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Abstract  

Diffusion Weighted Images (DWI) normally shows a low Signal to Noise Ratio 

(SNR) due to the presence of noise from the measurement process that 

complicates and biases the estimation of quantitative diffusion parameters. In 

this paper, a new denoising methodology is proposed that takes into 

consideration the multicomponent nature of multi-directional DWI datasets such 

as those employed in diffusion imaging. This new filter reduces random noise in 

multicomponent DWI by locally shrinking less significant Principal Components 

using an overcomplete approach. The proposed method is compared with state-

of-the-art methods using synthetic and real clinical MR images, showing 

improved performance in terms of denoising quality and estimation of diffusion 

parameters.  
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1. Introduction 

Magnetic Resonance imaging (MRI) has been intensively used to study the 

normal and pathological human brain. In the last decade, Diffusion Weighted  

Imaging (DWI) has gained a lot of attention due to its ability to measure the 

microscopic motion of water molecules within tissue, and hence lead to insight 

regarding cerebral white matter microstructure. One of the most prominent 

applications of DWI is Diffusion Tensor Imaging (DTI), where the directionality 

and the magnitude of water diffusion is estimated using a tensor model yielding 

images of normal and abnormal white matter fiber structure and maps of brain 

connectivity through fiber tracking [1][2]. 

Diffusion weighted images have an inherently low signal to noise ratio (SNR) 

due to low signal amplitude and pronounced thermal noise, which is more 

evident than in conventional MRI due to extremely fast echo-planar acquisition 

strategies. Such low SNR makes DWI analysis complicated and biases the 

estimation of quantitative diffusion parameters [3]. Moreover, this limited SNR 

makes automated processing of these images challenging and potentially 

misleading.  

To increase the SNR, it is a common practice to average several acquisitions in 

order to reduce noise variance (but without removing noise driven bias). 

However, this approach is time consuming in terms of acquisition and therefore 

not adequate for typical clinical settings where patients cannot remain still for 

extended periods of time. 

On the other hand, denoising techniques can be applied to improve data quality 

as a post-processing step, thereby not increasing the scanning time. Denoising 

techniques applied in DWI can be divided on three categories: first, the 

techniques that directly filter the acquired DW images [4]-[18], second, those 

that regularize the tensors after estimation [19],[20] and third those that use a 

regularization term during the estimation/inversion [21]-[23]. However, Jones 

and Basser [3] demonstrated that the underestimation of diffusion anisotropy 

due to noise cannot be corrected once the tensor parameters are determined. 
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Recently, several methods that directly operate over the DWI data have 

reported remarkable results. For example, Wiest-Daesslé et al. [17] proposed a 

modification of the well-known Non-local Means method to deal with Rician 

noise which was further studied by Descoteaux et al. [7]. More recently, Tristan 

et al. [18] proposed a Linear Minimum Mean Squared Error (LMMSE) rooted 

approach to deal with Rician noise and the multi-component nature of DW 

images.  

From a different point of view, Principal Component Analysis (PCA) and related 

approaches have been previously used for noise reduction in images [24]-[26]. 

In this context, noise removal can be done by a) decomposing the signal into 

the local principal components, then b) shrinking the less relevant components, 

and finally c) reconstructing back the signal. The key idea of this process is the 

fact that image patterns can be represented as a linear combination of a small 

number of basis images while the noise, being not sparse will be spread over all 

available components. In this sense, an interesting approach is the two steps 

method proposed by Zhang el al. [27] where similar patches are grouped 

together before PCA decomposition takes place. Alternatively, PCA can be 

used to learn an orthogonal basis set from the noisy data and to use it to 

represent noisy patches but previously zeroing small coefficients [28]. This 

approach takes benefit from the intrinsic sparsity properties of the images.   

PCA based denoising has already been applied for MRI filtering. In Manjón et 

al. [29] PCA was used as a postprocessing step to remove remaining noise 

after the application of a multicomponent non-local means filter for multimodal 

MRI. Also very recently, structure adaptive and edge constrained PCA related 

approaches has been proposed for DWI denoising [30,31]. 

In this paper, we propose a new denoising method based on local PCA 

designed to take into account the Rician nature of the noise present in DW 

images. The proposed filter takes advantage of the multi-directional nature of 

DW images by using local PCA decomposition to exploit the local signal profile 

redundancy in contrast with related PCA based methods that made use of local 

spatial pattern redundancy instead. 
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2. Material and methods 

Principal component analysis is an orthogonal linear transformation that maps 

the data into a new coordinate system such that the greatest variance, by any 

projection of the data, comes to lie on the first axes (called the first principal 

component), the second greatest variance on the second coordinate, and so on. 

PCA-based denoising can be achieved using global information of an image 

series (one component per image) [26] or locally using local image patches 

[24],[25],[29]. The first approach, although effective, requires the number of 

images to be higher than the number of significant components of the image 

resulting is a less sparse representation. This problem can be overcome by 

performing PCA decomposition over small local windows instead of the whole 

image what significantly produces sparser representation (in the extreme case, 

i.e. in homogeneous areas, it can result in the sparsest representation not 

requiring any component to represent the data but on only the mean value of 

the region). 

2.1. Local PCA Denoising (LPCA)  

In our proposed approach, we apply a local PCA to exploit the multi-directional 

redundancy of DWI patterns rather than using local spatial image pattern 

redundancy as done by Muresan and Parks [24]. This has the benefit of not 

requiring a search for similar patches within the image [27] resulting in a much 

faster processing.  

Our method assumes that the whole directional information of DW images can 

be locally represented by less than the original K components. For this reason, 

the image is analyzed using a local 4D sliding block and at each position a PCA 

decomposition of this block is applied in order to locally find the most reduced 

representation of this data. The cancelation of superfluous information in the 

transformed data reduces noise while preserving the main features of the 

images. 

For each point xi of the image domain , the 3D patches surrounding xi in 

each directional image k are reordered as a column vector of a matrix X (see 
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figure 1). X is thus an NxK matrix where N corresponds to the number of voxels 

of the 3D patch around the point of interest (N=64 in our experiments which 

corresponds to 4x4x4 voxels included in the 3D patch), and K is the number of 

directional images (in DWI, K can range from 7 to the number of acquired 

directions). Therefore each row vector of this matrix represents the value of a 

voxel xi across all K image directions. 

 

Figure 1. Example of local matrix X formation from a DW image series. Each block is converted 

into a column of matrix X. At bottom-right, an example of a real matrix X and its filtered version 

 is shown to highlight the high level of profile signal redundancy present in the local matrix X. 

 

PCA is applied to the set of row vectors, considering N samples of dimension K.  

The set of row vectors of X are first normalized to have its barycenter in the 

origin (that is to center the columns of X by subtracting to each one its own 

average or equivalently to remove from each 3D block its mean). PCA 

transforms the sample vectors into a new coordinate system, where the few first 
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components represent the most part of the variation of the original data. The 

new PCA system is obtained by computing the eigenvectors of the covariance 

matrix of X being all the associated eigenvalues positive.  These eigenvectors 

are stored as columns in a squared KxK matrix, W. The associated eigenvalues 

correspond to the amount of variation of the new components and are stored in 

a diagonal matrix of size KxK, D = (dkk). The new coordinates of the original 

data are computed by a simple matrix product (1) (see [46] and [47] for a more 

detailed introduction to eigenvalues decomposition and PCA). 

 

    Y = X W                                                           (1) 

 

Classical thresholding algorithms cancel coefficients of low magnitude. Instead 

of deciding to cancel a coefficient depending on its magnitude, we take the 

decision based on the associated eigenvalue. By doing that, we decide to 

cancel the kth coefficient of the ith vector depending on the value dkk. 

The use of this thresholding strategy has two advantages. First, since the new 

basis depends on the data the classical thresholding strategy would be less 

stable and second the proposed strategy is optimal for the whole set of N 

vectors. This thresholding strategy can be numerically applied by modifying the 

matrix D into . Each value in the diagonal of D is canceled if its magnitude is 

lower than a certain parameter !. After an exhaustive search for the optimum 

value of ! parameter, it was set to (2.7")2, where "2 is the estimated local noise 

variance. This threshold is set depending on "2 since each element of the 

diagonal matrix D, dkk, actually represents the variance of the different principal 

components. 

Finally the denoised matrix is obtained by computing the inverse PCA 

transformation [46,47]. 

                                                (2) 
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where the inverse W-1 is equal to the transpose of W since the matrix is 

orthogonal and matrix  is obtained by comparing the magnitude of the 

diagonal with a fixed threshold as described previously. Therefore, although the 

final values are obtained by a matrix product, the overall process is nonlinear. 

The local PCA denoising is done in an overcomplete manner since overlapping 

patches are used to achieve the processing of each voxel of the image volume. 

Due to this patch overlapping, several estimations are obtained for a given 

voxel since all the voxels are processed independently. Each one of these 

estimations is obtained by a thresholding in a different basis. The advantages of 

such a multipoint-wise approach compared to point-wise method are described 

in Katkovnik el al [32]. 

Therefore, for each voxel all the local estimates  are combined from all the 

overlapping j blocks at position i using the following weighted average rule: 

                      
                              

(3) 

where V is the number of overlapping blocks contributing to  and j is the 

weight of each block j, which is proportional to the inverse of the 
 
L0 norm 

(i.e., the number of nonzero coefficients of the diagonal matrix  at block j 

after the thresholding operation). This approach gives more weight to estimates 

with more null values after thresholding. Such averaging enables to remove   

more noise and minimizes Gibbs artifacts [31] in a similar manner to the 

translation invariant denoising proposed by Coifman and Donoho [34]. The only 

parameter in the proposed method is the threshold value !. 

 

2.2. Adaptation to Rician noise 
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Noise in magnitude MR images is usually modeled with a Rician distribution 

[35]. The asymmetry of the Rician distribution results in a non-constant intensity 

bias as it depends on SNR. Therefore, all measurements based on intensity will 

be biased such as Apparent Diffusion Coefficient (ADC), Fractional Anisotropy 

(FA), etc.  

To avoid such bias, some authors have proposed to remove the bias in the 

squared magnitude image [17], [35]. However, this approach cannot be applied 

within our framework since we are not reducing the noise using the averaging 

principle. In our case, due to the effect of PCA thresholding, the bias in the 

squared domain is not constant, but dependent on intensity. However, it can be 

estimated theoretically and inverted in the original domain using the properties 

of the first moment of a Rician distribution [36]. 

The proposed algorithm is used to recover the mean value of the Rice 

distribution R(v,") with parameters v and ", being v the true value we want to 

recover and " the noise standard deviation. This expected value writes as: 

            (4)

 

where I0 and I1 are the modified Bessel functions of order zero and one, 

respectively. 

Once we obtain our denoised value, we should compensate the bias by 

inverting previous expression and recovering the true value v. However, this is 

not possible analytically and a numerical inverse is computed. We observe that 

E[R(v,")]/ " can be written as a function of #=v /". 

 

                 (5)
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The inverse of this expression as a function of # can be stored into a Look Up 

Table (LUT) that we denote by $(#).  

The final algorithm corrects the estimated value x obtained by the denoising 

process to: 

                                                   (6)
 

2.3. Noise estimation in DWI 

The proposed method requires the local noise level present in the images as 

the only input parameter. Although several methods have been proposed to 

estimate Rician noise level on MRI images [10],[37] few of them are able to 

estimate spatially varying noise patterns. Here, we propose two novel methods 

to provide local noise variance estimation of DW images depending on whether 

they have one or multiple b=0 images.  

Multiple B=0 image noise variance Estimator (MUBE) 

If multiple non-DWI (i.e., b=0 s/mm!, termed b0 henceforth) images are 

available in the dataset we can use image differences to robustly estimate the 

noise pattern. Landman et al. [38] presented a method for local noise variance 

estimation using the differences of two non diffusion weighted images that 

robustly estimated the noise pattern assuming that Rician noise can be well 

approximated by a Gaussian distribution if the local SNR is high enough 

(SNR>5).  

We propose a similar approach, albeit without assuming Gaussian distributed 

noise by using the analytical correction scheme proposed by Koay and Basser 

[36]. 

Given a set of n b0 images (n>=2), we first compute global PCA decomposition 

of image series (i.e. we perform a PCA decomposition of a matrix formed by as 

many columns as image voxels and as many rows as images, see Fig. 2). In 

this way, first components will be associated to both signal and noise while the 

last components will contain mainly noise contribution. Therefore, an initial 

noise field estimation can be obtained just calculating the local noise standard 
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deviation of the least significant component within regions of 3x3x3 voxels 

(figure 2).  

However, since we are dealing with Rician and not Gaussian noise, the local 

standard deviation is underestimated at low SNR areas due to the asymmetric 

distribution of Rician noise. To correct such underestimation a correction factor 

was applied based on the local SNR as described by Koay and Basser [36] and 

used for MRI noise estimation in Coupe et al. [37].  

                                                     (7)   

where  is defined as follows: 

(8) 

 

Here ! is the local mean, "2  is the local estimation of the noise variance and 2 

is the corrected estimation in the Rician case.  

Finally, a low-pass filter is applied to regularize the estimated noise field to 

provide a more regular noise field. We used a kernel size of 15 mm3 which was 

experimentally determined. 

Figure 2. Upper row, from left to right: first to 5th b=0 images. Lower row, from left to right: first 

to 5th principal components and the regularized estimated noise field. Note that the least 

significant component clearly shows the spatially varying noise pattern while showing no 

anatomy at all. 

Single B=0 image noise variance Estimator (SIBE) 
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If only one non-DWI is available we need to follow a different strategy to obtain 

the initial noise field estimation. In this case, we can use the PCA 

decomposition of the gradient images instead of the b0 images (we should note 

here that the SNR of gradient images is significantly lower than b0 images 

invalidating the Gaussian assumption for all brain regions).   

Similarity to MUBE method, first components will be associated to both signal 

and noise while the last components will contain mainly noise. Thus a local 

noise estimation (using also a 3x3x3 voxel local regions) from this last 

component will enable to obtain an initial noise field estimation. Finally, this 

underestimated initial noise field is processed in the same manner of MUBE 

method to correct local noise underestimation.  

 

3. Experiments and results 

To evaluate and compare the proposed methods a set of experiments were 

performed with simulated and in-vivo real datasets. 

 

3.1 Simulated dataset 

A numerical phantom consisting of a set of diffusion-weighted images was 

generated using the Numerical Fiber Generator (NFG) software package [39]. 

The simulated images were generated with a diffusion-weighted response 

function based on the diffusion tensor model with a fractional anisotropy of 

FA=0.8, apparent diffusion coefficient ADC=0.9"10-3 mm!/s, 7 b=0 s/mm! 

images and 60 DWIs along 60 uniformly distributed diffusion-gradient directions 

(b =3000 s/mm!), with volume field of view dimensions of 100x100x100 voxels, 

with a voxel size of 2x2x2mm#.  

 

3.2 In-vivo real dataset 
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To compare the different methods on an in-vivo real case DWI data were 

acquired using a 3T MR scanner (Achieva, Philips Medical Systems) equipped 

with a gradient system providing a maximum gradient strength of 40 mT/m and 

with an 8-channel phased array head coil. A standard SENSE (factor=2) spin-

echo EPI pulse sequence was used to acquire DWI data (b-value: 700 s/mm2; 

21 diffusion directions) with the following parameters: TE/TR ~ 60/8000 ms; 

FOV = 215x215x85 mm2; matrix size = 172x172 with 68 slices and a spatial 

resolution at 1.2x1.2x1.2 mm3.  

 

3.3 Noise estimation experiments 

To validate the proposed noise estimation methods, an experiment consisting in 

estimating the level of noise after adding a known amount of Rician noise to the 

described synthetic phantom was performed. Both homogeneous and spatially 

inhomogeneous noise distributions were applied (the applied noise standard 

deviation ranged from 1% to 9% of the maximum b0 image amplitude). We 

applied inhomogeneous noise field to simulate the noise patterns related to 

sensitivity maps. To measure noise estimation error, the Absolute mean Error 

Ratio (AER) was used: 

                                        (9) 

where  is the local estimated noise standard deviation,  is the local real 

noise applied, i is the local coordinate and " represents the image volume. 

During this experiment, MUBE and SIBE methods were evaluated. The mean 

AER of MUBE was 0.0070, while it was 0.0276 for SIBE for homogeneous 

noise. The mean AER of MUBE was 0.0089 and 0.0233 for SIBE for 

inhomogeneous noise. As can be noticed, both methods obtained accurate 

results with estimation errors lower than 3% at the different noise levels (see 

figure 3). 
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Figure 3. In the left figure the AER results of the two proposed methods for stationary noise is 

shown. At the right, the same results for spatially inhomogeneous noise is presented.  

 

3.4 Comparison of denoising methods  

Our proposed LPCA method was compared to three recently proposed methods 

for MRI denoising (two of them were previously used for DWI denoising):  

• Joint Linear Minimum Mean Squared Error (JLMMSE) [18]. In this 

method all the gradient images are filtered together, exploiting the first 

and second order information that they share. 

• Non-local Means (NLM) with Rician bias correction [17]. This method is 

an adaptation of Optimized blockwise NLM method [40] to deal with 

Rician noise. This method was applied to each DWI gradient image 

separately, as suggested by Wiest-Daesslé et al. [17].   

• Adaptive Non-local Means (ANLM) with Rician bias correction [41]. This 

method is an evolution of NLM method [42] that is able to deal with 

spatially varying noise patterns typically present on parallel imaging. 

Although we have no news about the use of this method for DWI 

denoising we decided to include this method in the comparison since this 

method is able to deal with spatially varying noise fields typically present 

on parallel acquired DWI. This method was also applied to each DWI 

gradient image separately. 
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All three methods were run with their default parameters. In the two NLM 

variants, we used our own implementation of the method (Matlab mex file) while 

in the second case we used the command JointLMMSE utility integrated in the 

Slicer 3.0  software [41]. The default routines available in "dtifit" (part of the FSL 

[44] software distribution, FMRIB, Oxford)  were used to process the data.  In 

particular, the tensor model was fitted using least squares [45]. The tensor was 

diagonalized and quantitative measures extracted (i.e., FA and ADC). 

Probabilistic tractography was performed using bedpostx (also part of FSL), 

which uses Markov Chain Monte Carlo sampling to build distributions of 

diffusion parameters, including that of the principal diffusion orientation, which is 

then used to repeatedly seed tracks that sample from such a distribution to 

follow particular trajectories in a stochastic fashion. 5000 tracks were initiated 

per seed voxel, and all defaults defined in the bedpostx and probtrackx 

programs were used. 

3.5 Simulated data experiment 

The simulated phantom data was corrupted with different levels of Rician noise 

ranged from 1% to 9% of the maximum non-DWI signal amplitude (both 

stationary and spatially varying noise patterns were applied). To measure the 

different filter performances the root-mean-square-error (RMSE) measure was 

used. For the spatially stationary noise case all JLMMSE, NLM and our 

proposed method used the noise estimation provided by MUBE method while 

ANLM internally estimated the amount of noise. For the spatially varying noise 

case, both NLM and JLMMSE methods assume constant noise across the 

volume and therefore they were run using the noise level present at the 

background which is typically used to estimate noise level on MRI. Similarly to 

the stationary noise case ANLM method internally estimated the local noise 

level and finally our proposed method used the noise estimation provided by 

MUBE method. Figure 4 shows the results of the different methods for both 

stationary and spatially inhomogeneous noise patterns in terms of RMSE, ADC 

error and FA error. In all the cases the proposed LPCA method produced lower 

RMSE values than compared methods.  
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 Figure 4. Root mean square errors obtained with the compared filters for DWI intensity (A and 

D), ADC (B and E) and FA (C and F). Left column: results for spatially homogeneous Rician 

noise. Right column: results for spatially inhomogeneous Rician noise.  
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In Figure 5, a visual inspection of the results is proposed for the different 

methods compared at 5% Rician noise. The LPCA method was able to 

significantly reduce noise in the images while minimally affecting the original 

signal. Both NLM based methods slightly over-smoothed the data while the 

JLMMSE methods produced a more severe blurring, as it can be noticed in the 

image residuals (difference of the noise free and denoised images).  

On the other hand, the proposed method improved the estimation of the 

diffusion parameters (ADC and FA) for all noise levels (Figure 4) demonstrating 

that the LPCA method is not only able to remove high frequency noise content 

but also to reduce the signal bias which significantly affects the estimated 

parameters. Figure 6 shows the impact of Rician noise on ADC computation. 

We can observe that at 9% of Rician noise, the ADC values estimated from 

noisy phantom decreased up to 50% compared to ADC values estimated on the 

noise-free phantom. This demonstrates the importance of correcting for this 

intensity bias introduced by Rician noise. In this visual example we can see how 

the proposed method is able to remove noise derived bias to recover ADC 

values closer to ground truth compared to other filters. JLMMSE and NLM  

methods were able to reduce to some extent the Rician bias while ANLM 

method failed (probably due to an inaccurate noise estimation).    
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Figure 5. Synthetic phantom before and after denoising in the case of 5% of Rician noise. 

Notice the better preserved detail in LPCA-denoised images. 
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Figure 6. ADC results for the different methods compared. As can be noticed, the proposed 

method produces the less biased estimates of ADC values for all the studied noise levels.  
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3.6 In-vivo real data experiment 

The in-vivo real dataset was filtered with the four methods compared and the 

resulting images were analyzed. Noise was estimated using the proposed SIBE 

method since only one b0 image was available for this dataset. As expected, 

the noise field estimated by SIBE showed a spatially varying noise pattern due 

to the use of a parallel imaging SENSE sequence (see Fig. 7). ANLM, NLM and 

JLMMSE methods were run with their default parameters. In NLM method the 

noise standard deviation parameter was estimated from the image background. 

ANLM and JLMMSE methods internally estimated the noise level.  

As can be noticed in fig. 7, the proposed LPCA method produced a clear and 

contrasted image. The NLM method showed some residual noise due to the 

noise level underestimation at image central areas. In fact, this method does not 

take into account the spatially varying noise. The JLMMSE method showed 

some artifacts at frontal areas and a slightly change of contrast probably due to 

an inaccurate Rician noise bias correction. ANLM perform very well but seemed 

to over smooth some image details. 

Diffusion measures were also performed to evaluate the performance of the 

four methods compared (fig. 8). It can be noted that LPCA and ANLM methods 

provided the greatest improvements, particularly evident in the FA and ADC 

maps. The deep brain structures in the FA map of the LPCA-denoised data still 

show slight noise, albeit considerably less than the original data. All denoising 

methods improved the diffusion measurements  with the exception of JLMMSE 

(this could be caused by an inaccurate noise estimation since this method was 

not designed to deal with spatially varying noise patterns ).It is also worth to 

note that the uncertainty on the estimation of the principal diffusivity was 

drastically reduced by all denoising methods. The greatest reduction was 

obtained using the LPCA method. 

Finally, tractography experiments were performed to evaluate the effect of the 

denoising algorithms on the directional information of water diffusion. 

Tractography of the genu of the corpus callosum, the posterior limb of the 

internal capsule  and right crus of fornix were obtained. Tracts for the corpus 
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callosum and internal capsule result from seeding a single voxel, whereas the 

fornix was seeded in 40 voxels at the level of the body of the fornix, with an 

AND operator at the level of the hippocampus. The same tracking criteria were 

used for all data sets. Figure 9 shows tractography results of the different 

denoised data using the compared methods. As can observed LPCA produced 

the most coherent results of all compared methods.  JLMMSE and ANLM 

methods produced spurious tracks not present on LPCA and NLM-denoised 

data. 

 

Figure 7. Example results on a clinical dataset. First row-Left to right: Original noisy data, LPCA 

results, JLMMSE results, ANLM results and NLM results. Second row-Left to right: Estimated 

noise field, LPCA residuals, JLMMSE residuals, ANLM residuals and NLM residuals. Third row: 

close-up of the results of first row.   
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Figure 8. Diffusion tensor metrics. The original, low SNR, data yielded maps of Fractional 

Anisotropy (FA, first row) and Apparent Diffusion Coefficient (ADC, second row) of poor quality, 

which were improved by all denoising methods, with the exception of JLMMSE (third column). 

The direction of the main diffusivity, shown as green quivers (row 3), is overlaid on the 

corresponding FA map, showing a much smoother and coherent pattern in the LPCA-denoised 

data. The uncertainty of the principal diffusivity (row 4) is drastically reduced by all denoising 

methods, with the greatest reduction using the LPCA filter. 
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Figure 9. Tractography of the genu of the corpus callosum (first row), the posterior limb of the 

internal capsule (second row) and right crus of fornix (third row), overlaid on the FA map derived 

from the LPCA-denoised data. Isosurfaces represent those voxels that are intersected by at 

least 100 tracts in the case of the corpus callosum and internal capsule, and by at least 7 in the 

case of the fornix. Notice the limited propagation of all the tracts derived from the original, low 

SNR, data sets (first column), with the crus of the fornix barely visible (arrowhead). The corpus 

callosum was extended by all algorithms, but reached even farther in the LPCA-denoised data 

set (curved arrow). The crus of the fornix is extended and its width increased by all denoising 

methods, but JLMMSE and ANLM-denoised data sets produced spurious tracks (double 

arrows), which were not produced in the LPCA and NLM-denoised data sets. 

 

Regarding the processing times of the compared methods, the fastest one was 

the JLMMSE with only 40 seconds, the second was the proposed LPCA method 

with around 3 minutes and finally NLM and ANLM methods took over 8 and 15 

minutes correspondently. All experiments were run on an i7 intel machine with 

16 GB RAM using Matlab 2011a and Windows 7.  
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4. Discussion  

In this paper, a new method for DWI denoising is proposed and evaluated using 

both synthetic and real clinical data. In addition, a comparison with related 

state-of-the-art methods is provided. Despite its simplicity, we demonstrated 

improvements on DWI denoising and diffusion parameter estimation using our 

LPCA filter compared to previously proposed methods. 

Our proposed filter removes noise in multi-directional DWI data by using an 

overcomplete local PCA-based decomposition. Such noise reduction 

capabilities can be understood due to high level of local profile redundancy 

which allows representing diffusion profiles using only a small number of 

components thus enabling to remove non signal related components (i.e. noise) 

efficiently. In addition, we have shown that our proposed filter not only reduces 

the noise present in the images, but also the bias induced by the Rician nature 

of the noise, thus producing diffusion parameters that better reflect the 

characteristics of the tissue, rather than noise-biased measurements. This has 

been clearly shown with the ADC and FA results where the lower parameter 

estimation error was coherent for all the noise levels tested. Moreover, 

tractography results were improved using our denoised method, considerably 

reducing the uncertainty of fiber directions and increasing the probability of 

connections between voxels within a given tract. Therefore, tracts can be 

reconstructed more reliably and thus the analyses of the tissue microstructure 

by means of tensor-derived metrics would be more sensitive. 

The quantitative diffusion maps derived from the simulated data sets showed 

that the bias introduced by Rician noise in the estimation of quantitative 

diffusion parameters are minimized when denoising of the DWI is performed, 

with a clear advantage of the LPCA method compared to JLMME and NLM 

based algorithms. This was also true in the case of inhomogeneous noise, a 

scenario ever more commonly encountered, as parallel imaging methods are 

becoming commonplace. Moreover, the directional information of the diffusion 

data is not affected by our method, showing negligible deviation from the true 

principal diffusivity compared to the noise-free phantom and clearly 
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outperforming both the noisy phantom as well as the other denoising algorithms 

tested. For clinical dataset, this translated into better depictions of connectivity 

with a higher degree of confidence.  

Our current method can be easily applied to any muti-directional DWI data set, 

independently of the diffusion analysis performed (e.g., DTI, HARDI, q-ball, 

etc...), potentially improving any quantitative measure derived from them. This 

has immediate benefits for the analysis of brain connectivity, as well as the 

study of tissue microstructure in the healthy and diseased brain. 
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