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Abstract

This paper is a survey of existing estimation methods for pharmacokinetic/pharmacodynamic
(PK/PD) models based on stochastic differential equations (SDEs). Most parametric estima-
tion methods proposed for SDEs require high frequency data and are often poorly suited for
PK/PD data which are usually sparse. Moreover, PK/PD experiments generally include not
a single individual but a group of subjects, leading to a population estimation approach. This
review concentrates on estimation methods which have been applied to PK/PD data, for SDEs
observed with and without measurement noise, with a standard or a population approach. Be-
sides, the adopted methodologies highly differ depending on the existence or not of an explicit
transition density of the SDE.

KeyWords: Stochastic differential equations; Pharmacokinetic; Pharmacodynamic; population
approach; maximum likelihood estimation; Kalman Filter; EM algorithm; Hermite expansion;
Gauss quadrature; Bayesian estimation

1 Introduction

Pharmacokinetics (PK) aims at describing the relationship between the dose administered and
the exposure to the drug, i.e. the total concentration of drug in the body. Pharmacodynamics
(PD) quantifies the relationship between the drug exposure and the response to this exposure.
PK/PD models are often described by differential systems derived from physiology. In general, the
proposed models are deterministic, that is, the observed kinetic/dynamic is driven exclusively by
internal deterministic mechanisms. However, real pharmacological processes are always exposed
to influences that are not completely understood or not feasible to model explicitly. Ignoring
these phenomena in the modeling may affect the estimation of PK/PD parameters and the derived
conclusions. Therefore there is an increasing need to extend the deterministic models to mod-
els including a stochastic component. A natural extension of deterministic differential equations
model is a system of stochastic differential equations (SDEs), where relevant parameters have been
modeled as suitable stochastic processes, or stochastic processes have been added to the driving
system equations (Ditlevsen and Samson, 2012).

The first papers encouraging the introduction of random fluctuations in PK/PD were published
by D’Argenio and Park (1997) and Ramanathan (1999a,b). The authors underline that PK/PD
have contributions from both deterministic and stochastic components: drug concentrations follow
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determinable trends but the exact concentration at any given time is not completely determined.
For example, Ramanathan (1999b) proposes a stochastic one-compartment PK model with a vari-
able elimination rate. More sophisticated PK/PD models have then been proposed with multiple
compartments, non-linear or time-inhomogeneous absorption or elimination (see for example Fer-
rante et al., 2003; Tornøe et al., 2004a; Ditlevsen and De Gaetano, 2005b; Ditlevsen et al., 2005;
Picchini et al., 2006).

Parameter estimation for SDE has been highly tackled in the statistical literature, often moti-
vated by financial applications (see Sørensen, 2004, for a review). However, many suggested solu-
tions require high frequency data and are not suited for PK/PD data where designs are usually
sparse. Especially, estimation methods based on approximations of the continuous-time observa-
tion likelihood (namely the Girsanov formula), which require a high number of data and a small
time step between two successive observations, are not adapted. Moreover, PK/PD data are more
and more analyzed through a population approach when data from several subjects are considered
simultaneously. This yields to PK/PD models with random parameters. Combining SDE with a
population approach is quite appealing but raises inference challenges.

In this paper, we concentrate our review on estimation methods adapted to the particular charac-
teristics of PK/PD data. After a short presentation of some examples of PK/PD SDEs in Section 2,
we introduce some preliminary comments on the likelihood functions depending on the considered
observation model (with and without measurement noise) in Section 3. Section 4 is about estima-
tion methods for standard PK/PD SDE: when SDEs are directly observed, the reader is introduced
to techniques based on (i) exact maximum likelihood estimator when explicit solution is available
or (ii) Hermite expansion of the transition density, (iii) approximation of the spectral density if
the SDE has no explicit solution. When the SDE is observed with an additive measurement error,
methods are based on (iv) Kalman filter and its extended version or (v) Monte Carlo approxima-
tion of the likelihood. Section 5 discusses estimation methods within a population approach: we
detail methods based on (i) exact maximum likelihood estimator when linear SDE with random
effect and no measurement noise are considered, (ii) Gauss-Hermite quadrature to approximate the
likelihood, possibly coupled with (iii) Hermite expansion of the transition density, (iv) Bayesian
approach, (v) Kalman filter and linearization of the likelihood, (vi) Expectation-Maximisation
algorithm. The paper finishes with some discussion (Section 6).

2 Stochastic PK/PD models

In this section, we present some stochastic compartmental PK/PD models that have been proposed
in the literature. This list is far from being exhaustive but aims at presenting typical situations,
each of them involving a different level of statistical inference difficulty.

2.1 From deterministic to stochastic model in PK

Let us first consider a very simple PK model proposed by Ramanathan (1999a), namely a one
compartment PK model with first-order elimination ke and an injected intravenous bolus dose D
of drug. The kinetic of the drug concentration Ct in the body at time t > 0 is described by the
following deterministic differential equation:

dCt
dt

= −keCt, C0 =
D

V
,
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where V is the volume of the compartment. This equation has an explicit solution: Ct = D
V e
−ket.

Now, assume that ke is not constant in time but randomly fluctuates around a mean value as
ke + ξt, where ξt is a Gaussian white noise process. Then ξtdt can be written as γdBt, where Bt is
a Brownian motion and γ is a constant parameter. Incorporating this noise into the deterministic
model, Ct becomes a stochastic process, solution of the following SDE:

dCt = −keCtdt+ γCtdBt, C0 =
D

V
. (1)

That process –known as geometric Brownian motion– has an explicit expression

Ct =
D

V
e−ket exp

((
−γ

2

2

)
t+ γBt

)
.

This stochastic process, which is log-normal, only takes positive values, which is noticeable when
modeling concentration. Parameters to be estimated are θ = (ke, V, γ).

A stochastic one compartment PK model with first-order absorption has also been considered
by Ferrante et al. (2003):

dCt = (ka/V − keCt)dt+ γdBt, C0 =
D

V
, (2)

where ka is the absorption rate. This process –known as an Ornstein-Uhlenbeck process– has an
explicit expression

Ct =
D

V
e−ket +

ka
V ke

(1− e−ket) + γ

∫ t

0

e−ke(t−s)dBs,

and is Gaussian with explicit mean and variance. Parameters to be estimated are θ = (ke, ka, V, γ).
Multi compartments PK models have also been extended to stochastic versions. For example, a

two compartments model is described by the deterministic system

dC1t

dt = −k1C1t + k2C2t − keC1t

dC2t

dt = k1C1t − k2C2t

(3)

where C1t, C2t are both compartments concentrations, and k1, k2 are transfer constants. Cuenod
et al. (2011) propose a stochastic version of (3) with independent Brownian motions B1t, B2t on
each equation and diffusion coefficients γ1, γ2:

dC1t = (−k1C1t + k2C2t − keC1t) dt+ γ1dB1t

dC2t = (k1C1t − k2C2t) dt+ γ2dB2t.
(4)

The yielding stochastic process has an explicit Gaussian solution. Parameters to be estimated are
θ = (k1, k2, ke, γ1, γ2). Ditlevsen and De Gaetano (2005b) add a Brownian motion only on the
second compartment C2t of (3), with a diffusion coefficient γ2:

dC1t = (−k1C1t + k2C2t − keC1t) dt

dC2t = (k1C1t − k2C2t) dt+ γ2dB2t.
(5)

This leads to a hypoelliptic SDE, that is, a stochastic differential system in which only a few
equations include a volatility term, the other equations being of ODE type. No explicit solution
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exists for this SDE. Parameters to be estimated are then θ = (k1, k2, ke, γ2).
SDEs have also been proposed for glucose kinetics using data from intravenous glucose tolerance

test. For example, Tornøe et al. (2004b) develop a stochastic non-linear multi-compartments
glucose minimal model. No explicit solution exists for this complex SDE.

2.2 Stochastic coupled PK/PD models

Several papers propose a stochastic model for simultaneous analysis of PK/PD data. In that case,
either only the PK model, or only the PD model or both models are considered stochastic.

For example, Ferrante et al. (2005) consider a stochastic PD model (Gompertz) of the bacterial
count Nt under antibiotic effect coupled to a two dimensional deterministic PK model for the
antibiotic concentration Ct:

dNt = (r − bNt logNt − kCt)Ntdt+ γdBt

Ct = Dka
V (ka−ke) (e−ket − e−kat),

(6)

with r the intrinsic growth rate, b the growth deceleration rate, k the bacterial effect of the drug,
D the dose of antibiotic, V the volume of distribution, ka and ke the absorption and elimination
constants, respectively. Log-transformation of this non-linear time-inhomogenous SDE has an
explicit solution (see Ferrante et al., 2005). Parameters to be estimated are θ = (ke, ka, V, r, b, k, γ).

Another example is given by Tornøe et al. (2004b) with a stochastic first-order elimination
one-compartment PK model and an indirect response PD model (Emax):

dCt = −keCt + γCdB1t

dRt =
(
kin − kout

(
1 + Ct

EC50+Ct
Rt

))
dt+ γRdB2t,

(7)

where Rt is the state variable for the PD response, EC50 is the drug concentration causing 50% of
maximal stimulation, γC and γR are two diffusion coefficients. This system has no explicit solution.
Parameters to be estimated are θ = (ke, kin, kout, EC50, γC , γR).

More complex PK/PD systems have also been introduced in the literature. Picchini et al. (2006)
propose for instance a two dimensional SDE for the oscillations of glycemia occurring in response
to hyperinsulinisation and to constant glucose infusion. Tornøe et al. (2004a) include in the same
model an Emax PD equation. In Ditlevsen et al. (2005) a 6-dimensional SDE is proposed to model
the auto regulation of renal blood flow and glomerular filtration rate.

In conclusion, a wide variety of SDEs are proposed in PK/PD modeling. Except linear, SDEs
have generally no explicit solution and this complicates the parameter estimation. Another diffi-
culty raises from the sparsity of PK/PD data (low frequency and/or partial observations of the
multidimensional models). The methods proposed in the literature include these characteristics.

3 Preliminary comments on estimation

We now introduce a general model and the notations used through out the whole paper. Two
observations models are considered, depending if the PK/PD SDE is directly observed or observed
with an additive measurement noise. The likelihood functions are presented in these two contexts.
Corresponding estimation methods are detailed in Section 4. Observation models with a PK/PD
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population approach and corresponding estimation methods are gathered in Section 5.

3.1 SDE model

The studied biological process is assumed to be modeled by (Xt)t≥0 a stochastic process in X ∈ Rp

defined as the solution of the multidimensional SDE:

dXt = µ(Xt, t, θ)dt+ Γ(Xt, θ)dBt

X0 = x0(θ)
(8)

where θ ∈ Θ ⊂ Rd is the parameter vector and Θ is the set of parameters, µ(Xt, t, θ) : Rp×R×Rd →
Rp is the drift function, Γ(Xt, θ) : Rp × Rd → M(Rp), a p × p matrix, is the volatility function,
(Bt)t≥0 denotes a p-dimensional Brownian motion and x0(θ) is the initial condition. If the drift
and the volatility functions are independent of time t, then the system is said to be homogenous,
otherwise it is inhomogenous. The initial condition may be random but for sake of simplicity, we
assume it deterministic in this paper. The aim is to estimate the parameter θ from (maybe noisy
and partial) observations of Xt.

We assume the solution of SDE (8) to exist, and the law of Xt given θ and Xs = xs for any
s < t, to have a strictly positive density, the transition density, w.r.t. the Lebesgue measure on X :

x→ pX(x, t− s|xs, θ) > 0, x ∈ X .

This existence is ensured by regularity properties on the drift and volatility functions (see Lipster
and Shiryaev, 2001, for instance). Note that this assumption does not imply the transition density
to be explicit, it happens only in few cases.

3.2 Observation models and likelihood functions

In the first papers published on the estimation of PK/PD SDEs, processes were supposed to be
exactly observed, no observation noise was considered. This assumption, rather unrealistic for
PK/PD data, has the great advantage to simplify the likelihood, as presented in section 3.2.1. In
section 3.2.2, the more realistic assumption of discrete and noisy observations of PK/PD SDE is
introduced, as well as the corresponding likelihood.

3.2.1 Discretely and directly observed diffusions

Assume that (Xt)t≥0 is directly observed at discrete times t1, . . . , tn. We denote indistinctly by Xj

or Xtj the observation at time tj and X1:n = (Xt1 , · · · , Xtn) = (X1, · · · , Xn). Set ∆j = tj − tj−1.
Let pX denote the density of X1:n given θ. By Markov property, pX is the product of the n − 1

transition densities. Thus the likelihood function L(θ;X1:n) is

L(θ;X1:n) = pX(X1:n|θ) =

n∏
j=1

pX(Xtj ,∆j |Xtj−1 , θ). (9)

When pX is explicit, the likelihood (9) is explicit and exact maximum likelihood estimators
(MLE) can be computed (see Section 4.1.1). Difficulties in the parameter estimation arise when
the transition density pX is not explicit. In that case, approximate estimators have been proposed
in the literature (see Section 4.1.2).
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3.2.2 Discretely observed diffusions with observation noise

Let y1:n = (y1, . . . , yn) be the noisy observations of the diffusion process (Xt)t≥0 at time t1, . . . , tn.
We assume that yj ∈ Rq, with q ≤ p, is derived from the following statistical model

yj = h(Xtj , θ) + g(Xtj , θ) εj , εj ∼i.i.d. N (0, Iq)

dXt = µ(Xt, t, θ)dt+ Γ(Xt, θ)dBt

X0 = x0(θ)

(10)

where h(x, θ) and g(x, θ) are two functions from Rp×Rd in Rq and εj is a measurement error random
q-vector. For the sake of simplicity, we consider the usual assumption of a Gaussian distribution
on εj with identity variance matrix Iq. Standard choices for g are g(x, θ) = σ resulting in the
homoscedastic model and g(x, θ) = (a+σh(x, θ)) resulting in the heteroscedastic model. Function h
is generally the identity function whenXt in one-dimensional and a linear application modeling that
only a restricted number or a linear combination of components of (Xt)t≥0 is observed, otherwise.

The likelihood function L(θ; y1:n) computed from data y1:n is the marginal distribution pY :

L(θ; y1:n) = pY (y1:n|θ) =

∫
X
pY |X(y1:n|X1:n, θ)pX(X1:n|θ)dX1:n, (11)

where pY |X is the conditional density of y1:n given X1:n. If the transition density is Gaussian and
h(X, θ) is linear, L(θ; y1:n) has an explicit form (see Section 4.2.1). Otherwise, either the transition
density, or the integration over X are not explicit. Then the intractable likelihood L(θ; y1:n) has
to be approximated. These methods are presented in Section 4.2.2.

4 Estimation for PK/PD SDE

We first present estimation methods adapted to directly observed PK/PD SDE (section 4.1). Then
estimation for SDE observed with noise is detailed in section 4.2.

4.1 Discretely but directly observed diffusions

Likelihood (9) is explicit for few SDEs and analytic estimators have then been derived, as presented
in Section 4.1.1. Approximate estimators suited for general SDEs are reviewed in Section 4.1.2.

4.1.1 Explicit or exact estimators

Ferrante et al. (2003) consider the stochastic one compartment PK model (2). They introduce
the ideal maximum likelihood estimator (MLE) based on continuous-time observed trajectory
(Ct)t∈[0,T ]. As data belong to an infinite dimensional space, the continuous-time observation
likelihood has to be computed with the Girsanov formula (Lipster and Shiryaev, 2001):

L(θ; (Ct)t∈[0,T ]) = exp

{
− 1

γ2

[∫ T

0

(ka/V − keCt)dCt −
1

2

∫ T

0

(ka/V − keCt)2dt

]}

where θ = (ke, ka, V, γ). The MLE based on continuous data (Ct)t∈[0,T ] is defined as θ̂[0,T ] =

arg maxθ∈Θ{L(θ; (Ct)t∈[0,T ])}. It can be proved that θ̂[0,T ] is asymptotically unbiased, normally
distributed and efficient (Prakasa Rao, 1999). However, PK/PD data are measured at discrete
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times rather than continuously. Discretisation of θ̂[0,T ] can be considered but it is generally difficult
to study the properties of such estimators analytically, especially when the number of data is small
and fixed. As an alternative, Ferrante et al. (2003) consider the likelihood (9) based on discrete-time
observations C1:n. They can compute it exactly because PK model (2) has an explicit transition
density. More precisely, the process (Ct) is Gaussian and the transition density is

pC(y, t− s|z, θ) = P (Ct = y|Cs = z, θ) =
1√

2πvθ(t− s)
exp

[
− (y −mθ(z, t− s))2

2vθ(t− s)

]
,

where mθ(z, t − s) = ka
V ke

+ (z − ka
V ke

) exp(−ke(t − s)) and vθ(t − s) = γ2

2ke
1 − exp(−2ke(t − s)).

Then the exact likelihood function is L(θ;C1:n) =
∏n
j=1 pC(Cj ,∆j |Cj−1, θ). The MLE based on

discrete-time observations is defined as

θ̂n = arg max
θ∈Θ

L(θ;C1:n).

He is not explicit but can be obtained from a numerical optimization of the likelihood. The MLE
θ̂n is asymptotic normal and efficient (Lipster and Shiryaev, 2001).

In Ferrante et al. (2000, 2005), the same estimation method is used for the PK/PD SDE (6)
to model bacterial growth and bacteria-drug interactions. The log transformation Xt = logNt of
SDE (6) has a Gaussian explicit solution. The transition density pX(y, t− s|z) is thus explicit and
the exact MLE is derived from the likelihood function (9) of the discrete data (X1:n, C1:n).

4.1.2 Estimators based on approximation

Transition density of more complex PK/PD SDEs is unknown and approximation has to be used
to estimate parameters. Several approaches have been proposed. The simplest one is the Gaussian
Euler-Maruyama approximation (Oksendal, 2007) but this scheme is efficient only if ∆j = tj−tj−1

is small, which is not usual for PK/PD data. We present here two other strategies suited for
PK/PD data, one based on an Hermite expansion of the transition density and the second based
on the spectral density. This second approach has been introduced for an hypoelliptic SDE. To
our knowledge, this is the only estimation method adapted to hypoelliptic SDE.

Hermite expansion of the transition density. This estimation method has been first used
in a PK/PD SDE context by Picchini et al. (2008). This approach has been originally proposed
by Aït-Sahalia (2002) for unidimensional and time-homogeneous equations and then extended to
inhomoegeneous equations by Egorov et al. (2003) and to multi-dimensional equations by Aït-
Sahalia (2008). Picchini et al. (2008) consider a one-dimensional (q = 1) inhomogeneous SDE of
glucose dynamics after the steady state of insulin concentration has been reached. The transition
density is not explicit, neither the likelihood. Their estimation method works as follows.

They assume the volatility function Γ(x, θ) to be bounded below by a strictly positive function
and introduce the Lamberti transform of Xt: `(Xt) =

∫Xt du
Γ(u,θ) . The Hermite expansion pSX of

order S of the unknown transition density pX is defined by

pSX(Xj ,∆j |Xj−1, θ) =
1√

∆jΓ(Xj , θ)
f0(Zj)

S∑
s=0

ms (`(Xj−1,∆j), θ)Hs(Zj), (12)

where Hs is the Hermite polynom of order s for s = 1 . . . S, f0 is the standard normal density
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function, Zj =
`(Xj)−`(Xj−1)√

∆j

and ms (`(Xj−1),∆j , θ) = 1
s!E [Hs (Zj) |`(Xj−1)] is the conditional

moment of the Hermite polynom Hs. Then the approximated likelihood of order S is

LS(θ,X1:n) =

n∏
j=1

pSX(Xj ,∆j |Xj−1, θ) (13)

and the estimator of θ is defined as

θ̂Sn = arg max
θ∈Θ

LS(θ,X1:n).

Aït-Sahalia (2002) and Egorov et al. (2003) prove that under regularity conditions on the drift and
volatility functions, θ̂Sn is consistent. This method is computationally efficient.

Monte Carlo approximation of the spectral density. Ditlevsen et al. (2005, 2007) propose
this method for a hypoelliptic PD SDE modeling tubuloglomerular feedback mechanism in a rat
nephron. The SDE system consists in 6 equations with Brownian motion on only one coordinate.
There is no analytic expression for the transition density and so for the likelihood function.

Instead of estimating the parameters by maximizing an approximation of the likelihood function,
Ditlevsen et al. (2005) propose an estimator based on the spectral density p̃(u, θ), where u is
a frequency in the Fourier domain, the spectral density characterizing uniquely the stochastic
process. An estimation of θ is obtained by minimizing the distance between the theoretical spectral
density p̃(u, θ) of the SDE and the estimated spectral density p̂(u) obtained from the data by the
periodogram at the Fourier frequency u. The exact spectral density p̃(u, θ) of the PD model
having no explicit form, the authors propose to approximate it by simulation. If K independent
trajectories are simulated with a Euler-Maruyama approximation of the SDE for a fixed parameter
value θ, a periodogram p̃k(u, θ) can be estimated for each trajectory k and the spectral density
p̃(u, θ) is then approximated by Monte Carlo:

p̃K(u, θ) =
1

K

K∑
k=1

p̃k(u, θ).

The strong law of large numbers ensures convergence of p̃K(u, θ) to p̃(u, θ). Then the parameters
are estimated by nonlinear least squares as

θ̃Kn = arg min
θ∈Θ

∑
u∈[0,n/(2T )]

[
log p̂(u)− log p̃K(u, θ)

]2
.

Approximate confidence intervals on θ̃Kn can also be obtained by Monte Carlo simulations. No
theoretical properties have been proved for this estimator.

4.2 Discretely observed diffusions with observation noise

Noisy observations of PK/PD SDEs as defined by model (10) have been considered in the literature
the restriction of a constant diffusion coefficient Γ(Xt, θ) = Γθ. We first present an exact estimation
method proposed for linear SDEs (Section 4.2.1), then two approximate estimation methods for
more general SDEs (Section 4.2.2).
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4.2.1 Explicit or exact estimators

Linear PK/PD SDEs with homoscedastic measurement noise have been studied by D’Argenio and
Park (1997); Tornøe et al. (2004a); Favetto and Samson (2010); Cuenod et al. (2011). Model (10)
reduces to:

yj = HθXj + σεj , εj ∼iid N (0, Iq), j = 1, . . . , n

dXt = (AθXt + Cθ(t))dt+ ΓθdBt (14)

setting h(Xt, θ) = HθXt, with Hθ a q × p matrix, g(Xt, θ) = σ, µ(Xt, t, θ) = AθXt + Cθ(t). The
p -vector Cθ(t) may depend on time t.

By recursive conditioning, likelihood (11) can be decomposed into

L(θ; y1:n) = p(y1; θ)

n∏
j=2

p(yj |y1:j−1; θ), (15)

where p(yj |y1:j−1; θ) is the conditional law of yj given y1:j−1. In the particular case of model (14),
yj |y1:j−1 is Gaussian. Indeed, the solution of the linear SDE (14) is Gaussian, as well as yj by
linearity of h(x, θ). Let us denote mj|1:j−1 and Rj|1:j−1 the conditional expectation and variance
of yj given y1:j−1 respectively. We have:

p(yj |y1:j−1; θ) =
exp{− 1

2 (yj − tmj|1:j−1)(Rj|1:j−1)−1(yj −mj|1:j−1)}√
|2πRj|1:j−1|

.

Then mj|1:j−1 and Rj|1:j−1 can be computed using the Kalman filtering procedure. Indeed, by
linearity of h(x, θ), we have:

mj|1:j−1 = E(yj |y1:j−1) = HθE(Xj |y1:j−1)

Rj|1:j−1 = V ar(yj |y1:j−1) = Hθ V ar(Xj |y1:j−1) tHθ + σ2Iq
(16)

where tHθ is the transposed matrix of Hθ. Consequently, mj|1:j−1 and Rj|1:j−1 rely on the predic-
tive expectations and variances:

X̂j|1:j−1 = E(Xj |y1:j−1) and Pj|1:j−1 = E((Xj − X̂j|1:j−1)t(Xj − X̂j|1:j−1))

whose computations are details below.
Predictive moments. Noting that (Xt)t≥tj verifies Xt =

∫ t
tj−1

µ(Xs, s, θ)ds+ Γθ
∫ t
tj
dBs, for any

t ≥ tj−1 yields to the following integral equation for the predictive conditional expectation:

E(Xt|y1:j−1) =

∫ t

tj−1

E(µ(Xs, s, θ)|y1:j−1)ds. (17)

Consequently, drift µ being linear for model (14), xt := E(Xt|y1:j−1) verifies xt =
∫ t
tj−1

µ(xs, s, θ)ds,
which can be written in a differential form as

dxt/dt = µ(xt, t, θ)

xtj−1
= E(Xtj−1

|y1:j−1) = X̂j−1|1:j−1.
(18)

Using similar arguments, we also obtain an ODE verified by Pt := V ar(Xt|y1:j−1) for t ≥ tj−1.
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Let Jµ denote the Jacobian of µ w.r.t. x, we get

dPt/dt = Jµ(xt, t, θ)Pt + Pt
tJµ(xt, t, θ) + Γθ

tΓθ

Ptj−1 = V ar(Xtj−1 |y1:j−1) = Pj−1|1:j−1.
(19)

Because of the linearity of µ, equations (18-19) have explicit solutions. Moreover, noting that
X̂j|1:j−1 = xtj and Pj|1:j−1 = Ptj , we obtain

X̂j|1:j−1 = eAθ∆j X̂j−1|1:j−1 + C̃θ(tj−1,∆j)

Pj|1:j−1 = eAθ∆jPj−1|1:j−1e
tAθ∆j + Γ̃θ(tj−1,∆j)

(20)

where X̂j−1|1:j−1 = E(Xj−1|y1:j−1) and Pj−1|1:j−1 = V ar(Xj−1|y1:j−1) are the filtering moments
and C̃θ(tj−1,∆j), Γ̃θ(tj−1,∆j) are given in Tornøe et al. (2004a) and Favetto and Samson (2010).
Filtering moments. A similar reasoning yields the update (filtering) step:

X̂j|1:j = X̂j|1:j−1 +Kj(yj −HθX̂j|1:j−1),

Pj|1:j = (I −KjHθ)Pj|1:j−1,

where Kj = Pj|1:j−1
tHθ(HθPj|1:j−1

tHθ + σ2)−1 is the Kalman gain.
Finally, iterating the computations of predictive and filtering moments (the so-called Kalman

filtering) leads to the exact likelihood (15) and the MLE is then defined as

θ̂n = arg max
θ∈Θ

L(θ; y1:n).

Favetto and Samson (2010) prove that θ̂n, which is the exact MLE, is consistent and asymptotically
Gaussian. This estimation method is implemented in the Danish Technical University project
CTSM (Kristensen et al., 2001).

This estimator has been used in a PK context by Tornøe et al. (2004a) with a stochastic PK/PD
model describing the dynamic of insulin and glucose from an euglycaemic clamp study. The PK
model of insulin kinetic is a single compartment with linear rates. The insulin effect is modeled
by adding an effect compartment. The PK part contains three equations describing the amount of
insulin remaining to be absorbed from the tissue, the amount of insulin in the central compartment
and the amount of insulin in the effect compartment. The PD of the amount of infused glucose
is linked to the insulin concentration with a sigmoidal Emax model. The estimation results show
that the diffusion coefficients are all estimated to zero, which indicates that the measured data can
eventually be modeled by a deterministic PK/PD model.

Another example is given by Cuenod et al. (2011). They consider the stochastic two-compartment
PK model (4) to describe tissue micro-vascularization and angiogenesis via Dynamic Contrast En-
hanced Imaging (DCE-imaging) techniques. Results illustrate that the stochastic PK model is
more stable than its deterministic version.

Remark 1 Model (10) with explicit transition density for Xt is a state space model or a hidden
Markov model (Cappé et al., 2005). Corresponding estimation methods have not yet been all applied
to PK/PD data.
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4.2.2 Approximate estimators

When either the transition density or likelihood L(θ; y1:n) is not explicit, an approximation has to
be proposed. A first solution relies on an extension of the Kalman filter and has been introduced
by Tornøe et al. (2004b). Another approach was proposed by Ditlevsen and De Gaetano (2005b)
with an Monte Carlo approximation of the likelihood to estimate the volatility parameters, the
drift parameters being estimated using the deterministic version of the model.

Extended Kalman Filter. This approach, based on a generalization of the Kalman filter, has
been proposed by Tornøe et al. (2004b) for the general model (10) with the restriction of time-
homogeneous drift µ(Xt, t, θ) = µ(Xt, θ):

yj = h(Xtj , θ) + σ εj , εj ∼i.i.d. N (0, Iq)

dXt = µ(Xt, θ)dt+ ΓθdBt

X0 = x0(θ)

(21)

Once again, the likelihood can be decomposed into L(θ; y1:n) = p(y1; θ)
∏n
j=2 p(yj |y1:j−1; θ). How-

ever, whereas each conditional distribution p(yj |y1:j−1; θ) is Gaussian for linear model (14), it is
not true for model (21). The idea of the extended Kalman Filter (EKF) is thus to approximate
this conditional distribution by a Gaussian distribution:

p(yj |y1:j−1, θ) '
exp{− 1

2 (yj − tmj|1:j−1)(Rj|1:j−1)−1(yj −mj|1:j−1)}√
|2πRj|1:j−1|

where, as for linear model,mj|1:j−1 = E(yj |y1:j−1) = E(h(Xj , θ)|y1:j−1) andRj|1:j−1 = V ar(yj |y1:j−1) =

V ar(h(Xj , θ)|y1:j−1) + σ2. But in that case, h being not linear, mj|1:j−1 and Rj|1:j−1 are not ex-
plicit. Thus, EKF considers a local linearisation of h around E(Xj |y1:j−1). More precisely, let
Jh be the Jacobian function of h with respect to x, we can write h(Xj , θ) ' h(E(Xj |y1:j−1), θ) +

Jh(E(Xj |y1:j−1), θ)(Xj − E(Xj |y1:j−1)) and approximate the conditional moments by:

mj|1:j−1 ' h(X̂j|1:j−1, θ) (22)

Rj|1:j−1 ' Jh(X̂j|1:j−1, θ)Pj|1:j−1
tJh(X̂j|1:j−1, θ) + σ2

where, as before, X̂j|1:j−1 and Pj|1:j−1 are the conditional predictive expectation and variance.
The difficulty for the nonlinear model (21) arises in the computation of these predictive quanti-

ties. Using integral equation (17), one would like to deduce a solution for X̂j|1:j−1, as in the linear
case. However, µ being not linear, another approximation is used, writting:

E(µ(Xs, θ)|y1:j−1) ' µ(E(Xs|y1:j−1), θ).

Then, one can say that an approximation of xt := E(Xt|y1:j−1) is a solution of differential equation
(18). Similarly, using an approximation of the variance, Pt := V ar[Xt|y1:j−1] can be approximate
by a solution of differential equation (19). However, except for linear drift µ, equations (18-19)
have no close solution. A new approximation is performed in EKF, consisting in a linearization of
the ODEs using Taylor expansion of µ. In Tornøe et al. (2004b), a first order Taylor expansion is
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considered, leading to the following approximate predictive quantities

X̂j|1:j−1 = X̂j−1|1:j−1 + µ(X̂j−1|1:j−1, θ)∆j

Pj|1:j−1 = Pj−1|1:j−1 + ∆j

(
Jµ(X̂j−1|1:j−1, θ)Pj−1|1:j−1 + Pj−1|1:j−1Jµ(X̂j−1|1:j−1, θ) + Γθ

tΓθ

)
Remark 2 Delattre and Lavielle (submitted) propose a higher order Taylor approximation of equa-
tions equations (18-19) (see Section 5.3.3).

The update step is performed using similar Gaussian approximation and linearization:

X̂j|1:j = X̂j|1:j−1 +Kj(yj − h(X̂j|1:j−1, θ))

Pj|1:j = (I −KjJh(X̂j|1:j−1, θ))Pj|1:j−1

where Kj is the approximated Kalman gain

Kj = Pj|1:j−1
tJh(X̂j|1:j−1, θ)(Jh(X̂j|1:j−1, θ)Pj|1:j−1

tJh(X̂j|1:j−1, θ) + σ2)−1.

Finally, the EKF supplies an iterative procedure to approximate the likelihood, and maximize
it yields an estimator of θ. This method is implemented in the CTSM project. However, to our
knowledge, no theoretical results have been proved rigorously for this estimator, which can behave
badly when both SDE and observation model are highly nonlinear.

This estimation method has been used for PK/PD models. For example, Tornøe et al. (2004b)
use PK/PD SDE (7) on simulated data to illustrate the properties of the estimator. Then, for the
modeling of intravenous glucose tolerance test with a glucose minimal model (GMM), they use a
nonlinear two-dimensional SDE with two compartments (glucose and insulin). The observation is
partial and consists in discrete noisy measure of the glucose rate. Data are analyzed both with the
SDE and the deterministic GMM. The diffusion term is estimated significantly different from zero.
This indicates that the deterministic GMM does not fully capture the glucose/insulin dynamics.
Another example is given in Kristensen et al. (2005) for PK/PD model development.

Monte Carlo approximation of the likelihood. Ditlevsen and De Gaetano (2005b) consider
this method with the hypoelliptic two-dimensional PK SDE (5) for the modeling of the uptake
of dodecanedoic acid. A diffusion coefficient appears only on one of the two equations. Only the
concentration C1 in the first compartment is observed, with a measurement noise. Ditlevsen and
De Gaetano (2005b) consider the heteroscedastic error model

yj = C1,tjεj

where εj are iid log-normal variables with variance var(log εj) = σ2.
The hypoellipticity of PK SDE (5) makes estimation more complex. Indeed, contrary to the two-

dimensional PK SDE considered by Favetto and Samson (2010), this hypoelliptic linear SDE has
no explicit solution or transition densities. Therefore, the likelihood is not available. Ditlevsen and
De Gaetano (2005b) thus propose a two-step estimation method. As the deterministic correspond-
ing PK model has an explicit solution, they estimate PK parameters k1, k2 from the deterministic
PK model by usual nonlinear least squares estimators. Then, with these parameters fixed, they
proceed as a second step to the estimation of γ and σ. However, even when k1, k2 are fixed, the
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likelihood

L(γ, σ; y1:n) =

∫ n∏
j=1

p(yj |C1,tj , σ)p(C1,t1 , . . . , C1,tn ; γ)dC1,t1 . . . dC1,tn

has no close form due to the hypoellipticity of (5). Therefore, they approximate the likelihood by
Monte-Carlo simulations, as first proposed by Pedersen (1995). A large number K of trajectories
(C

(k)
1,1:n)k=1,...,K are simulated given γ with the Milstein scheme from SDE (5). Then the likelihood

is approximated by

LK(γ, σ; y1:n) =
1

K

K∑
k=1

n∏
j=1

p(yj |C(k)
1,tj

, σ)

and numerically maximized. Estimators of γ, σ are asymptotically equivalent to the MLE. The
same approach is used in Picchini et al. (2006) for modeling the euglycemic hyperinsulinemic
clamp. This approach is computationally intensive: K = 500.000 was required to obtain a good
approximation of the likelihood. It is also more appropriate to estimate all parameters in a single
optimization step.

5 SDE for population PK/PD models

PK-PD studies often include not a single individual but a group of subjects. In the first papers
considering SDE models on a population of subjects, individuals were treated independently with-
out proposing any global model (see for instance Picchini et al., 2006; Ditlevsen and De Gaetano,
2005b). However, the success of mixed effects models – which allow to discriminate between the
inter and intra subjects variability– has encouraged their use for PK/PD SDEs.

We first introduce the population PK/PD SDE in Section 5.1. The estimation methods for
population PK/PD SDEs observed without measurement noise are presented in Section 5.2 and
for population PK/PD SDEs observed with measurement noise in Section 5.3.

5.1 Population PK/PD SDE

Assume that PK/PD data are available from I subjects. Let (X(i))t≥0 ∈ Rp be the process of
interest for subject i, for i = 1, . . . I. We assume that the processes {(X(i)

t )t≥0, i = 1 . . . I} verify
the same SDE but with individual parameters φi:

dX
(i)
t = µ(X

(i)
t , t, φi, η)dt+ Γ(X

(i)
t , η)dB

(i)
t X

(i)
0 = X0(φi)

φi ∼i.i.d. pΦ(·; θpop),

where η ∈ Rd0 is a parameter common to all the individuals, φi ∈ Rd are the individual random
parameters, also called random effects, distributed with a density pΦ depending on a population
parameter θpop ∈ Θ and (B

(i)
t ) are I independent Brownian motions. A standard choice for pΦ is

a Gaussian distribution
φi ∼i.i.d. N (µ,Ω)

with mean µ ∈ Rd and variance Ω a definite positive matrix of size d. In that case, θpop =

(µ,Ω). However, other distributions can be considered, such as Gamma distributions to ensure
the positivity of the parameter, or discrete distributions. The parameters to be estimated are
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θ = (θpop, η) from direct discrete observations of X(i)
t or noisy discrete observations.

Statistical inference for such models is a challenging issue. Some of the proposed methodologies
derive from the non-linear mixed effects models literature whereas Picchini et al. (2010) extend
their method developed for the observation of one diffusion (Section 4.1.2) to the observation of
several individual diffusions. Obviously, the difficulty is not the same if the transition density is
explicit or not and if the process is observed directly or with observation noise.

5.2 Population PK/PD SDE without observation noise

We first assume that the processes (X
(i)
t )t≥0, for i = 1, . . . , I are directly observed on the I

individuals at discrete times tij , for j = 1, . . . ni. Set ∆ij = tij−tij−1. Let X
(i)
1:ni

= (X
(i)
ti1 , . . . X

(i)
tini

)

denote the observations of individual i and X = (X
(i)
1:ni

)i=1...I , the vector of whole data. By
independence of the I individuals, the likelihood is:

L(θ;X) =

I∏
i=1

Li(θ;X(i)
1:ni

) =

I∏
i=1

∫
Φ

pX(X
(i)
1:ni
|φi, η)pΦ(φi|θpop)dφi. (23)

where pX(X
(i)
1:ni
|φi, η) =

∏ni
j=1 pX(X

(i)
j ,∆ij |X(i)

j−1, φi, η) similarly as equation (9).
In a few cases, the likelihood (23) can be expressed in a close form, leading to the exact MLE

of θ (section 5.2.1). Otherwise, (i) if the transition density pX(x, t − s|xs, φ, γ) has an explicit
solution but integrating out the φi’s in (23) is unfeasible; or (ii) if the transition density can not
be expressed explicitly, likelihood (23) has no close form and approximate solutions have to be
proposed. In case (i), the integral has to be approximated (see Section 5.2.2) whereas in case (ii),
the transition density must be approximated and maybe also the integral (see Section 5.2.3).

5.2.1 Exact estimator

Ditlevsen and De Gaetano (2005a) consider the one-compartment linear elimination PK SDE (1)
with one random effect:

dC
(i)
t = −ke,iC(i)

t dt+ γC
(i)
t dB

(i)
t (24)

ke,i ∼ N (ke, ω
2).

In that case, φi = ke,i, θpop = (ke, ω
2), η = γ2 and θ = (ke, ω

2, γ2). Data are discrete observations
C

(i)
tij for i = 1, . . . , I and j = 1, . . . , ni. Using a log-transformation of the data, the likelihood (23)

can be computed exactly. An estimation method adapted from linear mixed model (Pinheiro and
Bates, 2000) is applied. Namely, the likelihood is splitted into two parts, that are independent
of and dependent of the random effect φi, respectively. The integral of the dependent part is the
integral of a Gaussian density because SDE (24) is linear and has a log-normal solution. The
explicit expression of the likelihood and of the exact MLE of the parameter θ follows. The MLE
is Gaussian, and Ditlevsen and De Gaetano (2005a) give explicit variance of the MLE, leading to
explicit confidence intervals.

5.2.2 Estimation for explicit transition density SDE

Excepted for particular SDEs such as (24), even if the transition density pX(x, t−s|xs, φ, γ) has an
explicit expression, the difficulty to estimate θ comes from the integration of the individual random
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effects density. 1 strategy is to approximate the likelihood, that is the integral with respect to the
random effects density, and then use a standard maximization procedure. This has been proposed
by Picchini et al. (2010) with a Gaussian quadrature of the likelihood and by Picchini and Ditlevsen
(2011) with a Laplace approximation of the likelihood. The first method has been applied to the
one-compartment linear elimination PK SDE with one random effect (24) and the second one to
the stochastic two-compartment PK model (4) with random effects on k1, k2, ke. We now detail
the two techniques.

Gaussian quadrature. We restrict to the case of a one-dimensional Gaussian individual pa-
rameter φ (φi ∼i.i.d. N (µ, ω2)), we refer the reader to Picchini et al. (2010) for the case of any
continuous distribution. Assume that φ 7→ pX(X

(i)
1:ni
|φ, η) is C2R(R). Each individual likelihood

Li(θ;X(i)
1:ni

) =
∫

Φ
pX(X

(i)
1:ni
|φi, η)pΦ(φi|θpop)dφi is approximated by the Gauss-Hermite quadrature

of order R:

LRi (θ;X
(i)
1:ni

) =

R∑
r=1

πr pX(X
(i)
1:ni
|ω
√

2zr + µ, η)

where zr, r = 1, . . . , R are the zeros of the Hermite polynomial HR(·) of degree R and πr =
2R−1R!

R2(HR−1(zr))2 are adequate weights. Neither the zeros zr nor the weights πr depend on the indi-
vidual. The approximate likelihood is then defined as

LR(θ;X) =

I∏
i=1

LRi (θ;X
(i)
1:ni

) =

I∏
i=1

R∑
r=1

πr pX(X
(i)
1:ni
|ω
√

2zr + µ, η) (25)

The convergence of LR(θ;X) towards L(θ;X) is ensured when R tends to infinity and the domain
of integration is compact. The parameter θ can be estimated by maximizing this approximate
likelihood

θ̂Rn = (η̂Rn , ω̂
R
n ) = arg minθ∈Θ

{
−
∑I
i=1 log

∑R
r=1 πr pX(X

(i)
1:ni
|ω
√

2zr + µ, η)
}

The estimator θ̂Rn is obtained by a standard optimization algorithm. No theoretical convergence
has been proved for this estimator.

Laplace approximation. When the individual parameters are of dimension d greater than 1,
Picchini and Ditlevsen (2011) use a Laplace approximation of the likelihood. More precisely, the
log-likelihood logLi(θ;X(i)

1:ni
) is approximated by

logLLi (θ;X
(i)
1:ni

) = log pX(X
(i)
1:ni
|φ̂i, η) + log pΦ(φ̂i|θpop) +

d

2
log(2π)− 1

2
log | −H(φ̂i|θ)|

where φ̂i = arg maxφi

(
log pX(X

(i)
1:ni
|φi, η) + log pΦ(φi|θpop)

)
, | · | denotes the determinant of a

matrix and H(φi|θ) is the Hessian matrix:

H(φi|θ) = ∂2
(

log pX(X
(i)
1:ni
|φi, η) + log pΦ(φi|θpop)

)
/∂φi∂

tφi.

Then the approximate likelihood is numerically optimized. This methods requires the computation
of the I Hessian matrices H(φi|θ) at each step of the optimization, which can be burdensome. The
authors give in their paper various numerical and practical solutions to tackle that point.
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5.2.3 Estimation for unknown transition density SDE

When the transition density has no explicit expression, Picchini et al. (2010) propose to approxi-
mate it with a Hermite expansion, as detailed in Section 4.1.2. Then this approximate transition
density is injected in the approximate marginal distribution (25).

More precisely, the transition likelihood is approximated by pSX(X
(i)
j ,∆ij |X(i)

j−1, φi, η) defined
by equation (12) where S is the order of the Hermite expansion. The conditional likelihood
pX(X

(i)
1:ni
|φi, η) of subject i can be approximated by:

pSX(X
(i)
1:ni
|φi, η) =

ni∏
j=2

pSX(X
(i)
j ,∆ij |X(i)

j−1, φi, η) (26)

exactly as equation (13). Then, the integration over the individual parameters φi is obtained using
the Gauss-Hermite quadrature (25). Finally, the approximate likelihood is:

LR,S(θ;X) =

I∏
i=1

R∑
r=1

πr p
S
X(X

(i)
1:ni
|ω
√

2zr + µ, η).

As before, the MLE estimator of θ is obtained applying an optimization routine on the approximate
likelihood:

θ̂R,Sn = arg min
θ∈Θ

{
− logLR,S(θ;X)

}
No theoretical result has been proved but Picchini and Ditlevsen (2011) illustrate the efficiency
of θ̂R,Sn on several uni- and multi-dimensional examples (note that the multidimensionality comes
from both the dimension of φ and the dimension of the diffusion Xt), especially for the stochastic
two-compartment PK model (4) with random effects on k1, k2, ke.

5.3 Population SDE models with measurement error

We now consider that the processes X(i)
t , for i = 1, . . . , I, are observed with a measurement error.

Let y(i)
j denote the j-th observation of subject i at time tij . The model is the following:

y
(i)
j = h(X

(i)
tij ) + g(X

(i)
tij , σ)εij , εij ∼ N (0, Iq)

dX
(i)
t = µ(X

(i)
t , t, φi, η)dt+ Γ(X

(i)
t , η)dB

(i)
t , X

(i)
0 = X0(φi)

φi ∼ pΦ(·; θpop)
(27)

The parameters to be estimated are θ = (θpop, η, σ). Let us denote y = (y
(i)
1:ni

)i=1...I , the whole
vector of data. The likelihood is:

L(θ;y) =

I∏
i=1

∫
Φ

(∫
X
pY (y

(i)
1:ni
|X(i)

1:ni
, σ)pX(X

(i)
1:ni
|φi, η)dX

(i)
1:ni

)
pΦ(φi|θpop)dφi (28)

where pY (y
(i)
1:ni
|X(i)

1:ni
, σ) =

∏ni
j=1 p(y

(i)
j |X

(i)
j , σ) is the conditional density of the observations y

given the diffusion X. We also denote φ = (φ1, . . . , φI).
Difficulties pointed out with direct observations of X(i)

t still hold but are exacerbated by the
necessity to integrate over the hidden trajectories X(i)

1:ni
. Suggested solutions are derived from

the ones presented in Section 4.2 and combined with estimation methods developed for nonlinear
mixed effects models. We first present, in Section 5.3.1, a Bayesian approach, proposed by Donnet
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et al. (2010). Then we detail how the extended Kalman Filter (EKF) can be coupled with the First
Order Conditional Estimate (FOCE) algorithm to estimate θ, as first proposed by Overgaard et al.
(2005); Tornøe et al. (2005) (Section 5.3.2). Finally, estimation methods based on the Expectation-
Mazimization (EM) algorithm, proposed by Donnet and Samson (2008, submitted); Delattre and
Lavielle (submitted), are gathered in Section 5.3.3.

5.3.1 Bayesian inference

In a Bayesian inference, a prior distribution is set on the parameters of interest θ ∼ π(·). The aim
is to estimate the posterior distribution of θ given the observation y, which is given by the Bayes
formula p(θ|y) ∝ f(y; θ)π(θ). Estimators of θ are then obtained with the posterior mean E(θ|y)

or the median of the posterior distribution, for instance. Except in very few cases, the posterior
distribution p(θ|y) has no explicit expression. A standard strategy is to generate a sample from
that distribution of interest, using a Monte Carlo Markov Chain (MCMC) algorithm (Robert and
Casella, 2004). This approach has been studied for modeling growth curves with a population
Gompertzian SDE by Donnet et al. (2010).

The principle of the MCMC algorithm is to generate a Markov Chain whose marginal stationary
distribution is the distribution of interest p(θ|y). In model (27), the simplest MCMC algorithm is
to alternatively generate, at iteration k:

[1]. φ(k)|X(k−1),y, θ(k−1) [2]. X(k)|φ(k),y, θ(k−1) [3]. θ(k−1)|X(k),φ(k),y,

with stationary distribution p(φ,X, θ|y). One can prove that the stationary distribution of the
Markov Chain produced by this algorithm is p(φ,X, θ|y) (Robert and Casella, 2004). As a conse-
quence, after a high number of iterations, the sampled parameters θ(k) are assumed to be distributed
under the marginal posterior distribution p(θ|y). However, in population PK-PD SDE, the con-
ditional distributions p(φ|X, θ,y), p(X|φ,y, θ) and p(θ|X,φ,y) are not explicit. Thus, the direct
simulation is replaced by a Metropolis-Hastings algorithm, that is, a candidate is simulated with a
proposal distribution q and accepted with a probability whose expression ensures the stationarity
of the distribution of interest p(φ,X, θ|y). For instance, the Metropolis-Hastings algorithm for
step [1] which generates φ(k)|X(k−1),y, θ(k−1) at iteration k of the MCMC algorithm is

• Propose a candidate φc with a proposal distribution φc ∼ q(·|φ(k−1))

• Compute the probability of acceptation:

ρ(φc|φ(k−1)) = min

{
1,

p(φc|θ(k),X(k−1),y)

p(φ(k−1)|θ(k),X(k−1),y)

q(φ(k−1)|φc)
q(φc|φ(k−1))

}

• Set

φ(k) =

{
φc with probability ρ(φc|φ(k−1))

φ(k−1) with probability 1− ρ(φc|φ(k−1))

Similar algorithms are proposed to simulate steps [2] and [3]. Metropolis-Hastings does not
require the exact expression of the targeted distribution. Thanks to the Bayes formula, only the
expression of pY (y

(i)
1:ni
|X(i)

1:ni
, σ), pX(X

(i)
1:ni
|φi, η) and pΦ(φi|θpop) are used. We refer the reader to

Donnet et al. (2010) for more details.
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This algorithm can be used as soon as the transition density p(X(k−1)|φ(k−1), θc) of the SDE is
explicit. If not, Donnet et al. (2010) propose to perform the Bayesian inference on an approximate
model issued from the Euler-Maruyama approximation of the solution of the SDE. They study the
distance between the approximate posterior distribution ph(θ|y), where h is the step size of the
Euler-Maruyama approximation, and the exact one p(θ|y). This distance is bounded by h.

5.3.2 Linearisation and extended Kalman filter

Overgaard et al. (2005); Tornøe et al. (2005) propose to adapt the well-known First Order Condi-
tional Estimate (FOCE) algorithm to population SDEs. FOCE has been introduced by Lindstrom
and Bates (1990) for nonlinear mixed models with deterministic regression function. The algo-
rithm is based on a local linearization of the regression function, leading to a linear mixed model,
for which estimation of parameters is more easy. Overgaard et al. (2005); Tornøe et al. (2005)
use this idea, coupled with the extended Kalman filter (EKF) already mentioned in Section 4.2.2.
Their methodology has been used in a collection of papers, see for instance Mortensen et al. (2007);
Overgaard et al. (2007); Klim et al. (2009); Berglund et al. (2011). We detail their approach below.

Following the idea of recursive conditioning used for standard SDEs, the likelihood L(θ;y) (28)
can be re-written as:

L(θ;y) =

I∏
i=1

Li(θ; y(i)
1:ni

) =

I∏
i=1

∫
Φ

 ni∏
j=1

p(y
(i)
j |y

(i)
1:j−1, φi, σ, η)

 pΦ(φi|θpop)dφi

where y(i)
1:j = (y

(i)
1 , . . . , y

(i)
j ) and y(i)

0 = x0(φi) by convention. As in Section 4.2.2, the EKF approx-
imates p(y(i)

j |y
(i)
1:j−1, φi, η) by a Gaussian distribution, whose mean m(i)

j|1:j−1 and variance R(i)
j|1:j−1

are computed recursively (see equation (22)) and depend on φi, σ and η. The approximate likeli-
hood for subject i is:

LEKFi (θ; y
(i)
1:ni

) =

∫
Φ

ni∏
j=1

exp{− 1
2 (y

(i)
j −m

(i)
j|1:j−1)T (R

(i)
j|1:j−1)−1(y

(i)
j −m

(i)
j|1:j−1)}√

|2πR(i)
j|1:j−1|

pΦ(φi|θpop)dφi

=

∫
Φ

e`i(φi)dφi

where `i(φi) is the approximate conditional log-density of the random effects given the observation
(recall that m(i)

j|1:j−1 and R(i)
j|1:j−1 depend on φi). Then `i is approximated by a second-order Taylor

expansion, where the expansion is made around the value φ̂i that maximizes `i (FOCE algorithm).
At the value φ̂i, the first derivative of `i is zero. So finally, the likelihood approximated by EKF
and by the Taylor expansion reduces to

LEKF,FOCE(θ,y) =

I∏
i=1

1√
2π
e`i(φ̂i) |−H(`i)|−1/2

where H(`i) is the Hessian of `i. The Hessian is not computed exactly, but with an approximation
similar to FOCE (see Pinheiro and Bates, 2000, for more details). Once that approximation has
been done, the maximization of LEKF,FOCE(θ,y) is performed by FOCE. This methodology suffers
from the drawbacks inherent to EKF and FOCE, and no theoretical convergence has been proved.
This algorithm is implemented in NONMEM (Tornøe et al., 2005), in a Matlab package (Mortensen
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et al., 2007) and in the R package PSM (Klim et al., 2009).

5.3.3 EM algorithm for mixed effects models defined by SDE

Another approach to estimate parameters of mixed effects models is based on the Expectation-
Maximization (EM) algorithm, originally proposed by Dempster et al. (1977). Stochastic versions
of EM have been adapted to nonlinear mixed models (Walker, 1996; Kuhn and Lavielle, 2005).
Donnet and Samson (2008, submitted) and Delattre and Lavielle (submitted) propose to extend
it to population SDEs. This approach has been applied to a one-compartment PK model (2) with
three random effects and measurement noise. We now detail their method.

The EM algorithm is a way to circumvent the problem of integrating the likelihood (28) over the
non-observed data X and φ, in situations where the maximization of the conditional expectation
of the likelihood of the complete data (y,X,φ) is possible:

Q(θ|θ′) = E [log p(y,X,φ; θ)|y; θ′] .

EM is an iterative procedure: at the `-th iteration, given the current value θ̂`−1 of the parameters,
the E-step evaluates Q`(θ) = Q(θ | θ̂`−1) while the M-step updates θ̂`−1 by maximizing Q`(θ).
This algorithm is not explicit for population SDEs: the E-step is not explicit and the conditional
distribution p(X,φ|y; θ) is not explicit. A stochastic version of the EM algorithm has been pro-
posed by Kuhn and Lavielle (2005), the Stochastic Approximation EM algorithm (SAEM), for
nonlinear mixed model with deterministic regression function by Kuhn and Lavielle (2005) and for
mixed model based on SDEs by Donnet and Samson (2008, submitted) and Delattre and Lavielle
(submitted).

The SAEM algorithm for population SDE (27) proceeds as follows. The E-step is divided into
a simulation step (S-step) of the non-observed data (X(`),φ(`)) with the conditional distribution
p(X,φ |y; θ̂`−1) and a stochastic approximation step (SA-step):

Q`(θ) = Q`−1(θ) + α`

[
log p(y,X(`),φ(`); θ)−Q`−1(θ)

]
,

where (α`)`∈N is a sequence of positive numbers decreasing to zero. The simulation step can
not be performed exactly, for the reasons exposed in Section 5.3.1. When the transition density
pX(x, t−s|xs, φ, η) is explicit, Donnet and Samson (2008) propose to use a MCMC algorithm similar
to the one used in the Bayesian framework. An improvement has also been proposed more recently
by Donnet and Samson (submitted) based on the Particle MCMC (PMCMC) algorithm proposed
by Andrieu et al. (2010), which combined the MCMC algorithm with particle filter techniques.
The theoretical convergence of both algorithms SAEM-MCMC and SAEM-PMCMC have been
established if the complete log-likelihood belongs to the exponential family (with respect to the
parameter θ).

When the transition density is not explicit, Donnet and Samson (2008) propose to approximate
the solution of the SDE with the Euler-Maruyama scheme. More precisely, if the time interval
between two observation points is small, the transition density pX(x, t− s|xs, φ, η) can be approx-
imated by a Gaussian distribution. If the time intervals between two observation instants are too
large to obtain a good approximation of the transition density, a natural approach is to intro-
duce a set of auxiliary latent data points between every pair of observations, as first proposed by
Pedersen (1995). Under general assumptions, Donnet and Samson (2008) prove that the SAEM-
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MCMC algorithm theoretically converges to a maximum of the likelihood of the Euler-Maruyama
approximate model. The error between the estimator issued from this approximate model and the
“true" model (27) can be bound by a function of the step size of the Euler-Maruyama approxima-
tion. However, in practice the use of a Euler-Maruyama scheme implies the introduction of a large
amount non-observed data, which can slow the convergence rate.

An alternative has been proposed by Delattre and Lavielle (submitted) with an approximation of
the E-step of EM by the EKF algorithm. Their SAEM algorithm is based on the simulation of only
the individual parameters φi under the conditional distribution p(φi|y(i); θ), the diffusion trajecto-
ries are not simulated and are directly integrated out in the conditional distribution p(φi|y(i); θ).
Since direct simulation of this conditional distribution is generally impossible, a MCMC algorithm
is used with a Metropolis-Hastings approach. However, the acceptance probability computed in
Metropolis-Hastings requires the knowledge of the expression of p(y(i)|φi, σ) which has no close
form. Delattre and Lavielle (submitted) propose a Gaussian approximation of this conditional
likelihood, based on the EKF. The implementation of the EKF is similar to (22) but with a higher
order Taylor expansion for the prediction equations. This algorithm is much more less computa-
tionally intensive than those proposed by Donnet and Samson (2008, submitted) but the theoretical
convergence of their estimator is not proved.

6 Conclusion and discussion

Due to the specific nature of PK/PD data, standard estimation methods for SDE models proposed
in the financial literature can not be directly applied. In this paper, we restrict our review to
PK/PD oriented estimation methods, eliminating those relying on continuous observation of the
SDE. Moreover, dynamical systems used in biology are quickly of high complexity as soon as
a precise description of the biological processes of interest is considered. As a consequence, ad
hoc estimation methods have been proposed in the literature, sometimes suffering from a lack of
theoretical justifications but always with practical objectives.

In most papers, estimators are obtained by maximizing the likelihood. If the transition density
of the SDE is explicit, exact MLE can be computed, using Kalman filter if SDE is observed
with measurement noise. Otherwise, if the transition density is not explicit, the likelihood has
to be approximated. We can find in the literature easy to implement methods with theoretical
validity (Hermite expansion) when the SDE is directly observed, easy to implement methods but
without theoretical validity (extended Kalman filter) and methods with theoretical validity but
computationally intensive (Monte Carlo approximation).

In a population context, there exist four estimation methods: Hermite expansion of the marginal
likelihood, the combination of FOCE with the extended Kalman filtering and the use of a stochastic
version of the EM algorithm and Bayesian approach.

Note that Hermite expansion can not be directly extended when the diffusion is observed with
noise whereas Kalman filter, Extended Kalman filter and FOCE methods are strictly designed for
models with observation noise. Methods relying on the EM algorithm can be applied to models
with or without noise, provided the complete likelihood belongs to the exponential family. Bayesian
approach is finally the most adaptable method since it can be applied to any model (one or several
trajectories, with or without noise observation) as soon as the transition density is explicit. If not,
a Euler approximation has to be performed and the introduction of set of auxiliary latent data
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points between every pair of observations can dramatically jeopardize the convergence rate of the
algorithm of simulation. We propose in Table 6 a resume of existing methods for population SDE
models.

[Table 1 about here.]
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Obs. Noise Without With
Explicit Transition With Without With Without
Hermite approximation Picchini et al. (2010) X X
Stochastic EM X X
Stochastic EM with Euler approximation X X
FOCE X
FOCE with Extended Kalman Filtering X
Bayesian Inference X X
Bayesian Inference with Euler approximation X X

Table 1: SDE for population PK/PD models: a syntetic resume
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