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Résumé 

La signalisation au niveau de la synapse immunitaire entre les cellules présentatrices 

d’antigènes et les lymphocytes T est une phase critique de la réponse immune adaptative. Les 

lymphocytes T CD4+ naïfs sont polarisés en différentes populations (Th1, Th2, Th17, iTrgs) et 

les décisions majeures, telles que le choix entre l’homéostasie immunitaire et l’activation du 

système immunitaire, la tolérance au soi, l’auto-immunité, sont prises à ce moment. Dans 

certaines conditions, un déclenchement dérégulé de la réponse immunitaire provoque un 

déséquilibre entre les fonctions effectrice et régulatrice des lymphocytes T, conduisant à des 

phénomènes d’auto-immunité et d’inflammation systémique. Des doses élevées 

d’immunoglobulines intraveineuses (IVIg) sont fréquemment utilisées pour traiter ces maladies. 

Le mécanisme d’action des IVIg sur la polarisation des lymphocytes T reste à ce jour inexploré. 

Ainsi, j’ai recherché les effets de doses élevées d’IVIg sur la polarisation des lymphocytes T 

dans le cadre de l’encéphalomyélite auto-immune expérimentale (EAE), une maladie auto-

immune mettant en jeu les lymphocytes T et un modèle animal de la sclérose en plaques. 

L’EAE a été induite chez des souris C57BL/6J en combinant le peptide MOG35-55 avec 

l’adjuvant complet de Freund (CFA). L’administration d’IVIg a retardé l’apparition de l’EAE et 

diminué significativement l’intensité des signes cliniques. Les IVIg ont inhibé la différenciation 

des lymphocytes T CD4+ naïfs en sous-populations effectrices (Th1 et Th17) et ont, de manière 

concomitante, provoqué la prolifération des lymphocytes T régulatrices CD4+ Foxp3+. En outre, 

les IVIg ont rendu les lymphocytes T effecteurs moins pathogéniques, en diminuant l’expression 

de molécules encéphalitogéniques telles que le GM-CSF et la podoplanine. Les IVIg ont 

diminué l’expression du récepteur à la sphingosine-1 phosphate (S1P1) à la surface des 

lymphocytes CD4+, séquestrant ces cellules dans les ganglions lymphatiques et diminuant 

l’infiltrat de l’organe cible (le système nerveux central) en Th1, Th17 et Trég. Le récepteur 

inhibiteur FcγRIIB n’est pas indispensable pour la modulation des sous-populations de 

lymphocytes T CD4+ effecteur et régulateur induite par les IVIg in vivo. D’autre part, les portions 

F(ab)’2 des IVIg ont conservé la fonction modulatrice associée aux IVIg. La cible de la 

rapamycine chez les mammifères (mTOR) est une kinase qui intègre de multiples signaux de 

l’environnement et qui est impliqué dans la régulation des réponses effectrice et régulatrice des 

lymphocytes T. Les IVIg ou les F(ab)’2 ont diminué l’activité de mTOR, rétablissant à nouveau 

l’équilibre entre les sous-populations de lymphocytes T régulateurs et de lymphocytes T helper 

pro-inflammatoires. Pris ensemble, ces résultats constituent une base cellulaire et moléculaire, 
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qui sous-tend l’effet bénéfique des IVIg dans certaines maladies auto-immunes et 

inflammatoires. 

Summary 

 

Signaling at the immune synapse between antigen presenting cells and T cells is the 

critical phase of the adaptive immune response. Naïve CD4 T cells are polarized into various 

subsets (Th1, Th2, Th17 and iTregs) and crucial decisions such as immune homeostasis versus 

immune activation; and tolerance to self-versus autoimmunity are made at this point. 

Dysregulated activation leads to pathogenic immune response to self-antigens and 

inflammatory pathologies. High dose therapy of intravenous gammaglobulin (IVIg) is widely 

used in the treatment of several T-cell and autoantibody-mediated autoimmune diseases. 

However, the comprehension of the mechanisms underlying its therapeutic benefit has 

remained a major challenge. In particular the mechanisms of action of IVIg in terms of T cell 

polarization in vivo have remained unexplored. Therefore, I have investigated the effect of high 

dose IVIg on T cell polarization using actively induced experimental autoimmune 

encephalomyelitis (EAE), a T cell-mediated autoimmune condition and an animal model of 

multiple sclerosis. EAE was induced in C57BL/6J mice using MOG35-55 emulsified in complete 

Freund’s adjuvant (CFA). Concomitant administration of IVIg delays the onset of EAE and 

significantly decreases severity of the disease. IVIg inhibited the differentiation of naïve CD4 T 

cells into effector subsets (Th1 and Th17 cells) and concomitantly induced expansion of 

Foxp3+CD4 cells. Further, IVIg rendered effector T cells less pathogenic by decreasing 

expression of encephalitogenic molecular players such as GM-CSF and podoplanin. IVIg 

decreased the expression of sphingosine-1 phosphate receptor (S1P1) on CD4 cells, thus 

sequestering these cells in the draining lymph nodes and decreasing infiltration of Th1, Th17 

and Tregs to the target organ (central nervous system). Inhibitory FcγRIIB appeared 

dispensable for IVIg-mediated reciprocal modulation of effector and regulatory CD4 subsets in 

vivo. F(ab’)2 fragments of IVIg also retained the reciprocal  CD4 T cell modulatory functions of 

IVIg. Mammalian target of rapamycin (mTOR) is a kinase which integrates various 

environmental signals and is involved in regulation of effector and regulatory T cell responses. 

IVIg or F(ab’)2 decreased activity of mTOR thus restoring the equilibrium between regulatory T 

cells and pro-inflammatory T helper subsets. Thus, these findings provide a novel cellular and 

molecular basis underlying the beneficial effect of IVIg in certain T-cell mediated autoimmune 

and inflammatory conditions. 
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Intravenous immunoglobulins as modulators of immune response: Effect on T 

cell polarization, pathogenicity and trafficking 

1. Introduction  

1.1.  Immune system  

The immune system comprising innate and adaptive part is a network of 

interacting molecules and cells evolved to fight against the invading pathogens and 

regulate aberrant tissue responses such as cancer. Cells of the innate immune 

compartment include monocytes (Mo), macrophages (MΦ), dendritic cells (DC), mast 

cells (MC), neutrophils, eosinophils, natural killer (NK) and basophils. The complement 

system comprises of proteins in the serum that act by opsonizing and inducing 

cytolysis in pathogens and infected cells. Invasion of host tissues by pathogens leads 

to cell stress, hypoxia, necrosis, temperature shifts and tissue destruction [1]. Local 

injury at the site of infection or tissue damage releases various microbial and 

endogenous products from damaged or dying cells [2]. Molecules originating from 

pathogens are called as pathogen associated molecular patterns (PAMP), whereas 

those from insulted cells/tissues are designated as danger associated molecular 

patterns (DAMP). The cells of the innate immunity residing in various tissue of body are 

endowed with specialized germline-encoded pattern recognition receptors (PRRs) and 

multi-protein complexes like inflammasomes. Innate cells recognize PAMPs and 

DAMPs through these receptors at the site of tissue injury and initiate the early steps of 

mounting an immune response.   
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 Information about local insult to tissues by pathogens or aberrant tissue 

responses is relayed to the adaptive arm of the immune system to initiate antigen-

specific immune response [3]. Adaptive immunity mainly consists of lymphocytes of 

thymic (T cells) and bone marrow origin (B cells). T cells provide most of the cell-

mediated immune response and B cells produce glycoproteins called antibodies that 

effectors of the humoral immune response. T cells are further classified as CD4+ helper 

T cells (Th) and CD8+ cytotoxic T cells (CTL). A minor population of γδ T cells and 

natural killer cells (NKT) also exist which share properties of innate and T cells. In 

addition to the antigen specific effector responses adoptive immunity also maintains a 

state of immunological memory to the antigens encountered. This immunological 

memory helps the host to initiate faster and robust antigen-specific immune response 

to eliminate the pathogens. Immune responses are constantly checked and regulated 

at various levels to ensure that body does not attack and destroy the self-organs and 

tissues. However, under particular conditions a dysregulated immune system might 

lead establishment of inflammatory conditions and damage to the self-tissues. 

 

1.2.  Immune homeostasis and activation   

Activation of Th cells marks the key point in initiation of any immune response. 

Antigen presenting cells (APC) like dendritic cells, B cells and macrophages capture 

antigen process and present it to CD4 T cells in MHCII- restricted manner. Progress 

made in intra-vital multi-photon microscopy has revealed many aspects of dynamics of 

in vivo crosstalk between APCs and T cells involved in the initiation of an immune 

response [4]. Under homeostatic conditions, a naïve Th cell enters secondary lymphoid 
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organs such as draining lymph nodes (DLN) and arrives at the T cell rich zone. It scans 

the APCs for cognate antigens during the motion strategy termed as “random walk” at 

12 µm/min [5]. Since, the APCs under homeostatic conditions present low levels of self-

antigens in a non-stimulatory context; these naïve T cells are leave DLN inactivated to 

enter into circulation before arriving at another DLN (Figure 1A).  

In case of infection or injury, tissue resident immature dendritic cells sense 

presence of foreign antigens and danger signals through PAMPs and DAMPs; and carry 

the captured antigen to the nearby DLN. These antigen-primed DCs enter a 

developmental program called “maturation” during which they decrease their endocytic 

capacity, and process the captured antigen. The antigen is presented in context of 

unregulated MHC. Along with antigen presenting molecules mature-DCs also up-

regulate surface expression of various co-stimulatory and adhesion molecules like 

CD28, CTLA-4, PD-1, ICOS, OX40, CD80/CD86, CD40, ICAM-3binding C type lectin 

and DC-SIGN [6-8]. Additionally mature DCs secrete various cytokines like IL-12, IL-23, 

IL-2 and interferon-α. Naïve Th cells encountering an antigen loaded, matured APC in 

DLN changes its motility from “random walk” to “brief contacts” that last for hours. After 

brief contacts there is a phase of “sustained contact” between T cell and APC which 

lasts for 18-20 hour before the first division of T cell [5] (Figure 1B). Naïve T cells 

recognizing antigen though TCR initiate CD3 signaling and simultaneously integrate 

various cues from APCs. The period of “sustained contact” is the key phase in T cell 

activation, as APCs instruct T cells about the nature of antigen encountered in the 

periphery by presenting the processed antigen together with a combinatorial code of co-

stimulatory molecules and cytokines [9, 10].  
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Figure 1: APC and T cell interaction during homeostasis and immune activation 

  
A. Naïve T cells enter the DLN and interact with APCs residing in the T cell rich zone and do a 

‘random walk’ and scan for APC for activation cues. Since APCs are in immature phase they T 
cells leave the LN to enter into circulation to enter another LN. 

B. Under conditions of immune activation APC bring antigen from periphery and present it with 
higher amount of co-stimulatory and adhesion molecules on their surface. Antigen-specific 
naive T cells make transient serial encounters of 8-10 min with APCs which lasts for 8-10 hrs. 
Next step is sustained contact between these cells which lasts for 18-30 hours after which T 
cells enter phase of cell cycle and differentiation. (Adapted from Paul W, Fundamental Immunology 6

th
 

Edition 2010 ) 
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The activated CD4 T cells are polarized to various subsets, which in turn shape the 

further course of immune response by providing help to B and CD8 T cell. B cells 

secrete family of glycoproteins called immunoglobulins which defend the body against 

invading pathogens. CD8 T cells are involved in clearance of infected cells. Crucial 

decisions such as immune homeostasis versus activation; memory versus effector 

response; and tolerance to self-versus autoimmunity are made at this point of T cell 

activation and polarization.   

Different Th lineages generated in immune response include Th1, Th2, Th17, and 

induced regulatory T cells (iTregs) which are identified by their ability to secrete distinct 

set of cytokines [11-13]. In addition to these, a different lineage of natural regulatory T 

cells (nTregs) exist which emerge from thymus [14-16]. 

1.3. T cell polarization and Th cells subsets. 

Th cell polarization occurs in response to activation by APCs and cytokine profile in 

the milieu of activation. The specific set of cytokines involved in various Th cell 

polarizations are Th1: IL-12/IFN-γ; Th2: IL-4/ (IL-2); Th17: TGF-β, IL-6, IL-23, IL-21 and 

IL-1β; iTregs: TGF-β/IL-2. Transforming transcription factors which are the master 

regulators of differentiation for these lineages are: T-bet/STAT4 for Th1, GATA3/STAT6 

for Th2, RORγt (RORC in human)/STAT3 for Th17 and Foxp3/STAT5 for Tregs (Figure 

2). 

Other putative Th cell lineages include TGF-β-producing Th3cells [17], IL-10-

producing Tr1 cells [18], IL-9-producing Th9 cells [19, 20], the follicular helper  cells 
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(Tfh) which migrate to follicular regions of lymph nodes and spleen to help B cells [21-

23]; and IL-22-producing Th22 cells [24, 25]. Whether these subsets represent lineages 

distinct from the known Th subsets needs to be further explored, as many of these 

cytokine are also produced by Th1/Th2/Th17/Tregs. 

1.3.1. Th1 cells 

TLR activated APCs in presence of type I IFNs, IFNγ or CD40L produce large 

quantity of IL-12 [26]. IL-12 is the key cytokine in induction of Th1 cells. Signaling 

through the IL-12 receptor β2 (IL-12Rβ2) results in STAT4-mediated promotion of IFNγ 

expression which sustains the expression of IL-12Rβ2. Th1 cells initially express IFNγ 

which acts in autocrine/paracrine manner to activate STAT1. Activated STAT1 strongly 

promotes expression of T-bet, which increases the transcription of IFN.     

T-bet then enhances the transcriptional competence of the IFNγ gene leading to 

increased production of IFN-γ [27-30]. T-bet, the Th1 master regulator prevents Th2 

differentiation by inhibiting GATA3. Thus co-ordinated signaling with IFN-γ and IL-12 

leads to full differentiation of Th1 cells. IFN-γ, lymphotoxin-α (LTα), tumor necrosis 

factor (TNF)-α and IL-2 are the principal cytokines produced by Th1 cells.  

IFN-γ plays critical role in innate and adaptive immunity against viral and 

intracellular bacterial infections. LTα, which is the marker for disease progression in 

multiple sclerosis (MS) patients, is a potent lymphangiogenesis mediator [31]. TNF-α 

enhances infiltration of MΦ and neutrophils to a site of infection. CD4+ T cell survival 

and memory CD4+ and CD8+ T cell generation requires IL-2 production from Th1 cells 

[32, 33]. Th1 cells are mainly implicated in immune response against intracellular 
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pathogens like mycobacterial infections [34, 35] and also in the pathogenesis of some 

autoimmune diseases.  

1.3.2. Th2 cells 

Naïve Th cells activated in presence of IL-4 activate intracellular STAT6 and 

gata3 genes [36]. The IL-4/STAT6 pathway also induces growth factor independent-1 

(Gfi-1), which plays an important role in promoting selective growth of GATA-3
high 

cells 

[37, 38]. Reorganization of chromatin structure in the Th2 locus enhances the 

transcription of Il4, Il5, and Il13 genes [39]. Feed forward activity of IL-4 further 

enhances Th2 cell differentiation. Differentiation into Th1 is inhibited by GATA-3 which 

down regulates expression of IL-12Rβ2 and STAT4. NKT cells, basophils and mast 

cells are the sources of IL-4 in vivo. Th2 cells are implicated in promoting humoral 

immunity and promote B cells to up-regulate antibody production to fight extracellular 

organisms.   

1.3.3. Th17 cells 

Combination of TGF-β and IL-6 is required to polarize naive Th cells into IL-17 

producing Th17 cells [40-42]. Intriguingly TGF-β is an immune regulatory cytokine and 

IL-6 is pro-inflammatory cytokine. Naïve Th cell activation in presence of TGF-β alone 

leads to activation of Smad pathway, which generally down regulates immune 

responses[43]. However in presence of IL-6/IL-21, STAT 3 is also activated. STAT 3 

triggers functional expression of retinoic acid-related orphan nuclear receptor (RORγt), 

the lineage-specific transcription factor for Th17 cells [41, 44]. Th17 cells secrete IL-21 

which acts in autocrine manner to enhance differentiation of Th17 cells [45]. IL-1 β and 
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IL-23 are also required for differentiation of Th17 cells [46, 47]. IL-1β is important to 

enhance the expansion of differentiated Th17 cells and IL-17 production [48]. Th17 cells 

are stabilized by IL-23, which mediates further expression of IL-22 [49].      

T cells are themselves the source of TGF-β for the differentiation of Th17 cells 

[40, 44, 50]. Cytokines such as IL-1β, TNF, platelet-derived growth factor (PDGF), IL-3, 

granulocyte macrophage-colony stimulating factor (GM-CSF) and IL-17 act on DCs, 

monocytes, MΦ, mast cells, and B cells to produce IL-6 [51, 52]. IL-21 is produced by 

activated and memory T cells and NKT cells, but not by APC [53]. IL-23 is 

predominantly produced by cells of the innate immune system, including DC and MΦ 

[54]. IL-23 stabilizes the differentiating Th17 cells to the Th17 lineage but is not involved 

in the initial differentiation of Th17 cells [49, 55]. Th17 cells participate in immune 

responses against extracellular bacteria and fungi [56]. Th17 cells are also responsible 

for many organ-specific autoimmune diseases. Th17 cells exert their effector functions 

by secreting IL-17A, IL-17F, IL-21, and IL-22 [49]. These effector cytokines target many 

immune and non-immune cells to induce the production of many pro-inflammatory 

mediators. Th17 cells use IL-22 as a mediator to communicate with non-immune 

tissues; such as to enhance the production of protective acute-phase reactants in 

hepatocytes and β-defensins in keratinocytes thus, enhancing the immune barrier 

function of epithelium [57].  
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Figure 2:  Current schedule of T helper cell differentiation.  

The activated naïve Th cells can develop into distinct lineage based on the cytokine milieu in the 

local environment. A distinct set of cytokines promotes the differentiation processes for each 

lineage: IL-12/IFN¬γ for Th1; IL-4/(IL-2) for Th2; TGFβ, IL-6, IL-21, IL-1β, IL-23 for Th17 and 

TGFβ/IL-2 for iTregs. These Th cell lineage express unique set of transcription factor and, cytokines 

which are critical for exerting effector functions important in host defense as well as in immune-

mediated diseases. (Adapted from Maddur et al, 2010 PLos Pathogens) 
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1.3.4. Regulatory T cells 

CD4 T cells expressing CD25 and transcription factor Foxp3 are called as Tregs. 

Population of Tregs includes thymus derived natural (nTregs) and peripherally induced 

Tregs (iTregs). High affinity interaction between self-peptide-MHC complex and TCR on 

the developing T cells in thymus leads to selection of nTregs. Cortical and medullary 

thymic epithelial cells and thymic DC are implicated in the development of Tregs. 

Engagement of TCR and IL-2R signaling in developing T leads to activation of STAT5, 

which up regulates Foxp3 gene [58].  

iTregs are generated from naïve CD4 T cells if, activated in presence of TGF-β 

and IL-2 [55]. Activation of Smad3 in presence of TGF-β and NFAT activation by TCR 

stimulation are the early signaling events in induction of iTregs. Smad3 and NFAT 

remodel the chromatin structure in Foxp3 enhancer region which facilitates the 

expression of Foxp3 [59]. IL-2–mediated STAT5 activation is also critical for the 

induction of Foxp3 expression [60-62] .  

Self-reactive T cells are dominantly controlled by nTregs, contributing to the 

maintenance of immunologic self-tolerance [63, 64]. Tregs are antigen specific but upon 

activation can suppress T cells non-specifically. Tregs can inhibit functions of CD4+, 

CD8+ T cells, DC, B cells, MΦ, monocytes, mast cells, NK cells and NKT cells [65-67]. 

Tregs use several contact dependent and cytokine mediated mechanism to exert their 

suppressive functions (Figure 3) [65]. Tregs can secrete suppressor cytokines like 

TGF-β, IL-10 and IL-35 which suppress responder T cells. Tregs can cause cytolysis 

through granzyme and perforin. Tregs inhibit the interaction of naive T cells with DC, 
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thereby terminating the T cell activation [68]. Tregs down regulate expression of co-

stimulatory molecules CD80 (B7-1), CD86 (B7-2) and CD40, and the MHC-peptide 

complexes on DC through cytotoxic T lymphocyte antigen 4 (CTLA-4) [69-71]. Treg-

modulated DCs produce decreased amount of inflammatory cytokines IL-12, IL-1β, IL-6 

and IL-8 and more of anti-inflammatory cytokine IL-10. Treg-express surface CD39, 

which degrades extracellular ATP to AMP thus, inhibits the ATP-mediated activation of 

DC [63] [67]. Tregs decrease autoantibody production by B cells by inhibiting T cell-

dependent B cell responses. Strategies like increasing Treg numbers and/or enhancing 

their suppressive function has been proven to be beneficial for treating autoimmune 

diseases and preventing allograft rejection [72-74].  
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Figure 3. Mechanisms of suppression by Tregs   

(a) Tregs produce inhibitory cytokines include IL-10, IL-35 and TGFβ which can suppress the effector T 

cell functions. 

(b) Target cell can be attached by granzyme (A or B) and perforin dependent cytolysis. 

(c) CD25 (high affinity IL-2 receptor) expressed on Tregs might consume the cytokine which induces 

apoptosis in cells nearby. CD39 is involved in cyclic AMP (cAMP)-mediated inhibition. 

(d) Tregs can interfere with DC-T cell interaction leading to premature termination of T cell activation 

and induction of anergy. (Adapted from Amsen et al., 2009; Curr Opin Immunol. and Rudensky and 

Campbell, 2006; J Exp Med )    
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1.4. mTOR  integrates multiple signals during T cell activation  

The differentiation of naïve CD4 cells into specific Th cell type in vivo is a 

complex process which requires these cells to integrate various environmental cues 

delivered by APCs in the secondary lymphoid organs [4, 75]. Naïve T cell interacting 

with APCs often encounter combination of cytokines with both pro and anti-inflammatory 

activity. There is also a considerable variation in the strength of the signal delivered by 

APCs in terms of avidity of interaction with MHC-II. How naïve T cells integrate all these 

signals and enter lineage commitment is a fascinating problem to be understood. The 

question how biological systems integrate multiple signals is still a “black-box”, However 

mammalian target of rapamycin (mTOR) has emerged as a kinase which is involved in 

integration various environmental signals and regulation of cells energy demands for 

growth and development [76]. mTOR consists of two protein complexes mTORC1 and 

mTORC2; mTORC1 is activated by PI3-kinase, Akt and Rheb whereas, mTORC2 is 

activated by PI3-K and enhances the phosphorylation of Akt (Figure 4) [77]. mTORC1 

is rapamycin sensitive and mTORC2 is resistant to rapamycin [76]. Probing into the role 

of mTOR in immune cells has revealed many exciting observations. With respect to T 

cell biology, genetic deletion of mTOR resulted in impaired development of Th1, Th2 

and Th17 cells. This effect was due to inability of these cells to activate STAT pathway 

upon stimulation. Interestingly mTOR deficient T cells developed into Foxp3 expressing 

Tregs independent of TGGβ [78, 79]. Interestingly mTOR keeps a check on expression 

of Foxp3 in Tregs [80], thus mTOR plays crucial role in differentiation naïve Th cells into 

effector Th cells (Th1, Th17 and Th2) and negatively regulates expression of Foxp3 in 

Tregs.  
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Figure 4. mTOR pathway in regulating the effector and regulatory Th Cells  

 

mTORC1 and mTORC2 are the key components of mTOR. mTORC1 is activated by Akt, 

whereas mTORC2 enhances the phosphorylation of Akt. mTOR facilitates the differentiation of effector 

Th cells by augmenting the strength of respective STAT signal. Reciprocally, mTOR suppresses the 

expression of Foxp3 in differentiating Th cells by attenuating TGF-b signaling and also via a TGF-b 

independent mechanism. The negative effect of mTOR on the induction of Foxp3, although sensitive to 

rapamycin, can be mediated by mTORC2. But it remains unclear which mTOR complex is responsible 

for supporting the differentiation of effector Th cells. In contrast to its role in the differentiation of iTreg 

cells, mTOR probably has little influence on the development of nTreg cells. (Adapted from I-Cheng Ho, 

Immunity 2009) 
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2. T cells in autoimmunity : shifting paradigms from Th1/Th2 to Th17/Tregs 

2.1. Th1/Th2 hypothesis and the emergence of Th17 cells 

Initially autoimmunity and many immunological disorders were explained on the 

basis of imbalance of Th1/Th2 responses. Th1 cells were considered to be pathogenic 

while Th2 cells were attributed with inhibitory functions [81]. IFNγ, the principle cytokine 

of Th1 cells was found in the target tissues of at the peak of EAE and CIA [82-84].  

Adoptive transfer of Th1 cells was sufficient to induce disease in mouse models of type1 

diabetes and EAE [85]. Administration of IFNγ in MS exaggerated the disease [86]. 

Mice deficient in T-bet and STAT4 were unable to produce IFNγ and were resistant to 

development of experimentally induced EAE [87, 88]. Administration of anti-IL12 was 

beneficial in EAE and CIA [86]. All together, these studies supported hypothesis that 

self-antigen specific IFNγ-producing Th1cells are the pathogenic cells in many 

autoimmune conditions.   

However, some key experiments performed in EAE required the revision of this 

theory. The flaws of the theory include: IFNγ injections protected against EAE, 

antibodies to IFNγ worsened EAE, IFNγ knockouts mice were more susceptible to EAE, 

and TNF knockouts had an exaggerated EAE and administration of TNF protected mice 

from EAE (Table 1) [89-94].  

These contradictory findings and the experiments to understand the role of the 

cytokine IL-23 in EAE have helped to decipher the paradox of Th1/th2 hypothesis. IL-23 

is a heterodimeric cytokine with p40 and p19 subunit. The p40 subunit is common to 
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Th1 inducing IL-12 and IL- 23.  Mice deficient in IL-23 were resistant to various animal 

models of autoimmunity like IBD, Collagen arthritis and EAE [95, 96]. 

Table 1. Predictions and outcomes of TH1/TH2 hypothesis  in EAE 

Prediction Outcome 

Administration of γ-IFN would worsen EAE  Administration of γ-IFN protected from EAE 

γ-IFN knockouts would be resistant to EAE EAE worse in γ-IFN knockouts 

Antibody to γ-IFN would protect in EAE  Antibody to γ-IFN worsened EAE 

TNF knockouts would be resistant to EAE TNF knockouts had worsened EAE 

Administration of TNF would worsen EAE Administration of TNF protected from EAE 

Adapted from Steinman L,  Nature Medicine 2007 [97] 

 

Further, IL-23 plays critical role in amplification of myelin-specific Th17 cells which 

induce more severe form of EAE than IL-12-driven Th1 cells [98]. Treatment of mice 

with antibodies to IL-23 protected them from EAE [99].  IL-17 produced by Th17 cells 

has pro-inflammatory effect and is involved in tissue damage and autoimmune diseases 

[100]. Increased level of IL-17 in clinical samples are associated with RA, MS, 

inflammatory bowel disease, psoriasis and asthma [49]. Several lines of evidences 

confirm that Th17 cells are the main pathogenic cells in autoimmunity and systemic 

inflammatory diseases [73, 101-116]. The fact that Th1 cells can also transfer organ 

specific autoimmunity [117], the present consensus is that both Th1 and Th17 cells are 

involved in T cell mediated pathology. Th17 cells which are generated early are known 

to reach the site of inflammation and initiate migration of other inflammatory cells 

(example Th1) which propagates the tissue damage [118]. Cytokines produced by Th17 

cells such as IL17A, IL17F, IL-21, IL-22 and GM-CSF are involved in recruitment of 

other inflammatory and effector immune cells at the site of inflammation thus leading to 
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tissue destruction [49, 119, 120]. Fate mapping studies in EAE revealed that Th17 are 

the main cells infiltrating CNS and subsequently produce IFNγ shutting off the 

production of IL17 [121]. Th17 express podoplanin which mediates formation of ectopic 

lymphoid structures which are the hallmarks of many chronic autoimmune and 

inflammatory conditions [122]. Altogether, Th17 cells are indispensible for induction of 

autoimmune and inflammatory diseases. 

 

2.2. Dysregulated equilibrium between pathogenic and regulatory T cells 

leads to immune disease  

IPEX (immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome) 

is a condition resulting from mutations in foxp3 gene resulting dysfunctional Tregs [15]. 

Compromised functions of  Tregs are known to be associated with many autoimmune 

diseases such as MS, autoimmune polyglandular syndrome type II, SLE, type 1 

diabetes, psoriasis, myasthenia gravis, RA, and chronic ITP [66, 123-126]. Depletion of 

Tregs before and after induction of autoimmune disease leads to exaggerated disease 

with increased cellular and humoral responses [127]. Adoptive transfer of Tregs in the 

animal models of autoimmunity decreased severity of the disease [14, 18]. Recovery 

phase of many inflammatory diseases is associated with increase in number of Tregs in 

the target organs. Thus, Tregs actively regulate autoimmunity throughout the lifespan 

and are indispensible for maintenance of immune homeostasis [16]. Reprogramming of 

Tregs by pathogenic T cells and various inflammatory agents renders them less 

suppressive. Pathogenic Th17 cells are known to develop at the cost of Tregs under 

severe inflammatory situations of increased IL-6 [41, 128]. Thus, balance between 
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regulatory and effector T cells functions appears crucial for homeostasis and is 

intricately controlled by various pro and anti-inflammatory mediators [58, 73].  

3. Intravenous Immunoglobulin 

3.1. Composition, pharmacology and indications of IVIg 

  IVIg is a therapeutic concentrate of polyclonal IgG obtained from pools of plasma 

of a large number of healthy blood donors. Preparations of IVIg contain at least 96% of 

IgG with traces of IgA and IgM (Table 2). The repertoire of IVIg is relatively wide as it 

obtained from large number of donors [129]. IVIg has a high content of self-reactive 

NAbs (Natural antibodies) which can bind to various self-antigens and pathogen specific 

antibodies [130]. Initially used as replacement therapy for patients with immune 

deficiencies, IVIg is now widely used for the treatment of a large number of autoimmune 

and systemic inflammatory diseases including ITP,  neuromuscular and neuro-

immunological diseases such as acute Guillain–Barré syndrome, myasthenia gravis, 

acute or chronic inflammatory demyelinating polyneuropathy, or stiff person syndrome 

[131] (Table 3). IVIg is also proven valuable for refractory dermatomyositis or multifocal 

motor neuropathy. The efficacy of IVIg in relapsing–remitting multiple sclerosis (RRMS) 

is not as extensively documented as for other disease modifying drugs, but available 

data suggest its beneficial effects in this condition and IVg is used as second line drug 

for patients not responding or not supporting first-line treatment.  [132]. Dose regimen of 

IVIg is according to the therapeutic goals, As a replacement therapy IVIg is used at 300-

500 mg/kg body weight every 3-4 weeks. As an immunomodulatory/anti-inflammatory 

therapy it is used at 1-2 g/kg, administered at once or divided into 5 daily doses; 

additional maintenance dose at 4-6 week interval [133, 134]. IgG plasma concentration 
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of 12-14 mg/ml and 20-35 mg/ml is reached after replacement and high dose therapy, 

respectively [135].  

 

 

Table 2 : Composition of different IVIg preparations 

Company CSL-Behring Octapharma LFB Talecris Baxter 

IVIg Sandoglobuline  Sandoglobuline Privigene Octagam Tegeline Gamunex Endobuline Gammagard Kiovig 

Sizes 

Available 

1,2,3,6,12 g 120 mg/ml 100 

mg/ml 

50 mg/ml 12 g 100 mg/ml 10 g 100 mg/ml 100 

mg/ml 

IgG >96 >96 >95 >96 >97 >98 95 90 98 

IgG1 65,2 64,5 67,8 65 58,8 50-80 56,9 56,9 56.9 

IgG2 28,3 32,4 28,7 30 34,1 20-50 16 26,6 26,6 

IgG3 4,15 2,3 2,3 3 5,4 - 3,3 3,4 3,4 

IgG4 2,4 0,8 1,2 2 1,7 1,0-3,0 0,3 1,7 1,7 

IgA 40g/g 15mg/L 25ug/ml 100ug/ml 17ug/ml 460mg/L 1mg/g 3ug/ml 140ug/

ul 

Aggregate

s 

2 2 12 3 - - - - - 

Excipient Sucrose Nicotinamide- 

Isoleucine - 

Proline 

Proline Maltose Saccharose 

 

Glycine 

 

Glucose 

NaCl 

 

Albumin, 

Glycine, 

NaCl, 

Glucose 

 

Glycin

e 

 

 

 

Adapted from Seite et al., 2008; Autoimmunity Rev [129] 
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Table 3: Clinical use of IVIg in autoimmune and inflammatory conditions 

Licensed Off-Label 

Idiopathic thrombocytopenic purpura  Acquired immune thrombocytopenia  

Guillain Barre syndrome (GBS)a  Autoimmune neutropenia  

Chronic inflammatory demyelinating 
polyneuropathy (CIDP) 

Autoimmune hemolytic anemia  

Kawasaki Disease (KD)a  Parvovirus B19-associated red cell aplasia  

Multifocal motor neuropathy (MMN)a  Anti-Factor VIII autoimmune disease  

Birdshot retinochoroidopathy 
(BSRC)  

Multiple sclerosis  

 Myasthenia Gravisa  

 Lambert Eaton myasthenic syndrome  

 Stiff person syndrome  

 ANCA-positive systemic vasculitis  

 Polymyositis  

 Dermatomyositisa  

 Antiphospholipid antibody syndrome  

 Rheumatoid arthritis and Felty’s syndrome  

 Systemic lupus erythematosus (SLE)  

 Juvenile idiopathic arthritis (JIA)  

 Toxic epidermal necrolysis (TEN)  

 Autoimmune skin blistering diseases (BP, PF, 
PV) 

 Steroid-dependent severe atopic dermatitis  

 Graft versus host diseasea  

 Antibody-mediated rejection (AMR) of the graft  

 Sepsis syndrome  

 Steroid-dependent severe atopic dermatitis  

 Asthma  

a Indicates diseases in which evidence for the effects of IVIg has been obtained in 
controlled trials. 

Adapted from Ravetch et al., 2008; Annu Rev Immunol [136]  
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3.2. Immunoregulatory mechanisms of IVIg in autoimmune and 

inflammatory diseases   

Several mutually non-exclusive immunoregulatory effects of IVIg have been 

described that apparently contribute in synergy to an effective therapy in various clinical 

settings [137]. IVIg contains a wide range of anti-idiotypic antibodies that regulate 

autoreactive B-cell clones and neutralize pathogenic autoantibodies [134, 138, 139]. 

IVIg saturates the IgG transport receptor [6, 140], which leads to accelerated catabolism 

of pathogenic auto-antibodies and modulates the affinity of FcγR on phagocytic cells. 

Studies based on animal models of antibody mediated autoimmunity show that IVIg up-

regulates inhibitory FcγRIIB on splenic macrophages [141]. FcγRIIB mediated beneficial 

effect of IVIg is known to be dependent on α2,6-linked of sialic acid to galactose on the 

glycan at Asn297
 in the CH2 region of Fc fragment small fraction of IgG (sIgG). IVIg 

contains a small fraction (1-2%) of sIgG in it. sIgG fraction of IVIg or α2,6 sialylated 

recombinant human IgG1 Fc protein could reproduce the benefits of IVIg when used at 

much lower dose [142]. sIgG has been demonstrated to interact with the C-type lectin 

receptor (SIGN-R1) on myeloid cells that up-regulates the expression of FcγRIIB on 

‘effector MΦ’ via TH2 pathway [143].  

IVIg attenuates complement-mediated damage by scavenging to the activated C3b 

fraction of C3 [144, 145]. The interaction of IVIg with complement proteins, therefore, 

prevents the generation of the C5b–9-membrane attack complex and subsequent 

complement-mediated tissue damage in muscle microvasculature and brain [145-147]. 

IVIg modulates cytokine and chemokine production by various cell types: decreased 
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levels of the pro-inflammatory cytokine IL-1 and increased levels of IL-1R antagonist 

have been reported in patients following IVIg infusion; TGF-α1 was down-regulated in 

the muscles of dermatomyositis patients who responded to IVIg therapy; Other studies 

have shown reduced synthesis of IL-2, IL-3, IL-12, IL-22, and GM-CSF following IVIg 

therapy [147-150]. IVIg contains antibodies that interact with cytokines and membrane 

molecules such as the T-cell receptor, cytokine or chemokine receptors, CD4, CD40 

and CD95, which have important roles in the balance between auto-reactivity and 

tolerance [151, 152]. Further, IVIg is shown to exert an impact on the cellular 

compartment of the immune system; IVIg directly interacts cells of adoptive immunity 

like B cells, T cells and that of innate immunity and modulate their functions [153]. The 

maturation state of key APCs like DC is known to regulate immune response and 

tolerance. Immature and semi-mature DC presenting antigens are known to maintain 

tolerance by inducing Tregs while mature DC induces strong immune response [154]. 

IVIg inhibits maturation and function of DC, also modulates the pattern of cytokines 

secreted by these cells. By down-regulating the interferon-γ-mediated differentiation of 

DCs, and by inhibiting the uptake of nucleosomes, IVIg might exert an 

immunoregulatory effect in patients with lupus [155, 156]. In addition, IVIg-treated DC 

ameliorates ongoing autoimmune disease in vivo upon adoptive transfer [157]. IVIg also 

modulates in vivo and in vitro T-cell responses by impairing antigen presentation [158].  
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3.3. Modulation of the Tregs by IVIg 

The immune system is subject to multiple regulatory mechanisms to control 

undesired pathogenic immune response to self-antigens and inflammation. One of 

these regulatory mechanisms involves suppression of auto-reactive T cells by Treg. 

Treg express GITR, CCR4, CD62L, CTLA-4 and lineage-specific transcription factor 

Foxp3 [15, 67]. Treg actively regulate autoimmunity throughout an individual’s life and 

an imbalance in their immune regulation might lead to autoimmunity. Maintenance of 

immune tolerance by Treg is not attributed to a single mechanism or target cell; rather it 

involves several pathways targeting multiple cell types. Thus, Treg inhibit the 

proliferation and cytokine production by conventional T cells and can also regulate the 

functions of natural killer cells, NKT cells and professional APC. The suppression of 

immune responses by Treg generally requires direct cell-cell contact implicating CTLA-

4, CD39 and LAG-3, but soluble factors, particularly TGF-β and IL-10, have also been 

implicated. Ability of IVIg to modulate the functions of DC has opened the possibility that 

the tolerogenic effects of IVIg may implicate the Treg in correcting autoimmunity. 

Further, the FcγR-mediated effects of IVIg cannot entirely account for its benefit in a 

number of peripheral and central demyelinating diseases where auto-reactive T cells 

play critical role. Since the expression of FcγR on T cells has not been established 

unequivocally, the observed beneficial effects raise certain speculations, that is, if these 

effects could be attributed to a direct interaction of IgGs with T cells or as mentioned 

above, an indirect influence via DC. Indeed IVIg manifests its protective effect in T-cell-

dependent pathologies via an early modulation of auto-reactive T cells. EAE is a 
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CD4+T-cell-mediated autoimmune disease affecting the CNS [159]. The prophylactic 

infusion of IVIg prevents the development of EAE [160-165], and this protection 

conferred by IVIg is associated with a peripheral expansion of CD4+CD25+Foxp3+Treg 

and amelioration of their functions [165]. 

The IVIg-expanded Treg were more efficient in suppressing the in vitro response of 

TCR-stimulated CD4+CD25-T cells as compared to Treg from control group; in adoptive 

transfer experiments, mice that were reconstituted with Treg from IVIg-treated mice 

developed milder EAE as compared to non-reconstituted mice; IVIg failed to protect 

against EAE in mice that were depleted of the Treg [165]. Expansion of Treg by IVIg, 

described above, suggests that IVIg imposes immune tolerance via modulation of T-cell 

subsets, in particular, the CD4+CD25+Foxp3+Treg compartment [166]. However, the 

identification of Th17 cell subset has raised more questions on the mechanisms of 

action of IVIg in inflammatory and autoimmune conditions. IVIg inhibits in vitro, 

differentiation and amplification of human Th17 cells [167]. In view of the critical role 

played by Th17 cells in inflammatory and autoimmune processes, an important question 

concerns the effect of IVIg on the differentiation and function of Th17 population in vivo.  
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4 Multiple sclerosis / EAE is an organ specific T cell mediated auto-immune 

disease  

Multiple sclerosis (MS) is a demyelinating disease of central nervous system 

affecting more than 2.5 million people worldwide [168]. MS predominately affects 

younger women and depending on the region, incidence may rise up to 3 in 1000. MS 

occurs in various forms like benign, relapsing/remitting, secondary progressive and 

primary progressive. Perturbation in sensation, motor, autonomic, visual and cognitive 

systems are the main features of MS in addition to optical neuritis. MS is the primary 

inflammatory disease of the CNS, characterized by perivascular inflammation and 

massive leukocyte infiltration leading to axonal loss. Animal model for MS is 

experimental autoimmune encephalomyelitis (EAE). EAE can be induced in a various 

species of experimental animals by injection of a myelin peptide emulsified in complete 

Freund’s adjuvant (CFA) subcutaneously [169].   

The pathophysiology of MS is complex and heterogeneous; however some 

aspects of it are being understood recently. Several lines of evidence suggest that MS 

has an autoimmune etiology [170, 171]. T lymphocytes and antibodies reactive to 

myelin were found in the lesion in MS patients [172]. These T cells are mainly CD4+ and 

specific for the various myelin proteins such as MBP (myelin basic protein), MOG 

(myelin oligodendrocyte glycoprotein), PLP (myelin proteolipid) and MAG (myelin-

associated glycoprotein). Pathogen-associated proteins, mainly from hepatitis B virus 

(HBV) resemble myelin proteins and are antigenic suggesting that, molecular mimicry 

may be the underlying cause for onset [173]. Further, adoptive transfer of T cells 

specific for MBP or CNS antigens in the experimental animals leads to MS like 
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syndrome is the proof that MS is T cell mediated pathology [174].   

Naïve Th cells reactive to various epitopes of MBP presented in the context of 

MHC-II by APCs are activated in the periphery. These activated cells migrate to CNS 

using adhesion molecules like LFA-1 and VLA-4 [175]. Secondary wave of T cell 

activation and amplification in the CNS is mediated by resident APCs in the CNS [176]. 

Initially, Th1 cells were thought to be pathogenic in MS. However, recent studies 

exploring the functions of IL-12 and IL-23 revealed that Th17 cells are the essential 

lymphocytes in pathogenesis of MS [95]. Th17 cells secrete IL-17 family cytokines like 

IL-17A, IL-17F and GM-CSF [49, 120]. These cytokines are key players in initiating 

early events of demyelination. Additionally Th17 cells express podoplanin, which 

mediates formation of ectopic lymphoid structures in CNS thus resulting in to amplified 

immune response. The released inflammatory cytokines IFN-γ, IL-23 and TNF-α 

activate microglia and astrocytes. Chemokines like RANTES, IL-8 recruit other immune 

cells such as monocytes, CD8+ T cells and B cells from blood.   

Mechanisms of demyelination include direct deposition of complement, antibody 

dependent cellular cytotoxicity, phagocytosis and probably progression to direct attack 

of axons by cytotoxic T cells, secretion of proteases by neutrophils and apoptosis of 

oligodendrocytes [177]. The inflammation lasts from few days to two weeks in case of 

EAE and longer in chronic form of MS. After the attack phase of the CNS, demyelinated 

axons and apoptotic oligodendrocytes and T lymphocytes were observed  [178]. During 

the resolving phase of inflammation astrocytes proliferate and there is shift to Th2 

cytokine profile including IL-10 and TGF-β [58]. Increase in Tregs number in the CNS is 

another hallmark of resolving inflammation [82].  
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5 Hypothesis and aims  

Several lines of evidence show that Th17 cells might be the potent inducers and 

sustainers of inflammation and play critical role in the pathogenesis of autoimmune and 

inflammatory diseases. Cytokines produced by Th17 cells such as IL17A, IL17F, IL-21, 

IL-22 and GM-CSF are involved in recruitment of other inflammatory and effector 

immune cells at the site of inflammation thus leading to tissue destruction. Tregs on the 

other hand actively regulate autoimmunity throughout the lifespan of an individual and 

are indispensible for maintenance of immune homeostasis. Many autoimmune diseases 

are associated with reduced numbers of Tregs or defects in their functions. Thus, the 

balance between effector Th cells (Th17) and Treg cells might critically influence the 

outcomes of many human immune mediated diseases. 

IVIg is a therapeutic preparation of normal human polyclonal IgG obtained from 

pools of plasma from a large number of healthy blood donors. High dose therapy of IVIg 

is being widely used to treat various autoimmune and inflammatory conditions. 

Understanding the molecular mechanisms by which IVIg exerts its beneficial effects has 

been a challenge. IVIg is known to exert its beneficial effects by several mutually non-

exclusive mechanisms. Many of these are based on animal models of antibody 

mediated autoimmunity and in-vitro studies. Nevertheless, IVIg is also widely used in 

much T cell-mediated autoimmune pathologies. The beneficial effect of IVIg in EAE, an 

animal model of T mediated pathology, is associated with a peripheral expansion of 

CD4+CD25+Foxp3+Treg and amelioration of their functions. The emerging knowledge 

on Th17 cells as potent pathogenic T cells in autoimmunity and Th17 and Treg exercise 
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reciprocal regulatory effects has raised additional interesting questions on the 

mechanisms of IVIg in vivo. Although, IVIg is shown to interact directly with T cells and 

inhibit differentiation and amplification of human Th17 cells in vitro, effect of IVIg on 

differentiation of Th17 cells in vivo remains unexplored. I therefore, hypothesise that 

IVIg inhibits the Th17 cell development and regulates the balance between Th17 and 

regulatory T cells in vivo. I have studied this hypothesis with the following objectives: 

 Extend the knowledge on the protective effect of IVIg in a T cell-mediated 

pathology 

 Understand whether beneficial effect of IVIg in EAE is associated with 

modulation of Th17 cells along with Th1, Th2 and Tregs 

 Investigate the molecular mechanisms involved in modulation of T cells by IVIg in 

vivo in an animal model of T cell mediated autoimmunity 

I used active EAE as in vivo model of autoimmune disease to accomplish the 

objectives. EAE was induced in mice by injecting MOG35-55 peptide emulsified in CFA 

with additional PTX. Effect of IVIg on frequency of Th1, Th17, Th2 and Tregs in EAE 

was measured by using cell specific markers Th1: IFN γ; Th17: IL-17; Th2: IL-4 and 

Tregs: Foxp3.   
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6 Results 

Intravenous gammaglobulin reciprocally regulates effector and regulatory CD4 T 

cell functions in vivo independent of FcγRIIB 
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Abstract 

 

Despite an increasing use of high dose therapy of intravenous 

gammaglobulin (IVIg) in the treatment of T-cell and autoantibody-mediated 

inflammatory and autoimmune diseases, comprehension of the mechanisms 

underlying its therapeutic benefit has remained a major challenge. Using actively-

induced experimental autoimmune encephalomyelitis (EAE) model, a T cell-

mediated autoimmune condition, we demonstrate that IVIg inhibits the 

differentiation of naïve CD4 T cells into effector subsets (Th1 and Th17 cells) and 

concomitantly induces an expansion of Foxp3+ regulatory cells. Further, IVIg 

renders effector T cells less pathogenic by decreasing the expression of 

encephalitogenic molecular players like GM-CSF and podoplanin. IVIg decreases 

the expression of sphingosine-1 phosphate receptor (S1P1) on CD4 cells, thus 

sequestering these cells in the draining lymph nodes and decreasing infiltration 

of Th1, Th17 and Treg to the central nervous system. Intriguingly and contrary to 

the current arguments, the inhibitory FcγRIIB is dispensable for IVIg-mediated 

reciprocal modulation of effector and regulatory CD4 subsets in vivo. 

Additionally, F(ab’)2 part of IVIg also retained this function of IVIg. IVIg or F(ab’)2 

fragments decreases the activity of mTOR kinase thus restoring the equilibrium 

between regulatory T cells and inflammatory CD4 T cell subsets. Together, our 

results provide cellular and molecular basis underlying the beneficial effect of 

IVIg in certain autoimmune and inflammatory conditions. 

 

INTRODUCTION  
 

High dose therapy of IVIg is being widely used to treat various autoimmune and 
inflammatory conditions1-3. IVIg is a therapeutic preparation of normal human polyclonal 
IgG obtained from pools of plasma from a large number of healthy blood donors4. 
Understanding the cellular and molecular mechanisms by which IVIg exerts its anti-
inflammatory effects in highly diverse pathological situations incriminating 
autoantibodies, pathogenic T cells, complement-mediated tissue damage or 
dysregulated cytokine network has rendered the area particularly challenging. Indeed, 
IVIg exercises a therapeutic effect in idiopathic thrombocytopenic purpura, Kawasaki 
disease, myasthenia gravis, dermatomyositis, pemphigus, anti-neutrophil cytoplasmic 
antibody–associated vasculitis and a number of other diseaseses5.  

 
IVIg exerts its beneficial effects by several mutually non-exclusive mechanisms6-

10. Many of these effects are deduced based on animal models of antibody-mediated 
autoimmunity and ex vivo studies11. IVIg impacts significantly on both innate and 
adaptive immune compartments7. More recently, it is shown that IVIg up-regulates 
inhibitory FcγRIIB on macrophages through a Th2 pathway in a K/BxN serum transfer 
arthritis model12. However, therapeutic benefit of IVIg is also clearly established in 
several T cell-mediated autoimmune pathologies2,13-15. The beneficial effect of IVIg in 
EAE, an animal model of multiple sclerosis and a T cell-mediated pathology, is 
associated with a peripheral expansion of CD4+CD25+Foxp3+ regulatory T cells (Treg) 
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and a significant amelioration of their functions16. Further, IVIg interacts directly with T 
cells and inhibits differentiation and amplification of human Th17 cells in vitro17. Hence, 
emerging knowledge that Th17 cells as potent pathogenic T cells in autoimmunity and 
that Th17 and Treg exercise reciprocal regulatory effects18, have raised additional 
interesting possibilities on the mechanisms of IVIg in vivo.  

 
We surmised that IVIg restores the dysregulated equilibrium between Th17 cells 

and Treg in T cell-mediated pathologies. In the present study using actively-induced 
EAE, we thus set out to investigate whether IVIg modulates T cell polarization in vivo 
and tilts the balance from pathogenic effector T (Teff) cells towards Treg. We found that 
IVIg exerted its beneficial effect in EAE by inhibiting the differentiation of Th17 and Th1 
cells and simultaneously increasing Treg. Further, IVIg inhibited encephalitogenic 
potential of pathogenic T cells and interfered with their trafficking to the target organ. 
Interestingly, FcγRIIB was dispensable for this effect and F(ab’)2 fragments of IVIg 
recapitulated the effect of intact IgG molecules in reciprocally modulating Teff cells and 
Treg. This reciprocal regulation involved modulation mammalian target of rapamycin 
(mTOR) kinase in CD4 cells by IVIg.  

 

RESULTS 
 

IVIg delays the onset of EAE and decreases severity of the disease by inhibiting 

Th17 and Th1 cells and increasing Treg 
 

To understand the modulation of effector and regulatory CD4 subsets by IVIg in 
an autoimmune set up, EAE was induced in WT C57BL/6J mice using MOG35-55 
emulsified in CFA. From the day of immunization to the peak of the disease (day16-18), 
mice in the control and IVIg group were treated with 0.2M Glycine and IVIg (Gamunex 
®) respectively. Control mice started to display clinical signs from day 7 and mean score 
at the peak was 3.5. IVIg significantly delayed the onset of EAE (day 11) and decreased 

severity of the disease as shown by clinical signs (Fig. 1a). MOG35-55-specific naïve 
CD4 cells differentiating into Th17 and Th1 cells are known to be the pathogenic in 
EAE19,20. To investigate whether IVIg affects differentiation of Th17 and Th1 cells in 
EAE, mice in each group were sacrificed 9 days after EAE induction (onset) and 
analyzed for their signature cytokines (IL-17 in Th17; IFNγ in Th1) by flow cytometry. 
We observed decrease in Th17 and Th1 cells in inguinal draining lymph nodes (DLN) of 

IVIg-treated mice (Fig. 1b, top panel and 1c). Similar trend was also observed in 

spleens of IVIg-mice (Fig. 1b, lower panel and 1d). Inhibition of Th17 and Th1 cells by 
IVIg in vivo was further confirmed by the profile of cytokine secretion. Cells from DLN 
and spleen on day 9 were stimulated ex vivo with MOG35-55 for 24 hours and cell-free 
supernatants were analyzed for cytokines. Cells from IVIg-treated mice secreted 

decreased amounts of IL-17 and IFNγ (Supplementary Fig. 1a, b) as compared to 

control. IVIg did not affect the CD4+Foxp3+ Treg in DLN (Supplementary Fig. 2a, b). 
However, we observed concomitant increase in CD4+Foxp3+ Treg in the spleens of IVIg-

treated mice (Supplementary Fig. 2c, d), which is in consistent with our previous 
report16. Thus, IVIg reciprocally modulates Teff and Treg in EAE. 
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IVIg decreases infiltration of lymphocytes to the CNS by inhibiting their egress 

from the DLN   
Protective effect of IVIg treatment in EAE is associated with decreased number of 
lymphocytes and absence of inflammatory foci in the CNS14,16. It has been previously 
shown that IVIg interferes with leucocyte recruitment to the CNS in a α4-integrin-
dependent manner21. However, Th17 and Th1 cells use different strategies to invade 
CNS22,23. To investigate the effect of IVIg on trafficking of Th17 and Th1 in EAE, brain 
and spinal cords were analyzed on the day of onset (Day 9). IVIg inhibited infiltration of 

Th1, Th17 and Treg into the CNS (Fig. 2a-c). Accordingly, there was an overall 

decrease in absolute number of CD4 cells found in the CNS (Fig. 2d). Surprisingly, DLN 
of IVIg-treated EAE mice were bigger in size and contained two to five-fold more 

number of CD4 cells than the untreated EAE mice (Fig. 2e). We also observed 

decrease in total number of CD4 cells circulating in the blood (Fig. 2f). These data 
suggested that, T cell entry into DLN of IVIg-treated EAE mice was intact; however, 
their exit from DLN was affected. To further probe into the molecular mechanisms 
involved in sequestering of CD4 cells into the DLN, we investigated sphingosine 1 
phosphate (S1P)–S1P receptor1 (S1P1) axis, which controls the trafficking and 
migration of lymphocytes24,25. IVIg treatment in EAE mice for 6 days decreased 

CD4+S1P1+ cells in the DLN (Fig. 2g, h) and MFI of S1P1 on CD4 cells (Fig. 2i). These 
results suggest that, IVIg down-regulates S1P1 on CD4 cells leading to inhibition of their 
egress from DLN, thus explaining the increase in the size of the DLN and decrease in 
infiltration of lymphocytes to CNS.  
 

IVIg down-regulates the expression of GM-CSF and podoplanin (PdP) in CD4 T 

cells 
 
Both Th17 and Th1 cells are involved in EAE, however Th17 cells have emerged as the 
main pathogenic mediators26. Signature cytokines of Th17 cells like IL-17A, IL-17F, IL-
21 and IL-22 are dispensable for the induction of EAE27. Encephalitogenic potential of 
Th17 cells in EAE has been attributed to molecules like GM-CSF28 and podoplanin29. 

Injected to EAE mice, IVIg significantly decreased CD4+GM-CSF+ cells in DLN (Fig. 3a, 

b). Additionally, there was a decrease in the absolute number of these cells in CNS 

(Fig. 3c). Similarly IVIg also down-regulated the expression of podoplanin on CD4 cells 

in EAE (Fig. 3d-f). Thus, in addition to inhibiting the differentiation of Th17 cells, by 
down-regulating GM-CSF and PdP, IVIg may render these cells less encephalitogenic.  
 

FcγRIIB is dispensable for IVIg-mediated reciprocal modulation of effector and 

regulatory CD4 subsets in vivo.  
 
Anti-inflammatory effect of IVIg in several animal models of antibody-mediated 
pathology is attributed to the inhibitory Fc receptor FcγRIIB12,30-32. The role of FcγRIIB in 
protection of EAE mice by IVIg is however unexplored. To examine whether reciprocal 
modulation of CD4 subsets by IVIg in EAE is dependent on FcγRIIB, we induced EAE in 
FcγRIIB-/- mice under C57BL/6J background and analyzed various CD4 subsets 9 days 

after immunization. IVIg inhibited Th17 and Th1 cells in FcγRIIB-/--EAE mice (Fig. 4a, 
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b). Concomitantly, we observed an increase in the percent of Treg in the spleen (Fig. 

4c). There was a decreased infiltration of Th17, Th1 and Treg to CNS (Fig. 4d-f), which 
was due to inhibition of trafficking of CD4 cells from the DLN by IVIg in FcγRIIB-/--EAE 

mice (Fig 4g, h). Further, IVIg treatment decreased the expression of GM-CSF and 

podoplanin in FcγRIIB -/- mice rendering them less encephalitogenic (Fig 4i, j). 
Altogether, these data reveal that FcγRIIB is dispensable for the reciprocal modulation 
of effector and regulatory CD4 subsets by IVIg in EAE. 
 

F(ab)'2 part of IVIg recapitulates the capacity to reciprocally modulate effector and 

regulatory CD4 subsets in EAE 
 
As Fc part of IVIg is implicated in the FcγRIIB-dependent functions of IVIg, our results 
on dispensable role of FcγRIIB on IVIg-mediated regulation of T cell populations raises 
a possibility that F(ab’)2 part of IgG molecule should be equally effective as that of intact 
IgG. To explore this, EAE mice were treated with IVIg or equimolar concentration of 
F(ab’)2 fragments. Mice were sacrificed on day 9 and analyzed for CD4 T cell 
populations by flow cytometry. Interestingly, F(ab’)2 also inhibited Th17 and Th1 cells, 

and enhanced the number of Treg  similar to intact IVIg (Fig. 5a-c). MOG35-55 specific 
cytokine secretion assay revealed decreased amounts of IL-17 and IFNγ from F(ab)'2 or 

IVIg-treated mice (Supplementary Fig. 3a, b). This is in consensus with previous 
reports from our in vitro results17. Similar to IVIg, F(ab’)2 retained the ability to inhibit 

infiltration of Th1, Th17 and Treg to the CNS (Fig. 5d-f). Modulation of lymphocyte 
trafficking and sequestration of CD4 cells in DLN was also consistent in F(ab’)2-treated 

EAE mice (Fig. 5g, h). Further, F(ab’)2 treatment also decreased the expression of GM-

CSF and podoplanin in CD4 cells (Fig. 5i, j). These results demonstrate that in vivo 
reciprocal modulation of CD4 subsets by IVIg is F(ab’)2-dependent. These results in 
addition to the above-mentioned dispensable nature of inhibitory FcγRIIB for the 
modulatory effect of IVIg in EAE, precluded us from examining the direct role of Fc 
fragments.  
 

Reciprocal regulation of T effectors and Treg by IVIg implicate mTOR kinase 

pathway  

 
The differentiation of naïve CD4 cells into specific Th cell type involves integration of 
various environmental cues delivered by antigen presenting cells (APCs) in the 
secondary lymphoid organs33,34. mTOR integrates these signals and controls Teff and 
Treg responses35,36. To investigate whether IVIg-mediated reciprocal modulation of 
effector and regulatory cells involves mTOR pathway, mice were sacrificed 6 days after 
immunization. We analyzed the activity of mTOR in CD4 cells from DLN by estimating 
the level of phospho-S6 ribosomal protein (ser240/244)37. CD4 cells from IVIg-treated 
mice displayed reduced phosphorylation of S-6 ribosomal protein as compared to the 

control (Fig. 6a). IVIg-treatment decreased the activity mTOR in both Teff and Treg (Fig. 

6b). These data suggest that by inhibiting activity of mTOR kinase in CD4 cells, IVIg 
can decrease the differentiation of naïve CD4 cells to effector subsets while 
simultaneously increasing the number of Treg.  
 



 

43 
 

DISCUSSION 
 

Activation of naïve CD4 T cells and their differentiation into various subsets is the 
crucial event in the initiation of an adaptive immune response. Dysregulated functions of 
immune cells leads to undesired pathogenic immune response to self-antigens and 
inflammatory pathologies38. Several lines of evidence suggest that Th1 and Th17 play 
critical role in the initiation and progression of many autoimmune and inflammatory 
diseases. On the other hand, Treg expressing the transcription factor Foxp3 are 
involved in the suppression of auto-reactive T cells and regulation of immune 
response39. Several autoimmune diseases are associated with reduced number of Treg 
or defects in their functions40-43. Thus, balance between Treg and Teff including Th17 
and Th1 determines the course of immune-mediated disorders44. Th17 are the one of 
the major pathogenic cells in immune-mediated tissue damages such as multiple 
sclerosis45, chronic inflammatory bowel disease46, psoriasis47, SLE48, asthma, allergic 
contact dermatitis, dermatomyositis, pemphigus, allergic rhinitis, anti-neutrophil 
cytoplasmic antibody–associated vasculitis and rheumatoid arthritis49. Although IVIg is 
beneficial in the treatment of several of these complications50, the precise mechanisms 
governing the Th cell polarization and the balance between Treg and Th17 cells by IVIg 
have not been identified. We demonstrate that administration of IVIg to EAE mice 
significantly reduces the severity of disease by inhibiting differentiation of Th17 and Th1 
cells. . Further, ex-vivo stimulation of the lymphocytes with MOG35-55 showed decreased 
secretion of IL-17 and IFNγ. In consensus with our previous results, we observed an 
expansion of Treg16. Thus, the protective effect of IVIg in EAE underscores the 
reciprocal modulation of effector CD4 cells (Th1 and Th17) and Treg.  

 
In addition, IVIg decreases the expression of GM-CSF and podoplanin in CD4 T 

cells. GM-CSF produced by Th17 cells potentiates neuroinflammation by attracting 
myeloid cells to the CNS and up-regulating their surface MHCII28. Podoplanin 
expressed on Th17 cells is involved in the formation of deleterious ectopic lymphoid 
structures in CNS29,51. By reducing the expression of these molecules in CD4 T cells, 
IVIg may thus inhibit the formation of inflammatory foci. The relevance of these findings 
in other autoimmune conditions and in patients treated with IVIg needs to be examined. 
Furthermore, IVIg effectively inhibited the infiltration of Th1, Th17 and Treg to 
CNS14,16,21. We observed an increased accumulation of CD4 cells in the DLN by IVIg 
and their concomitant decrease in circulation. We provide mechanistic evidence for this 
interference of lymphocyte trafficking. Differentiated T cells exit from the DLN by using a 
gradient of S1P across the lymphoid tissue, lymph and blood through S1P124,25. By 
down regulating S1P1 on CD4 cells, IVIg inhibits the lymphocyte egress leading to 
sequestration of these cells in the DLN. We did not observe any changes in spleen with 
respect to total number of CD4 cells (data not shown), this is similar to the effect of 
FTY720, a known modulator of S1P1-S1P axis of lymphocyte trafficking52. However, the 
role of IVIg in modulating the levels of circulating S1P warrants further investigation.  
 

Up-regulation of inhibitory FcγRIIB is implicated in the beneficial effect of 
IVIg30,31. Using EAE, we show that IVIg is able to inhibit Th17 and Th1 cells 
independent of FcγRIIB. Additionally, increase of Treg, inhibition of GM-CSF and 
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podoplanin and modulation of CD4 T cell trafficking by IVIg does not require FcγRIIB. 
We also report that F(ab’)2 fragments of IVIg retained the capacity to reciprocally 
regulate CD4 subsets similar to intact IVIg. These results also indicate that α2,6 
sialylation on Fc portion of IgG is not implicated in the modulation of CD4 T cells by IVIg 
in actively-induced T-cell mediated autoimmune and inflammatory conditions. However, 
exploring the role of SIGNR1 in this regulatory shift of CD4 subsets by IVIg is an 
interesting perspective.  
 

The complex process of T cell activation and differentiation in vivo is regulated by 
multiple cues in the microenvironment of secondary lymphoid organs. mTOR is a kinase 
that integrates these signals and plays a critical role in the Teff and Treg responses53,54. 
In view of the fact that IVIg can directly interact with T cells17 and influence the TCR 
signaling55, we reasoned that reciprocal modulation of T cell responses by IVIg may 
involve mTOR signaling pathway. Accordingly, we observed a decreased activity of 
mTOR kinase in both conventional T cells and Treg. By inhibiting mTOR signaling, IVIg 
may inhibit the differentiation of effector cells (Th17 and Th1) while favoring the Treg, 
although the underlying mechanisms remain unclear. Whether Treg activating 
Tregitopes in IVIg play any role in the reciprocal regulation of effector and Treg remains 
speculative56. Additionally, sequestering of CD4 cells in DLN by IVIg may be a 
consequence of affecting mTOR-pathway as S1P-mTOR axis is implicated in 
lymphocyte trafficking57.  

 
Pathogenesis of EAE involves activation and differentiation of naive 

neuroantigen-specific CD4 cells into Th17 and Th1 cells in the secondary lymphoid 
organs. These pathogenic T cells migrate to the CNS and potentiate axonal destruction 
by facilitating infiltration of other myeloid effector cells through GM-CSF and formation 
of ectopic lymphoid structures mediated by podoplanin. Our results show that IVIg-
mediated inhibition of EAE implicates multiple targets acting at different phases of 
immune response. Thus, IVIg can inhibit the initiation of pathogenic immune response 
by inhibiting the polarization of naïve T cell into Th17 and Th1 cells. This process is 
associated with a concomitant expansion Tregs in vivo. IVIg can circumvent neuronal 
degeneration by inhibiting the infiltration of CD4 T lymphocytes to the target organ by 
restraining their exit from the DLN through S1P-S1P1 pathway. Further, IVIg may 
decrease the tissue damaging potential of pathogenic T cells by down regulating key 
molecules such as GM-CSF and podoplanin. Together, our results provide a cellular 
and molecular basis underlying the beneficial effect of IVIg in certain T cell-dependent 
autoimmune and inflammatory conditions. 

 

 

EXPERIMENTAL PROCEDURES  
 

Animals 
 

All animal studies were performed according to the guidelines of Charles Darwin 
ethical committee for animal experimentation (UPMC Paris) at the pathogen-free animal 
facility of Cordelier research center, Paris. FcγRIIB-/- mice (8 weeks old) on C57BL/6 
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background were obtained from Taconic Farms. Wild type C57BL/6J mice were 
purchased from Janvier Laboratories, France.  
 

Induction of EAE, assessment and IVIg treatment 
 

EAE was induced in 10 week old female C57BL/6J or FcγRIIB-/- mice as 
previously reported 16. Briefly, 200 µl of emulsion was injected subcutaneously at 2 sites 
over the flank region. Each mouse received 200 µg of MOG35-55 peptide 
(MEVGWYRSPFSRVVHLYRNGK PolyPeptide laboratory Strasbourg, France) 
emulsified in Complete Freund’s Adjuvant (Sigma-Aldrich) containing 880 µg of 
nonviable Mycobacterium tuberculosis H37RA (Difco Laboratories). Additionally 300 ng 
of pertussis toxin (List Biologic Laboratories) was injected intravenously on the day of 
immunization and 48hr later. Mice were daily assessed for the development of clinical 
signs according to the following scoring pattern: 0-No signs, 1-tail paresis, 2-hindlimb 
paresis, 3- hind limb paralysis, 4 – tetraplegia, 5-moribound. IVIg (Gamunex® 10% w/v, 
Talecris Biotherapeutics) was given at 0.8 g/kg i.p from the day of the immunization until 
the peak of the disease (day 16-18). Mice in F(ab’)2 group received 0.55 g/kg  BW 
(equimolar concentration). Control mice received equal volumes 0.2 M Glycine 
(excipient used in Gamunex®).  
 

Generation of F(ab’)2 fragments 
 

F(ab’)2  fragments were generated by digesting IVIg with pepsin (Sigma Aldrich) 
at 50:1 ratio for 18hrs in 0.2 M sodium acetate buffer pH 4.1. F(ab’)2  was extensively 
dialyzed against sterile PBS and filtered through 0.22 µ membrane before injecting to 
the mice. Purity of F(ab’)2 was verified by SDS-PAGE and coomassie blue staining.    
 

Isolation of cells from blood, spleen, draining lymph nodes and CNS 
 

On the day of the sacrifice, blood was collected from mice under Xylazinane / 
Ketamine anesthesia. Mice were perfused with 40 ml of 0.2 mM EDTA in PBS through 
the left ventricle and spleen, draining lymph nodes (inguinal), brain and spinal cord were 
collected. Single cell suspensions were obtained by mechanical disaggregation and 
passing the cells through 70 µm nylon membrane filter. Mononuclear cells from CNS 
were isolated using 37.5% Percoll gradient centrifugation (GE health care). Red blood 
cells were lysed using ACK lysis buffer. 

 

Flow cytometry 
 

To detect the intracellular cytokines, 1.5×106 cells were stimulated in with 25 ng 
of phorbol 12-myristate 13-acetate (PMA) and 1 µg ionomycin (Sigma) in 10% 
FCS/RPMI for 4 hours at 37 °C. Monensin (Golgistop® BD biosciences) was added 
according to manufacturer’s instructions to block the protein transport. Cells were 
surface labeled with anti-mouse CD4-Paciifc Blue (Clone RM4-5, BD biosciences), 
podoplanin-PE (Clone 8.1.1 Biolegend) and S1P1- APC (R&D Systems) antibody after 
the blocking Fc-receptors with anti-mouse CD16/32 antibody (BD Fc Block). Surface 



 

46 
 

stained cells were washed, fixed, permiabalised using FoxP3 staining buffer set 
(eBioscience). Antibodies to detect intracellular cytokines, IL-17A-A488 (clone 11B11, 
BD), IFNγ-APC (Clone XMG1.2, BD), Foxp3-PE (clone FJK16s, eBioscience), GM-CSF 
PE (Clone: MP1-22E9 eBioscience), and phospho-S6-A488 (Cell signaling Technology) 
were used in permeabilization buffer (eBioscience). Cells were acquired and analyzed 
using BD LSR II and FACS Diva software.  

 

Ex-vivo stimulation of cells and cytokines assays 
 

Single cell suspension was prepared from DLN and spleen was stimulated with 
10 µg/ml of MOG35-55 for 24 hour in RPMI-1640 culture medium supplemented with 100 
IU/ml penicillin, 100 ug/ml streptomycin (Gibco) and 10% fetal calf serum. Cytokine 
concentration in the supernatant and serum was estimated by using cytometric bead 
array (Mouse Th1/Th2/Th17 cytokine CBA kit; BD Biosciences).  

 

Statistical analysis 
 

Two way analysis of variance (ANOVA) with Bonferroni’s post-test was used to 
analyze daily clinical score. Mann–Whitney’s U test was used to compare parameters 
between control and IVIg group. Values of p obtained are indicated in Figure legends. 
Graph-pad prism was used to analyze and plot the data. 
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Figure 1 IVIg protects mice against EAE by 

decreasing Th17 and Th1 cells. (a) IVIg delays onset 
and decreases severity of EAE: EAE was induced in 
10-12 week female Wt C57BL/6J mice. From day 0 to 
day 18, mice in control (open circles) and IVIg (filled 
circles) group received intraperitonial injections of 0.2 
M Glycine and IVIg (0.8 g/kg Gamunex®) respectively. 
Development of clinical signs was monitored daily as 
described in “Experimental procedures”. Mean clinical 
scores from two independent experiments are 
presented (n=20). Error bars represent SEM. 
Significance of  difference in the EAE scores between 
the control and IVIg groups was analyzed by Two way 
ANOVA with Bonferroni's post t test, ***p<0.001. (b) 
Representative dot plots showing CD4 cells which are 
positive for IL-17 (Y-axis) and IFNγ (X-axis). Number in 
each quadrant represents the percent of cells among 
CD4 population. Mice were sacrificed on the day of 
onset (day 9). DLN and Spleen were obtained for flow 
cytometry. DLN (Inguinal, upper panel) and spleen 
(bottom panel) from control (left) and IVIg (right) mice 
are shown. (c) And (d) Plots show frequency of Th17 
(Left) and Th1 (right) from control (Open circles) and 
IVIg (filled circles) group. Cells from DLN (c) and 
spleen (d) are shown. Data are from two in 
independent experiments (n>12). Mean value is 
depicted as a horizontal line among the symbols and 
error bars represent SEM, **p<0.01 and ***p< 0.001 
determined by Mann Whitney U test.  
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Figure 2 IVIg decreases infiltration of CD4 lymphocytes to the CNS by inhibiting their egress 

from DLN. Control and IVIg treated EAE mice were sacrificed on day 9. To analyze the total number of 
circulating cells in the blood, mice were infused with PBS/EDTA and cells were collected. Cells from 
Blood, DLN, spleen and CNS were analyzed by flow cytometry. Absolute numbers of each type of cells 
in various organs were estimated by extrapolating data from flow cytometry. Open circles represent 
control mice and filled circles represent IVIg treated mice. Mean value is depicted as a horizontal line 
among the symbols and error bars represent SEM. Plots show total number of Th17 (a), Th1 (b) and 
Treg (c) in CNS (n>10). Absolute number of CD4 cells in CNS (d), in DLN (e), and in blood (f), (n>10) 
are plotted. (g) Representative dot plots from DLN showing CD4 (Y-axis) and S1P1 (X-axis) from 
control (top) and IVIg group (bottom). Numbers represents the percent of S1P1+ cells gated among the 
CD4 population. Percent of CD4+ S1P1+ (h), MFI of S1P1 receptor on CD4 cells in DLN (i) are shown 
(n=5), ** p<0.01, ***p< 0.001 determined by Mann Whitney U test. 
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Figure 3 IVIg renders CD4 cells less 

pathogenic in EAE by down regulating 

encephalitogenic molecules like GM-

CSF and podoplanin. EAE was induced 
in Wt C57BL/6J mice and IVIg was 
injected daily. Nine days after induction 
mice from each group were sacrificed and 
analyzed by Flow cytometry. 
Representative dot plot showing CD4 (Y-
axis) and GM-CSF (X-axis) from control 
(left) and IVIg group (right). Number in 
each quadrant represents the percent 
among CD4 population. (a) Plot showing, 
GM-CSF+ among CD4 in DLN from control 
(Open circles) and IVIg (filled circles) 
treated mice . (b) Absolute number of 
CD4+ GM-CSF+ in the CNS. (c) 
Representative dot plot showing 
podoplanin+ gated for CD4+ in control 
(Left) and IVIg (right) mice. (d) Percent of 
CD4 cells which are podoplanin+ in DLN. 
(e) Absolute cell count of CD4+GM-CSF+ 
in the CNS. Mean value is depicted as a 
horizontal line among the symbols and 
error bars represent SEM (n=5), **p<0.01 
determined by Mann Whitney U test. 
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Figure 4 Inhibitory Fc receptor FcγRIIB is 

not required for IVIg- mediated 

reciprocal modulation of effector and 

regulatory CD4 subsets in vivo.  Female 

FcγRIIB-/- mice under C57BL/6J background 
were immunized with 200µg of MOG35-55 

peptide in CFA, this was followed by PTX 
injection as mentioned in experimental 
procedures. Control mice received 0.2M 
glycine (Open squares), treatment group 
received IVIg (Filled squares). 9 days after 
immunization mice were sacrificed and cells 
from DLN, spleen and CNS were evaluated 
by flow cytometry. Plots show frequency of 
Th17 (a) and Th1 (b) in DLN. (c) Foxp3+ 

Treg among CD4+ population in spleen. 
Absolute number of Th17 (d), Th1 (e) and 
Treg (f) cells infiltrating to CNS are shown. 
Cell counts of total CD4+ population in CNS 
(g) and DLN (h) at day 9 in control and IVIg 
groups are represented. CD4+ GM-CSF+ (i) 
and CD4+ podoplanin+ (j) in CNS are shown. 
Mean values are depicted as a horizontal 
lines among the symbols and error bars 
represent SEM (n=4), *p< 0.05 determined 
by Mann Whitney U test.  
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Figure 5 Fragment of antigen binding 

F(ab’)2 part of IVIg also retained capacity 

to reciprocally modulate effector and 

regulatory CD4 subsets in vivo. 10-12 
week female WT C57BL/6J mice were 
immunized with 200µg of MOG35-55 peptide in 
CFA followed by PTX as mentioned in 
experimental procedures. Mice were treated 
with 0.2 M Glycine (Open circles) or IVIg 
(Filled circles) or Equimolar F(ab’)2 (open 
triangles)from day of immunization. Mice 
were sacrificed on day 9 and various cell 
types were evaluated by flow cytometry. 
Representation of percent of Th17 (a) and 
Th1 (b) cells in DLN. Foxp3+ regulatory cells 
among CD4+ population in spleen are plotted 
(c). CNS infiltrating cells were analyzed on 
the day of onset, cell counts were estimated 
by flow cytometry data, absolute number of 
Th17 (d), Th1 (e) and Treg (f) are plotted. 
Representation of absolute number of CD4 
cells in CNS (g) and DLN (h) at the onset of 
EAE in control, IVIg and F(ab’)2  groups. 
Absolute number of CD4+GM-CSF+(i) and 
CD4+podoplanin+ (j) in CNS are shown. Mean 
values are depicted as a horizontal lines 
among the symbols and error bars represent 
SEM (n=5), *p< 0.05, **p<0.01, ***p< 0.001 
determined by Mann Whitney U test. 
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Figure 6 IVIg decreases activity of mTOR kinase in both effector and regulatory CD4 subsets in 

EAE. EAE was induced in 10-12 week female Wt C57BL/6J mice, 6 days after immunization mice were 
scarified to probe for mTOR activity in DLN. (a) Representative histogram showing MFI of phospho-S6 
ribosomal protein (ser240/244) in CD4 cells from DLN of control (red) and IVIg (green) mice, auto 
fluorescence is shown as black line. (b) MFI of P-S6 protein in CD4 cells, conventional Th cells (Foxp3-) 
and Treg (Foxp3+). Control (Open circles) and IVIg (filled circles). Means are depicted as a horizontal 
lines among the symbols and error bars represent SEM (n>10, two independent experiments) ***p< 
0.05 Two way ANOVA with Bonferroni's post t test. 
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Supplementary Figure 1 IVIg inhibits MOG35-55 specific secretion of IL-17 and IFNγ. Logarithmic 

scales are used to show the quantity of cytokine from control (open bars) and IVIg (filled bars) group (n 

>10, pooled from two independent experiments). EAE was induced in 10-12 week female Wt C57BL/6J 
mice. MOG35-55 specific cytokine secretion assay was performed by incubating cells of DLN, spleen and 
CNS with 10 µg/ml of MOG35-55 peptide for 24hrs. Supernatants were analyzed for cytokines IL-17A (a) 
and IFNγ (b). Error bars represent SEM, *p<0.05, **p<0.01 and ***p< 0.001 determined by Mann 
Whitney U test. Top panel (DLN) and middle panel (Spleen) represent data obtained from pre-onset of 
phase of EAE (at day 6), bottom panel (CNS) data is obtained at the day of onset (Day 9).  
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Supplementary Figure 2 In addition to inhibition of Th17 and Th1 cells, IVIg increases Treg in 

spleen. EAE was induced in Wt C57BL/6J mice and IVIg was injected daily. Flow cytometry was 
performed on day 9 to determine the frequency of Foxp3+ cells. Representative dot plot showing CD4 
(Y-axis) and Foxp3 (X-axis) from control (left) and IVIg group (right). Number in each quadrant 
represents the percent of Foxp3+ cells among CD4 population. Data from DLN (panel a) and spleen 
(panel b) are represented. Data from two in independent experiments are shown. Plots show frequency 
of CD4+ foxp3+ in DLN (c) and Spleen (d). Open circles represent control mice and filled circle represent 
IVIg treated mice.  Mean value is depicted as a horizontal line among the symbols and error bars 
represent SEM (n>12). **p<0.01 and ***p< 0.001 determined by Mann Whitney U test. 
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Supplementary Figure 3 F(ab’)2 also inhibits MOG35-55 specific secretion of IL-17 and IFNγ. EAE 
was induced in 10-12 week female Wt C57BL/6J mice. Control mice received 0.2M glycine (Open 
bars), IVIg group received 0.8 g/kg BW Gamunex® (Filled bars) and mice in F(ab’)2 group received 0.5 
g/kg pepsin treated IgG free fragment of antigen binding F(ab’)2 (Gray bars). MOG35-55 specific cytokine 
secretion assay was performed by incubating cells of DLN (Top panel) and CNS (bottom panel) with 10 
µg/ml of MOG35-55 peptide for 24hrs. Supernatants were analyzed for cytokines IL-17A (a) and IFNγ (b). 
Logarithmic scales are used to show the quantity of cytokine. Error bars represent SEM (n=5), ns: not-
significant, *p<0.05 and **p<0.01 determined by Mann Whitney U test. 
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7 Discussion and Perspectives  

Reciprocal modulation effector and regulatory T cells responses by IVIg 

Activation of naïve CD4 T cells and their differentiation into various subsets is the 

crucial event in the initiation of an adoptive immune response. Dysregulated initiation of 

immune response leads to undesired pathogenic immune response might lead to self-

antigens and inflammatory pathologies [179]. Several lines of evidence suggest that 

Th1 and Th17 play critical role in the development and progression of many 

autoimmune and inflammatory diseases. On the other hand, regulatory T cells 

expressing the transcription factor Foxp3 are involved in the suppression of auto-

reactive T cells and regulation of immune response [127]. Several autoimmune 

diseases are associated with reduced number of Treg or defects in their functions [123-

126]. Thus, balance between Treg and effector T cells including Th17 and Th1 

determines the course of immune-mediated disorders [58, 73]. Th17 are the main 

pathogenic cells in immune-mediated tissue damages such as multiple sclerosis[107], 

chronic inflammatory bowel disease [180], psoriasis [181, 182], SLE [183], asthma, 

allergic contact dermatitis, dermatomyositis, pemphigus, allergic rhinitis, anti-neutrophil 

cytoplasmic antibody–associated vasculitis and rheumatoid arthritis [184-188]. Although 

IVIg is beneficial in the treatment of several of these complications, the precise 

mechanisms governing the Th cell polarization and the balance between Treg and Th17 

cells by IVIg have not been identified. Therefore, I hypothesized that therapeutic 

efficacy of IVIg might implicate interference Th17 cells in vivo. I demonstrate that 

administration of IVIg to EAE mice significantly reduces the severity of disease by 
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inhibiting differentiation of Th17 and Th1 cells. I did not observe any changes in Th2 cell 

type. Further, ex-vivo stimulation of the lymphocytes with MOG35-55 showed decreased 

secretion of IL-17 and IFNγ but not IL-4 and IL-10. In consensus with the previous 

results, I observed an expansion of Treg [165]. Thus, the protective effect of IVIg in EAE 

underscores the reciprocal modulation of effector CD4 cells (Th1 and Th17) and Treg.  

IVIg decreases pathogenicity of encephalitogenic T cells in EAE 

Both Th17 and Th1 cells are involved in EAE, however Th17 cells have emerged 

as the main pathogenic mediators [44, 189]. Signature cytokines of Th17 cells like IL-

17A, IL-17F, IL-21 and IL-22 are dispensable for the induction of EAE [190-194]. 

Encephalitogenic potential of Th17 cells in EAE has been attributed to molecules like 

GM-CSF [120] and podoplanin [195]. IVIg decreases the expression of GM-CSF and 

podoplanin in CD4 T cells. GM-CSF produced by Th17 cells potentiates 

neuroinflammation by attracting myeloid cells to the CNS and up-regulating their surface 

MHCII [193, 196]. Podoplanin expressed on Th17 cells is involved in the formation of 

deleterious ectopic lymphoid structures in CNS [195, 197-199]. By reducing the 

expression of these molecules in CD4 T cells, IVIg may thus inhibit the formation of 

inflammatory foci. The relevance of these findings in other autoimmune conditions and 

in patients treated with IVIg needs to be examined. 

Modulation of CD4 T cell trafficking by IVIg 

Presence of lymphocytic infiltrates in CNS has been well established as clinical 

feature of MS, EAE and many chronic inflammatory conditions [200-202]. Protective 

effect of IVIg treatment in EAE is associated with decreased number of lymphocytes 
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and absence of inflammatory foci in the CNS [165, 203]. It has been previously shown 

that IVIg interferes with leucocyte recruitment to the CNS in an α4-integrin-dependent 

manner [204]. However, Th17 and Th1 cells use different strategies to invade CNS 

[205, 206]. To investigate the effect of IVIg on trafficking of Th17 and Th1 in EAE, brain 

and spinal cords were analyzed on the day of onset (Day 9). IVIg inhibited infiltration of 

Th1, Th17 and Tregs into the CNS. IVIg inhibited infiltration of Th1, Th17 and Tregs to 

the CNS which is in consensus with previously published reports [165, 203, 204]. 

Surprisingly, I observed an increased accumulation of CD4 cells in the DLN and an 

overall decrease in absolute number of CD4 cells in the circulation. These data 

suggested that, T cell entry into DLN of IVIg-treated EAE mice was intact; however, 

their exit from DLN was affected. To further probe into the molecular mechanisms 

involved in sequestering of CD4 cells into the DLN, I investigated sphingosine 1 

phosphate (S1P)–S1P receptor1 (S1P1) axis, which controls the trafficking and 

migration of lymphocytes [207, 208]. I show the mechanistic evidence for the 

interference of lymphocyte trafficking by IVIg. Lymphocytes use S1P–S1P1 pathway to 

exit from the lymph nodes. Differentiated T cells exit from the DLN by using a gradient 

of S1P across the DLN, lymph and blood by through S1P1 [207-209]. By down 

regulating S1P1 on CD4 cells, IVIg disrupts the lymphocyte egress machinery leading to 

sequestration of these cells in the DLN. However, whether IVIg affects the levels of 

circulating S1P blood needs to be verified. Thus, IVIg sequesters activated CD4 cells in 

DLN and prevents their migration to the target organ. 
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Reciprocal modulation of T cell responses by IVIg is independent of FcγRIIB and 

F(ab’)2 fragments of IVIg recapitulates the capacity to reciprocally modulate 

effector and regulatory CD4 subsets in EAE 
 

Presence and up regulation of inhibitory receptor FcγRIIB is considered 

mandatory for the beneficial effect of IVIg in some animal models antibody mediated 

autoimmunity [210] [211]. The 2,6 sialylated Fc portion of IVIg is known to be 

responsible for the anti-inflammatory effect [142, 212, 213]. FcγRIIB in protection of 

EAE mice by IVIg is however unexplored. To further elucidate the molecular 

mechanisms of action of IVIg in EAE, I show that Th17 and Th1 inhibitory function of 

IVIg is intact in mice lacking FcγRIIB (FcγRIIB-/-). Additionally, increase in Tregs in 

spleen, inhibition of GM-CSF and podoplanin and interfering of CD4 T cell trafficking by 

IVIg does not require FcγRIIB. 

As Fc part of IVIg is implicated in the FcγRIIB-dependent functions of IVIg, my 

results on dispensable role of FcγRIIB on IVIg-mediated regulation of T cell populations 

raises a possibility that F(ab’)2 part of IgG molecule should be equally effective as that of 

intact IgG. To explore this, EAE mice were treated with IVIg or equimolar concentration 

of F(ab’)2 fragments. Mice were sacrificed on day 9 and analyzed for CD4 T cell 

populations by flow cytometry. Interestingly, F(ab’)2 also inhibited Th17 and Th1 cells, 

and enhanced the number of Treg  similar to intact IVIg. MOG35-55 specific cytokine 

secretion assay revealed decreased amounts of IL-17 and IFNγ from F(ab)'2 or IVIg-

treated mice. This is in consensus with previous reports from our in vitro results17. 

Similar to IVIg, F(ab’)2 retained the ability to inhibit infiltration of Th1, Th17 and Treg to 

the CNS . Modulation of lymphocyte trafficking and sequestration of CD4 cells in DLN 
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was also consistent in F(ab’)2-treated EAE mice. Further, F(ab’)2 treatment also 

decreased the expression of GM-CSF and podoplanin in CD4 cells. These results 

demonstrate that in vivo reciprocal modulation of CD4 subsets by IVIg is F(ab’)2-

dependent. Hence I conclude that F(ab’)2 retained the capacity to reciprocally regulate 

CD4 subsets similar to IVIg. However, exploring the role of SIGNR1 in this regulatory 

shift of CD4 subsets by IVIg is an interesting perspective. 

 

mTOR kinase pathway is implicated in reciprocal regulation of T cell responses 

by IVIg   
 

The complex process of T cell activation and differentiation in vivo is regulated by 

multiple cues in the microenvironment of secondary lymphoid organs. mTOR is a kinase 

that integrates these signals and plays a critical role in the Teff and Treg responses53,54. 

In view of the fact that IVIg can directly interact with T cells17 and influence the TCR 

signaling55, I reasoned that reciprocal modulation of T cell responses by IVIg may 

involve mTOR signaling pathway. To investigate whether IVIg-mediated reciprocal 

modulation of effector and regulatory cells involves mTOR pathway, mice were 

sacrificed 6 days after immunization. I analyzed the activity of mTOR in CD4 cells from 

DLN by estimating the level of phospho-S6 ribosomal protein (ser240/244)37. CD4 cells 

from IVIg-treated mice displayed reduced phosphorylation of S-6 ribosomal protein as 

compared to the control. IVIg-treatment decreased the activity mTOR in both Teff and 

Treg. These data suggest that by inhibiting activity of mTOR kinase in CD4 cells, IVIg 

can decrease the differentiation of naïve CD4 cells to effector subsets while 

simultaneously increasing the number of Treg. Whether Treg activating Tregitopes in 
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IVIg play any role in the reciprocal regulation of effector and Treg remains speculative56. 

Additionally, sequestering of CD4 cells in DLN by IVIg may be a consequence of 

affecting mTOR-pathway as S1P-mTOR axis is implicated in lymphocyte trafficking57.  

 

To conclude, pathogenesis of EAE involves activation and differentiation of 

naive neuroantigen-specific CD4 cells into Th17 and Th1 cells in the secondary 

lymphoid organs. These pathogenic T cells migrate to the CNS and potentiate 

axonal destruction by facilitating infiltration of other myeloid effector cells 

through GM-CSF and formation of ectopic lymphoid structures mediated by 

podoplanin. My results show that IVIg-mediated inhibition of EAE implicates 

multiple targets acting at different phases of immune response. Thus, IVIg can 

inhibit the initiation of pathogenic immune response by inhibiting the polarization 

of naïve T cell into Th17 and Th1 cells. This process is associated with a 

concomitant expansion Tregs in vivo. IVIg can circumvent neuronal degeneration 

by inhibiting the infiltration of CD4 T lymphocytes to the target organ by 

restraining their exit from the DLN through S1P-S1P1 pathway. Further, IVIg may 

decrease the tissue damaging potential of pathogenic T cells by down regulating 

key molecules such as GM-CSF and podoplanin. Together, my results provide a 

cellular and molecular basis underlying the beneficial effect of IVIg in certain T 

cell-dependent autoimmune and inflammatory conditions. 
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PERSPECTIVES 

Understanding the role of IVIg-modulated DC in mediating reciprocal T cell 

responses   

 
DCs are the professional antigen presenting cells (APC) which are specialized in 

antigen uptake, processing and presentation [1]. The maturation state of DC regulates 

immune response and tolerance. Immature and semi-mature DC presenting antigens 

are known to maintain tolerance by inducing Tregs while mature-DC induces strong 

immune response [5]. We have previously demonstrated that IVIg inhibits maturation 

and function of DC, also modulates the pattern of cytokines secreted by these cells [16]. 

IVIg impairs antigen presentation; in addition, IVIg-treated DC ameliorates ongoing 

autoimmune disease in vivo upon adoptive transfer [18]. [19]. In view of the fact that 

IVIg modulates function of DC and DC are involved in regulating T cell responses in 

vivo, I set out to explore the role or IVIg-DC in regulating the T cell responses. I studied 

the structural changes associated with IVIg treatment on DC. Transmission electron 

microscopy of DC differentiated in presence of IVIg for 5 days revealed a surprising 

increase in accumulation of lipid bodies as compared to the control (Figure 1A, 

Annexes-I). Lipid accumulation in DC generated in presence of IVIg was further 

confirmed by flow cytometry using Bodipy staining. Lipid content of IVIg treated DC was 

significantly higher than control (Figure 1B, C Annexes-I). Further, I observed a 

decreased antigen endocytosis capacity in IVIg-DC (Figure 1E Annexes-I), suggesting 

that IVIg-DC with high lipid content are defective in antigen uptake. Hence, DC in 

presence of IVIg take up more lipids, which is associated with decreased antigen 

engulfing capacity. 
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There is an emerging notion that lipids in DC play a crucial role in antigen 

presentation function [20-22]. My preliminary observations can be extended to verify the 

hypothesis that IVIg modulates the antigen processing and presentation functions of DC 

by altering lipid accumulation and thereby regulating T cell responses. Further, whether 

IVIg injected in vivo also modifies the lipid content of DC needs to be examined. 

Characterizing the nature of these lipids in IVIg-DC is required to understand their role 

in modulation of antigen presentation. 

To investigate whether IVIg interferes with cytokine networks involved in T cell 

polarization.  

 
Local cytokine networks and complex signaling events at the immune-synapse 

between the antigen specific Th cell and APC determine the fate of these cells. For 

example, in presence of cytokines IL-12 and IFNγ naïve Th cells are polarized towards 

Th1, IL-4 skews them to Th2 phenotype, IL-6 and transforming growth factor-β (TGF-β) 

towards Th17 and TGF-β alone is involved in induction of Tregs [214]. Whether IVIg 

modulates the cytokine networks in T cell polarization needs to be addressed in EAE. 

To decipher the molecular mechanisms of modulation of mTOR kinase pathway 

by IVIg  

mTOR is a kinase involved in reciprocal regulation of effector and regulatory 

responses. mTORC1 is essential for Th1 and Th17 while mTORC2 is required for Th2 

cell differentiation [215]. IVIg can decrease the differentiation of naïve CD4 cells to 

effector subsets while simultaneously increasing the number of Treg by inhibiting 

activity of mTOR kinase. Whether IVIg affects signaling of both complexes needs to be 

further explored. The molecular mechanisms of IVIg-mediated mTOR inhibition will 

open novel prospects on the role of normal immunoglobulins in the regulation of 



 

68 
 

complex signaling events at the immune-synapse between the antigen specific Th cell 

and APC. S1P-Akt-mTOR axis is implicated in Th1/Tregs regulation and lymphocyte 

trafficking, IVIg might be interacting with S1P in the circulation to affect this axis. The 

proposed studies further strengthen the claims that normal immunoglobulins have a 

determining role in immune homeostasis. 

 

To understand whether IVIg shifts the activation threshold of T cells 

Naïve T cells are activated at certain activation threshold which is sum of all 

activating and inhibitory stimulus in the micro-environment [216, 217]. This threshold is 

subject to dynamic tuning to ensure efficient response to pathogens and tolerance to 

self-antigens. Sub-optimal stimulation of naïve T cells leads to insufficient activation and 

failure to differentiate into effector subsets resulting in anergy [218, 219]. Interestingly, 

sub-optimal stimulation of Tregs is sufficient to activate and enhance their suppressive 

functions [220-222]. Interestingly, the pathways of anergy and iTregs converge at 

mTOR signaling pathway [223, 224]. As IVIg is known to interfere with early events of 

TCR stimulus in vitro [225] and from the results presented in my thesis that IVIg 

modulates activity of mTOR in vivo. It is tempting to speculate that IVIg, by shifting the 

threshold of activation of CD4 cells increases the window of sub-optimal stimulation, 

hence favoring Tregs but not the other effector T cells [221]. This hypothesis can be 

tested by either in vitro studies involving effect of IVIg on CD4 cells activated by a 

gradient of stimulation strength or in vivo by using intra-vital multi-photon microscopy to 

understand the effect of IVIg on the dynamics of interaction between APCs and T cells 

in lymph node. 
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To explore the clinical relevance of reciprocal modulation of Th cells by IVIg 

Results presented in my thesis reveal mechanism of action of IVIg in an in vivo 

model of multiple sclerosis. By inhibiting development of Th17 and Th1 cells and 

expanding Tregs IVIg restores the balance towards homeostasis in EAE. This can be 

extended to decipher the relationship between Treg and Th17 cells in autoimmune 

patients following IVIg therapy and other experimental models of active autoimmunity. 

 

To investigate the role of α2,6 sialylated IVIg in reciprocal modulation of T cell 

responses.    

 

 α2,6 sialylated on Fc portion of IgG (sial-IVIg) is claimed to be the active 

component in some animal models of antibody mediated autoimmunity. This sial-IVIg is 

known to interact with SIGNR1 on myeloid cells to exert its beneficial effects in K/B×N 

serum transfer arthritis model. However, recent results from animal model of ITP show 

contradictory trends and furthermore, F(ab’)2 is also sialylated [213, 226]. Studies 

involving role of sial-IVIg and SIGNR1 in IVIg-mediated protection of mice against EAE 

are warranted to test this hypothesis beyond K/B×N serum transfer arthritis model. 
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Abstract 

Initially used as replacement therapy in immune deficiencies, IVIg also widely 

used for the treatment of a number of autoimmune and systemic inflammatory 

diseases. IVIg exerts its beneficial effects by several mutually non-exclusive 

mechanisms. We have previously demonstrated that IVIg inhibits the maturation 

and function of dendritic cells (DC) and modulates their activation and survival. 

Cellular changes affecting the modulation of DC functions by IVIg however 

remain unexplored. Using electron microscopy and flow cytometry, we 

demonstrate that IVIg increases accumulation of lipids in DC by enhancing their 

uptake from medium. Further, increased accumulation of lipids by IVIg in DC is 

associated with a decrease in antigen uptake. These results provide novel insight 
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into the intracellular alterations in DC following treatment with IVIg, which might 

have repercussions on the immunoregulatory mechanisms of IVIg.  

Introduction  

DC are the professional antigen presenting cells (APC) that are specialized in antigen 

uptake, processing and presentation [1]. DC capture antigen in the periphery and 

migrates to secondary lymphoid organs. DCs interact with naive T cells and provide a 

combinatorial code of co-stimulatory molecules and cytokines in the secondary 

lymphoid tissues [2]. Decisions made at the synapse of DC and naive T cells shape the 

events that follow the fate of immune response [3]. Antigen-primed DC enter a 

developmentally programmed process of “maturation” which is characterized by up-

regulation of various co-stimulatory molecules and secretion of cytokines depending on 

the context of antigen and other environmental cues of antigen encounter in the 

periphery [4]. The maturation state of DC regulates immune response and tolerance. 

Immature and semi-mature DC presenting antigens maintain tolerance by inducing 

Tregs while mature DC induces strong immune response [5]. Dysregulated DC 

functions are associated with many immune disorders and breaking of tolerance to the 

self [3, 6].   

IVIg is a therapeutic preparation of normal human polyclonal IgG obtained from pools of 

plasma from a large number of healthy blood donors [7, 8]. Initially used as replacement 

therapy for patients with immune deficiencies, IVIg is now widely used for the treatment 

of a large number of autoimmune and systemic inflammatory diseases including 

neuromuscular and neuro-immunological diseases such as acute Guillain–Barré 

syndrome, myasthenia gravis, acute or chronic inflammatory demyelinating 

polyneuropathy, or stiff person syndrome [9-11]. IVIg exerts its beneficial effects by 

several mutually non-exclusive mechanisms [12-15]. IVIg inhibits maturation and 

function of DC, also modulates the pattern of cytokines secreted by these cells [16]. By 

down-regulating the interferon--mediated differentiation of DCs, and by inhibiting the 

uptake of nucleosomes, IVIg might exert an immunoregulatory effect in patients with 

lupus [17]. In addition, IVIg-treated DC ameliorates ongoing autoimmune disease in vivo 

upon adoptive transfer [18]. IVIg also modulates in vivo and in vitro T-cell responses by 

impairing antigen presentation [19]. Although IVIg is known to affect antigen 

presentation, the cellular mechanisms remain unexplored. 

In the present study, we set out to understand cellular changes affecting modulation of 

DC functions by IVIg. Our preliminary results indicate an increased accumulation of 

lipids in DC-IVIg due to enhanced intake of fatty acids, which is associated with a 

decrease in antigen uptake.  
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Results and discussion 

 Transmission electron microscopy of DC differentiated in presence of IVIg for 5 
days revealed a surprising increase in accumulation of lipid bodies as compared to the 

control (Figure 1A). Lipid accumulation in DC generated in presence of IVIg was further 
confirmed by flow cytometry using Bodipy staining. Lipid content of IVIg-treated DCs 

was significantly higher than in control (Figure 1B, C). All cells were positive for lipids; 
the mean MFI of Bodipy in IVIg-DC was higher than in the control indicating increased 
lipid content. To understand the mechanisms responsible for IVIg-meditated lipid 
accumulation in DC, we studied whether IVIg affects uptake of lipids by DC. 
Accordingly, we observed a two-fold increase in the uptake of Oleic acid conjugated to 
BSA (OA-BSA) or free fatty acid (Bodipy C16) indicating increased uptake as a possible 

mechanism (Figure 1D). However, the effect of IVIg on de novo generation of lipid 
bodies in DC needs to be verified. Further we also observed a decreased antigen 

endocytosis in IVIg-DC (Figure 1E), suggesting that IVIg-DC with high lipid content are 
defective in antigen uptake. Indeed, there is an emerging body of evidence that lipids 
play crucial role in antigen presentation function of DC. DC with high lipid content has 
reduced capacity to process antigens and stimulate T cells. Lipid bodies in DC are 
involved in antigen cross-presentation; additionally DC functions can be reciprocally 
modulated by saturated and polyunsaturated fatty acids [20-22]. Thus, in view of the 
previous observations that IVIg inhibits maturation and function of DC and additionally 
IVIg-treated DC are potential inducers of tolerance in vivo [18, it is tempting to propose 
that IVIg modulates the antigen processing and presentation functions of DC by altering 
lipid accumulation and thereby reducing the T cell response. Our preliminary results 
suggest that, DC in presence of IVIg take up more lipids, which is associated with 
decreased antigen uptake capacity. Whether IVIg injected in vivo also modifies the lipid 
content of DC needs to be further examined. Characterizing the nature of these lipids in 
IVIg-DC may further help to understand their role in the modulation of antigen 
presentation.  
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Figure 1: IVIg-mediated accumulation of lipids 

and decreased antigen uptake in human DC.  

A. Healthy human donor CD14
+

 monocytes were 
differentiated into DC by in the presence of 500 IU 
/ mL rhIL-4 and 1000 IU / mL rhGM-CSF in 
RPMI/10% FCS for 6 days. [1](Bayry et al., 
2003a)[1]Transmission electron micrographs 
showing accumulation of lipid bodies (Black 
arrows) in DC generated in presentence of 0.15 
mM IVIg (IVIg-DC).  
 
B. Representative histogram showing flow 
cytometric analysis of 6 day old monocyte derived 

DC after staining with Bodipy 493/503
®

 in PBS for 
15 min at 20 °C. Control in red and IVIg-DC in 
green. 
 
C. Mean fluorescence intensity (MFI) of Bodipy 

493/503
®

 in control (open circles) and IVIg-DC 
(filled circles) from ten independent experiments is 
represented. Mean value is depicted as a 
horizontal line among the symbols and error bars 
represent SEM, **p<0.01 determined by non-
parametric Wilcoxon signed rank test.  
 
D. Five-day old DCs, generated in presence 
(filled bars) or absence (open bars) of IVIg were 
assessed for uptake of fatty acids from the 
medium. MFI of Bodipy staining after adding 300 
µM Oleic acid-Bovine serum albumin (OA-BSA) 
(Sigma Aldrich) for 24 hour (Left) or 3 µM 

BODIPY
®

 FL C
16

 (Life technologies) uptake assay 

performed a 37
o 

C for 15 min (Right).  
 

E.  DCs were loaded with 25 mg/ml of 
Ovalbumin-APC (Life technologies) for 15 min at 

37
o 

C. Antigen uptake was obtained by multiplying 
MFI with percent of positive cells for OVA-APC. 
Data from three independent experiments is 
shown. IVIg-DCs (filled bars) as percent change 
from controls (normalized to 100% - open bars), 
error bars represent SEM,  **p<0.01 determined 
by paired student t test. 
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Material and Methods:  

 For generation of human DC: CD14+ monocytes were purified from healthy 

donor peripheral blood mononuclear cells. CD14+ cells were differentiated into DC by 

culturing in presence of 500 IU/mL rhIL-4 and 1000 IU/mL rhGM-CSF for 5-6 days in 

RPMI medium supplemented with 100 IU/ml Penicillin, 100 ug/ml Streptomycin (Gibco) 

and 10% fetal calf serum (FCS). IVIg (Gamunex ® Talecris Biotherapeutics USA) was 

dialyzed extensively against RPMI and added to the culture medium at 0.15 mM during 

the differentiation.  

 Analysis of structural changes and lipid assays: DC generated were 

subjected electron microscopy to elucidate structural changes in cellular architecture. 

To stain lipids cells were washed with PBS at stained with BODIPY 493/503 at 2 μg 

ml−1 in PBS for 15 min at 20 °C. Cells in all experiments were acquired and analyzed 

using BD LSR II and FACS Diva software. Assays for lipid and antigen uptake were 

performed using BODIPY® FL C16 and OVA-APC respectively.  

 Statistical analysis: Graph pad prism is used for statistical analysis and plot the 

data. P values mentioned in the figure legends were calculated using Wilcoxon signed 

rank and paired student t test according to the data.      
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The immunoglobulins (Igs) are one of the 
major protein families found circulating 
in the blood. Igs are glycoproteins and 
are composed of two heavy and two light 
chains. Both chains are made up of variable 
and constant domains (Figure 1). The Igs 
recognize specific antigens through the 
fragment antigen-binding (Fab) region, 
whereas the fragment crystallizable (Fc) 
region interacts with Fc receptors and Fc-
binding proteins such as complement. Igs 
are classified into five major isotypes based 
on their heavy chain constant domains: IgG, 
IgA, IgM, IgD, and IgE. Each Ig is made 
up of an identical pair of one of the two 
types of light chains: κ or λ. IgG is the most 
abundant Ig in the circulation and mediates 
the majority of antibody-based immunity 
against foreign antigens. IgG has a molecular 
weight of 150 kDa and exists in four different 
subclasses: IgG1, IgG2, IgG3, and IgG4. 

Intravenous Ig
Intravenous Ig (ivIg) is a therapeutic 
preparation of IgG obtained from pooled 
plasma from several thousand healthy donors. 

Initially used in primary and secondary 
immune deficiencies, ivIg is now increasingly 
being used for the treatment of diverse 
autoimmune and systemic inflammatory 
diseases [1–4]. The list of disorders in 
which sufferers have reportedly responded 
to ivIg treatment includes a wide spectrum 
of diseases mediated by autoantibodies or 
believed to depend primarily on the activity 
of auto-aggressive T cells. In fact, ivIg has 
been used to treat >100 different pathologies. 
However, the beneficial effect of ivIg has 
been established by prospective randomized 
trials in only a few of these diseases, 
including Guillain–Barré syndrome, chronic 
inflammatory demyelinating polyneuropathy, 
myasthenia gravis, dermatomyositis, and 
Kawasaki disease (KD) [2–6]. Nonetheless, 
in many other conditions ivIg has been 
shown to be an effective therapeutic option 
in uncontrolled studies and continues to 
be investigated; among these conditions 
are anti-factor VIII autoimmune disease, 
the antiphospholipid syndrome (APS), 
polymyositis, systemic lupus erythematosus 
(SLE), and Crohn’s disease (Table 1). 
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The available clinical and experimental 
data indicate that a wide spectrum of 
rheumatic conditions could benefit from ivIg  
therapy [1–4].

All commercial preparations of ivIg 
consist of intact IgG molecules with a 
distribution of IgG subclasses corresponding 
to that found in normal (healthy) human 
serum. Most preparations contain traces 
of IgA, which can sensitize IgA-deficient 
patients during long-term treatment. ivIg 
also contains trace amounts of soluble 
CD4, CD8, and human leukocyte antigen 
molecules, as well as certain cytokines [1]. As 
ivIg is prepared from pools of plasma from 
thousands of healthy blood donors, it can 
be assumed that the preparation contains 
samples of the entire repertoire of antigen-
binding variable regions of IgG that would 
be present in normal serum. Therefore, ivIg 
comprises antibodies directed to a broad 
range of pathogens and foreign antigens 
that are critical for replacement therapy 

in patients with primary and secondary 
immunodeficiencies such as X-linked 
agammaglobulinemia and common variable 
immunodeficiency. ivIg also comprises 
antibodies to a number of self-antigens as well 
as anti-idiotype antibodies, which are thought 
to be essential for the immunoregulatory 
effects of ivIg in autoimmune and 
inflammatory disorders. The half-life of 
infused ivIg is approximately 3 weeks.

Kawasaki disease
KD is an acute childhood illness that 
involves the skin, mouth, and lymph nodes 
and is characterized by vasculitis, high fever, 
skin rashes, cervical lymphadenopathy, 
conjunctivitis, and oral enanthema. The 
beneficial effect of ivIg treatment in children 
with acute KD has been demonstrated in a 
multicenter, randomized, controlled trial 
[7]. Patients were randomized to receive 
ivIg either as a single infusion of 2 g/kg  
body weight over 10 h or as four daily 

Figure 1. The structure of IgG. The site of interactions between IgG and antigen (epitope) is shown, as 
are the binding sites for the complement components C1q and activated C3b and C4b, and the sites of 
interaction between the heavy chains of IgG and FcγR.

CDR: complementarity determining region; CH: constant heavy domain; CL: constant light domain; Fab: fragment antigen binding; 
Fc: fragment crystallizable; FcγR: Fcγ receptor; IgG: immunoglobulin G; VH: variable heavy domain; VL: variable light domain. 

The figure is redrawn from [3], with permission from Nature Publishing Group.
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infusions of 400 mg/kg. Patients treated 
with the single infusion had lower mean 
temperatures as well as a shorter mean 
duration of fever. Furthermore, high-dose 
ivIg therapy led to a significant decline 
in inflammatory mediators and coronary 
lesions. The investigators concluded that in 
children with acute KD, a single, large dose 
of ivIg is more effective than a regimen of 
four daily infusions of low-dose ivIg, which 
underlined the need to identify the optimal 
dose regimen for ivIg therapy. A meta-
analysis confirmed that children fulfilling 
the diagnostic criteria for KD should be 
treated with single-dose ivIg 2 g/kg within 
10 days of onset of symptoms of fever [8]. 
However, approximately 20–30% of patients 
treated with ivIg may show resistance to the  
therapy [9–11].

Following ivIg therapy in KD patients, 
the neutrophil expression of CD11b  
(a molecule that is implicated in the adhesion 
of neutrophils to endothelial cells), the 
levels of inflammatory cytokines (such 
as interleukin-6 [IL-6] and granulocyte 
colony-stimulating factor), and the levels of 
C-reactive protein (an acute-phase protein) 
are substantially reduced [12,13]. This 
inhibition of inflammatory mediators is 

reciprocally associated with a substantial 
increase in levels of the anti-inflammatory 
molecule IL-1Ra. A comparative analysis of 
the gene expression profiles of peripheral 
blood mononuclear cells and monocytes 
obtained from patients with acute KD before 
and after ivIg therapy demonstrated that ivIg 
suppresses the functions and inflammatory 
phenotype of monocytes and macrophages 
[14]. In particular, ivIg inhibited the 
expression of the activatory Fcγ receptors 
FcγR1 and FcγRIII; the chemokine receptor 
CCR2, which is a receptor for monocyte 
chemoattractant protein-1 – a chemokine that 
specifically mediates monocyte chemotaxis; 
and the monocyte-derived inflammatory 
mediators adrenomedullin, S100A8, S100A9, 
and S100A12. Interestingly, the transcripts 
of inhibitory FcγRIIB were not modified 
following ivIg therapy, indicating that ivIg 
regulates the balance of activatory and 
inhibitory Fcγ receptors not by enhancing 
the expression of inhibitory Fcγ RIIB, as 
shown in experimental models, but rather 
by downregulating the expression of the 
activatory Fcγ receptors.

Inflammatory myopathies
There are three major subsets of the 
inflammatory myopathies: polymyositis, 
dermatomyositis, and inclusion body 
myositis, which are characterized by 
proximal and often symmetrical muscle 
weakness [15]. An initial open-label study 
on ivIg in a small number of patients 
with chronic refractory polymyositis or 
dermatomyositis demonstrated significant 
clinical improvement, as assessed by the 
measurement of proximal muscle power 
and biochemical studies [16]. During ivIg 
therapy, steroid doses were significantly 
reduced, thus indicating that ivIg has a 
steroid-sparing effect. The investigators 
concluded that ivIg is an efficacious therapy 
for polymyositis and dermatomyositis and 
should play a role in the treatment of these 
diseases, replacing or reducing steroid and 
immunosuppressive medications [16,17]. 

These results were confirmed in a double-
blind, placebo-controlled study of patients 

Table 1. Rheumatic diseases for which the 
beneficial effect of ivIg has been reported.

Polymyositis

Dermatomyositis*

Inclusion body myositis*

Kawasaki disease* 

Antineutrophil cytoplasmic antibody-positive 
systemic vasculitis*

Antiphospholipid syndrome

Rheumatoid arthritis and Felty’s syndrome

Juvenile rheumatoid arthritis

Systemic lupus erythematosus 

Systemic sclerosis

Stiff-person syndrome

Sjogren’s syndrome

*Indicates diseases for which evidence for the effect of ivIg 
has been obtained in controlled trials.  

ivIg: intravenous immunoglobulin.
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with biopsy-proven, treatment-resistant 
dermatomyositis [18]. Patients treated with 
a single infusion of ivIg 2 g/kg body weight 
each month for 3 months showed a significant 
improvement in scores for muscle strength 
and neuromuscular symptoms compared with 
patients given placebo. Repeated biopsies 
of the muscles of patients whose strength 
improved to almost normal levels following 
ivIg therapy showed an increase in muscle 
fiber diameter, an increase in the number 
and a reduction in the diameter of capillaries, 
resolution of complement deposits on 
capillaries, and a reduction in the expression 
of intercellular adhesion molecule 1 (ICAM-1) 
and major histocompatibility complex class I 
(MHC I) antigens [18,19]. 

Recently, a study was conducted to 
determine the molecular mechanisms of 
high-dose ivIg therapy in inflammatory 
myopathies [20]. Thirteen treatment-
resistant patients – six with polymyositis, 
four with dermatomyositis, two with inclusion 
body myositis, and one with juvenile 
dermatomyositis – were treated with three 
courses of ivIg 2 g/kg at monthly intervals. 
The effects of ivIg on muscle function and 
immunological molecules in the skeletal 
muscle of these patients were investigated. 
Following ivIg therapy, improved muscle 
function was observed in three patients 
(one patient with polymyositis, one with 
dermatomyositis, and one with inclusion body 
myositis) and serum creatinine kinase levels 
were reduced in five patients. The number of  
T cells and macrophages, the expression 
of MHC I antigens on muscle fibers, 
and the levels of ICAM-1, vascular cell 
adhesion molecule-1, and membranolytic 
attack complex deposits on capillaries were  
not significantly altered following ivIg 
treatment. The investigators concluded that 
these immunological parameters are not 
indicators of clinical response to ivIg therapy 
in patients with myopathies, and suggested 
that the immunological changes described 
in patients following ivIg therapy cannot be 
generalized [20]. 

Although the beneficial effect of ivIg 
in dermatomyositis patients has been 

demonstrated in randomized clinical trials, 
the therapeutic effects of ivIg in inclusion 
body myositis patients were marginal 
[2,21,22]. Although a few inclusion body 
myositis patients had a definite clinical 
improvement, their total gains in muscle 
strength did not reach statistical significance 
compared with the placebo-treated group. 
Similarly, uncontrolled trials on ivIg 
therapy in polymyositis patients have shown 
improvements in muscle strength [2,16,23], 
but confirmatory results from randomized 
clinical trials are required to fully establish 
the spectrum of efficacy. 

Systemic lupus erythematosus 
SLE is an autoimmune disease that is 
characterized by the involvement of multiple 
organs, including the skin, kidneys, and the 
central nervous system, and the presence 
of high titers of autoantibodies that are 
predominantly specific for DNA and 
nucleosomes. Several case reports and open-
label trials have shown that ivIg (2 g/kg 
over a 5-day period) therapy is a beneficial 
and safe adjunct therapeutic agent for 
>20 manifestations in patients with SLE, 
including neurological, cutaneous, renal, and 
cardiovascular [24–27].

In one study, a beneficial clinical response 
following ivIg treatment in SLE patients was 
associated with a decline in Systemic Lupus 
Activity Measure scores, normalization of 
complement activation, and a reduction in 
the levels of antinuclear antibodies [28]. 
The clinical manifestations that responded 
most to treatment were arthritis, fever, 
thrombocytopenia, and neuropsychiatric 
lupus. Furthermore, ivIg has a high response 
rate among pregnant patients with SLE-
associated recurrent spontaneous abortion 
and may be considered a safe and effective 
therapy in this population [29].

ivIg has been shown to inhibit type I 
interferon-mediated differentiation of 
dendritic cells – the sentinels of the immune 
system that initiate pathogenic autoimmune 
responses – and to block the endocytosis of 
nucleosomes by these cells [30]. Anti-idiotype 
antibodies found in ivIg preparations that 
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are directed against double-stranded DNA, 
phosphorylcholine, and phospholipids have 
been shown to be effective in experimental 
models of lupus [31]. The in vitro and in vivo 
exposure of B lymphocytes from lupus-prone 
mice to ivIg results in an increased expression 
of their surface inhibitory FcγRIIB receptors 
[32]. F(ab′)2 fragments of ivIg had similar 
activity compared with the intact preparation, 
whereas Fc fragments had no effect.

Despite these encouraging reports on 
the efficacy of ivIg therapy in SLE, the 
clinical value of the treatment has not been 
established by placebo-controlled clinical 
trials. At present, ivIg is indicated in severe 
cases of SLE that are non-responsive to 
other therapeutics, or as a steroid-sparing 
agent when patients are being treated 
with high-dose steroids. In addition, the 
appropriate indications for its use and the 
optimal dosage and duration of therapy 
are yet to be established for SLE [33]. In 
a recent study, although low-dose ivIg 
(approximately 0.5 g/kg body weight) was 
associated with clinical improvement in 
many specific disease manifestations, along 
with a continuous decrease over time in SLE 
Disease Activity Index scores, the symptoms 
of thrombocytopenia, alopecia, and vasculitis 
did not improve following low-dose ivIg 
therapy, indicating that high-dose therapy 
might be more beneficial in lupus patients 
[34]. Furthermore, observations from case 
reports have indicated that a combination of 
ivIg with other immunotherapeutics, such as 
anti-tumor necrosis factor-α (anti-TNF-α), is 
an effective therapeutic strategy for pregnant 
patients with severe lupus nephritis [35]. 

Systemic vasculitis
ivIg is an effective treatment for several 
vasculitides, including systemic and 
organ-specific diseases such as Wegener’s 
granulomatosis, microscopic polyangiitis, 
and Churg–Strauss vasculitis, and this 
therapy is less toxic than conventional 
immunosuppressive agents [36–38]. Levels 
of anti-myeloperoxidase antibodies and 
antineutrophil cytoplasmic antibodies 
(ANCA) decreased concomitantly with 

clinical improvement in the patients with 
Churg–Strauss vasculitis and Wegener’s 
granulomatosis, respectively. 

A randomized, placebo-controlled trial 
investigating the efficacy of a single course 
of ivIg 2 g/kg body weight in patients with 
previously treated ANCA-associated systemic 
vasculitis (AASV) with persistent disease 
activity demonstrated that this treatment 
regimen is efficient in reducing disease 
activity in persistent AASV; however, this 
effect was not maintained beyond 3 months 
[39]. Furthermore, an uncontrolled study of 
ivIg treatment in ANCA patients found that 
complete remission of disease activity could 
not be achieved despite using repeated courses 
of ivIg therapy [40]. In contrast to these results, 
a recent open-label study demonstrated that 
ivIg therapy (0.5 g/kg/day for 4 days per month 
for 6 months) induced complete remissions 
of relapsed ANCA-associated vasculitides 
(Wegener’s granulomatosis or microscopic 
polyangiitis) in 13 of 22 patients at 9 months 
after treatment initiation [41]. Therefore, the 
dosage, appropriate therapeutic window, and 
duration of ivIg therapy need to be established 
in order to achieve sustained therapeutic 
benefits of ivIg in AASV.

Antiphospholipid syndrome
APS is a rapidly progressive, life-threatening 
disease characterized by the presence of 
antiphospholipid antibodies (aPL), which 
cause multi-organ vascular thromboses and 
dysfunction as well as pregnancy morbidity. 
Both experimental and clinical data provide 
evidence for beneficial effects of ivIg in the 
treatment of APS [42–45]. Treatment with 
ivIg inhibited the thrombogenic effects of 
aPL in vivo and reduced circulating levels 
of anticardiolipin antibodies via an FcγR-
independent mechanism [46]. Several studies 
have also demonstrated the therapeutic 
efficacy of ivIg in the majority of APS 
patients with recurrent abortions [42,43]. 
However, the efficacy of ivIg therapy was 
inferior to that of low-molecular-weight 
heparin plus low-dose aspirin therapy, which 
resulted in a higher live birth rate than ivIg 
in the treatment of APS in women with 
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recurrent abortion [43,47]. Therefore, instead 
of using ivIg therapy alone, combination of 
ivIg with aspirin and/or heparin might be 
beneficial to APS women with recurrent 
abortion; this strategy requires further 
clinical investigation. In addition, ivIg has 
been found to be beneficial in aPL-positive 
patients undergoing in vitro fertilization [48].

Results from experimental models have 
indicated that anti-idiotypic activity of ivIg 
against pathogenic aPL is the most important 
mechanism of action of ivIg in the treatment 
of APS. Anti-β2-glycoprotein-I anti-idiotypic 
antibodies that were contained in ivIg 
preparations inhibited human trophoblast cell 
invasion in vitro and significantly improved 
the pregnancy outcome in experimental 
BALB/c mice with APS [49]. In addition, in 
another experimental APS murine model, 
ivIg induced oral tolerance mediated by 
transforming growth factor-β (TGF-β) and 
IL-10-secreting CD8α+ cells [50]. 

Systemic sclerosis
Systemic sclerosis (SSc) is a heterogeneous, 
systemic ailment that affects the connective 
tissues of the skin, internal organs, and the 
vascular walls. The disease is characterized by 
microvasculature modifications, vast deposits 
of collagen and other matrix substances in the 
connective tissue, and a perturbed immune 
system [51]. Several open-label and case studies 
have indicated benefits of ivIg therapy in SSc 
[52–54]. Treatment with ivIg 2 g/kg body 
weight for 4 days per month for 6 consecutive 
months reduced joint pain and tenderness, 
with significant recovery of joint function in 
SSc patients with severe and refractory joint 
involvement [52]. In addition, ivIg has been 
found to modulate cutaneous involvement in 
SSc patients and to reduce the degree of skin 
fibrosis [53,55]. Randomized clinical trials are 
required to confirm these observations. 

Other rheumatic conditions 
Patients with several other rheumatic diseases 
such as juvenile rheumatoid arthritis, stiff-
person syndrome, and Sjogren’s syndrome 
might benefit from ivIg therapy [2,56–58], but 
sufficient data and controlled trials are lacking. 

Mechanisms of action of ivIg
The mechanisms of action of ivIg are 
multiple and may differ between diseases 
and even between subgroups of patients 
within a similar disease spectrum. Each 
mechanism presented in Figure 2 may be 
involved, to a certain extent, in the beneficial 
effects of ivIg in different diseases. Some 
mechanisms depend on the interaction 
between the Fc portion of infused ivIg 
antibodies and the FcγRs on target cells. 
Others may rely on the variable regions 
of antibodies in ivIg preparations. The 
distinction between Fc-dependent and 
variable-region-dependent mechanisms is, 
however, artificial, as several effects of ivIg 
are amplified or, indeed, made possible by 
the binding of Fc to cells targeted by variable 
regions. In addition, the integrity of the IgG 
molecule is important to the stability and to 
the half-life of infused ivIg in vivo [1–4].

Adverse reactions to ivIg 
Generally, ivIg is a safe therapeutic 
preparation with minimal side-effects. Mild 
side-effects such as headache, nausea, low-
grade fever, and increased blood pressure 
are common, but can be relieved with pre-
treatment medications or by temporarily 
stopping the ivIg infusion [59]. However, 
patients with IgA deficiency should be 
treated with caution, as contaminant IgA 
molecules in ivIg may cause anaphylactic 
reactions. Such patients should be treated 
with IgA-depleted ivIg preparations. The 
high sugar content in ivIg preparations, 
which is used as a stabilizing agent, may 
worsen pre-existing kidney diseases. 
However, several new-generation ivIg 
preparations lack sugar and are hence safe 
for use in such settings [60]. ivIg may also 
cause aseptic meningitis in some patients, 
possibly owing to antibodies that mimic 
ANCAs and activate neutrophils in a TNF-α-
dependent manner [61].

Variations in ivIg preparation methods, 
the purity of IgG content and contaminant 
molecules (such as traces of IgA, IgM, 
TGF-β, CD4, and CD8 molecules), the 
stabilizing agents (d-sorbitol, l-proline, 
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sucrose, glycine, glucose, and poly[ethylene 
glycol]), the route and rate of administration, 
and the osmolarity of the various 
preparations are the major parameters 
that influence the therapeutic efficacy and 
adverse reactions in patients following ivIg 
infusion [60]. Therefore, caution should be 
exercised before generalizing any events in 
patients who are treated with ivIg.

Perspectives
ivIg is effective in the treatment of several 
rheumatic diseases, but the appropriate 
window for treatment, the dosage, and the 
duration, especially as first-line therapy, are 
not fully established for many disorders. 
Further controlled studies of ivIg, combined 
with dose-finding and quality-of-life 
assessments are warranted to improve the 

Figure 2. A schematic representation of the proposed mechanisms of action of ivIg in rheumatic 
diseases. The mechanisms that underlie the beneficial effect of ivIg involve its direct interaction 
with various cellular and soluble components of the immune system. ivIg stimulates the expression 
of FcγRIIB on a subset of macrophages, while blocking the expression of FcγRIIA. ivIg also modulates 
cytokine secretion, blocks the Fc receptors, and inhibits the activation of macrophages (A) and DCs (B).
In addition to the inhibition of activation and production of pro-inflammatory cytokines by T cells (C), 
ivIg downregulates DC-mediated T-cell proliferation. At the B-cell level (D), ivIg modulates the antibody 
synthesis and B-cell repertoire, inhibits B-cell proliferation, and induces B-cell apoptosis. In endothelial 
cells (E), ivIg blocks the proinflammatory cytokines, chemokines, and adhesion molecules. Other 
mechanisms of ivIg include interference with complement activation (F); neutralization of superantigens 
(G), pathogenic autoantibodies (H), and cytokines (I); sequestration of self-antigens (J); induction of 
ADCC (K); and shifting the balance between T-helper cell subsets (L). The area encompassed by ECs 
represents the vascular lumen. Adhesion molecules on ECs are depicted. ivIg is depicted in the form of 
antibody structures with different colors to highlight the fact that it is a polyclonal IgG obtained from 
pools of plasma from a large number of healthy blood donors.  

ADCC: antibody-dependent cell-mediated cytotoxicity; B: B cell; DC: dendritic cell; EC: endothelial cell; FcγR: Fcγ receptor; 
IgG: immunoglobulin G; ivIg: intravenous Ig; NK: natural killer cell; T: T cell.

The figure is redrawn from [3], with permission from Nature Publishing Group.

Available in color at www.currentmedicalliterature.com.
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evidence base for clinical practice. The 
pharmacoeconomics of ivIg therapy are not 
well known for the majority of diseases, 
but this knowledge is critical as ivIg is a 
relatively expensive therapy. A study of 
Guillain–Barré syndrome has shown that the 
cost of ivIg therapy is comparable with that 
of plasma exchange therapy (approximately 
US$10 000 or a7800 for each patient without 
complications), but ivIg was associated with 
statistically significant cost reductions 
owing to shortened hospital stays, lower costs 
of procedures and hospitalization, fewer 
complications, and fewer patients using 
assisted ventilators compared with plasma 
exchange therapy [62]. Therefore, a systematic 
study of the pharmacoeconomics of ivIg 
therapy in diverse rheumatic diseases may 
help to decide whether to use ivIg for these 
conditions, and may help to find a solution for 
the problem of ivIg preparation shortage [63]. 
In addition, when considering the efficacy of 
ivIg therapy, the variability of patients and 
their past histories (i.e. previous therapies 
and whether the immune system has been 
altered by these previous therapies) also need 
to be considered. These factors are crucial, as 
ivIg is given in most of these patients as a last 
therapeutic resort rather than as a primary 
therapeutic agent. 
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Abstract An altered immune homeostasis as a result of
deficiency or defective function of CD4+CD25+FoxP3+

regulatory T cells (Tregs) is common in several autoim-
mune diseases. Hence, therapeutic strategies to render Tregs
functionally competent are being investigated. Intravenous
immunoglobulin (IVIG) is being increasingly used for the
treatment of a wide range of autoimmune and inflammatory
diseases. Recent studies have demonstrated that IVIG
induces the expansion of Tregs and enhances their
suppressive functions. These effects of IVIG on Tregs
correlate with the beneficial effects of IVIG in patients with
autoimmune diseases. Thus, modulation of Tregs by IVIG
represents a novel mode of action that explains the
therapeutic effects of IVIG in T cell-mediated autoimmune
diseases. However, the molecular mechanisms involved in
IVIG-mediated modulation of Tregs are unclear and need
further investigation.

Keywords IVIG . intravenous immunoglobulin . regulatory
T cells . autoimmune diseases . inflammation .

immunomodulation

Introduction

Intravenous immunoglobulin (IVIG) is an established
therapeutic for a wide range of autoimmune and immune-
mediated inflammatory diseases [1, 2]. IVIG is a poly-
specific immunoglobulin preparation obtained from pooled
plasma of several thousand healthy donors [3, 4]. The
beneficial effects of IVIG are attributed to multiple,
mutually nonexclusive mechanisms that include modulation
of Fc receptor expression and function, interference with
activation of complement and the cytokine network,
regulation of cell growth, and the effects on the activation
and effector functions of dendritic cells, macrophages,
natural killer (NK) cells, and T and B cells [1, 4].

Interestingly, recent reports have demonstrated a prom-
inent role of CD4+CD25+ regulatory T cells (Tregs) in
IVIG-mediated beneficial effects in autoimmune diseases
[5]. Tregs play a critical role in the maintenance of
immunological unresponsiveness to self-antigens and in
the prevention of immune aggression and autoimmune
diseases [6, 7]. Thus, the expansion of Tregs with an
enhanced suppressive function represents a novel therapeu-
tic approach in the treatment of autoimmune pathologies
[8]. Recent studies have demonstrated that IVIG induces
the expansion of Tregs and enhances their suppressive
functions. Interestingly, these effects also correlate with the
beneficial effects of IVIG in patients with autoimmune
diseases. Thus, modulation of Tregs by IVIG represents a
novel mode of action that explains the therapeutic effects of
IVIG in T cell-mediated autoimmune diseases.
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Phenotypic and Functional Features of Tregs

Tregs constitute a key player in the maintenance of self-
tolerance in the peripheral tissues and in the prevention of
deleterious immune responses. Recent evidence from
experimental and clinical studies have clearly demonstrated
that the deficiency of Tregs due to either genetic con-
sequences or deliberate depletion results in exaggerated
immune responses that lead to autoimmune diseases and
inflammation [7].

Tregs are identified as either natural Tregs (nTregs) that
emerge from the thymus or adaptive or induced Tregs
(iTregs) that develop in the periphery from naïve CD4+ T
cells [8]. Tregs express characteristic markers such as CD25
(IL-2Rα), cytotoxic lymphocyte antigen 4 (CTLA-4),
glucocorticoid-induced tumor necrosis receptor (GITR),
chemokine receptor 4 (CCR4), lymph node homing
receptor (CD62L), and forkhead box protein (FoxP3), the
lineage-specific transcription factor [9]. Continuous expres-
sion of FoxP3 is critical for the suppressive function of
Tregs. Interestingly, nTregs and iTregs share similar
phenotypic markers, although iTregs are functionally
unstable and distinct from nTregs. nTregs display a diverse
T-cell receptor (TCR) specific for self-antigens. However,
IL-2 and transforming growth factor-β (TGF-β) are
required for the maintenance, survival and functioning of
both nTregs and iTregs [10].

The cellular targets of Treg-mediated suppressor func-
tions include CD4+, CD8+ T cells, dendritic cells (DCs), B
cells, macrophages, monocytes, mast cells, natural killer
(NK) cells, and NKT cells [9, 11]. Several mutually
nonexclusive mechanisms have been proposed to explain
the Treg suppressive function on these cells, which are
mediated by both soluble factors and cell-associated
molecules [7]. Although Tregs are antigen-specific, they
can suppress responder T cells upon activation, irrespec-
tive of their antigen specificity [8]. Tregs can directly
suppress responder T cells by secreting suppressor
cytokines (TGF-β, IL-10, and IL-35), by depriving IL-2,
and by causing granzyme- and perforin-mediated cytolysis
leading to cell cycle arrest and apoptosis [6, 7, 9].
Furthermore, Treg-induced intracellular cyclic adenosine
monophosphate (AMP) by CD39 and CD73 leads to
inhibition of T cell proliferation and IL-2 production [9].
Tregs also inhibit the interaction of effector T cells with
DCs, thereby interfering with T cell activation [12]. Thus,
Tregs suppress the proliferation of naïve T cells and their
differentiation from effector cells. In addition, the devel-
opment of Tregs from naïve T cells is linked to Th17
differentiation. Under a steady state, Tregs can block the
development of Th17 cells, which is mediated by
inhibition of RORC expression by FoxP3 in a STAT3-
dependent manner [13].

Treg interaction with DCs mediated by CTLA-4, LAG-
3, and suppressor cytokines has been shown to down-
regulate the expression of co-stimulatory molecules CD80
(B7-1), CD86 (B7-2), and CD40 and the MHC–peptide
complexes while upregulating the inhibitory B7-H3
molecules that lead to an impaired T cell stimulatory
function of DCs [14–16]. Treg-modulated DCs also
produce significantly lower levels of inflammatory cyto-
kines IL-12, IL-1β, IL-6, and IL-8 and higher amounts of
anti-inflammatory cytokine IL-10. Furthermore, CTLA-4-
induced indoleamine 2,3-dioxygenase in DCs converts
tryptophan into kynurenines, which act as potent immu-
nosuppressive metabolites and can also induce de novo
generation of Tregs. By a granzyme/perforin pathway,
Tregs exert CD18/CD54 interaction-dependent cytotoxic-
ity against both immature and mature DCs. Treg-
expressed CD39 degrades adenosine triphosphate (ATP)
to AMP and blocks the ATP-mediated activation of DCs
[6, 7, 9, 11]. In addition, Tregs modulate the cross-talk
between DCs and NK cells by controlling the mature NK
cell number in the lymphoid organs [11].

In line with DCs, Tregs exert direct suppressive effects
on monocytes and macrophages by downregulating the
expression of MHC class II, CD40, CD80, and CD86 and
the secretion of inflammatory cytokines (IL-1β, IL-6, IL-8,
tumor necrosis factor [TNF], and macrophage inflammatory
protein 1α [MIP-1α]), while favoring high expression of
B7-H4 and anti-inflammatory cytokine IL-10. Thus, Treg-
modulated monocytes and macrophages are poor stimula-
tors of T cells. Tregs also enhance Fas/FasL-mediated
apoptosis of lipopolysaccharide-treated monocytes [11].

Tregs also modulate the functions of B cells in several
ways. Tregs reduce autoantibody production, inhibit T cell-
dependent B cell responses by cell surface TGF-β1, and
induce apoptosis of antigen-specific B cells via perforin and
granyzymes.

Despite an established role for Tregs in the maintenance
of self-tolerance and prevention of immune-mediated
pathologies, Tregs fail to control persistent and chronic
inflammation. Therefore, therapeutic strategies aimed at
expanding Tregs and rendering them functionally compe-
tent are being explored [11]. In this context, IVIG is
considered to be a promising therapeutic that can induce
functionally competent Tregs in autoimmune and inflam-
matory conditions.

Modulation of Tregs by IVIG: a Novel Mechanism
of Action

The established therapeutic efficacy of IVIG in T cell-
mediated diseases such as Guillain–Barré syndrome, chronic
inflammatory demyelinating polyneuropathy, and relapsing–
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remitting multiple sclerosis (MS) was supported by recent
findings of the expansion and enhanced suppressive function
of human and murine Tregs following IVIG treatment. Thus,
immunomodulation by IVIG through Tregs represents a
novel mechanism of action.

Expansion of Tregs by IVIG

Using murine experimental autoimmune encephalomyelitis
(EAE), an accepted model for MS, we have demonstrated
the critical involvement of Tregs in IVIG-mediated protec-
tion against this disease. Interestingly, IVIG-induced protec-
tion was associated with an early and sustained peripheral
expansion of antigen-specific CD4+CD25+FoxP3+ Tregs in
spleen and lymph nodes. Furthermore, depletion of Tregs
using monoclonal antibody PC61 (anti-CD25) prior to EAE
induction and treatment abolished the protective effects of
IVIG [17]. Thus, it can be concluded that the beneficial
effect of IVIG in relapsing–remitting MS might be related to
the reestablishment of the Treg compartment.

The mechanism of IVIG-mediated enhancement of Treg
numbers in lymphoid organs was investigated by employ-
ing adoptive transfer of TCR transgenic T cells specific for
influenza hemagglutinin. We found that an increase in Treg
numbers in the spleen following IVIG treatment was due to
an expansion of the existing Treg population rather than
their de novo generation [17]. Furthermore, in wild-type
mice protected from EAE, IVIG did not enhance the
secretion of TGF-β, a cytokine that favors the differentia-
tion of CD4+ T cells into iTregs.

Analogous to our in vivo results, De Groot and
colleagues [18] demonstrated the expansion of iTregs in
human peripheral blood mononuclear cells (PBMCs) by
Treg-activating regions (referred to as Tregitopes) derived
from the Fc portion of IgG molecules. Thus, co-incubation
of PBMCs with antigens and Tregitopes enhanced the
expression of cell surface markers such as CD25high,
CTLA-4, and GITR. Furthermore, they supported their
observation with in vivo studies by showing that the
administration of the murine homologue of the Fc region
Tregitope resulted in the suppression of an immune
response to a known immunogen. The authors hypothesized
that the tolerizing effects of IVIG is related to Tregitope-
mediated activation of Tregs [18].

In consensus with the experimental evidence, IVIG
therapy enhanced the number of peripheral Tregs in patients
with acute-stage Guillain–Barré syndrome and Kawasaki
disease. The increased Treg numbers from IVIG was also
correlated with an improvement of clinical parameters and
symptoms [19, 20]. Similarly, following IVIG therapy in
patients with systemic lupus erythematosus, an increase in
CD4+CD25+CD45RO+ T cell frequency was observed with
progressive clinical improvement [21].

Enhancement of the Suppressive Function of Tregs
by IVIG

Accumulating evidence from recent in vivo and in vitro
studies clearly support the significance of enhanced
suppressive function of Tregs in the therapeutic benefits
of IVIG. In an EAE model, we demonstrated that adoptive
transfer of Tregs from IVIG-treated mice to naïve mice
followed by immunization with myelin oligodendrocyte
protein (MOG) resulted in milder EAE compared with
Tregs from untreated mice. Furthermore, Tregs from IVIG-
treated mice were more efficient in suppressing the in vitro
proliferation of TCR-stimulated CD4+FoxP3− T cells
compared with Tregs from untreated mice. In addition,
IVIG-modulated Tregs efficiently prevented CNS damage
in MOG-immunized mice by restricting encephalitogenic T
cell infiltration and reducing the IFN-γ secretion. Thus,
IVIG-expanded Tregs inhibit effector T cell development in
the peripheral lymphoid organs, instead of targeting their
function in the intended organ [17].

Analogous to the in vivo experimental model, IVIG
treatment also enhances the suppressive function of human
Tregs. Kessel and colleagues [22] demonstrated an increase
in the expression of TGF-β, IL-10, and FoxP3 in
CD4+CD25highTregs following IVIG exposure. Further-
more, IVIG-modulated Tregs efficiently decreased the
TNF-α production by CD4+CD25− effector T cells [22].
Similarly, an activation of nTregs with a twofold increase in
FoxP3 expression was observed following in vitro culture
of PBMCs in the presence of Tregitopes derived from IgG
[18]. Interestingly, Tregitope-induced Tregs significantly
reduced the IL-5 production and converted Th2 cells to
iTregs in the cultures of PBMCs obtained from donors
allergic to birch pollen [18]. Thus, IVIG-expanded Tregs
are functionally efficient in controlling the exaggerated
immune responses.

Mechanisms of Modulation of Tregs by IVIG

The possible mechanisms involved in the IVIG-mediated
modulation of Treg functions are depicted in Fig. 1. IVIG
has been demonstrated to interact directly with the
CD4+CD25+Tregs and conventional CD4+CD25−T cell
surface molecules in mice. However, binding of IVIG to
Tregs was higher than conventional T cells. Interestingly,
IVIG enhanced the proliferation of murine Tregs in vitro
without inducing TGF-β and IL-10 [17]. Furthermore,
IVIG contains natural autoantibodies reactive to self
molecules and might influence the Treg activation and
expansion via direct interaction of natural autoantibodies
with cell surface molecules such as CD4, CD5, CD95,
TCR, and MHC [1]. However, in view of the multiple
factors that influence Treg development and function, and
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the diverse targets of IVIG, involvement of other cellular
compartment and their cytokines in the modulation of Tregs
by IVIG cannot be excluded [1, 8]. Accordingly, De Groot
and colleagues [18] proposed a model where IgG-derived
Tregitopes presented on MHC II+ Ag-presenting cells
activate Tregs, leading to downregulation of effector cell
activation and function via regulatory cytokine or contact-
dependent signalling, or both. However, the model failed to
explain the antigen dependence for activation/expansion of
antigen-specific Tregs.

IVIG interacts with different innate immune cells like
macrophages, DCs, NK cells, monocytes, and neutrophils
to inhibit the production of proinflammatory cytokines (IL-
1β, IL-6, IL-12, TNF-α), while favoring anti-inflammatory
cytokines (IL-1RA, TGF-β, IL-10) [5]. IVIG may also
contain anti-inflammatory cytokines like TGF-β, which can

favor Treg induction. In addition, IVIG also contains
neutralizing antibodies to several inflammatory cytokines
[1]. Recently, monoclonal antibodies to inflammatory
cytokines such as TNF-α and IL-15 have been successfully
used in the treatment of several autoimmune diseases. Such
therapy was associated with the induction of Tregs and the
restoration of its functions [23]. Therefore, by modulating
the inflammatory environment, IVIG may facilitate the
expansion and enhanced functioning of Tregs.

The distinction between effects on nTregs versus iTregs (in
humans, CD4+CD25high cells are a mixture of both) and
between the expansion of pre-existing FoxP3+ cells versus
their de novo conversion from conventional T cells is not
always clear due to limitations of the experimental setup and
the complexities of the human system. It is speculated that
the interaction of IVIG with iTregs is also important in

Fig. 1 The proposed mechanisms involved in the modulation of
CD4+CD25+FoxP3+ regulatory T cells (Tregs) by IVIG. Exposure of
Tregs to IVIG leads to expansion and enhanced suppressive function
(a). These IVIG-modulated Tregs exhibit an increased expression of
FoxP3, TGF-β, and IL-10, which are the mediators of suppressive
functions of Tregs (b). IVIG-modulated Tregs are efficient inhibitors
of conventional T cell (Tconv) activation, proliferation, and cytokine
secretion (c). These effects of IVIG on Tregs might be mediated by

direct interaction of self-reactive natural autoantibodies with T cell
surface molecules (d). In addition, IVIG-mediated modulation of
cytokine network as a result of altered cytokine production from
antigen-presenting cells (APC) (e) and neutralization of inflammatory
cytokines (f) can create a microenvironment favorable for Treg
expansion that also enhances their suppressive function. Finally, the
conserved T cell epitopes derived from the Fc region (Tregitopes) can
induce and activate Tregs (g)
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humans in view of their potential role in regulating the
pathogenesis of autoimmune diseases [24]. In the EAE
model, F(ab)2 and Fc preparations of IVIG did not differ in
their protective effect and Treg induction [17]. In contrast,
De Groot and colleagues [18] implicated Fc-derived Tregi-
topes in the activation and expansion of Tregs. Thus, the
mechanisms underlying the IVIG-mediated modulation of
Tregs might implicate multiple mechanisms depending on
the pathology.

Conclusion

Tregs play an indispensable role in the maintenance of
immune homeostasis and in the prevention of an autoim-
mune disease. Hence, the deficiency of Tregs or their
functions lead to deleterious immune aggression that results
in autoimmune and inflammatory diseases. IVIG, a widely
used therapeutic preparation in several immune-mediated
diseases, exerts immunomodulatory effects by targeting
various soluble and cellular compartments of the immune
system. Emerging research evidence has revealed the role
of modulation of Tregs in the therapeutic effects of IVIG
and represents a novel mechanism of action in T cell-
mediated diseases. In view of rational therapeutic strategies
that aim to enhance or restore Treg functions in the
treatment of autoimmune diseases, IVIG proves to be a
promising tool. However, despite the demonstration of
expansion and enhanced suppressive functions of Tregs by
IVIG, the underlying mechanisms are unclear. Thus,
deciphering the active components of IVIG that mediate
the interaction between Tregs and the molecular events
involved is a priority in understanding the mechanisms of
action of IVIG.

Acknowledgments This research was supported by grants from
the Institut National de la Santé et de la Recherche Médicale
(INSERM), Centre National de la Recherche Scientifique (CNRS),
Université Paris Descartes-Paris 5, Université Pierre et Marie
Curie-Paris 6; talents research grant and eSPIN (European
Scientific Progress—Immunoglobulins in Neurology) Award 2009
from Talecris Biotherapeutics.

References

1. Kazatchkine MD, Kaveri SV. Immunomodulation of autoimmune
and inflammatory diseases with intravenous immune globulin. N
Engl J Med. 2001;345:747–55.

2. Nimmerjahn F, Ravetch JV. Anti-inflammatory actions of intra-
venous immunoglobulin. Annu Rev Immunol. 2008;26:513–33.

3. Gold R, Stangel M, Dalakas MC. Drug insight: the use of
intravenous immunoglobulin in neurology—therapeutic consider-
ations and practical issues. Nat Clin Pract Neurol. 2007;3:36–44.

4. Bayry J, Lacroix-Desmazes S, Kazatchkine MD, Kaveri SV.
Monoclonal antibody and intravenous immunoglobulin therapy
for rheumatic diseases: rationale and mechanisms of action. Nat
Clin Pract Rheumatol. 2007;3:262–72.

5. Tha-In T, Bayry J, Metselaar HJ, Kaveri SV, Kwekkeboom J.
Modulation of the cellular immune system by intravenous
immunoglobulin. Trends Immunol. 2008;29:608–15.

6. Miyara M, Sakaguchi S. Natural regulatory T cells: mechanisms
of suppression. Trends Mol Med. 2007;13:108–16.

7. Tang Q, Bluestone JA. The Foxp3+ regulatory T cell: a jack of all
trades, master of regulation. Nat Immunol. 2008;9:239–44.

8. Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells
and immune tolerance. Cell. 2008;133:775–87.

9. Shevach EM. Mechanisms of foxp3+ T regulatory cell-mediated
suppression. Immunity. 2009;30:636–45.

10. Horwitz DA, Zheng SG, Gray JD. Natural and TGF-beta-induced
Foxp3(+)CD4(+) CD25(+) regulatory T cells are not mirror
images of each other. Trends Immunol. 2008;29:429–35.

11. Andre S, Tough DF, Lacroix-Desmazes S, Kaveri SV, Bayry J.
Surveillance of antigen-presenting cells by CD4+ CD25+ regula-
tory T cells in autoimmunity: immunopathogenesis and therapeu-
tic implications. Am J Pathol. 2009;174:1575–87.

12. Onishi Y, Fehervari Z, Yamaguchi T, Sakaguchi S. Foxp3+ natural
regulatory T cells preferentially form aggregates on dendritic cells
in vitro and actively inhibit their maturation. Proc Natl Acad Sci
USA. 2008;105:10113–8.

13. Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, et al.
Reciprocal developmental pathways for the generation of patho-
genic effector TH17 and regulatory T cells. Nature. 2006;441:
235–8.

14. Friedline RH, Brown DS, Nguyen H, Kornfeld H, Lee J, Zhang Y,
et al. CD4+ regulatory T cells require CTLA-4 for the mainte-
nance of systemic tolerance. J Exp Med. 2009;206:421–34.

15. Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T, Miyara M,
Fehervari Z, et al. CTLA-4 control over Foxp3+ regulatory T cell
function. Science. 2008;322:271–5.

16. Bayry J. Autoimmunity: CTLA-4: a key protein in autoimmunity.
Nat Rev Rheumatol. 2009;5:244–5.

17. Ephrem A, Chamat S, Miquel C, Fisson S, Mouthon L, Caligiuri G,
et al. Expansion of CD4+CD25+ regulatory T cells by intravenous
immunoglobulin: a critical factor in controlling experimental
autoimmune encephalomyelitis. Blood. 2008;111:715–22.

18. De Groot AS, Moise L, McMurry JA, Wambre E, Van Overtvelt
L, Moingeon P, et al. Activation of natural regulatory T cells by
IgG Fc-derived peptide “Tregitopes”. Blood. 2008;112:3303–11.

19. Furuno K, Yuge T, Kusuhara K, Takada H, Nishio H, Khajoee V,
et al. CD25+CD4+ regulatory T cells in patients with Kawasaki
disease. J Pediatr. 2004;145:385–90.

20. Chi LJ, Wang HB, Zhang Y, Wang WZ. Abnormality of
circulating CD4(+)CD25(+) regulatory T cell in patients with
Guillain-Barre syndrome. J Neuroimmunol. 2007;192:206–14.

21. Barreto M, Ferreira RC, Lourenço L, Moraes-Fontes MF, Santos
E, Alves M, et al. Low frequency of CD4+CD25+ Treg in SLE
patients: a heritable trait associated with CTLA4 and TGFbeta
gene variants. BMC Immunol. 2009;10:5.

22. Kessel A, Ammuri H, Peri R, Pavlotzky ER, Blank M, Shoenfeld
Y, et al. Intravenous immunoglobulin therapy affects T regulatory
cells by increasing their suppressive function. J Immunol.
2007;179:5571–5.

23. Bayry J, Siberil S, Triebel F, Tough DF, Kaveri SV. Rescuing
CD4+CD25+ regulatory T-cell functions in rheumatoid arthritis
by cytokine-targeted monoclonal antibody therapy. Drug Discov
Today. 2007;12:548–52.

24. Caspi RR. Tregitopes switch on Tregs. Blood. 2008;112:3003–4.

S8 J Clin Immunol (2010) 30 (Suppl 1):S4–S8


	Thesis Shiva Version 5 .pdf
	Annexes II CMLIVIg for rheumatic diseases 
	Annexes III Immunomodulation by Intravenous Immunoglobulin JCI
	Immunomodulation by Intravenous Immunoglobulin: Role of Regulatory T Cells
	Abstract
	Introduction
	Phenotypic and Functional Features of Tregs
	Modulation of Tregs by IVIG: a Novel Mechanism of Action
	Expansion of Tregs by IVIG
	Enhancement of the Suppressive Function of Tregs by IVIG
	Mechanisms of Modulation of Tregs by IVIG

	Conclusion
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




