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ABSTRACT 

Gene therapy of severe combined immunodeficiencies has been proven to be effective to provide 

sustained correction of the T cell immunodeficiencies. This has been achieved for 2 forms of 

SCID, i.e SCID-X1 (c deficiency) and adenosine deaminase deficiency. Occurrence of gene 

toxicity generated by integration of first generation retroviral vectors, as observed in the SCID-

X1 trials has led to replace these vectors by self inactivated (SIN) retro(or lenti) viruses that may 

provide equivalent efficacy with a better safety profile. Results of ongoing clinical studies in 

SCID as well as in other primary immunodeficiencies, such as the Wiskott Aldrich syndrome, 

will be thus very informative.  
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1.  Introduction 

The rationale for gene therapy in primary T cell immunodeficiencies 

There are many reasons why gene therapy has been developed in the field of primary 

immunodeficiencies (PIDs) over the last 20 years. Many PIDs are life-threatening conditions - 

notably severe combined immunodeficiencies (SCIDs) affecting T cell development and 

function, Wiskott Aldrich syndrome (WAS), hemophagocytic lymphohistiocytosis (HLH), innate 

immune deficiencies (such as chronic granulomatous disease or Mendelian susceptibility to 

mycobacterial disease) and inherited autoimmune syndromes. The remarkable progress in 

treating PIDs has mostly been based on allogeneic hematopoietic stem cell transplantation 

(HSCT).(Gennery et al., 2010) However, this approach is far from perfect and serious adverse 

events (SAEs) can still occur (such as graft-versus-host disease (GVHD)). In particular, GVHD 

can damage the thymus and compromise the reconstitution of T cell immunity. The limitations of 

HSCT are necessarily more pronounced in patients who lack HLA-compatible donors. 

Conversely, the success of HSCT provides a rational basis for the autotransplantation of 

transduced stem cells - the current approach in gene therapy for PIDs. Most PIDs display 

Mendelian inheritance, so that introduction of a normal copy of the mutated gene into the 

patient's cells should (in principle) be effective. The fact that disease-related genes have now 

been found for most PIDs (Notarangelo et al., 2009) makes gene therapy a feasible approach for 

many of these conditions. 

For some PIDs (e.g. T cell immunodeficiencies), it has become clear that transduced precursor 

cells can have a selective growth advantage. In several T cell PIDs, the occurrence of somatic 

mutations positively modifies the mutated genes and leads to the development of functional T 

cells; the observed attenuation of disease phenotypes strongly supports this concept. This growth 

advantage is based on (i) the tremendous ability of T cell precursors in the thymus to divide in an 
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interleukin-7-dependent manner and, following expression of the pre-T cell receptor (pre-TCR), 

(ii) positive selection and (iii) the very long life span of mature T cells. One can thus expect a few 

transduced T cell precursors to give rise to a full, stable T cell pool in a given individual. Hence, 

SCID is considered to be an optimal model for assessing the feasibility of gene therapy. 

 

 Gene transfer technology 

In the meantime, significant advances in viral vector technology have enabled the transduction of 

dividing cells and thus replication of the transgene in progeny cells. Replication-defective 

retroviral vectors have been based on murine oncoretroviruses (the  retrovirus), simian and 

human lentiviral viruses, spuma viruses and transposons (Verma and Weitzman, 2005). A key 

advance was the creation of “self-inactivating" (SIN) viruses in which the absence of enhancer 

elements in their long terminal repeats (LTRs) makes them less able to transactivate endogenous 

genes after genome integration (see below) (Yu et al., 1986). In the absence of enhancers, several 

internal promoters can be used to drive transgene transcription. Culture conditions for the 

transduction of hematopoietic progenitor cells have been improved by selecting the best cytokine 

cocktails and promoting virus/cell interaction by the addition of fibronectin fragments. 

 

 Gene therapy in SCIDs 

Following the advent of this vector technology, clinical trials were successfully initiated for 

SCID-X1 (c deficiency) in 1999 and then adenosine deaminase (ADA) deficiency. To date, gene 

therapy results are available for 20 patients with typical X-linked SCIDs, five patients with 

atypical SCIDs (n=5) and 38 patients with ADA deficiency (Cavazzana-Calvo et al., 2000) 
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(Hacein-Bey-Abina et al., 2010) (Gaspar et al., 2011a) (Aiuti et al., 2002) (Aiuti et al., 2009) 

(Gaspar et al., 2011b) (Candotti et al., 2012). 

The SCID-X1 trials were associated with clinical events caused by vector genotoxicity and 

shall be discussed first. 

 

 Genotoxicity in SCID-X1 trials 

Five of the 20 patients (four in the Paris trial and one in the London trial) developed T cell 

leukemia 2 to 5.5 years after gene therapy (Hacein-Bey-Abina et al., 2008) (Howe et al., 2008). 

Interestingly enough no events occurred subsequently, suggesting reduced risk overtime. 

Following chemotherapy, four patients survived and showed sustained remission and T cell 

immunity (Hacein-Bey-Abina et al., 2010) (Gaspar et al., 2011a) (see below). One patient died 

from refractory leukemia (Hacein-Bey-Abina et al., 2010). In all cases, it was found that the 

abnormal clone had one or two provirus integrations within a proto-oncogene locus. Many other 

genomic abnormalities were found (Hacein-Bey-Abina et al., 2008; Howe et al., 2008). 

Accordingly, the clinical trials were discontinued. Considerable effort was then devoted to 

investigating the mechanism underlying these SAEs. It was clearly shown that retroviruses do 

preferentially integrate within genes (especially actively transcribed ones). Epigenetic signatures 

which favor retroviral integration have been recently identified (Dave et al., 2009; Santoni et al., 

2010). It turned out that the LMO2 locus in hematopoietic progenitors contains several of the 

features that favor frequent local integration. In parallel, it became clear that the viral LTRs' 

enhancer activity could permanently turn on transcription of the target gene and thus trigger the 

leukemic process (Santoni et al., 2010) (Cattoglio et al., 2010; Kustikova et al., 2010). It is 

noteworthy that despite the use of a similar gene transfer technology in the ADA trials, none of 

the successfully treated patients (n=28) developed leukemia - a result that significantly differs 
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from that of the SCID-X1 trials (Aiuti et al., 2009) (Gaspar et al., 2011a) (Candotti et al., 2012) 

(Ferrua et al., 2010). These findings strongly suggest that one or more disease-associated factors 

interfere with retroviral integration, e.g. the nature of progenitor cells in the bone marrow above 

the differentiation block, the possibly convergent effects of transgene and oncogene expression 

and an inadequate in vivo milieu for cell growth why gene therapy of ADA deficiency has not led 

to leukemia could be related to the toxic effects of (deoxy) adenosine metabolites, that 

accumulate because of the ADA deficiency. These effects may partially affect the epithelial 

component of the thymus. A putative diminution in  cell division rate could reduce the risk of 

secondary genomic alterations that are required to induce leukemia.The fact that a similar, 

LMO2-associated leukemic event was also observed in 4/9 WAS patient efficiently treated with 

ex vivo retrovirally mediated gene transfer into CD34 cells also indicates that the ADA deficiency 

setting should be regarded as unfavorable for the occurrence of leukemia (Boztug et al., 2010). 

Researchers have made huge efforts to construct safer vectors, with the development of 

enhancer-deleted LTR-SIN vectors containing an internal promoter. This type of vector has been 

shown to be less genotoxic in in vitro assays of the clonogenicity of myeloid precursors (Yu et 

al., 1986; Cattoglio et al., 2010; Kustikova et al., 2010). Despite efforts to set up predictive in 

vivo assays in murine models, an absolute demonstration of safety can only be provided by the 

ongoing, recently initiated clinical trials. Furthermore, use of insulators (for functional isolation 

of the integrated provirus from the genomic environment) and addition of a suicide gene might be 

useful. Nevertheless, these measures will probably be only partially effective and have their own 

pitfalls. The use of HIV-derived lentiviral vectors might constitute an additional safeguard, since 

this type of vector only integrates into genes (and not upstream of the transcription start site). 

This advantage might, however, be counterbalanced by greater transduction efficacy and thus 

more frequent vector integration into the patient's cells. Other potential improvements for the 
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future include gene targeting to neutral (“safe harbor”) genome regions and gene repair by target-

specific nucleases (Lombardo et al., 2007; Papapetrou et al., 2011). 

 

 Efficacy in the SCID-X1 trial 

At present, 18 of 20 SCID-X1 patients treated in the Paris/London trials are alive 5.7 to 13.5 

years after treatment (median: 10.3 years). Seventeen patients show the sustained presence of 

transduced lymphocytes (Cavazzana-Calvo et al., 2000) (Hacein-Bey-Abina et al., 2010) (Gaspar 

et al., 2011a). Blood T cells counts are in the normal or close-to-normal range, while phenotype 

and functional characteristics are also satisfactory. This includes detection of distinct T cell 

subsets including innate like T cells ( T cells, NK T cells) and FoxP3 (+) CD4 (+) regulatory T 

cells. Antigen-specific T cell activation can be evidenced in vitro following in vivo immunization. 

Immunoscope analysis detects a fully diversified TCRVB repertoire including in patients who 

had leukemia and received chemotherapy. Remarkably, most patients (including the 4 who 

received chemotherapy) have some naïve T cells characterized by the detection of T cell 

receptors excision circles (TREC) - indicating the presence of ongoing, long-term thymopoiesis 

from transduced progenitor cells. 

 Gene therapy based on the development of T cell immunity provided clear-cut clinical 

benefits to these patients, since they can now deal normally with infections and are doing well in 

the absence of any therapy (apart from immunoglobulin (Ig) substitution in 8 cases, see below). 

Long-term natural killer (NK) cell reconstitution is not as impressive, with only a few such cells 

in their blood (as is also observed after allogeneic HSCT in the absence of myeloablative 

conditioning). These results suggest that NK cell dynamics (precursor expansion and/or progeny 

life span) differ significantly from T cell dynamics. The patients' B cell functions have been 
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partially restored, despite very low (and decreasing) transduced B lymphocyte counts. 

Accordingly, 10 out of 18 of the patients do not require Ig substitution. This observation may be 

due to (i) to competition with normal B cell development in the absence of c expansion/function 

and (ii) B cell dynamics. It may well be of value to establish whether plasma cells in the bone 

marrow express c or not. Thanks to the development of novel methods and technologies (e.g. 

ligation-mediated PCR with multiple restriction enzymes and deep sequencing), a wealth of 

information has been provided by the in-depth analysis of retroviral integration sites in the 

patients’ cell populations. For example, it has been shown that the patients' T cells originate from 

as few as 300 to 4000 transduced progenitor cells. Given that the T cells display significant 

diversity in a TCR repertoire analysis, one can deduce that these few cells have divided 

extensively (thanks to c receptor expression) prior to TCR rearrangements in the thymus. This 

finding validates the selective advantage concept on which gene therapy for SCID was launched 

(Cavazzana-Calvo et al., 2000) (Hacein-Bey-Abina et al., 2010) (Gaspar et al., 2011a). It has also 

been noted that there is considerable variation over time in the abundance of clones, with no 

evidence for long-term selection. Furthermore, there are significant changes over time in the 

clonal composition of peripheral T cells; this could (as least in part) be explained by non-

exhaustive detection of the more rarely represented clones at a certain time point and/or by 

unexpected variations in the immune system's “use” of T cell progenitors. Lastly, although 

detection of the same integration sites in T cells and myeloid cells soon after treatment 

demonstrated that a least some multipotent hematopoietic progenitors had been transduced, only 

transduced T cells (including naïve T cells) are found 8-13 years post-gene therapy. The latter 

result suggests that T cell precursors with self renewal capacity persist in the thymus as recently 

described in murine models (Martins et al., 2012; Peaudecerf et al., 2012). 
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In addition to these 20 patients treated soon after diagnosis of a typical SCID-X1 early in life, 

five other patients were treated later in life (at between 10 and 20 years of age) because of either 

an atypical SCID-X1 caused by hypomorphic mutation or poorly reconstituted T cell immunity 

years after HSCT. Despite technically efficient gene transfer, the results have been disappointing 

- with little or no improvement in T cell immunity (Thrasher et al., 2005). Defective residual 

thymic function at a later age in SCID patients very probably accounts for these failures and 

raises the question of how long the thymus remains potentially functional in a patient lacking 

effective thymopoiesis. 

Based on the efficacy of these trials, a new clinical trial has been reinitiated for which a SIN 

retroviral vector with a satisfactory in vitro safety data (Modlich et al., 2009) containing the c 

gene has been designed. This international trial has been initiated two years ago and should 

provide within the next couple of years the expected informations on its combined safety/efficacy 

profile (Cavazzana-Calvo et al., 2012). 

 

 Gene therapy in ADA deficiency 

Adenosine deaminase deficiency has now been treated with modern gene therapy techniques, 

following the inclusion of 38 patients in three trials (performed in Italy, the UK and the USA)  

(Aiuti et al., 2002) (Aiuti et al., 2009; Ferrua et al., 2010) (Cavazzana-Calvo et al., 2012). The 

technology is essentially similar to that used to treat SCID-X1. An important difference related to 

the use of a mild conditioning regimen (4 mg/kg busulfan for most patients), in order to improve 

transduced stem cell engraftment. This choice was motivated by the fact that ADA deficiency is a 

metabolic disease in which increasing the number of transduced cells within the different cell 
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lineages could be advantageous. This chemotherapy has been well tolerated and (as mentioned 

above) none of the patients has developed treatment-related genotoxic complications. 

Efficacy (judged in terms of T cell development and the absence of clinical indications for 

supplementing patients with pegylated ADA) has been seen in 28 of the 30 patients, whereas the 

10 others are alive and on enzyme replacement therapy. The median follow-up is 3.5 years 

(range: 1 to 11.5 years). The quality of T cell reconstitution has not been as good as in SCID-X1 

(Aiuti et al., 2009) - probably because of the unfavorable setting of ADA deficiency in non-

hematopoietic tissues such as thymic epithelial cells. Nevertheless, T cell reconstitution has been 

good enough to enable the patients to thrive. The provirus integration profile and characteristics 

are strikingly similar to those seen in the SCID-X1 trial. Furthermore, significant transduced B, 

NK lymphocyte and myeloid cell counts have been detected as a consequence of the mild 

myeloablation and the transduced stem cells' good engraftment. These results are very 

encouraging and suggest that gene therapy is a coherent therapeutic option for patients with ADA 

deficiency.  

 

Gene therapy in Wiskott-Aldrich syndrome. 

Wiskott-Aldrich syndrome is a life-threatening immunodeficiency. Since lymphocyte 

development is not perturbed, transduced cells are not expected to have the full selective 

advantage observed in SCIDs. Nevertheless, this might still be partially the case, given the WAS 

protein's functional involvement in migration of CD34 cells to the bone marrow. Myeloablation 

may favor the engraftment of transduced cells. 

Lentiviral-mediated transfer of the WASp gene has now been recently initiated, in order to 

achieve optimal transduction of stem cells. This was observed in the adrenoleukodystrophy 

(ALD) trial (Cartier et al., 2009), in which up to 10% of all hematopoietic lineages were found to 
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be stably transduced 3 years after therapy. In the meantime, a retrovirus-based trial for WAS was 

set up. It is also based on ex vivo gene transfer into CD34+ cells following myeloablation. The 

recently published preliminary results suggest that many aspects of the disease (e.g. T + B cell 

immunodeficiencies and thrombocytopenia) had been corrected in 9 patients (Boztug et al., 

2010). Although longer follow-up is obviously needed, these results are sufficiently encouraging 

to justify the development of clinical trials with safer vectors (i.e SIN-LV) given the occurrence 

of leukemia in 4 into treated patients in this trial. SIN-LV vectors with a WASP promoter are 

being used in present clinical trials (Merten et al., 2011). 

 

Extending our present experience 

The results achieved to date have provided proof of concept for gene therapy of SCIDs and 

WAS. It will be critical to see whether the SIN vectors are indeed as safe as expected in the 

ongoing SCID-X1 and WAS trials. Even from a cautious standpoint, extension of gene therapy to 

other SCID diseases is logical. Encouraging preclinical results have been reported for Artemis 

and Rag-2 deficiencies and, to a lesser extent, Rag-1 deficiency (Benjelloun et al., 2008) 

(Mostoslavsky et al., 2006) (Lagresle-Peyrou et al., 2006). Further development in the treatment 

of other primary T cell immunodeficiencies (such as HLH, immunodysregulation, 

polyendocrinopathy, enteropathy and X-linked syndrome) is underway. Two strategies can be 

considered in such cases: the transduction of hematopoietic stem cells (HSCs) or that of diseased, 

mature T cells (Fischer et al., 2010). 

The fact that the sustained detection of transduced blood cells has been observed in the 

treatment of one disease (ALD) in which expression of the therapeutic transgene does not provide 

a competitive advantage suggests that a similar gene therapy strategy can be applied to PIDs 

characterized by the similar absence of growth/survival activity for the defective protein. This 
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might open up the way to the safe, efficient treatment of PIDs of the myeloid lineages, in which 

consistent transduction of HSCs will be needed to ensure the daily renewal of neutrophils. 

Chronic granulomatous diseases and leukocyte adhesion deficiency are obvious target diseases 

(Grez et al., 2011; Hunter et al., 2011).  

Advances in gene therapy for PIDs will undoubtedly stem from technological progress, such 

as the above-mentioned safe harbor and gene repair strategies. Furthermore, ex vivo stem cell 

expansion (Boitano et al., 2010) could increase the number of treated cells and hence boost 

efficacy and (if clone selection can be performed) safety. Lastly, the production of HSCs from 

other cell sources (as recently achieved with human fibroblasts(Szabo et al., 2010)) opens up 

further development pathways, together with potential gene mutation correction by genetic 

engineering based on TALE nucleases (Zhang et al., 2011) (Hockemeyer et al., 2011). 

Reprogramming of cells as achieved by the generation of induced pluripotent stem cells (iPS) 

provides a tool to engineer repair of correction of a given inherited disorder prior to induce cell 

differentiation to hematopoietic cells. Potential safety issues that might emerge from incomplete 

reprogramming as well as robustness of induced hematopoietic cells are the challenges to tackle 

next. 
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