫

δθ∩A

∫

δθ∩B

ϕr(a− b) db da (3)

Fig. 2. The global attractive force between A and B along the direction
θ is the integral sum of infinitesimal forces computed on longitudinal cuts
(cA, cB).

According to the value given to r, the resulting F-histogram

can vary widely, giving more or less importance to closer

objects. For r = 0 the F-histogram gives the same influence

to distant organized structures from any local point. In this

specific case, a histogram of forces is somehow equivalent

to the previously proposed histogram of angles [11]. Yet

practically, it has been shown that histograms of angles are not

isotropic, not robust to rasterization and more computationally

expensive [10]. Moreover, histogram of angles do not handle

overlapping objects which will appear in our situation when

computing the histogram between the same layers of a decom-

posed object. Note that F-histograms are naturally translation

invariant, symmetric and isotropic [10].

B. F-Histogram Decomposition

Unlike the classical mode searching use of a F-histogram

[10], we propose to consider the whole F-histogram as a

complete signature of the relative positions between two

possibly sparse objects, and therefore benefit from the whole

information contained in the F-histogram.

In order to capture the inner spatial relations that structure

the object, we first have to break this object up into multiple

parts. Object segmentation is still an open research issue and

no generic robust algorithm exists yet. Besides, our goal is

different here since we aim at cutting out the object into

its subparts. Therefore instead of using a complex segmen-

tation algorithm, we choose a more pragmatic approach by

decomposing a greyscale object image Q with scalar values

Q(x) ∈ [0; 1[, into its N intensity level sets Si (Figure 1b).

That is:

∀i ∈ [1;N ], Si =

{

x ∈ R
2,

i− 1

N
≤ Q(x) <

1

N

}

(4)

This underlying assumption is also supported by the fact

that mathematical morphology has shown that image contours

locally coincide with level-set borders [13], [3]. By doing so,

we thus adopt an oversegmentation, yet following the inner

contours and whose behaviour will not vary from an image to

another.

Based on this level-sets decomposition, we then compute

all F-Histograms of every pair (Si, Sj). These F-histograms

encode first-order shape information for each layer when

i = j and second-order spatial relations information when

i 6= j, both in the same mathematical formalism (Figure

1c). Considering the force ϕr used during these computation,

one may have a twofold strategy. First, the self (i = j)
F-histograms along the table diagonal are computed with a

force ϕ0. The natural overlapping induced by a level set with

itself indeed lead to infinite forces when using ϕr 6=0. Dealing

with the spatial relations information contained in (i 6= j)
F-histograms, the ϕ2 force (gravitational case) can be used.

This choice is preferable in this specific case, since it models

relative spatial relations, as suggested in [10].

The FHD of an object image Q is thus defined as:

FHD(Q) =
{

FSiSi

0

}

∀i∈{1..N}

∪
{

F
SiSj

2

}

∀(i,j)∈{1..N}2,j>i
(5)

This decomposition sums up N(N+1)/2 F-histograms, made

of N shape descriptors elements (diagonal), and N(N − 1)/2
relative spatial relations elements (upper triangular).

Let notice that due to the invariant properties of F-

histograms, FHD are naturally translation invariant and sym-

metric. Depending on the application requirements, one can

make FHD scale invariant by normalizing the histogram

surfaces by the object surface. Finally, F-Histograms being

isotropic [10], rotation invariant can be pursued by estimating

the principal mode of the FHD or by minimizing the distance

between globally shifted FHDs.

C. FHD Matching

In order to test the FHD descriptor on recognition and

retrieval tasks, a dissimilarity measure is needed. The F-

histograms are first normalized by their surface in order to

give an equal potential contribution to each F-histogram of

the FHD. The distance between a query image Q and a target

image T is then defined as:

D(Q, T ) = α×Dshape(Q, T )

+(1− α)×Dspatial(Q, T ) (6)

where :

Dshape(Q, T ) =
1

N

N
∑

i=1

dχ2

(

FSiSi

0 (Q),FSiSi

0 (T )
)

(7)

Dspatial(Q, T ) =
2

N(N − 1)
×

N
∑

i=1

N
∑

j=i+1

dχ2

(

F
SiSj

2 (Q),F
SiSj

2 (T )
)

(8)

where N is the number of layers of the FHD and α is the

weight level given to the shape information compared to the

spatial relations information. We use a chi-square distance to



measure the distance between two single F-histograms, defined

as:

dχ2(a, b) =

imax
∑

i=1

(a(i)− b(i))
2

a(i) + b(i)
(9)

III. EXPERIMENTAL RESULTS

Several experimentations have been conducted using differ-

ent sets of parameters for the FHD compared to two classical

recognition methods, the Generic Fourier Descriptors (GFD)

and the dense SIFT descriptor (dSIFT).

A. Image Database

Our experiments have been conducted on a database made

from a subset of the Peale Collection [1]. This database

is composed of 318 greyscale butterfly images grouped in

28 classes along the butterfly species. The typical height

of an image is 640 pixels. All these images being over an

homogeneous background, we first preprocessed the database

by easily segmented the image backgrounds using a simple

magic wand thresholding technique. Samples of this database

are shown in Figure 3 and the subset we use is available

online1. Butterflies are a typical case wherein inner spatial

relations are a distinguishing feature making the wings patterns

a direct link with the species. Another interesting application

domain one can think about is botany taxonomy (flowers,

mushrooms, . . . ).

Fig. 3. Sample images from our database (reproduced with the permission
of The Academy of Natural Sciences, Philadelphia) [1]

B. Method Settings

In order to assess the descriptive strength of our Force

Histogram Decomposition (FHD), we compare them wih the

Generic Fourier Descriptors (GFD) and the Dense Scale In-

variant Feature Transform (dSFIT). We present in this section

all the settings we use for these methods in our experiments.

The cross validation is made using a leave-one-out method,

that is, for every object image, the remaining of the dataset

serves as the training data. This method has been favoured

due to the size of our database, leaving other approaches less

statistically significant.

1http://www.math-info.univ-paris5.fr/~mgarnier/dicta2012/

1) FHD settings: The FHD are tested with several param-

eter sets, evaluating the gain from multiple forces histograms

and the weighting between shape information and spatial

relations parts of the feature. The robustness of F-histograms

to the directions quantization has been studied in [10]. In

order to avoid any binning effects, all the FHD are computed

along 180 directions, regularly spanning the [0, 2π] interval

with a 2 degrees step. In Equation (6), we test α values in

{0, 0.2, 0.4, 0.5, 0.6, 0.8, 1}. Let notice that for α = 0 the

shape descriptor is suppressed to promote the spatial relations

and vice versa for α = 1.

2) GFD Settings: The GFD are based on the Polar Fourier

defined as:

PF (ρ, θ) =
∑

x

∑

y

I(x, y)× e[2jπ(
r(x,y)

R
ρ+v(x,y)θ)] (10)

where r(x, y) and v(x, y) are respectively the radius and angle

of the polar coordinates of the point (x, y), I is the intensity

function and the parameters ρ and θ are bounded: 0 ≤ ρ < R
and 0 ≤ θ < T with R and T respectively the the radial and

angular resolutions. Finally, the GFD is written:

GFD(m,n) =

{

|PF (0, 0)|

M11
,
|PF (0, 1)|

|PF (0, 0)|
, ...,

|PF (m,n)|

|PF (0, 0)|

}

(11)

where m and n are the radial and angular frequencies and

M11 is the order 1 moment. In our experiments, the GFD are

computed on the object images with ρ = 4 and θ = 9, thus

giving a signature of 37 bins, as suggested in [15].

3) dSIFT settings: The dSIFT are extracted with a step

of 16 pixels and at several scales, 4 and 8 giving both local

information and a more global one. The recognition is then

made using a classical pair-wise image matching. For every

points of the query image, the matching algorithm searches

for the best matching point in the target image, if the resulting

match gives a good contrast, this point vote goes to the target

image. The finally matched image is the one with the higher

votes. Although this pairwise image matching protocol is time

consuming, it has been chosen due to its similarity with the

matching used for the GFD and the FHD. In our experiments,

we use the VL_Feat library SIFT implementation [14].

C. Results and Discussion

Mean computational times for the processing of one image

using N = 4 on an Intel CPU Xeon 3.0 GHz are the following.

The FHD computation is approximately 2.3 seconds using a

C programming implementation. Querying on the butterflies

database using an unoptimised Matlab implementation takes

around 5.2 seconds. Let notice that the overall complexity is

O(N2).
1) Recognition Rates: The recognition rates of the FHD are

shown in Table I. The Table II shows the recognitions rates

for thebest set of parameters {α = 0.8, N = 4}, as opposed

to the GFD and the dSIFT performance rates.



TABLE I
RECOGNITION % FOR THE WHOLE FHD WITH THE MIXED FORCES ϕ0

AND ϕ2 .

N\α 0 0.2 0.4 0.5 0.6 0.8 1
1 3.46 29.9 29.9 29.9 29.9 29.9 29.9
2 12.6 32.7 36.2 37.4 38.1 39.6 41.5
4 45.9 53.5 53.5 53.1 53.8 56.3 44.3
8 49.7 52.2 52.8 53.1 52.2 49.7 41.8
16 41.8 45.3 46.9 47.5 48.4 51.9 47.2

TABLE II
RECOGNITION % FOR THE FHD, THE GFD AND THE DSIFT.

descriptor FHD GFD dSIFT

recognition % 56.3 28.6 43.4

The rates in Table I approximately double from N = 2
to N ≤ 4 which show the interest of encoding inner layers

information. N = 1 is indeed equivalent to only considering

the whole object shape and thus gives results close to the

GFD, see Table II. A second observation is that the values’

increase tend to slow while N increases and start to decrease

for N ≤ 8. This fact is first related to our database. Butterflies

present homogeneous patterns with a rather limited range of

luminance: black, white and one to three grey values, pleading

to adopt an optimal value of N = 4 or N = 8. Secondly, the

χ2 distance compare F-histograms from the same combination

of indices (i, j) for both Q and T objects. This histogram-to-

histogram distance is thus neither illumination invariant nor

contrast invariant. More sophisticated distances such as inter-

histograms distances should be investigated in order to tackle

this issue.

The columns α = 0 and α = 1 in Table I show respectively

the results with only the spatial relations descriptor and with

only the shape description of every layer. These two sets of

results point out the interest of extracting the information from

both shape and spatial relations.

2) Precision-Recall Tests: Since we used a classified

database, for each query, we can also compute the precision-

recall curve, classically defined as follows. Consider a query

image belonging to a class of size C. For a given number W of

images returned by this query, Wtp is defined as the number

of returned images belonging to the same class as the query

(true positives). The precision-recall curve is then obtained by

plotting the ratio P = Wtp/W (precision rate) as a function

of R = Wtp/C (recall rate) [4]. Averaged precision-recall

curves over the whole database using the best parameters of

the different compared methods are shown in Figure 4.

3) Qualitative Retrieval Results: Several comparative re-

trieval results are shown in Figure 5. These results show that

the FHD are more efficient to distinguish the butterflies where

the spatial organization is a discriminative feature, compared

to the dSIFT and the GFD.

The GFD focuses on the global shape and is thus not

able to correctly discriminate two butterflies having the same

global contour, yet being from different species due to different

Fig. 4. Precision-recall curves over the whole database using the best sets
of parameters for the FHD, the GFD and the dSIFT descriptors.

wing patterns (see for instance second column, third row of

Figure 5). On the first query of the same Figure, and contrary

to the two other methods, the FHD manages to capture the

spatial organisation of the sparse black stripes.

The dSIFT are actually not meant to be used with a classical

matching but rather with a learning and a bag of word for

instance. In this experiments, numerous matches are made

between keypoints in homogeneous areas with very low dis-

tances overwhelming relevant matches thus giving descriptors

with a very low variance all over the database hence some

of the poor visual results. Despite this, the dense SIFT have

been prefered to the classical SIFT keypoints detection. Since

our database present objects after a background segmentation,

most of the keypoints using classical SIFT remain located on

the contrasted outer border. Such an approach lead to results

similar to the GFD.

4) FHD Noise Robustness: The robustness of our descriptor

is also evaluated on the same image database altered with

noise. To do this, we choose the set of parameters giving

the best recognition results and apply them with the same

protocol but on a noised version of the database. We used two

different kind of noise, that are speckle and Gaussian noise,

with increasing variances, as shown in Figure 6. Speckle noise

tests assess the robustness of the F-histograms to possibly low

quality parsing of the level sets. It also shows that the FHD

are more sensitive to Gaussian noise, as the recognition rates

drops along with the variance increase.

IV. CONCLUSION

We proposed in this paper a feature based on spatial

relations for grayscale object recognition. Based on a ho-

mogeneous stack of F-histograms, it naturally embeds both

absolute and relative spatial informations about the considered

object. It thus encodes information both on outer and inner

contours and information on the spatial relations that organize

the underlying grey levels of the object. We showed that a

simple level-sets quantization is sufficient to capture enough

information to discriminate highly structured images.



Method Query Target 1 Target 2 Query Target 1 Target 2

FHD

GFD

dSIFT

FHD

GFD

dSIFT

FHD

GFD

dSIFT

FHD

GFD

dSIFT

Fig. 5. Eight retrieval results on a 318 butterflies public database, obtained with the different compared descriptors: the proposed F-Histogram Decomposition
(FHD), the Generic Fourier Descriptor (GFD) and the dense SIFT descriptor (dSIFT). The FHD well succeeds to capture both the inner relative spatial
organisation of the grey levels and absolute shape of the different patterns composing each butterfly.



Fig. 6. Recognition rates on the butterfly database altered with either
Gaussian or speckle noise.

The limitations of our approach are twofold. First we

presently do not encore the color content. Since this informa-

tion might be of prime importance in several applications, this

future work is one of our very next goals. By using bin-to-bin

distances, another aspect that has been eluded is the circularity

of F-histograms. Circular distances such as CEMD [12] could

be investigated here although normalization constraints raise

several issues.
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