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Abstract

In this paper, we perform a comparison of two approaches for the
parallelization of an existing, free software, FullSWOF 2D (http://www.
univ-orleans.fr/mapmo/soft/FullSWOF/ that solves shallow water equa-
tions for applications in hydrology) based on a domain decomposition
strategy. The first approach is based on the classical MPI library while
the second approach uses Parallel Algorithmic Skeletons and more pre-
cisely a library named SkelGIS (Skeletons for Geographical Information
Systems). The first results presented in this article show that the two
approaches are similar in terms of performance and scalability. The two
implementation strategies are however very different and we discuss the
advantages of each one.

1 Problematics

We are interested in overland flow simulations. For this kind of flow simulation,
several methods are used from empirical models to physically based models.
Two physical models are often used to model overland flow kinematic (KW) and
diffusive wave (DW) equations [1], [2]. But following [3], [4], [5], we choose to use
the shallow water (Saint-Venant [6]) physical model. Indeed KW and DW mod-
els may give poor results in terms of water heights and velocities in case of mixed
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subcritical and supercritical flows. Despite the computational cost, shallow wa-
ter model is mandatory. MacCormack scheme is widely used to solve shallow wa-
ter (SW) equations [3], [4], [5]. But it neither guarantees the positivity of water
depths at the wet/dry transitions, nor preserves steady states (not well-balanced
[7]) as noticed in [8]. In industrial codes (ISIS, Canoe, HEC-RAS, MIKE11, ...),
SW equations are often solved under non-conservative form [9, 10, 2] with either
Preissmann scheme or Abbott-Ionescu scheme. Thus transcritical flows and hy-
draulic jumps are not solved properly. In order to cope with all these problems,
we have developed FullSWOF 2D (Full Shallow Water equations for Overland
Flow) an object-oriented C++ code (free software and GPL-compatible license
CeCILL-V21) in the framework of the multidisciplinary project METHODE (see
[11] and http://www.univ-orleans.fr/mapmo/methode/). The source code
is available at http://www.univ-orleans.fr/mapmo/soft/FullSWOF/. This
software is based on the physical model of shallow water equations (Saint-Venant
system [6]) for the water runoff, coupled with Green-Ampt’s infiltration model
[12]. The set of shallow water equations is solved thanks to a well-balanced
finite volume method. This enables to catch and to preserve steady states such
as puddles and lake at rest. Moreover the method preserves the positivity of
the water height. Validations of FullSWOF 2D have already been performed
on analytical benchmarks (SWASHES [13]), on experimental data and on real
events at small scales (parcels [14, 11]). We now aim at simulating at bigger
scales such as watershed, river valley or at small scales with fine details. Thus
the computing time becomes bigger and the code needs to be parallelized. We
want to compare two approaches: the first one is a ”classical” approach based
on a master-slave architecture using MPI and the second one uses skeletal al-
gorithms (SkelGIS, Skeletons for Geographical Information Systems, which is
under development by Hélène Coullon, a CIFRE PhD student with Géo-Hyd
company). These approaches will be compared both in terms of performance
and scalability and the advantages of each choice will be briefly discussed.

2 Physical model

2.1 General settings

As in [4, 5], we model overland flow thanks to the 2D shallow water equations
(SW2D). Shallow water equations (or Saint-Venant system) have been proposed
by Adhémar Barré de Saint-Venant in 1871 in order to model flows in channels
[6] in one dimension in space. Nowadays, they are used to model flows in various
contexts, such as: overland flow [4, 15], rivers [16, 17], flooding [18, 19], dam
breaks [20, 21], nearshore [22, 23], tsunami [24, 25, 26]. These equations consist
in a nonlinear system of partial differential equations (PDE-s), more precisely
conservation laws describing the evolution of the height (h(t, x, y) [L]) and the
horizontal components of the vertically averaged velocity of the fluid (~u(t, x, y) =
(u(t, x, y), v(t, x, y))t [L/T]) as illustrated on figure 1-a. This complete set of

1http://www.cecill.info/index.en.html
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Figure 1: Variables of (a) 2D shallow water equations (SW2D) and (b) Green-
Ampt infiltration model.

conservation laws writes
∂th+ ∂x(hu) + ∂y(hv) = R− I
∂t(hu) + ∂x

(
hu2 + gh2/2

)
+ ∂y (huv) = gh

(
S0x − Sf x

)
∂t(hv) + ∂x (huv) + ∂y

(
hv2 + gh2/2

)
= gh

(
S0y − Sf y

) (1)

where

• g = 9.81 m/s2 is the gravity constant;

• z(x, y) is the topography [L] and we denote by S0x = −∂xz(x, y) (resp.
S0y = −∂yz(x, y)) the opposite of the slope in the x (resp. y) direction.
Erosion is not considered here, so the topography is a fixed function of
space. Equations might be added to SW2D model to take erosion effect
into account. We get systems such as Saint-Venant Exner and Hairsine &
Rose models (for more details see [27]);

• R(t, x, y) ≥ 0 [L/T] is the rain intensity;

• I(t, x, y) [L/T] is the infiltration rate. It is given by another model (such
as Green-Ampt [12], Richards [28], ...);

• and ~Sf =
(
Sf x, Sf y

)
is the friction force vector. It may take several forms,

depending on soil and flow properties. In hydrological and hydraulics
models, two families of friction laws are mainly encountered. They are
based on empirical considerations. On one hand, we have the family of
Manning-Strickler’s friction laws

~Sf = Cf

√
u2 + v2

h4/3
~u,

Cf = n2 (resp. Cf = 1/K2), where n (resp. K) is the Manning’s coeffi-
cient [L−1/3T] (resp. Strickler’s coefficient [L−1/3T]). On the other hand,
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we have the law of Darcy-Weisbach’s and Chézy’s family

~Sf = Cf

√
u2 + v2

h
~u,

Cf = f/(8g) (resp. Cf = 1/C2), where f (resp. C) is the dimension-
less Darcy-Weisbach’s coefficient (resp. Chézy’s coefficient [L1/2/T]). The
friction may depend on the space variable, especially on large parcels and
watersheds. Values of friction coefficients depend on the considered type
of soil and are tabulated in references such as [29].

System (1) will be solved on a Cartesian grid thanks to a method of lines.
Thus the numerical strategy consists in choosing a numerical method adapted
to the properties of the shallow water system in 1D (SW1D). Then the general-
ization to SW2D is straightforward. So in next sections, we will consider SW1D
system.

2.2 Hyperbolicity

As previously argumented, we place ourselves in the one-dimensional case.
SW1D system writes{

∂th+ ∂x(hu) = R− I
∂t(hu) + ∂x

(
hu2 + gh2/2

)
= gh (S0 − Sf )

. (2)

The left-hand side of system (2) is a transport operator, corresponding to the
flow of an ideal fluid in a flat channel, without friction, rain or infiltration. This
corresponds to the model introduced by Saint-Venant [6] which contains several
flow properties. To emphasize these properties, we rewrite the one-dimensional
homogeneous system under vectors form

∂tU +∂xF (U) = 0, where U =

(
h
hu

)
=

(
h
q

)
, F (U) =

(
hu

hu2 + gh2/2

)
,

(3)
with F (U) the flux of the equation and q(t, x) [L2/T] the discharge by unit
of width. The transport property of system (3) is clearer under the following
nonconservative forms

∂tU +A(U)∂xU = 0, A(U) = F ′(U) =

(
0 1

gh− u2 2u

)
,

where the Jacobian matrix A(U) = F ′(U) is the matrix of transport coefficients.
When h > 0, matrix A(U) is diagonalizable and its eigenvalues are

λ1(U) = u−
√
gh < u+

√
gh = λ2(U). (4)

System (3) is strictly hyperbolic. The eigenvalues are the velocities of the surface
waves and thus are basic characteristics of flows. Notice that these eigenvalues
collapse in one when h = 0 m (for dry zones). In that case, system (3) is
no longer hyperbolic which is difficult to deal with both from theoretical and
numerical levels. Getting a numerical scheme that preserves the water height
positivity is a necessity.
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Eigenvalues (4) of system (3) allow to make a classification of flows, based
on the relative values of the velocities of the waves c =

√
gh and of the fluid

u. Indeed if |u| < √gh, the characteristic velocities have opposite signs and
flow informations propagate both upward and downward. The flow is said to
be subcritical or fluvial. When |u| > √gh, the flow is supercritical or torrential
and all informations propagate downstream. This has to be taken into account
both for the numerical methods (upwinding) and the boundary conditions.

Numerically, boundary conditions are expected to provide numerical fluxes
at the boundaries of domain. These are required in order to update (h, q) on
the extreme cells to the next time level. The boundary conditions may result in
direct prescription of the numerical fluxes at the boundaries. Alternatively, we
may prescribe the values of (h, q) on the ghost cells. In this way, the Riemann
problems at the boundaries are solved and the corresponding fluxes are com-
puted as done for the interior cells. The values of (h, q) on ghost cells can be
computed in function of flow regime thanks to the Riemann invariants (which
remain constant along the corresponding characteristic line). For subcritical
flow, the characteristic dx/dt = u− c leaves the domain while the characteristic
dx/dt = u + c enters the domain. Thus for numerical simulations, we impose
one variable (h or q) for fluvial inflow/ouflow. In contrary, both variable must
be prescribed in case of supercritical inflow whereas free boundary conditions
are considered for supercritical outflow. We refer to [30] for more details.

With the presence of the source terms, an other main property has to be
considered: the occurrence of steady states or stationary solutions. These par-
ticular flows are studied in next section.

2.3 Steady flows

Steady states solutions correspond to stationary flows, i.e. solutions that satisfy

∂th = ∂tu = ∂tq = 0,

system (2) reduces in{
∂x(hu) = R− I
∂x
(
hu2 + gh2/2

)
= gh (S0 − Sf )

. (5)

To our knowledge there is no scheme designed to preserve these stationary flows.
If we consider no rain R = 0, no infiltration I = 0 and no friction Sf = 0, system
(5) reduces in {

∂x(hu) = 0
∂x
(
hu2 + gh2/2

)
= −gh∂xz .

We recover Bernoulli’s law hu = q = Cst
q2

2gh2
+ h+ z = Cst

, (6)

where h+ z is the free surface water level.
Several schemes have been designed to preserve steady states (6). In general,

these methods are costly in term of implementation and computation because,
for example, they lead to solve a third order polynomial and the appropriate root
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must be selected depending on the type of flow (see e.g. [31]). Moreover, the
preserving of steady states (6) becomes more complicated when we require also
the positivity preserving of water depths at numerical level. As the last property
is a compulsory property for the applications we are interested in (overland
flow simulations), we limit ourselves to numerical schemes that preserve the
particular steady state corresponding to equilibrium of lake at rest

u = q = 0 and h+ z = Cst.

In that case, we have hydrostatic balance between the hydrostatic pressure and
the gravitational acceleration down the inclined bottom z.

In 1994, Bermúdez and Vázquez [32] are the first to identify the difficulty
to preserve this steady state. Schemes preserving this equilibrium have the
Conservation property or C-property (introduced in [32]). They obtained such
a numerical method by modifying the Roe scheme. The topography source
term is upwinded thanks to a projection on the eigenvalues of Jacobian matrix
of the flux. Since [7], schemes which preserve exactly at least the hydrostatic
equilibrium at a discrete level are called well-balanced schemes. We can find a
lot of well-balanced schemes for SW1D in the literature [32, 33, 7, 34, 35, 36,
37, 38, 39, 40, 41, 42].

In case of rainfall overland flows, we have the occurrence of wet/dry transi-
tions and small water heights. To simulate that kind of events, we need a robust
and positive well-balanced scheme. Thus we have chosen a finite volume scheme
based on the hydrostatic reconstruction (introduced in [38] and [43]), that we
will detail in next section.

3 Numerical method

As argued in the previous section, the numerical method will be presented in
one dimension (extension to 2D being straightforward on Cartesian grids thanks
to the method of lines).

3.1 Convective step

A finite volume discretization of SW1D, (2), writes

U∗i = Un
i −

∆t

∆x

[
Fn
i+1/2L − Fn

i−1/2R − Fcni
]

(7)

with ∆x (resp. ∆t) the space (resp. time) step and

Fn
i+1/2L = Fn

i+1/2 + Sn
i+1/2L

Fn
i−1/2R = Fn

i−1/2 + Sn
i−1/2R

,

the left and right modifications of the numerical flux F for the homogeneous
problem (see section 3.3)

Fn
i+1/2 = F

(
Un
i+1/2L, U

n
i+1/2R

)
.

The values Ui+1/2L and Ui+1/2R are obtained thanks to two consecutive recon-
structions. Firstly a MUSCL reconstruction [44, 43, 11] is performed on u, h
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and h+ z in order to get a second order scheme in space (see section 3.4). This
gives us the reconstructed values (U−, z−) and (U+, z+). Secondly, we apply the
hydrostatic reconstruction [38, 43] on the water height which allows us to get a
positive preserving well-balanced scheme

hi+1/2L = max
(
hi+1/2− + zi+1/2− −max

(
zi+1/2−, zi+1/2+

)
, 0
)

Ui+1/2L =
(
hi+1/2L, hi+1/2Lui+1/2−

)t
hi+1/2R = max

(
hi+1/2+ + zi+1/2+ −max

(
zi+1/2−, zi+1/2+

)
, 0
)

Ui+1/2R =
(
hi+1/2R, hi+1/2Rui+1/2+

)t .

We introduce

Sn
i+1/2L =

(
0

g
(
h2i+1/2− − h2i+1/2L

)
/2

)
, Sn

i−1/2R =

(
0

g
(
h2i−1/2+ − h2i−1/2R

)
/2

)

and a centered source term is added to preserve consistency and well-balancing
[38, 43]

Fcni =

(
0

−ghi−1/2+ + hi+1/2−

2

(
zi+1/2− − zi−1/2+

) ) .
We have to insist on the positivity and the robustness of this method. The rain
source term is treated explicitly and the infiltration rate is obtained thanks to
the Green-Ampt model [12] (see section 3.5).

3.2 Friction treatment

In this step, the friction term is taken into account with the following system

∂tU =

(
0

−ghSf

)
.

This system is solved thanks to a semi-implicit method (as in [30, 5]), which
writes for the Darcy-Weisbach’s law

hn+1 = h∗ and qn+1 =
q∗

1 + ∆t
f

8

|qn|
hnhn+1

,

where h∗, q∗ and u∗ are the variables from the convective step. This method
allows to preserve stability (under a classical CFL condition) and steady states
at rest. Finally, these two steps are combined in a second order TVD Runge
Kutta method which is the Heun’s predictor-corrector method [45]. It writes

U∗ = Un + ∆tΦ (Un)
U∗∗ = U∗ + ∆tΦ (U∗)

Un+1 =
Un + U∗∗

2

where Φ is the right part of (7).
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3.3 Numerical flux

About the homogeneous flux F
(
Un
i+1/2L, U

n
i+1/2R

)
, we can use any consistent

numerical flux, for example the one of Godunov, Rusanov, HLL, Roe or the one
obtained by the kinetic or the relaxation methods. In this work, we adopted
the Harten Lax van Leer (HLL) flux [46, 43, 11] which is known to be a simple
and efficient solver for both accuracy and implementation aspects (see [11])

F (UL, UR) =


F (UL) if 0 ≤ c1
c2F (UL)− c1F (UR)

c2 − c1
+

c1c2
c2 − c1

(UR − UL) if c1 < 0 < c2

F (UR) if c2 ≤ 0

,

with two parameters c1 < c2 which are the approximations of slowest and fastest
wave speeds respectively. We refer to [47] for further discussion on the wave
speed estimates. In this paper, we use

c1 = inf
U=UL,UR

( inf
j∈{1,2}

λj(U)) and c2 = sup
U=UL,UR

( sup
j∈{1,2}

λj(U)),

where λ1(U) = u−√gh and λ2(U) = u+
√
gh are the eigenvalues of SW1D. In

practice, we use a CFL condition nCFL = 0.5 at second order and nCFL = 1 at
first order, with

∆t ≤ nCFL
∆x

max
i∈{1,...,J}

(
|ui|+

√
ghi
) , (8)

where J is the number of space cells. At second order, variables (hi, ui) in (8) are
replaced by the reconstructed values (hi+1/2−, ui+1/2−) and (hi+1/2+, ui+1/2+)
(detailed in next section).

3.4 MUSCL-reconstruction

We define the MUSCL reconstruction of a scalar function s ∈ R (Monotonic
Upwind Scheme for Conservation Law, see [44]) by

si−1/2+ = si −
∆x

2
Dsi and si+1/2− = si +

∆x

2
Dsi (9)

with the operator

Dsi = minmod

(
si − si−1

∆x
,
si+1 − si

∆x

)
(10)

and the minmod limiter

minmod(x, y) =

 min(x, y) if x, y ≥ 0
max(x, y) if x, y ≤ 0
0 else

(11)

As mentioned previously, the MUSCL reconstruction is performed on u, h and
h + z, then we deduce the reconstruction of z. In order to keep the discharge
conservation, the reconstruction of the velocity has to be modified as what
follows [43]

ui−1/2+ = ui −
hi+1/2−

hi

∆x

2
Dui and ui+1/2− = ui +

hi−1/2+

hi

∆x

2
Dui.
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Thus, we recover the following conservation properties

hi−1/2+ + hi+1/2−

2
= hi and

hi−1/2+ui−1/2+ + hi+1/2−ui+1/2−

2
= hiui.

3.5 Green-Ampt infiltration model

Infiltration is computed at each cell by using a modified Green-Ampt model [4].
The soil water movement is assumed to be in the form of an advancing front
(located at Zn

f [m]) that separates a zone still at the initial soil moisture θi from
a saturated zone with soil moisture θs (as illustrated on figure 1-b. At time
t = tn, infiltration capacity, InC [m/s], is calculated thanks to

InC = Ks

(
A+

hf − hnover
Zn
f

)
where Zn

f =
V n
inf

θs − θi
,

where hf is the wetting front capillary pressure head, Ks the hydraulic conduc-
tivity at saturation, hnover the overland flow water height (obtained from the
SW2D) and V n

inf the infiltrated water volume. Thus we have the infiltration
rate (necessary to couple SW2D with Green-Ampt model)

In =
min(hnover,∆t.I

n
C)

∆t
,

and the infiltrated volume

V n+1
inf = V n

inf + ∆t.In,

where ∆t is the time step fixed by the CFL stability condition (see section 3.3).

4 FullSWOF 2D

4.1 The software

The name FullSWOF 2D stands for “Full Shallow Water equations for Overland
Flow in two dimensions of space”. It is a C++ code (free open source software
under the GPL-compatible license CeCILL-V2. Sources can be downloaded from
http://www.univ-orleans.fr/mapmo/soft/FullSWOF/) developed in the con-
text of the project ANR METHODE (see [11] and http://www.univ-orleans.

fr/mapmo/methode/). FullSWOF 2D is based on a finite volume method (de-
scribed in section 3) on a structured mesh in two space dimensions. Structured
grids have been chosen because on the one hand digital topographic maps are of-
ten provided on such meshes, and, on the other hand, it allows to develop numer-
ical schemes in one space dimension (implemented in FullSWOF 1D), extension
to 2D being straightforward. As argued previously, finite volume scheme ensures
by construction the conservation of the water mass, and is coupled with the hy-
drostatic reconstruction [38, 43] to deal with the topography source term. It
preserves water height positivity and it is well-balanced (i.e. it preserves at least
hydrostatic equilibrium: lakes and puddles). Several numerical fluxes (Rusanov,
HLL, kinetic and VFRoe-ncv flux) and second order reconstructions (MUSCL,
ENO and modified ENO reconstruction) are implemented. Currently, we recom-
mend, based on [11], to use the second order scheme with MUSCL reconstruction
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[44] and HLL flux [46] detailed in section 3. FullSWOF 2D is designed in order
to ease implementation of new numerical methods. FullSWOF 2D has already
been validated on analytical solutions integrated in SWASHES (Shallow Water
Analytic Solutions for Hydraulic and Environmental Studies: a free library of
analytical solutions [13]) and on real events simulation at small scales [11, 14]
(on parcels). In next section, FullSWOF 2D is validated at a bigger scale on
the Malpasset test case.

4.2 Validation: Malpasset case

Figure 2: Position of the different gauges and location of the dam.

Malpasset dam break is a real life application. It occured (because of heavy
rains) on December 2 1959 in the Var Department in southeastern France, caus-
ing 433 casualties. This dramatic event is very often mentioned in studies deal-
ing with dam breaks and associated risks (see among others [48, 49, 50, 51,
52, 53, 54]). Because of its varying topography and complex geometry, it is
widely used as a benchmark test for numerical methods and hydraulics software
[55, 56, 57, 58, 39, 59, 60]. Moreover, this problem allows to test the ability of
the scheme to treat the still water (at the level of the sea downstream, before
the wave reaches it) and the wet-dry interfaces.

The dimensions of the domain are dimx = 17273.9 m along x-axis with 1000
meshes and dimy = 8381.3 m along y-axis with 486 meshes, the total time of
simulation is 2500 s and we consider the Manning law with n = 0.033 as advised
in the literature [56].

The dam is considered as a straight line (see figure 2), the water level inside
the reservoir is set to 100 m above sea level and the computational domain
downstream the dam is considered as dry bed. Indeed, the initial discharge in
the river before dam failure can be neglected because of the huge amount of
flow caused by the dam failure.

We run the simulation using FullSWOF Paral over 16 processors and we get
the results in Figures 3 and 4. In 1964, a physical model wih a scale of 1:400
was built by Laboratoire National d’Hydraulique to study the dam-break flow.
The maximum water level and flood wave arrival time were recorded at 9 points

10



Figure 3: Propagation of the Malpasset dam break for different time 0 s and
500 s.

in the physical model (named from 6 to 14). This physical model has been used
to calibrate/validate Telemac 2D software [55, 56, 61] and these results are used
here to validate FullSWOF 2D at “big” scale. We can see on figure 5 that the
results are very closed to those obtained with Telemac. On figures 3 and 4 is
represented the propagation of the wave due to the dam break (a video can be
visualized on http://www.youtube.com/user/FullSWOF) and on figure 6, the
propagation of the water height at the gauges during time (this will be used in
future work). These results show the efficiency of FullSWOF but at that scale,
details such as houses and roads are not represented. So in case of prevention,
the use of these results might be limited. It might be useful to have more details.
So the mesh would be finer, in that case the code needs to be parallelized.
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Figure 4: Propagation of the Malpasset dam break for different time 1000s, 2000
s and 2500 s.
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5 SkelGIS

5.1 Purpose

Parallelism [62] is an intricate domain of computing science. Indeed, in addition
to good sequential and parallel programming skills, it requires also a strong
knowledge on processors, memory and network use to be able to write optimal
programs on modern parallel computers. Writing a parallel program is long and
complex, and implementing optimizations to get very good performances is even
more difficult. As a consequence, giving the opportunity to non-specialists and
even to non-computer scientists to use parallelism is a major research area for a
long time. Indeed, in lots of domains high performance computing has become
a crucial point.

A wide range of solutions exists to give access to parallelism to non-specialists.
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Most of them require the collaboration of experts in parallelism with the scien-
tists of the targeted domain since classical parallel libraries are too technical. A
good alternative is to propose libraries that clearly separate the parallelism side
from the user side. Those tools provide some parallel patterns that hide the
technical details of parallelism and are optimized for a class of problems. Such
libraries give a restricted access to parallelism but greatly simplify the program
development. The difficulty is to find the good balance between the level of
abstraction, to hide the parallelism, and the performance of the program.

SkelGIS library is presented in this part and takes place in the latter category
of libraries. SkelGIS is an algorithmic skeleton library and has been used to
parallelize FullSWOF 2D.

5.2 Algorithmic skeletons

Algorithmic parallel skeletons were introduced in 1988 by Muray Cole [63].
The domain of algorithmic skeletons aims at providing generalist patterns of
parallelization to the user and hide any parallel implementation of the resulting
application in the library. As a result only sequential interfaces of the library
(named skeletons) are used by scientists and a parallel application is executed
without any knowledge on parallel libraries such as MPI, OpenMP, CUDA etc.
We can enumerate lots of algorithmic skeleton libraries, all of them based on
Muray Cole’s work [63, 64, 65]. Some of them are implemented in Java, some
of them in C++ as for example QUAFF [66], eSkel [67], Muesli [68], SkeTo [69]
and OSL [70].

To explain the concept of algorithmic skeleton, the equation (12) represents
the well known map skeleton where F is the set of functions expressed by equa-
tion (13) and DStruct the type of elements in the distributed data structure
given to the map skeleton. A map skeleton takes an input data structure, and
a user function in inputs, apply the user function to each element of the data
structure and return a new resulting data structure. Parallelism is hidden in
the data structure that is distributed transparently, and in the skeleton call. To
get a parallel code with a map, the user simply has to construct a data struc-
ture d and to define a sequential function f (13) that gives the calculation to
accomplish on one element of the data structure. Then he or she has to call the
skeleton this way : map(d, f).

map : F ×DStruct −→ DStruct (12)

F = {f : E −→ E} (13)

Though, this type of skeletons are not enough expressive. For example, a
classical operation on a two dimensional dataset consists in computing a value
in a matrix from the four or eight neighbor values around this point. With
skeletons of type map, it is not possible to directly access this neighborhood
since only the current element is available. To sidestep this limitation existing
libraries propose communication skeletons, and especially the shift skeleton that
permits to shift the matrix in order to get access to another value in the matrix.
This skeleton has two major issues. First, the shifted matrix implies a copy of the
matrix which is undesirable when dealing with a huge amount of data. Second,
the shift skeleton makes difficult the programming of classical algorithms since
it must be used in place of a classical matrix element accessors.
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To illustrate this, an example of an eight neighbors algorithm is used. Geo-
scientists are working on the automatic delination of watershed to determine,
for example where the water is going to flow, to elaborate irrigation systems,
or to determine the impact of a water flooding on a land. These calculations
are performed on topography matrices. One important and simple step of this
calculation is the flow direction computation (figure 7). It consists in determin-
ing for each point of the DEM where the water would flow with the assumption
that it should flow in the direction of the nearest lower point. Therefore, the
flow direction algorithm is simple, it consists in getting the minimum value
for the eight neighbors around the current point and saving the corresponding
direction.

101 83 61 110

502 304 100 72

100 75 92 120

125 65 68 70

4 4 0 8

3 2 1

5 6 7 7

4 0 8 8

5

Figure 7: Flow direction algorithm

Eight neighbors algorithms are a good example of algorithm used to solve
scientific problems. Indeed, it is a frequent algorithm in mathematics (finite
volumes discretization), physics, image processing, geo-sciences and many other
domains. However, it is not easy to make the flow direction calculation parallel
with standard skeletons (map, shift etc.). Figure 8 shows the 24 skeleton calls
needed. Height shift skeletons are needed to get height neighbors values, then
nested calls of zipwith skeletons are needed to get the minimum value, finally
map skeletons are needed to associate the minimum value to a direction.

z ipwith (min , z ipwith (min , z ipwith (min , z ipwith (min ,map( f ,m) ,
map( f , s h i f t <1,1>( s h i f t i d ,m) ) ) , z ipwith (min ,
map( f , s h i f t <1,0>( s h i f t i d ,m) ) ,map( f , s h i f t <1,−1>( s h i f t i d ,m) ) ) ) ,
z ipwith (min , z ipwith (min ,map( f , s h i f t <0,−1>( s h i f t i d ,m) ) ,
map( f , s h i f t <−1,−1>( s h i f t i d ,m) ) ) , z ipwith (min ,
map( f , s h i f t <−1,0>( s h i f t i d ,m) ) ,map( f , s h i f t <−1,1>( s h i f t i d ,m) ) ) ) ) ,
map( f , s h i f t <0,1>( s h i f t i d ,m) ) ) ;

Figure 8: 24 nested calls needed for the flow direction calculation with standard
skeletons

Then, this type of skeleton libraries have few problems :

• The difficulty of getting a parallel code is moved to the difficulty of func-
tional programming with skeletons.

• The code is difficult to write and even more difficult to read.

• Performance damages occur because of all the skeleton calls and because
of the duplication of matrices with the shift skeleton.
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5.3 SkelGIS

SkelGIS is a new kind of algorithmic skeleton library. The objective is to propose
a hierarchical skeleton library for very large matrices and to give access to
parallelism through sequential adapted interfaces in order to keep a sequential
programming style. SkelGIS gets out of the functional paradigms in order to
stick to the programming habits of non-specialists. It relies on two concepts
and a distributed data structure.

5.3.1 Concepts

The first concept of SkelGIS is to propose basic skeletons where the user function
has a direct access to a matrix. The user has to define functions of type f :
M 7−→M (M is a SkelGIS matrix).

This is a major difference with the classical skeletons (as map) where the
user functions defines what to do on a single matrix element (functions of type
f : E 7−→ E where E is the type of elements of a matrix m). The user describes,
in the sequential function, what to do on the matrix. As a result, the expres-
siveness of SkelGIS is very good and no communication skeletons are needed.
SkelGIS offers a way to stay close to a sequential programming style. Another
consequence of the expressiveness of basic skeletons is that a single call of skele-
ton at a time is needed, and performances of SkelGIS are better than existing
skeletons. For example, the figure 9 gives the performances of the flow direction
calculation, above-cited, with SkelGIS and SkeTo.

Size SkeTo SkelGIS
339× 225 30ms 21ms

14786× 10086 101s 31s

Figure 9: Comparison between SkeTo library and SkelGIS, on flow direction
calculation

The second concept of SkelGIS is to propose a hierarchy of skeletons (Fig-
ure 10) where every higher abstraction level skeleton uses basic skeletons.

As a result, SkelGIS skeletons inherit optimizations and hardware support
of basic skeletons. New optimizations or new hardware support only has to be
added in basic skeletons to be available in the whole library. This hierarchy
also provide a clear abstraction choice for the user. Ensuring the scalability and
durability of a library is an important feature to make it live and used. Skeleton
libraries are based on parallel libraries depending on hardware, and hardware
can completely change quite quickly. Existing libraries propose a set of skeletons
that are independent from each others. As a result, taking into account a new
hardware (or a new parallel library) requires to re-implement all the skeletons
of the library.

5.3.2 Distributed data structure

As every skeleton library, SkelGIS skeletons are applied to a distributed data
structure. The current version of SkelGIS only proposes a distributed two-
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Figure 10: Hierarchy of SkelGIS

dimensional matrix to apply skeletons on. This distributed matrix named DMa-
trix is the basis of every parallel calculation made by SkelGIS. The constructor
of the DMatrix is responsible for dividing the initial matrix in blocks and dis-
tributing the load of each block from the disk on different processors.

This DMatrix is used by skeletons to apply the user functions in parallel
on the whole matrix. As the user can manipulate distributed matrices without
being aware of the parallel technical details, some basic tools have been devel-
oped to manipulate them. Then, manipulation of the DMatrix looks like data
structure of the Standard Template Library (STL in C++) manipulation. The
three main tools to manipulate a DMatrix are:

• A set of iterators to navigate in the distributed matrix.

• A set of neighborhood functions to get the neighbors of the current ele-
ment.

• Get/Set to get a value of the distributed matrix or to write a value in the
distributed matrix.

The user uses the DMatrix as if it was a common sequential matrix of the
STL, and the skeletons are in charge of hiding block division and communication
aspects. Figures 11 and 12 represent the user code needed to get the parallel
version of the flow direction calculation above-cited. The main function is in
charge of the initialization of the library SkelGIS, the construction of matrices
and the call of skeletons. Then, user functions have to be programmed, in a
sequential programming style, using the DMatrix tools.

Behind SkelGIS, the exact same work as in MPI is done, but automatically.
Actually, the library proceeds to a domain decomposition of a structured matrix
and manages MPI exchanges of ghost cells at the border of the domain decom-
position. Then SkelGIS proposes an easy way to code structured approaches of
simulations. Of course, the structured approach is limited regarding the com-
plexity of some simulations, but SkelGIS is under development and will propose
in the future unstructured distributed data structures and also graph and tree
distributed data structures. This way, SkelGIS will be able to manage different
types of simulations.
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#include ‘ ‘ s k e l g i s . h ’ ’
int main ( int argc , char∗∗ argv )
{

// i n i t i a l i z a t i o n o f the l i b r a r y
INITSKELGIS ;
// c r e a t i o n o f matrix m
DMatrix<f loat> ∗ m = new DMatrix<f loat>( f i l e , 1 ) ;
// c a l l o f the s k e l e t o n app ly wi th the f u n c t i o n
// ” d i r e c t i o n s ” on the matrix m
DMatrix<int> ∗ m2 = apply<f loat , int>( d i r e c t i o n s ,m) ;
//end o f the l i b r a r y use
ENDSKELGIS;

}

Figure 11: Main function of the user program

6 Parallelization of FullSWOF 2D

6.1 MPI

In this section, we will explain the domain decomposition method which we have
used to parallelize FullSWOF 2D (for more details see [72]). This method has
been applied by using the library of functions MPI (Message Passing Interface).
This method has been chosen in order to be the least intrusive as possible
in the FullSWOF structure to ease future development. In fact, the domain
decomposition method consists in splitting the data into many independent
domains. On each domain, the code is executed by one anonymous process and
when it is necessary the process communicates via calls to MPI communication
primitives. MPI is a standardized and portable message-passing system used
to compute on both shared memory and distributed memory machines. The
parallelism with MPI decomposes into four main steps:

1. decomposition of the domain,

2. knowing his four neighbors,

3. exchanging the points on the interfaces

4. and calculating the scheme on each process.

From these four steps, we have parallelized FullSWOF 2D.
At the beginning of the run, we create a group of n processes. Each process

is assigned a rank between 0 and n− 1. For us, this linear ranking of processes
is not appropriate, because the structure of the computational domain is in two
dimensions with communications into the two directions. So, the processes are
arranged in the 2D Cartesian topology thanks to MPI topology mechanism.

MPI creates a relationship between ranks and Cartesian coordinates and
we used these information to know the neighbors of each nodes in order to
communicate the values of the interfaces. After this step, the domain can be
represented by a graph where the nodes stand for the processes and the edges
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// beg in d e c l a r a t i o n o f the f u n c t i o n d i r e c t i o n s
BEGINApply( d i r e c t i o n s , input , f loat , output , int )
{

// i n i t i l i z a t i o n o f i t e r a t o r s on input
//and output matr ices
DMatrix<f loat > : : i t e r a t o r i t = input−>begin ( ) ;
DMatrix<int > : : i t e r a t o r itOut = output−>begin ( ) ;
DMatrix<f loat > : : i t e r a t o r itEnd = input−>end ( ) ;
//8 n e i g h b o r s t a b l e
DMatrix<f loat > : : ne ighbors nghb ;
// f o r each element o f the matrix
for ( ; i t <= itEnd ; ++i t , ++itOut )
{

int index =0;
// g e t the curren t v a l u e o f the i t e r a t o r
f loat min = input−>getValue ( i t ) ;
// g e t the 8 ne ighbor v a l u e s
input−>get8Neighbors ( i t , nghb ) ;
// g e t the minimum
for ( int i =0; i <8; i ++){

i f ( nghb [ i ]>0 && nghb [ i ]<min ) {
index=i +1;
min=nghb [ i ] ; }

}
// s e t the minimum d i r e c t i o n in the output matrix
output−>setValue ( index , itOut ) ;

}
}
//end d e c l a r a t i o n o f the f u n c t i o n
END( d i r e c t i o n s ) ;

Figure 12: User function given to the skeleton

connect process that communicate with each other. So, we can compute the
number of points for each node in x and y and to initialize the local variables.

After the initialization, we exchange the value of the interfaces to compute
the value of the variables at the next step of the time. Indeed, when we compute
the value of the variables according to the order of the scheme. At order one,
we add a line and column of the cells that receive the value necessary to the
computation of the scheme and if we are at order two, we add two lines and two
columns.

Concerning the communication between the nodes, MPI provides message-
passing between any pair of processes. So, having exchanged the values at the
interfaces, we compute the next step of the time by applying the algorithm of
sequential FullSWOF.
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6.2 SkelGIS

Using SkelGIS to parallelize the shallow water equations is very different from
a standard parallelization. No parallel knowledge (domain decomposition, com-
munications etc) and no parallel code (MPI use) are needed at all to get a
parallel version of the simulation. However, the simulation has to be thought
with skeleton use.

Algorithm 1 represents the pseudo code of the shallow water equations sim-
ulation and, in red is added the interventions needed to use SkelGIS with this
algorithm. First, the initialization of matrices has to be made with the DMatrix
object, then each algorithm step has to be executed through a skeleton call (ap-
plyList skeleton). Finally, the sequential code has to be a little modified because
accesses to matrices elements have to be done through DMatrix iterators and
accessors.

Initialization of variables with DMatrix
for t← 0 to N do

for i← 0 to 2 do
applyList : Boundary Conditions
applyList : Second order reconstruction
applyList : Hydrostatic reconstruction
applyList : Numerical flux computation
applyList : Scheme computation
applyList : Frictions

end
applyList : Order 2 along t - Method of Heun

end
Algorithm 1: Shallow water equations algorithm with additional calls in red
for SkelGIS

In addition to the fact that no parallelization knowledge is needed using Skel-
GIS, the non-computing scientist is fully independent in parallel developments.
The parallel application getting from the use of SkelGIS is organized and easily
upgradeable. Furthermore, an OpenMP version and the use of SSE instructions
(Streaming SIMD extensions) optimizations are under development in SkelGIS.
As a result with no efforts the code of shallow water equations will work with
OpenMP for shared memory systems as with Intel additional processor instruc-
tions.

6.3 Results

In this part are presented some comparison results between the MPI implemen-
tation and the SkelGIS implementation of the shallow water equations. These
benchmarks were made on a 5120x5120 domain with 5000 iterations and 20.000
iterations. Figures 13 and 14 represent the base two logarithm of the execution
times. Then, it represents the inverse of the speedup and the ideal execution
time is drawn in blue.

Both implementations have very good results and are closed to the ideal
execution time. We can notice, however, that SkelGIS results are linear while
the MPI version starts with a bigger execution time with 8 processors. From 32
to 256 processors the MPI implementation meets SkelGIS execution times.
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Figure 13: Comparison between MPI, SkelGIS and Ideal versions of shallow
water equations for 5000 time iterations : Log 2 of execution times
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Figure 14: Comparison between MPI, SkelGIS and Ideal versions of shallow
water equations for 20000 time iterations : Log 2 of execution times

Conclusions

As a conclusion, both implementations are efficient, but parallelization concepts
of these two implementations are very different. The Skeletton strategy requires
a more important work to rewrite the code, using SKELGIS library but it
provides a final code with a greater expressivity and the parallelization technics
are hidden within the library. On the contrary, the MPI version involves less
changes in the software, but it requires to deal with the parallelization concept.
Therefore, our first conclusion is that the performances of the two approaches
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are very close. For an existing code, depending on the skills of the developers,
each strategy can be preferred. If the choice is done at the very beginning of
the project, skeletons offers a more expressive code and does not require to
know about parallelization. Both FullSWOF 2D and SKELGIS are still under
development, interested readers might contact us for further informations.
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différences finies,” La Houille Blanche, no. 1, pp. 33–39, 1964. [Online].
Available: http://dx.doi.org/10.1051/lhb/1964002

[10] J. A. Cunge, F. M. Holly Jr., and A. Verwey, Practical Aspects of Com-
putational River Hydraulics, reprint Iowa University Press, Ed. Pitman
Publisher, 1980.

[11] O. Delestre, “Simulation du ruissellement d’eau de pluie sur des sur-
faces agricoles/ rain water overland flow on agricultural fields simulation,”
Ph.D. dissertation, Université d’Orléans (in French), available from TEL:
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