
Discrete Texture Design Using a Programmable

Approach

Hugo Loi, Thomas Hurtut, Romain Vergne, Joëlle Thollot

To cite this version:

Hugo Loi, Thomas Hurtut, Romain Vergne, Joëlle Thollot. Discrete Texture Design Us-
ing a Programmable Approach. Siggraph 2013 Talks, Jul 2013, Anaheim, United States.
ACM, pp.Article No. 43, 2013, Proceeding SIGGRAPH ’13 ACM SIGGRAPH 2013 Talks.
<10.1145/2504459.2504513>. <hal-00857482>

HAL Id: hal-00857482

https://hal.inria.fr/hal-00857482

Submitted on 3 Sep 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.inria.fr/hal-00857482


Discrete Texture Design Using a Programmable Approach

Hugo Loi1�, Thomas Hurtut2, Romain Vergne1, Joëlle Thollot1

1Inria-LJK (U. Grenoble, CNRS) 2LIPADE - U. Paris Descartes

Figure 1: In our approach each texture is the result of a simple program. Based on a set of combinable operators, a large variety of
distributions can be intuitively described and produced. See the scripts corresponding to these images in supplemental material.

1 Introduction

Many rendering methods use discrete textures (planar arrangements
of vector elements) instead of classic bitmaps. Discrete textures are
resolution-insensitive and easily allow to modify the elements’ ge-
ometry or spatial distribution. However, manually drawing such
textures is a time-consuming task. Automating this production is a
long-time studied subject. The methods designed for this purpose
deal with a difficult tradeoff between the reachable variety of tex-
tures and the usability for a community of users.

Numerous models have been proposed for representing discrete tex-
tures. These methods can be roughly classified into two categories:
local models, that constrain the neighborhood structure of elements,
and parametric models, that describe the global statistics of ele-
ments’ spatial distribution. In order to be usable by artists, these
approaches are mainly designed to allow by-example texture syn-
thesis. However, the variety of textures they can achieve is limited
by the difficulty for parametric models to represent local structures,
or by the low ability for local models to capture large scale effects.

In this talk, we show that considering discrete textures as programs
allow for a larger variety of textures than relying on a given model.
These programs combine operators that distribute points, curves or
regions on the plane. We propose a small set of such operators
and we let the user write the texture program by combining them,
such as in [Grabli et al. 2010] for stylized line drawing. The variety
of textures reachable by this representation is then bounded by the
combinatorial of the proposed operators. In return, we adress a
different community of users, such as technical directors, due to
the required use of a programmable interface. A larger audience
can be attended by hiding the programming langage with a graph-
based visual notation.

Contributions

• We propose a small set of atomic operators that distribute
points, curves and regions on the plane, and we show their
efficiency for representing a large variety of discrete textures.

• We factorize the redundant concepts between classic element
distribution algorithms such as dart throwing and Lloyd’s re-
laxation, by expressing them with our atomic operator set.
This allows us to design a large number of variants of these
algorithms that share the same factorized representation.

�This work has been sponsored by the ANR MAPSTYLE #12-CORD-

0025 and ANR SPIRIT #11-JCJC-008-01.

2 Programs and Operators

We provide a set of operators for manipulating scalars (boolean,
integer or real values) or elements (points, curves and regions in
the 2D plane), and a system drawn from functionnal programming
for combining these operators as functors. We propose a generic
and factorized formulation of greedy (without backtrack) element
distribution algorithms:

while (loop condition) do {
- pinning: create a new point p
- shapingppq: create a region r given p

- checkingprq: decide to keep r or not}

Each of the four bold terms above denotes a user-chosen opera-
tor. Figure 1a shows a classic anisotropic dart throwing obtained
with our generic algorithm when the user chooses a maximum iter-
ation number as loop condition, a random point pinning operator, a
hatch shaping operator and a non-overlap checking operator. Figure
1b shows a result with same choices but a checking operator that
keeps regions contained in rectangles previously distributed regu-
larly with the same algorithm. Figure 1c shows the combination of
1b and another distribution whose checking operator keeps the re-
gions outside the rectangles. Figure 1d differs from Figure 1a only
on its shaping operator, which combines a random rotation and a
continuous shrink of a user-drawn spiral element.

We propose a similar formulation with shaping and pinning oper-
ators for region-based relaxation methods, including Lloyd’s algo-
rithm. Figure 1e shows a greedily-distributed set of regions, moved
by our generic relaxation method and finally reshaped with a trans-
formation of their Voronoı̈ cells. Figure 1f shows a similarly dis-
tributed and relaxed set of circle regions. It is combined with the
same algorithm than for 1a, but with a shaping operator that creates
stylized stream lines around the distribution of circles. Figure 1g in-
terlocks greedy distributions with pinning along curves and stream
line shaping on the basis of a relaxed distribution of circles.

Our operator set is highly extensible and combinable, allowing a
better adaptation to user’s needs and further distribution concepts.
See our supplementary document for our operators’ reference and
the programs corresponding to Figure 1.

References

GRABLI, S., TURQUIN, E., DURAND, F., AND SILLION, F. X.
2010. Programmable rendering of line drawing from 3D scenes.
ACM Trans. Graph. 29, 2, 1–20.


