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Density matrix theory of transport and gain in quantum cascade lasers in a magnetic field

Ivana Savić,* Nenad Vukmirović, Zoran Ikonić, Dragan Indjin, Robert W. Kelsall, and Paul Harrison
School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom

Vitomir Milanović
Faculty of Electrical Engineering, University of Belgrade, 11120 Belgrade, Serbia

�Received 19 March 2007; revised manuscript received 12 June 2007; published 12 October 2007�

A density matrix theory of electron transport and optical gain in quantum cascade lasers in an external
magnetic field is formulated. Starting from a general quantum kinetic treatment, we describe the intraperiod
and interperiod electron dynamics at the non-Markovian, Markovian, and Boltzmann approximation levels.
Interactions of electrons with longitudinal optical phonons and classical light fields are included in the present
description. The non-Markovian calculation for a prototype structure reveals a significantly different gain
spectra in terms of linewidth and additional polaronic features in comparison to the Markovian and Boltzmann
ones. Despite strongly controversial interpretations of the origin of the transport processes in the non-
Markovian or Markovian and the Boltzmann approaches, they yield comparable values of the current densities.
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I. INTRODUCTION

The rapid experimental progress in the field of quantum
cascade lasers1 �QCLs� has initiated considerable theoretical
activity to explain the underlying physical phenomena and
improve their performance by design optimization. To date,
both semiclassical and quantum-mechanical theories of car-
rier transport in QCLs without magnetic field have been pro-
posed. Semiclassical ones are based on the assumption that
coherent processes in QCLs are negligible and electron trans-
port occurs via scattering processes only. They rely on the
Boltzmann transport equation, for the solution of which a
few approaches may be employed. The Monte Carlo method
is a stochastic approach which simulates the trajectories of a
representative ensemble of carriers.2–4 An assumption that
the carrier distribution in any particular subband can be ap-
proximated by Fermi-Dirac statistics allows the Boltzmann
equations to be replaced by simpler and less computationally
demanding rate equations.5,6 Quantum-mechanical models
enable the description of phase coherence as well as incoher-
ent scattering processes, and they have been formulated us-
ing the density-matrix or nonequilibrium Green’s function
approach.7–14 Comparison of the results obtained with the
Boltzmann and density matrix approaches in a mid-infrared
QCL performed by Iotti et al.7 showed that quantum correc-
tions to the current density are negligible. However, the
analysis of gain spectra in the nonequilibrium Green’s func-
tion description demonstrated that the negligence of coher-
ences between QCL states results in significantly broader
linewidths.12 Also, it has been argued that coherences are not
irrelevant for transport in terahertz �THz� QCLs where the
small anticrossing energies may allow for resonant
tunneling.15 Moreover, a very recent study13 gave an inter-
pretation where the current across QCLs is entirely coherent.
In addition to the studies concentrated on QCLs, there is
mounting theoretical evidence for the presence of quantum
coherence features in linear absorption spectra and nonlinear
ultrafast optical response for intersubband transitions in un-
biased quantum wells �QWs�.16–20

Furthermore, experimental interest in the QCL perfor-
mance in a magnetic field has stimulated theoretical efforts

to describe the influence of a magnetic field on the physical
processes involved. However, since this research topic
emerged recently, very few theoretical studies of QCLs in
a magnetic field, compared to the amount of those for
QCLs without magnetic field, have been reported. Most of
them were focused on the modeling of various scattering
rates �electron-longitudinal optical phonon,21–24 electron-
electron,25,26 interface roughness,27 and alloy disorder28� and
the calculation of these scattering rates between the upper
and the lower laser levels. Modeling of the active region of
QCLs, including electron-longitudinal optical �LO� phonon
and electron-longitudinal acoustic �LA� phonon scattering,
and assuming a unity injection approximation, has also been
reported.29,30 Finally, a semiclassical model of the electron
transport in a magnetic field based on the Boltzmann equa-
tion has been proposed.31 Apart from the work done on
QCLs in a magnetic field, a few theoretical investigations of
QW systems subjected to a magnetic field, based on both the
density matrix and nonequilibrium Green’s function ap-
proaches, have been reported,32 and confirmed the impor-
tance of quantum coherence effects on the ultrafast time
scales.33,34

Currently, no experimental or theoretical data on coherent
phenomena in QCLs in a magnetic field are available. Since
the energy spectra in such structures is discrete, it is reason-
able to expect that coherent effects are more significant than
for QCLs without magnetic field. The aim of this work is to
present a quantum-mechanical theory of transport and gain
properties of QCLs in an external magnetic field. For that
purpose, we derived quantum kinetics equations for QC
structures in a magnetic field, based on the density matrix
formalism, which include interaction of electrons with LO
phonons and optical field. Furthermore, we obtained the cor-
responding equations in the Markovian approximation, from
which the semiclassical Boltzmann transport equations can
be recovered. A comprehensive analysis is performed for an
example GaAs/Al0.3Ga0.7As QCL and nonequilibrium steady
state results obtained from all three approaches �quantum
kinetic, Markovian, and Boltzmann� are compared.
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II. THEORETICAL CONSIDERATIONS

A. Quantum kinetic equations

We consider electrons in the conduction band of a QCL in
a magnetic field applied in the direction perpendicular to QW
layers �z axis�. Such a magnetic field splits the in-plane con-
tinuum of quantized subbands into Landau levels �LLs�, ad-
ditionally described by Landau and spin indices.35 Within the
effective mass and envelope function approximations, and
neglecting the spin splitting, the energy of the jith LL origi-
nated from the mith state �subband�, in further considerations
denoted with a shorthand subscript i, i= �mi , ji�, reads

Ei = E�mi,ji�
= Ēmi

+ � ji +
1

2
��eB

m* , �1�

where Ēmi
is the energy of state mi, � is the reduced Planck’s

constant, e is the electron charge, B is the applied magnetic
field, and m* is the electron effective mass �taken to be equal
to 0.067 in free electron mass units�. For the magnetic vector
potential A given in the Landau gauge �A=Bxey�, the enve-
lope wave function of the ith LL takes the form

�i,k�r� = u ji
�x − f�k���mi

�z�
eiky

	Ly

, �2�

where k is the wave vector of the electron, u ji
�x− f�k�� is the

wave function of the harmonic oscillator with f�k�
=k / �eB /��, �mi

�z� is the wave function of the mith size-
quantized state, and Ly is the dimension of the structure
along the y axis.

The model Hamiltonian of the system described above
reads as follows:

Ĥ = Ĥ0 + Ĥel + Ĥep. �3�

The first term represents the Hamiltonian of noninteracting
electrons and phonons in applied electric and magnetic
fields. The second and the third term describe electron-light
and electron-LO phonon interactions, respectively. In this
first step towards formulating a density matrix theory of
QCLs in a magnetic field, we do not consider other interac-
tion mechanisms of electrons �with LA phonons, ionized im-
purities, interface defects, and other electrons�. The Hamil-
tonian of free electrons and phonons reads as follows:

Ĥ0 = 

i,k

Eiĉi,k
†

ĉi,k + 

q

Eqb̂q
†
b̂q, �4�

where Ei is the energy of the ith electron state, Eq is the

energy of the phonon of a wave vector q, and ĉi,k
† �b̂q

†� and

ĉi,k �b̂q� represent creation and annihilation operators of the
electron �phonon�, respectively. The electron-light interac-
tion in the dipole approximation is given by the following
Hamiltonian:

Ĥel = 

i,j,k,k�

eARVij
kk�ĉi,k

†
ĉ j,k�, �5�

where AR represents the magnetic vector potential of a
monochromatic light wave incident on a QW structure, given

in the Coulomb gauge, and the velocity matrix element is
found according to

Vij
kk� =� dr�i,k

* �r�v̂0� j,k��r� . �6�

The velocity operator for the nonilluminated system v̂0 may
be represented as

v̂0 =
1

m* p̂ +
eA

m* , �7�

where p̂ is the momentum operator. The Hamiltonian de-
scribing the electron-phonon interaction can be cast in the
form36,37

Ĥep = 

i,j,k,k�,q

�g
k,q,k�

ij
ĉi,k

†
b̂qĉ j,k� + g

k,q,k�

ij*
ĉ

j,k�

†
b̂q

†
ĉi,k� , �8�

with

g
k,q,k�

ij = gq� dr�i,k
* �r�eiq·r� j,k��r� , �9�

where gq represents the coupling factor. For the electron-LO
phonon interaction, the coupling factor reads

gq = − ie���LO

2V
���

−1 − �s
−1��1/21

q
, �10�

where the energy of each phonon mode is considered to be
approximately constant ���LO�, V is the volume, and �� and
�s are high-frequency and static permittivity, respectively. In
the case of QWs in a magnetic field, the phonon coupling
factor g

k,q,k�

ij may be written as

g
k,q,k�

ij = gq� dru ji

*�x − f�k��
e−iky

	Ly

�mi

* �z�ei�qxx+qyy+qzz�

�u j j
�x − f�k���

eik�y

	Ly

�mj
�z�

= gq� dy
e−i�k−qy−k��y

Ly

� dxu ji

*�x − f�k��eiqxx

�u j j
�x − f�k���� dz�mi

* �z�eiqzz�mj
�z�

= gq�k�,k−qy
H jij j

�k,k�,qx�Gmimj
�qz� , �11�

where H jij j
�k ,k� ,qx�=�dxu ji

*�x− f�k��eiqxxu j j
�x− f�k��� is the

lateral overlap integral and Gmimj
�qz�=�dz�mi

* �z�eiqzz�mj
�z� is

the form factor.
In the density matrix approach, single particle density ma-

trices like the intraband electron density matrices f i1i2,k

= ĉi1,k
† ĉi2,k� or the phonon occupation number nq= b̂q

†b̂q� rep-
resent fundamental physical quantities. Their diagonal ele-
ments determine the occupation probabilities of the states,
while the nondiagonal elements correspond to the electron
polarizations between two states, and are related to the prop-
erty of quantum-mechanical coherence �superposition�. In
this work, a thermal equilibrium of phonons is assumed,
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hence equations of motion for electron density matrices are
sufficient for the description of the system.

In the derivation of the time evolution of single particle
density matrices, one starts with the Heisenberg equation of
motion.36,37 The time evolution due to the Hamiltonian of
noninteracting electrons and phonons is given as36,37

� d

dt
f i1i2,k�

Ĥ0

=
1

i�
�Ei2

− Ei1
�f i1i2,k. �12�

The equation of motion in the case of interaction of electrons
with light polarized in the z direction reads36–38

� d

dt
f i1i2,k�

Ĥel

=
e

i�


i3

AR�Vi2i3
f i1i3,k − Vi3i1

f i3i2,k� , �13�

with the z component of the velocity matrix element

Vi1i2
=

i

�
�Ei1

− Ei2
�zi1i2

� ji1
,ji2

, �14�

where zi1i2
is the matrix element of the operator of the z

coordinate. In the present analysis we do not consider any
optical-cavity effect and look for nonequilibrium steady state
populations and polarizations when AR=0. However, the
electron-light interaction is essential for the calculation of
optical gain.

In the quantum kinetics equations for the electron-phonon
interaction, phonon-assisted matrices, given by expectation

values of three operators s
k,q,k�

i1i2 = ĉi1,k
† b̂qĉi2,k��, appear, which

correlate an initial state consisting of one electron in the
state i2 ,k� and a phonon with a wave vector q to a final
state with only one electron in the state i1 ,k.36,37 Further-
more, the temporal evolution for the phonon-assisted matri-
ces involves expectation values of four operators, and so on.
The resulting infinite hierarchy of equations needs to be trun-
cated in order to access the problem numerically. The first-
order contribution, obtained by neglecting all correlations
between electrons and phonons in the spirit of the correlation

expansion approach36,37 �s
k,q,k�

i1i2 �ĉi1,k
† ĉi2,k�b̂qxz

��k�,k�qy,0

= f i1i2,kBqxz
�k�,k�qy,0�, vanishes if a thermal equilibrium of

phonons is assumed.16 The next order in the hierarchy is
obtained by taking into account deviations of the phonon-
assisted density matrices from the first-order factorization
�s

k,q,k�

i1i2 =s
k,q,k�

i1i2 − f i1i2,kBqxz
�k�,k�qy,0. Then, the following equa-

tions for �s
k,q,k�

i1i2 are obtained:36,37

d

dt
�s

k,q,k�

i1i2 =
1

i�
�Ei2

+ ��LO − Ei1
��s

k,q,k�

i1i2 − 	�s
k,q,k�

i1i2

+
1

i�


i4,i5

g
k,q,k�

i5i4* ��n0 + 1�f i1i5,k��i4,i2
− f i4i2,k��

− n0f i4i2,k���i1,i5
− f i1i5,k�� ,

� d

dt
f i1i2,k�

Ĥep

=
1

i�



i3,k�,q

�g
k,q,k�

i2i3 �s
k,q,k�

i1i3 + g
k�,q,k
i3i2*

�s
k�,q,k
i3i1*

− g
k�,q,k
i3i1 �s

k�,q,k
i3i2 − g

k,q,k�

i1i3*
�s

k,q,k�

i2i3* � , �15�

where n0 denotes the equilibrium phonon density given by
the Bose-Einstein factor. The terms in the equation for
�s

k,q,k�

i1i2 are due to the Hamiltonian of free electrons, and of
electron-LO phonon interaction, respectively. The equations
for phonon-assisted matrices should, in principle, contain a
term which describes their time evolution due to the
electron-light interaction, here relevant only for the calcula-
tion of linear optical gain. However, the coupling of the light
field to the phonon-assisted matrices in QWs is a higher-
order effect32 and may be neglected.18,19 Its inclusion for
complex structures like QCLs in a magnetic field would re-
sult in a computationally inaccessible task.33

Insertion of higher-order terms in the equations for
phonon-assisted density matrices should be performed in a
self-consistent manner;39 however, in the system considered,
with several subbands and LLs originating from them in each
period of the cascade, this would be extremely computation-
ally involved.36,37 Conversely, discarding these effects leads
to numerical instabilities in the actual computation. There-
fore, a phenomenological damping constant 	 was intro-
duced, representing higher-order correlations,18,19 which de-
scribe collisional broadening of LLs.37 We have verified that
the convergence of our results may be achieved for suffi-
ciently large values of 	 ��	�1 meV�.

It is shown in Appendix A that, in the present description,
f i1i2,k is constant for all values of the wave vector k, and may
be expressed as f i1i2,k=
Bni1i2

, where 
B=�� /eB and ni1i2
=
k�

f i1i2,k� /LxLy. The diagonal element nii represents the
electron sheet density in the ith LL. From the derivation
given in Appendix A, the quantum kinetics equations includ-
ing all the aforementioned interactions amount to

d

dt
ni1i2

=
1

i�
�Ei2

− Ei1
�ni1i2

+
e

i�


i3

AR�Vi2i3
ni1i3

− Vi3i1
ni3i2

� +
1

i�



i3,i4,i5

�Wi2i3i4i5
�Ki1i3i4i5

+ Wi3i2i5i4

* �Ki3i1i5i4

* − Wi3i1i5i4
�Ki3i2i5i4

− Wi1i3i4i5

* �Ki2i3i4i5

* � ,

d

dt
�Ki1i2i4i5

=
1

i�
�Ei2

+ ��LO − Ei1
��Ki1i2i4i5

− 	�Ki1i2i4i5
+

1

i�
��n0 + 1�ni1i5

��i4,i2
− 
Bni4i2

� − n0ni4i2
��i1,i5

− 
Bni1i5
�� , �16�

Wi1i3i4i5
=

e2��LO

8�2 ���
−1 − �s

−1�

i3i4

�
qxy=0

� �
qz=−�

�

qxydqxydqz

1

qxy
2 + qz

2 �H ji1
ji3

�qxy���H ji5
ji4

�qxy��Gmi1
mi3

�qz�Gmi5
mi4

* �qz�� ji1
+ji4

,ji3
+ji5

,
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with the quantities �Ki1i2i4i5
associated with the phonon-

assisted matrices �sk,q,k−qy

i1i2 through

�sk,q,k−qy

i1i2 = 

i4,i5

gq
*
H ji5

ji4

* �k,k − qy,qx�Gmi5
mi4

* �qz��Ki1i2i4i5
.

�17�

The quantum-kinetic dynamics is essentially non-Markovian,
since the time evolution of the density matrix elements de-
pends on their values at earlier times, i.e., on the memory of
the system.

From discussion in Appendix A it follows that the time
evolution of electron populations and polarizations in the
Markovian approximation may take the form

d

dt
ni1i2

=
1

i�
�Ei2

− Ei1
�ni1i2

+
e

i�


i3

AR�Vi2i3
ni1i3

− Vi3i1
ni3i2

�

+ 

i3i4i5

�− �i2i3i4i5

out
ni1i5

��i4,i3
− 
Bni4i3

�

− �i1i3i4i5

out*
ni2i5

* ��i4,i3
− 
Bni4i3

* �

+ �i2i3i4i5

in
ni4i3

��i1,i5
− 
Bni1i5

�

+ �i1i3i4i5

in*
ni4i3

* ��i2,i5
− 
Bni2i5

* �� ,

�i1i3i4i5

out =
�

�
���− Ei5

+ ��LO + Ei4
�Wi1i3i4i5

�n0 + 1�

+ ��− Ei5
− ��LO + Ei4

�Wi3i1i5i4

*
n0� ,

�i1i3i4i5

in =
�

�
���− Ei5

+ ��LO + Ei4
�Wi1i3i4i5

n0

+ ��− Ei5
− ��LO + Ei4

�Wi3i1i5i4

* �n0 + 1�� . �18�

Terms �i1i3i4i5

out/in have a similar form as scattering rates in the
Boltzmann approach, and hence may be referred to as gen-
eralized out or in scattering rates. The Markovian approxi-
mation neglects the memory time of a scattering process,
which is related to energy-time uncertainty.36,37,39 Scattering
and dephasing processes are then restricted only to energy
conserving transitions between single-particle states. For dis-
crete energy spectra in QWs in a magnetic field, the
electron-LO phonon interaction is thus almost fully sup-
pressed, if broadening is not taken into account. A Lorentzian
with the full width at half-maximum �FWHM� of 2�	 should
be used to model the LL broadening in the Markovian de-
scription, where 	 is the damping parameter introduced in
the quantum kinetic description �see Ref. 36 and Appendix
A�. In the semiclassical limit, which may be obtained by
neglecting nondiagonal matrix elements,36,37 the Markovian
equations derived reduce to the Boltzmann equations given
in Ref. 31.

Due to the periodicity of the QCL structure, its energy
states are invariant upon translation per potential drop across
a period, while the wave functions are invariant upon trans-
lation per period length. Therefore, each period has an

identical set of N LLs, with identical density matrix ele-
ments �ni1i2

=n�i1+kN��i2+kN�, k=0, ±1, ±2, . . .�, and phonon-
assisted matrices ��Ki1i2i3i4

=�K�i1+kN��i2+kN��i3+kN��i4+kN��.
This also accounts for the quantities characterizing the scat-
tering processes ��i1i2i3i4

=��i1+kN��i2+kN��i3+kN��i4+kN� ,Wi1i2i3i4

=W�i1+kN��i2+kN��i3+kN��i4+kN�� and the velocity operator �Vi1i2

=V�i1+kN��i2+kN��. Since the wave functions are well localized

within their periods, the tight-binding description may be
introduced, by accounting for the interaction between the
nearest-neighboring periods only. Hence, we consider the
density matrix elements which couple LLs within one period,
as well as the elements which couple those LLs with LLs
belonging to the nearest-neighboring periods. Also, we take
into account those quantities Wi1,2i3i4i5

and �i1,2i3i4i5
with the

property that i1,2 and i3 belong to the same or adjacent peri-
ods, as well as i4 and i5, see Eq. �16�, and write Eqs. �16� and
�18� for all possible combinations of indices i1− i5 which
satisfy these conditions. After exploiting the property of shift
invariance of all the aforementioned quantities, the system of
equations in the quantum-kinetic and/or Markovian approach
may be reduced to contain only the density matrix elements
of interest. Again, the Boltzmann expressions may be recov-
ered from the Markovian ones.

In the quantum-kinetic and Markovian representations,
the number of density matrix elements to be calculated is of
the order of N2, and the number of quantities associated with
the phonon-assisted matrices �the quantum kinetics case
only� and scattering rates is of the order of N4. Obviously,
the calculation of population and polarization dynamics for
the QCLs with many energy states and LLs stemming from
them is extremely challenging. Therefore, in our analysis, we
restrict ourselves to the case of a QCL with a small number
of energy levels per period and subjected to relatively large
magnetic fields, characterized by a small number of LLs
stemming from those levels which are relevant for transport.
Here we took the 10 lowest LL indices, after checking that
this number of LLs is sufficient for the considered structure.

A stationary solution of Eqs. �16� and �18� is found by
tracking their time evolution, starting from an initial condi-
tion that all electrons are in the fundamental ground-state LL
�and hence all the polarizations and phonon-assisted matrices
are equal to zero�, and integrating in time until the steady
state is reached. This method proved to be extremely reliable
in terms of convergence for solving large systems of nonlin-
ear equations, in contrast to gradient-based methods. The in-
tegration is performed by using a Runge-Kutta method with
adaptive step size control, which considerably speeds up the
process.

Since the quantities associated with the scattering pro-
cesses Wi1i2i3i4

and �i1i2i3i4
are different from zero only if the

condition ji1
+ ji3

= ji2
+ ji4

is fulfilled, our choice of an initial
condition leads to the steady-state solution in which the po-
larizations ni1i2

are not equal to zero only if ji1
= ji2

. Although
this result may, at first, seem to be a peculiarity of the initial
condition, it can also be regarded as a solution of the reduced
description of the systems of Eqs. �16� or �18�, which in-
cludes only those density matrix elements ni1i2

with ji1
= ji2

.
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Careful examination of Eqs. �16� and �18� suggests that, if
the terms such as 
Bni4i3

, ji4
� ji3

, are much smaller than 1
�i.e., �i4i3

for i4= i3�, the terms such as ni1i5
, ji1

� ji5
do not

influence the time evolution of the elements ni1i2
, ji1

= ji2
.

Therefore, in the lowest order approximation, the analysis of
the density matrix dynamics may be limited to the terms ni1i2

,
ji1

= ji2
.

B. Current density

The current density may be estimated from the expecta-
tion value of the carrier drift velocity v̂ �Ref. 11�,

J = Ĵ� = −
e

V
v̂� . �19�

In the density matrix formalism, the drift velocity may be
calculated according to9

v̂� = 

i1,i2,k

vi1i2
f i2i1,k, �20�

where vi1i2
is the drift velocity matrix element given by

vi1i2
= i1�v̂�i2� =

i

�
�i1��Ĥ, ẑ��i2� . �21�

The drift velocity density matrix elements then read

vi1i2
=

i

�
�Ei1

− Ei2
�zi1i2

+
1

m*eAR�i1,i2
. �22�

The first term is due to the Hamiltonian of noninteracting
electrons, while the second one is due to the electron-light
interaction. Since the scattering potential of any interaction
�electron-phonon, electron-electron, etc.� depends only on
the position r̂ and not on the momentum p̂, it follows that

�Ĥep , ẑ�=0, and its contribution to the drift velocity vanishes.
Starting from Eqs. �19� and �20�, and using the assumption
that only the density matrix elements between LLs within a
period or LLs localized in that period and its nearest neigh-
bors are not zero, the current density finally may be written
in the form

J = −
e

d



i1,i2=1

N

�vi1i2
ni2i1

+ vi1�i2+N�n�i2+N�i1
+ v�i2+N�i1

ni1�i2+N�� ,

�23�

where d is the length of a period. The Boltzmann expression
for the current density may be derived from Eq. �23� by
representing the nondiagonal density matrix elements, in the
first-order approximation, in terms of the diagonal ones40

J =
e

d� 

i,f=1
�if�

N

�z f − zi��niWif�1 − 
Bn f� − n fW fi�1 − 
Bni��

+ 

i,f=1

N

�z f+N − zi��niWi�f+N��1 − 
Bn f�

− n fW�f+N�i�1 − 
Bni��� , �24�

where ni=nii represents the population of the ith LL and zi

=zii= i �z � i�.

C. Gain spectra

The gain spectra in the quantum-kinetic �non-Markovian�
description and in the Markovian approximation may be es-
timated from the linear response of nonequilibrium station-
ary populations and polarizations to a small optical perturba-
tion. The relationship between the linear variations in the
polarization due to the applied optical field �P��� and the
current density �J��� gives the following expression for the
susceptibility:11

���� =
�P���
�0E���

= −
i

�0

�J���
�E���

. �25�

The gain coefficient then may be found from39

g��� = −
�

c

Im������
n

, �26�

where n is the refractive index of the system material.
If the Fourier transform of the electric field of light is

given by

E�t� = ez� d�

2�
E���e−i�t, �27�

then the Fourier transform of the corresponding magnetic
vector potential in the Coulomb gauge is represented as

AR�t� = ez� d�

2�

E���
i�

e−i�t. �28�

The linear changes of intraperiod elements in the frequency
domain �ni1i2

���, for the quantum kinetics case, may be
written as

− i��ni1i2
��� =

Ei2
− Ei1

i�
�ni1i2

��� +
e

i�
AR���


i3

�Vi2i3
ni1i3

0

− Vi3i1
ni3i2

0 � +
1

i�



i3,i4,i5

�Wi2i3i4i5
�Ki1i3i4i5

���

+ Wi3i2i5i4

* �Ki3i1i5i4

* �− ��

− Wi3i1i5i4
�Ki3i2i5i4

���

− Wi1i3i4i5

* �Ki2i3i4i5

* �− ��� ,

�Ki1i2i3i4
��� = −

1

Ei2
+ ��LO − Ei1

− �� − i�	
„�n0 + 1�

���ni1i4
����i3,i2

− 
B�ni1i4

0 �ni3i2
���

+ ni3i2

0 �ni1i4
����� − n0��ni3i2

����i1,i4

− 
B�ni1i4

0 �ni3i2
��� + ni3i2

0 �ni1i4
�����… ,

�29�
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where ni1i2

0 represents the steady-state value of the density
matrix element between LLs i1 and i2. Similar equations
which include all possible combinations of i1− i5 as dis-
cussed in Section II A also need to be taken into account. In

the Markovian case, taking into consideration the property of
the density matrix elements that ni2i1

�t�=ni1i2

* �t�, the equa-
tions of motion of intraperiod density matrix elements trans-
form to the frequency domain according to

− i��ni1i2
��� =

Ei2
− Ei1

i�
�ni1i2

��� +
e

i�
AR���


i3

�Vi2i3
ni1i3

0 − Vi3i1
ni3i2

0 � + 

i3,i4,i5

„− �i2i3i4i5

out ��ni1i5
����i4,i3

− 
B�ni1i5

0 �ni4i3
���

+ ni4i3

0 �ni1i5
����� − �i1i3i4i5

out* ��ni5i2
����i3,i4

− 
B�ni5i2

0 �ni3i4
��� + ni3i4

0 �ni5i2
����� + �i2i3i4i5

in ��ni4i3
����i1,i5

− 
B�ni1i5

0 �ni4i3
��� + ni4i3

0 �ni1i5
����� + �i1i3i4i5

in* ��ni3i4
����i5,i2

− 
B�ni5i2

0 �ni3i4
��� + ni3i4

0 �ni5i2
�����… . �30�

Current density in the frequency domain in both the non-Markovian and Markovian descriptions may be obtained from

�J��� = −
e

d
�


i1=1

N
1

m*eAR���ni1i1

0 + 

i1,i2=1

N � i

�
�Ei1

− Ei2
�zi1i2

�ni2i1
��� +

i

�
�Ei1

− Ei2+N�zi1�i2+N��n�i2+N�i1
���

+
i

�
�Ei2+N − Ei1

�zi1�i2+N��ni1�i2+N������ . �31�

In the Boltzmann description, the gain coefficient may be written as

g��� =
�e2

n�0c��2d



i,f=1

N

ni��Ei − E f�
2 sgn�Ei − E f�zmi,mf

2 ���Ei − E f� − ��� + �Ei − E f+N�2 sgn�Ei − E f+N�zmi,mf+N

2

����Ei − E f+N� − ��� + �Ei+N − E f�
2 sgn�Ei+N − E f�zmi+N,mf

2 ���Ei+N − E f� − ���� . �32�

The � function in the gain coefficient expression is modeled
by a Lorentzian with the same FWHM as for electron-LO
phonon scattering rates.

III. NUMERICAL RESULTS AND DISCUSSION

As a prototypical system, we consider a QCL design
which comprises a three-level scheme, and employs LO-
phonon depopulation of the lower laser level to the ground
state. No injector region is present and efficient injection into
the upper laser level is enabled by its alignment with the
ground level of the preceding period. The QCL period con-
sists of two QWs �see Fig. 1�, one of which confines the
ground and lower laser levels, whose energy difference is set
to be approximately one LO phonon energy �36.9 meV�. The
upper laser level is localized in the other well. This structure
was chosen to be examined, instead of existing QCLs al-
ready investigated in the presence of a magnetic field, due to
its simplicity, and the dominant influence of the electron-LO
phonon interaction on the electron population dynamics, as
will be explained in what follows.

The conduction band profile and electronic structure of
the QCL in zero magnetic field and an electric field of
16.2 kV/cm, are given in Fig. 1. One QCL period includes a
2.8 nm Al0.3Ga0.7As barrier, followed by a 9 nm GaAs well,

a 1.4 nm Al0.3Ga0.7As barrier, and a 17.4 nm GaAs well.
States 1, 2, and 3 represent the ground, lower laser, and
upper laser levels, respectively, and states 1� and 3� represent
the ground level of the preceding period and the upper laser
level of the following period. The doping density was chosen

-40 -20 0
z [nm]

100

200

300

400

U
[m

e
V

]

F=16.2 kV/cm

(1,3’’)

2

(1’,3)

FIG. 1. A schematic diagram of the conduction band profile,
size-quantized energy levels from which Landau levels originate,
and squared wave functions for one full period and parts of adjacent
periods of the GaAs/AlGaAs QCL for zero magnetic field, and an
electric field of 16.2 kV/cm. States 1 and 1� �solid line�, 2 �dashed-
dotted line�, 3 and 3� �dashed line� denote the ground, lower laser,
and upper laser levels, respectively. State 1� belongs to the preced-
ing period, while state 3� belongs to the following period.
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to be 1011 cm−2, in order to achieve relatively high gain in
the THz range, while still having a small influence on the
effective conduction band potential and making electron-
electron processes less relevant. The temperature was set to
4 K, since QCLs in a magnetic field are usually operated at
low temperatures. The transition energy between the upper
and lower laser levels is 15.2 meV, and the energy difference
between the ground state and the upper laser level of the
following period is 2.6 meV.

Relatively strong electron-electron scattering occurs be-
tween the ground state and the upper laser level of the next
period, due to a large overlap and small energy difference.
However, the semiclassical calculation performed for a simi-
lar structure showed that the electron-LO phonon scattering
rates from the lower laser level to these levels, also relevant
for the distribution of electrons between them, are consider-
ably larger.42 Electron-electron processes between other
states are less important, due to the large energy spacing of
significantly populated LLs. Consequently, we expect that
the population dynamics are not significantly influenced by
electron-electron scattering. We make an assumption that the
same accounts for the polarization dynamics and as is usual
with quantum-mechanical models of transport in QCLs11–13

we neglect electron-electron scattering hereafter.

A. Electron populations

The populations of all LLs associated with the ground
state and the upper and lower laser levels, calculated using
the non-Markovian, Markovian, and Boltzmann model of
electron transport, as functions of magnetic field, are shown
in Fig. 2. In the calculation, we used the values of the damp-
ing parameter of �	=1 meV and �	=2 meV. Regardless of
the model used, the dependencies of the populations on the
magnetic field are generally similar. For some values of the
magnetic field �4.6 T, 9.2 T�, the energy difference between
some LLs stemming from the upper laser level and the
ground state becomes equal to one LO phonon energy, thus
the electron-LO phonon interaction between them increases
considerably. Consequently, the population of all LLs stem-
ming from the upper laser level decreases reaching its mini-
mum, while the opposite happens to the population of the

LLs stemming from the ground state. Conversely, for inter-
mediate magnetic fields �6.2 T�, the population of the upper
laser level is increased, while the ground state is depopu-
lated. The population of the lower laser level practically does
not change with magnetic field.

The populations obtained from the Markovian and Boltz-
mann description do not differ much, except in the range of
magnetic fields between 6.2 T and 8 T, see Fig. 2. In the
fully nondiagonal Markovian �and non-Markovian� approach
employed here, the coupling between populations and polar-
izations is accounted for, which results in the presence of
phase coherence in the stationary state. In other words, dur-
ing the time evolution of the system, scattering processes
from populations to polarizations create an amount of polar-
ization in steady-state conditions. These and reverse pro-
cesses �dephasing from polarizations to populations� may
have an observable impact on electron populations. More
pronounced differences between the Markovian and Boltz-
mann populations, for magnetic fields between 6.2 T and
8 T, indicate a stronger interplay between populations and
polarizations in the Markovian description and, hence, larger
values of polarizations. Indeed, Figs. 3 and 4 show that the
polarizations between all LLs stemming from any two laser
states are increased for these magnetic fields.
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FIG. 2. �Color online� The electron population over QCL states �all Landau levels� vs magnetic field. States 1, 2, and 3 represent the
ground state, the lower laser level, and the upper laser level, respectively. NS is the total sheet density of electrons per period. Solid, dashed,
and dashed-double-dotted lines represent non-Markovian �NM�, Markovian �M�, and Boltzmann �B� results, respectively. Left-hand side,
�	=1 meV. Right-hand side, �	=2 meV.
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FIG. 3. �Color online� The electron polarization between the
ground state of the preceding period and the upper laser level �all
Landau levels� vs magnetic field. NS is the total sheet density of
electrons per period. Solid, dashed, dashed-dotted, and dashed-
double-dotted lines represent non-Markovian �NM� ��	=1 meV
and �	=2 meV� and Markovian �M� results, respectively.
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The Markovian and Boltzmann calculations for different
values of the damping parameter 	 showed that the LL popu-
lations are very similar to the corresponding quantum-kinetic
results, see Fig. 2. Nevertheless, this does not mean that
there is one-to-one correspondence between these electron
transport models. The non-Markovian description accounts
for the memory of scattering and dephasing processes, which
corresponds to a quantum-mechanical energy-time uncer-
tainty. In comparison, the Markovian or Boltzmann dynam-
ics take into account only energy-conserving processes, here,
however, relaxed by the assumption that all LLs are broad-
ened. This may lead to different values of polarizations, gain,
and current although the populations are quite similar.

B. Electron polarizations

Figures 3 and 4 show the most prominent polarizations
between all LLs associated with pairs of laser states, ob-
tained from the Markovian and non-Markovian models ��	
=1 meV and �	=2 meV�, as they depend on the magnetic
field. In all cases, the polarization between the ground state
and the upper laser level of the next period, shown in Fig. 3,
is considerable ��10% �, due to the fact that these levels
actually constitute a doublet state. Although their overlap
does not change with magnetic field, their polarization does,
since the LL electronic structure and all scattering and/or

dephasing processes change as well. The polarizations be-
tween the upper laser level or the ground state of the previ-
ous period and the lower laser level are an order of magni-
tude smaller ��1% �, see Fig. 4. This rapidly decreasing
trend continues for the polarizations between other pairs of
states, due to strong electron-LO phonon dephasing.

Generally, nondiagonal contribution curves in each Mar-
kovian case are offset to smaller values compared to the
corresponding non-Markovian ones. This is caused by
smaller scattering rates from populations to polarizations in
the Markovian case, since they do not include the memory of
the interaction. The coherences in the Markovian case for
�	=1 meV have larger peaks than for �	=2 meV, while
away from the peak, their values become smaller. The effect
of smaller broadening is that the scattering rates responsible
for the formation of polarizations have larger peak and lower
valley values. The same conclusion applies to the non-
Markovian results. To illustrate this, the most influential scat-
tering rates from populations to the polarization between the
states of the doublet in the Markovian case versus magnetic
field are shown in Fig. 5. The average scattering rate from
the polarizations between LLs originating from state mi1

and
mi2

into the polarizations between LLs originating from
states mi4

and mi3
may be defined in the Markovian approach

according to
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�

. �33�

Under the condition that mi1
=mi2

, Eq. �33� gives the average
scattering rate from LLs associated with state mi1

into the
polarizations between LLs associated with states mi4

and mi3
.

Also, the condition mi1
=mi2

and mi3
=mi4

gives the average
scattering rate from LLs stemming from state mi1

into LLs
stemming from state mi3

, which is equivalent to the Boltz-
mann scattering rate.

C. Optical gain

In addition to direct transitions of electrons between two
energy states due to emission or absorption of photons �the
first equation in Eq. �29��, the non-Markovian approach also
accounts for transitions between these states involving emis-
sion or absorption of both photons and LO phonons �see the
denominator in the second equation in Eq. �29��. Since the
latter include an additional influence of LO phonons, it is
reasonable to expect that the linewidth of LO phonon-
assisted optical transitions is wider in comparison to the one
of direct optical transitions. Indeed, for photon energies ��
which correspond to resonant LO phonon-assisted optical
transitions, the gain and/or absorption linewidth is of the
order of 2�	 �see the second equation in Eq. �29��. On the
other hand, when discussing resonant direct optical transi-
tions, we should note that their dynamics are coupled with
the dynamics of LO phonon-assisted transitions. Formally,
the latter may be interpreted as some kind of scattering pro-
cesses, which do not yield energy conservation, but include
an additional �� contribution.41 Therefore, the gain line-
width of direct transitions is determined by these “scattering
processes,” whose intensity is strongly influenced by the en-
ergy spectra of the system. If resonant LO phonon-assisted
transitions do not occur for the same photon energies as di-
rect ones, all “scattering rates” are significantly smaller than
in the resonant case, and so is the linewidth. In the Markov-

ian description, only direct optical transitions are taken into
account �see Eq. �30��, whose linewidth is determined by the
energy conserving scattering processes, which are strongly
dependent on the inter-LL separation. In the Boltzmann ap-
proach, the broadening due to the interaction of electrons
with light is taken to be equal to the broadening due to the
interaction of electrons with LO phonons, consequently, the
linewidth of direct optical transitions is given with 2�	.

The gain spectra for a magnetic field of 4 T in the energy
range close to the laser transition energies and one LO pho-
non energy, are shown in Figs. 6 and 7, respectively. The
gain coefficient was calculated for the non-Markovian, Mar-
kovian, and Boltzmann dynamics ��	=1 meV and �	
=2 meV�. In the case of resonant direct optical transitions
between either the upper laser level or the ground state of the

previous period and the lower laser level ���� Ē3− Ē2 or

��� Ē1�− Ē2, respectively�, there is no additional contribu-
tion of resonant LO phonon-assisted optical transitions for
the QCL considered. In contrast, for photon energies close to
one LO phonon energy, such contributions do appear, and are
related to absorption of photons followed by emission of
phonons with no electron transitions involved or with elec-
tron transitions between energetically close states �the upper
laser level and the ground state of the previous period�. Con-
sequently, the gain linewidth for the energies corresponding
to the laser transitions is considerably smaller than for the
energies around one LO phonon energy, compare Figs. 6 and
7. However, in a real QCL device, it is likely that the inter-
action of electrons with impurities, interface defects, and
other electrons, as well as imperfect periodicity, will broaden
the LLs making the gain linewidth for laser transition ener-
gies not as narrow as the non-Markovian model predicts.

In the Markovian description, since the LO phonon reso-
nances between the lower laser level and either the ground
state or the upper laser level of the next period are present in
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FIG. 6. Optical gain vs energy
for a magnetic field of 4 T. The
energy range is in the vicinity of
the laser transition energies. Solid,
dashed, and dashed-double-dotted
lines represent non-Markovian
�NM�, Markovian �M�, and Boltz-
mann �B� results, respectively.
Left-hand side, �	=1 meV.
Right-hand side, �	=2 meV.
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the energy spectra, the corresponding resonant scattering
terms lead to large linewidths of gain features throughout the
frequency range of interest �considerably larger than the non-
Markovian linewidth for the laser transition energies and
comparable to the non-Markovian linewidth for energies
close to one LO phonon energy�. We should note that, if
there were no such LO phonon resonances in the system, the
gain linewidth in the Markovian description would be
smaller. As a consequence, we observe a significant differ-
ence between the Markovian and non-Markovian gain line-
width for the laser transition energies. A similar result for
direct optical transitions at low temperatures in quantum
wells without magnetic field has also been reported in Ref.
18.

In the Markovian limit, energy renormalizations, describ-
ing the polaron corrections to the band structure, are ignored.
However, the polaron shift is always included in the
quantum-kinetic treatment. It is more prominent for the en-
ergy transitions close to one LO phonon energy ��1 meV�,
but it is also present for the laser transition energies
��0.4 meV�.

Figure 8 illustrates the gain profile for a magnetic field of
6 T in the energy range around the laser transition energies
and one LO phonon energy, calculated from the non-
Markovian model for �	=1 meV and �	=2 meV. Compari-
son of the non-Markovian gain spectra for different values of
the damping parameter �see also Figs. 6 and 7� reveals pro-
nounced differences between both the gain linewidth and
peak values. Sensitivity of the results to the values of the
phenomenological parameter confirms the need for a self-
consistent incorporation of higher-order correlations in the
quantum-kinetic model, which would require a significant

increase in computational time. Moreover, for a magnetic
field of 6 T, apart from the two expected peaks associated
with the transitions from the lower laser level to the ground
state or the upper laser level of the subsequent period, which
are in the vicinity of one LO phonon energy, an extra peak at
��=34.3 meV appears for �	=1 meV, in comparison to
�	=2 meV, see Fig. 8. This is due to the fact that, for the
electronic structure of the QCL considered, peaks due to
resonant LO phonon-assisted optical transitions may also
emerge in that energy range. Careful inspection of Eq. �29�
reveals the presence of resonances at the energies of ��
� ± �E�3�j�−E�1,j� � +��LO= ±2.6 meV+��LO, as discussed
earlier. At first, it may appear that one of these resonances,
related to the transition between the ground state and the
upper laser level of the subsequent period, is manifested via
that additional peak in the gain and/or absorption spectra �a
so-called polaron satellite�.18 However, this is not entirely the
case here. Due to a nontrivial interplay between these reso-
nant LO phonon-assisted terms, and resonant direct optical
transitions from the lower laser level to the ground state or
the upper laser level of the following period which occur at
similar energies, �n�1,j��2,j���� or �n�3�,j��2,j���� constitute a
much larger fraction of the total gain for energies close to
��LO than �n�3�,j��1,j����. Here, the peak at ��=34.3 meV
for B=6 T and �	=1 meV is actually related to the transi-
tion between the lower laser level and the upper laser level of
the next period �the calculation showed that �n�1,j��2,j����
�n�3�,j��2,j�����, as well as the peak at ��=32.7 meV which
is also present for �	=2 meV, while the peak at ��
=36.8 meV is associated with the transition between the
lower laser level and the ground state. In fact, the previous
analysis of the terms which are resonant for the energies in
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FIG. 7. Optical gain vs energy for a magnetic field of 4 T. The energy range is in the vicinity of one longitudinal optical phonon energy.
Solid, dashed, and dashed-double-dotted lines represent non-Markovian �NM�, Markovian �M�, and Boltzmann �B� results, respectively.
Left-hand side, �	=1 meV. Right-hand side, �	=2 meV.
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the vicinity of one LO phonon energy suggests that several
peaks could emerge in the absorption spectra in that energy
range. Due to their proximity, some of them may be obscured
by other stronger peaks for different values of the damping
parameter and magnetic fields. In Fig. 7, for the value of the
damping parameter of �	=1 meV, we can see that, in addi-
tion to two well-defined peaks, four small ones also appear.

Figure 9 shows the peak gain versus magnetic field de-
pendence, for transitions from the upper laser level and the
ground level of the preceding period to the lower laser level,
obtained from the non-Markovian, Markovian, and Boltz-
mann ��	=1 meV� approach. The general trend of the non-
Markovian gain is fairly similar to the Markovian or Boltz-
mann results, although the former has larger values. The
oscillations of the gain in both types of transitions reproduce
reasonably well the oscillations of the related populations
�see Fig. 2�. It should be noted that, for most magnetic fields,
the dominant gain spectral component is not generated in the
transitions from the upper laser level, but from the ground
state of the preceding period, even at some magnetic fields
for which the upper laser level is more populated. The reason
for that is a slightly larger dipole matrix element between the
ground state of the preceding period and the lower laser
level.

D. Current

The current densities as functions of magnetic field, cal-
culated using the non-Markovian, Markovian, and Boltz-
mann description ��	=1 meV and �	=2 meV�, are shown
in Fig. 10. From Eq. �23�, used in the Markovian and non-
Markovian approach, it follows that diagonal density matrix
elements do not contribute to the total current.9,13 Therefore,
the electron transport is entirely due to nondiagonal density
matrix contributions, i.e., scattering induced phase coher-

ences between the laser states. This quantum-mechanical pic-
ture of completely coherent current is in a stark contrast with
the semiclassical picture of transport through scattering tran-
sitions. However, both descriptions give similar results, see
Fig. 10. Here, the nondiagonal density matrix element are
considerably smaller in comparison to the diagonal ones �see
Figs. 2–4�, thus the former may be approximated in terms of
the latter,13,40 giving Eq. �24� used in the calculation of the
semiclassical current, and resulting in comparable values of
the current density.

In the semiclassical interpretation, the electron transport
channel from one doublet directly to the subsequent doublet
is as important as the channel which additionally involves
the lower laser level. The scattering rates from the lower
laser level to the ground state and the upper laser level of the
next period do not exhibit pronounced oscillations with mag-
netic field since those energy transitions are close to one LO
phonon energy. Therefore, the current versus magnetic field
dependence in the semiclassical picture is mainly determined
by the scattering rates between the doublet states, shown in
Fig. 11, and their populations. In the Markovian and non-
Markovian description, the current is completely determined
by the polarizations between the QCL states, see the dia-
grams shown in Figs. 3, 4, and 10. In both approaches, the
current density curves reproduce well the main features of
the related polarization curves. Also, the discrepancies be-
tween the current densities estimated from the Markovian
and non-Markovian treatments are identical to those between
the related polarizations.

IV. CONCLUSION

We have presented a quantum kinetic description of elec-
tron dynamics and gain in QCLs subjected to a magnetic
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FIG. 9. Maximal gain vs magnetic field for transitions from the upper laser level and the ground state of the preceding period to the lower
laser level for �	=1 meV. Left-hand side, the non-Markovian �NM� results are represented by solid and dashed lines, respectively.
Right-hand side, the Markovian �M� results are represented by solid and dashed lines, respectively. The Boltzmann �B� results are repre-
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field based on the density matrix formalism. As a first step,
electron-LO phonon interaction was considered as the most
relevant scattering and/or dephasing mechanism. Nonequi-
librium stationary state populations and polarizations for an
example of the QCL structure were calculated using various
kinetic models �non-Markovian, Markovian, and Boltz-
mann�. We showed that steady-state populations in all of
these models are similar for a range of magnetic fields, and
then we compared other relevant quantities �polarizations,

gain, current�. In both the Markovian and non-Markovian
approach, coherent polarizations induced by electron-LO
phonon interaction were found to be relatively small. This in
turn led to similar values of the entirely coherent current in
the Markovian and non-Markovian picture compared to the
values of the entirely incoherent current in the Boltzmann
interpretation. Gain spectra in the non-Markovian treatment
showed considerably narrow linewidths for laser transitions
and evidence of polaron formation, in contrast to the Mar-
kovian and Boltzmann predictions.
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APPENDIX A

This appendix presents a detailed derivation of the quan-
tum kinetic equations for electron populations and polariza-
tions in QWs under an applied magnetic field. The procedure
for obtaining appropriate expressions in the Markovian ap-
proximation is also given.

Equations �11� and �15� represent a starting point for the
derivation of the quantum kinetic equations of motion, giv-
ing the following expressions

d

dt
�sk,q,k−qy

i1i2 =
1

i�
�Ei2

+ ��LO − Ei1
��sk,q,k−qy

i1i2 − 	�sk,q,k−qy

i1i2 +
1

i�


i4,i5

gq
*
H ji5

ji4

* �k,k − qy,qx�

� Gmi5
mi4

* �qz���n0 + 1�f i1i5,k��i4,i2
− f i4i2,k−qy

� − n0f i4i2,k−qy
��i1,i5

− f i1i5,k�� ,

� d

dt
f i1i2,k�

Ĥep

=
1
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i3,q

�gqH ji2
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*
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mi3

* �qz��sk,q,k−qy

i2i3* � . �A1�

The assumption of an initially uncorrelated system �limt→−� �sk,q,k−qy

i1i2 �t�=0� gives
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i1i2i4i5 , �A2�

where the quantities �Kk,q,k−qy

i1i2i4i5 related to the phonon-assisted matrices �sk,q,k−qy

i1i2 are represented as

d

dt
�Kk,q,k−qy

i1i2i4i5 =
1

i�
�Ei2

+ ��LO − Ei1
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− f i4i2,k−qy
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��i1,i5
− f i1i5,k�� .

�A3�

Simple algebra then leads to equations for the dynamics of populations and polarizations in the form
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tween QCL states vs magnetic field, calculated in the Boltzmann
description for �	=1 meV. States 1, 2, and 3 represent the ground
state, the lower laser level, and the upper laser level, respectively.
States 1� and 3� denote the ground state of the preceding period and
the upper laser level of the following period.
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� d
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From the expression for the lateral overlap integrals derived in Appendix B �Eqs. �B7� and �B9��, the following expressions
can be shown:

H ji1
ji3

�k,k − qy,qx�H ji5
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where �=arg�qx+ iqy� and
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hold. Then, the temporal evolution of the density matrix elements read as follows:
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where the expression for a2 is similar to a1, with the exception that it contains index ji2
instead of ji1

.
Close inspection of Eqs. �A3� and �A6� shows that they represent independent identical subsystems of equations for each

wave vector k, therefore the density matrix elements f i1i2,k and the quantities associated to the phonon-assisted matrices
�Kk,q,k−qy

i1i2i4i5 do not depend on the wave vector k under the influence of electron-LO phonon interaction alone. It is obvious from
Eqs. �12� and �13� that the free electrons Hamiltonian and interaction with light do not introduce the dependence of phonon-
assisted matrices on the wave vector k as well. Furthermore, since the thermal equilibrium of phonons is assumed, phonon
populations do not depend on the wave vector q, and neither does �Kk,q,k−qy

i1i2i4i5 ��Kk,q,k−qy
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where the substitution 
B�Ki1i2i4i5
→�Ki1i2i4i5

is introduced. It follows from Eq. �A5� that if the condition ji1,2
+ ji4

= ji3
+ ji5

is
fulfilled, then ai1,2

=0. Furthermore, using the identity
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� = ei��/2�a1,22�� ji1,2
+ji4

,ji3
+ji5
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and summing over the phonon wave vector q, we finally get the expressions given by Eq. �16� in Sec. II A.
In order to perform the Markovian approximation, it is assumed that the dominant time dependence is given by the

exponential in Eq. �A2� and therefore the value of electron populations can be taken out of the integral.36,37 Also, the fast
oscillations of polarizations must be taken into account,36,37 resulting in

�sk,q,k−qy

i1i2 = − i�

i4,i5

gq
*
H ji5

ji4

* �k,k − qy,qx�Gmi5
mi4
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� ��n0 + 1�f i1i5,k��i4,i2
− f i4i2,k−qy

� − n0f i4i2,k−qy
��i1,i5

− f i1i5,k�� , �A9�

where the � function ��E� is obtained in the limit lim	→0 �	 / �����	�2+E2��.36 Consequently, for the system with the discrete
electronic spectra, a Lorentzian with FWHM of 2�	 should be effectively used instead of the � functions in the equations of
motion in the Markovian and Boltzmann descriptions. Following the identical procedure as in the derivation of the quantum
kinetic equations, we obtain the equations of motion in the Markov limit given by Eq. �18� in Sec. II A.

APPENDIX B

In this appendix we derive the expression for the lateral overlap integral H j f ji
�k f ,ki ,qx�=�u j f

* �x− f�k f��eiqxxu j f
�x− f�ki��dx,

with the harmonic oscillator wave function of the form
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H j���x − x0��e−��2/2��x − x0�2

, �B1�

where �=eB /�, x0i=ki /�2, x0f =k f /�2, and ki=k f �qy �the upper sign holds for phonon absorption and the lower one for
emission�. Inserting t=x−x0f, t0=

�qy+iqx

2�2 , and z= t− t0 into Eq. �B1�, the lateral overlap integral may be transformed into
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In order to obtain the final expression for H j f ji
�k f ,ki ,qx�, we use the following identity:
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Lm
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In the case when ji j f, by substituting c=�2, m= ji, n= j f, a=�t0±qy /�, and b=�t0, Eq. �B2� takes the form
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− 2��t0 ±
qy

�
��t0 =

qxy
2

2�2 , �t0 =
�qy + iqx

2�
=

qxy

2�
ei arg��qy+iqx� �B5�

hold, the final form of Eq. �B4� reads

H j f ji
�k f,k f � qy,qx� = �H j f ji

�qxy��e
i�qxkf/�

2�e�i�qxqy/2�2�ei arg��qy+iqx��j f−ji�, �B6�

where

�H j f ji
�qxy�� = � ji!

j f!
�1/2� qxy

2

2�2��j f−ji�/2

L ji

j f−ji� qxy
2

2�2�e−qxy
2 /4�2

. �B7�

Similarly, if ji� j f, it can be shown that

H j f ji
�k f,k f � qy,qx� = �H j f ji

�qxy��e
i�qxkf/�

2�e�i�qxqy/2�2�ei arg�±qy+iqx��ji−j f�, �B8�

with

�H j f ji
�qxy�� = � j f!

ji!
�1/2� qxy

2

2�2��ji−j f�/2

L j f

ji−j f� qxy
2

2�2�e−qxy
2 /4�2

. �B9�
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