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There is a VaR beyond usual approximations

M. Kratz ∗ †

Abstract

Basel II and Solvency 2 both use the Value-at-Risk (VaR) as the risk measure to
compute the Capital Requirements. In practice, to calibrate the VaR, a normal
approximation is often chosen for the unknown distribution of the yearly log re-
turns of financial assets. This is usually justified by the use of the Central Limit
Theorem (CLT), when assuming aggregation of independent and identically dis-
tributed (iid) observations in the portfolio model. Such a choice of modeling, in
particular using light tail distributions, has proven during the crisis of 2008/2009
to be an inadequate approximation when dealing with the presence of extreme
returns; as a consequence, it leads to a gross underestimation of the risks.
The main objective of our study is to obtain the most accurate evaluations of
the aggregated risks distribution and risk measures when working on financial or
insurance data under the presence of heavy tail and to provide practical solutions
for accurately estimating high quantiles of aggregated risks. We explore a new
method, called Normex, to handle this problem numerically as well as theoret-
ically, based on properties of upper order statistics. Normex provides accurate
results, only weakly dependent upon the sample size and the tail index. We
compare it with existing methods.
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Introduction

Financial institutions, as banks and insurances, always consider portfolios of individual
risks to evaluate their risk exposure. It is the reason why aggregated risks, modeled
with random variables (rv’s), constitute the basis of internal models developed in those
institutions, and are the focus of much investigation to evaluate at best their resulting
distribution.
In practice, when working on market risk data, e.g. on returns of financial assets which
are known to be heavy tailed, it appears that the distribution of the yearly log returns
of financial assets is often approximated by a normal distribution (via the Central Limit
Theorem (CLT)), assuming the aggregation of iid observations in the portfolio model.
Under this last assumption, there are two main drawbacks when using the CLT for
moderate heavy tail distributions (e.g. Pareto with a shape parameter larger than 2).
The first one is that, if the CLT may apply to the sample mean because of a finite
variance, it also provides a normal approximation with a slow rate of convergence; it
may be improved when removing extremes from the sample (see e.g. [24] and references
therein). Moreover, even if we are interested only in the sample mean, samples of small
or moderate sizes will lead to a bad approximation. Improving the approximation would
require to ask for the existence of moments of order larger than 2. A second drawback
is that, when working on heavy tailed aggregated data, the tail may clearly appear,
e.g. on QQ-plots, as heavy on high frequency data (e.g. daily ones) but may become
not visible anymore when aggregating them in e.g. monthly or yearly data (i.e. short
samples), although it is well known that the tail index of the underlying distribution
remains constant under aggregation. The figures on the S&P 500 returns illustrate
very clearly this last issue, as we can see:

The main objective of this study is to build the most accurate approximation for the
distribution of aggregated risks when working on financial data under the presence of
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fat tail, not only for the mean but also for the tail behavior in order to obtain sharp
evaluation of risk measures, and independently of the way we aggregate the risks.
The first section will briefly review the existing methods, from the General Central
Limit Theorem (GCLT) to Extreme Value Theory (EVT) methods, then present some
properties of order statistics, known and new ones, useful to construct our method
named Normex. This new approach, inspired by the work of Zaliapin et al.’s (see [49]),
will be described in the next section and compared analytically with standard methods.
Finally we will apply on simulated samples the different methods, existing ones and
Normex, to compute extreme quantiles which are used as risk measures in solvency
calculation. We will then compare numerically their accuracy.
With financial/actuarial applications in mind, we use power law models, such as Pareto,
for the marginal distributions of the risks. Note that this is also justified by the Extreme
Value Theory (EVT).

1 A brief review of existing methods and properties

of order statistics

Limit theorems for the sum of independent and identically distributed (iid) random
variables (rv’s) are well known. Nevertheless, they can be misused in practice and,
as a consequence, lead to wrong results when applied to evaluate risk measures for
aggregated risks. To help practitioners to be sensitive to this issue, we consider the
simple example of aggregated heavy-tailed risks, where the risks are represented by iid
Pareto rv’s, which is a natural frame for this study, as we are going to see.

To aggregate risks implies a decrease of the sample size (of the aggregated risks), hence
comes the question of how reasonable it is to use a limit distribution as an approxima-
tion of the true distribution of the aggregated risks, and which type of approximation
can be used for any sample size. First we review the existing methods to approximate
the distribution of the Pareto sum, from the General Central Limit Theorem (GCLT)
to Extreme Value Theory (EVT) approaches.

Let us start with some notation.

[x] will denote the integer part of any non negative real x such that [x] ≤ x < [x] + 1.
Let (Ω,A,P) be the probability space on which we will be working.
Let Φ and ϕ denote, respectively, the cumulative distribution function (cdf) and the
probability density function (pdf) of the standard normal distribution N (0, 1), and
Φµ,σ2 and ϕµ,σ2 the cdf and pdf of the normal distribution N (µ, σ2) with mean µ and
variance σ2.
Let X be a random variable (r.v.), Pareto (type I) distributed with shape parameter
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α and cdf F defined by

F (x) := 1− F (x) = x−α, α > 0, x ≥ 1 (1)

and pdf denoted by f .
Note that the inverse function F← of F is given by

F←(z) = (1− z)−1/α , for 0 < z < 1 (2)

Recall that for α > 1, E(X) =
α

α− 1
and for α > 2, var(X) =

α

(α− 1)2(α− 2)
.

We denote by Sn the Pareto sum Sn :=
n∑
i=1

Xi , (Xi, i = 1, . . . , n) being an n-sample

with parent r.v. X and associated order statistics X(1) 6 · · · 6 X(n).

We will consider iid Pareto rv’s in this study. Why Pareto? it is justified by the EVT.
Indeed recall the Pickands theorem (see [39] or e.g. [19]) proving that for sufficiently
high threshold u, the General Pareto Distribution (GPD) Gξ,σ(u) (with shape parameter
ξ and scale parameter σ(u)) is a very good approximation to the excess cdf defined by
Fu(x) = P[X − u ≤ x|X > u]:

Fu(y) ≈
u→∞

Gξ,σ(u) (y)

When considering risks under the presence of heavy tail, it implies that the extreme
risks follow a GPD with a positive shape parameter ξ > 0. Therefore, since, for ξ > 0,
Gξ,σ(u)(y) ∼

y→∞
cy−1/ξ, for some constant c > 0, then it is natural and quite general

to consider a Pareto distribution for heavy tailed risks.
We may also wonder if the i.i.d. condition is not too restrictive to keep interest to
this study. Again the EVT provides an answer to this provocative question. Indeed, it
tells us that the tail index of the aggregated distribution corresponds to the one of the
marginal with the heaviest tail, hence does not really depend on whether we consider
the dependence or not. Moreover, when focusing on the evaluation of the VaR risk
measure, it is also somehow confirmed by a recent paper by Embrechts et al. (see [18])
providing the worse lower and upper bounds of the VaR of aggregated risks, whatever
is the dependency. The bounds appear very close in the Pareto case.

1.1 Existing approximations for the aggregated risks

Let us review the existing methods to approximate the distribution of the Pareto sum,
from the General Central Limit Theorem (GCLT) to Extreme Value Theory (EVT)
approaches.

• A GCLT approach (see e.g. Samorodnitsky et al. 1994, Petrov 1995, Zaliapin et al. 2005,
Furrer 2012)

The distribution of Sn can be approximated by
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- a stable distribution whenever 0 < α < 2 (via the GCLT)

- a standard normal distribution for α ≥ 2 (via the CLT for α > 2; for α = 2, it comes
back to a normal limit with a variance different from var(X) =∞):

If 0 < α < 2,
Sn − bn
n1/αCα

d→ Gα normalized α-stable distribution

If α ≥ 2,
1

dn

(
Sn −

nα

α− 1

)
d→ Φ

with

bn =


0 if 0 < α < 1
πn2

2

∫ ∞
1

sin
(πx

2n

)
dF (x) ' n (log n+ 1− C − log(2/π)) if α = 1

n E(X) = nα/(α− 1) if 1 < α < 2

(C = Euler constant 0.5772)

Cα =

{
(Γ(1− α) cos(πα/2))1/α if α 6= 1
π/2 if α = 1

; dn =


√
n var(X) =

√
nα

(α−1)2(α−2) if α > 2

inf
{
x : 2n log x

x2
≤ 1
}

if α = 2

• An EVT approach

Recall the following result.

Lemma 1.1 (see e.g. [20], [19])
Assume that Xi, i = 1, . . . , n are i.i.d. rv’s with cdf F having a regularly varying tail
with tail index β ≥ 0, then for all n ≥ 1,

F n∗(x) ∼ nF (x) as x→∞

which means that the tail of the cdf of the sum of iid rv’s is mainly determined by the
tail of the cdf of the maximum of these rv’s:

P[Sn > x] ∼ P[ max
1≤i≤n

Xi > x] as x→∞

It applies of course to Pareto rv’s.

• A mixed approach by Zaliapin et al. for the case 2/3 < α < 2

The neat idea of this approach is to rewrite the sum of the Xi’s as the sum of the order
statistics X(i) and to separate it into two terms, one with order statistics having finite
variance and the other as the complement:
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Sn =
n∑
i=1

Xi =
n−2∑
i=1

X(i) +
(
X(n−1) +X(n)

)
with var(X(i)) <∞, i = 1, · · · , n− 2.

Assuming the independence of the two subsums and using the CLT for the finite vari-
ance sum, the authors obtained the following approximation for the cdf of Sn:

P (Sn ≤ x) '
n→∞

P
[
N
(
m1(α, n, 2), σ2(α, n, 2)

)
≤ x

]
× P

[
X(n−1) +X(n) ≤ x

]
with

m1(α, n, 2) =
n−2∑
i=1

n!Γ(n− i+ 1− 1/α)

(n− i)!Γ(n+ 1− 1/α)

m2(α, n, 2) =
n!

Γ(n+ 1− 2/α)

(
n−2∑
i=1

Γ(n− i+ 1− 2/α)

(n− i)!
+

2
n−2∑
j=2

j−1∑
i=1

Γ(n− j + 1− 1/α)Γ(n− i+ 1− 2/α)

(n− j)!Γ(n− i+ 1− 1/α)

)
σ2(α, n, 2) = m2(α, n, 2)−m2

1(α, n, 2)

Compared with the GCLT method, this approach, even if quite crude, provides a better
approximation for the Pareto sum than the GCLT does, and for an arbitrary number
of summands, with a higher degree of accuracy. It gives also a better result for the
evaluation of the Value-at-Risk than the GCLT one does, even when using another
rough approximation, namely replacing the quantile of the total Pareto sum with the
direct summation of the quantiles of each subsum. Another drawback would be, when
considering the case α > 2, to remain with one sum of all terms with a finite variance,
hence in general with a poor or slow normal approximation.

Before turning to the construction of Normex, let us recall some properties of order
statistics (see e.g. [13]) and provide new ones (from straightforward computations)
that will be needed in the next session.

1.2 Some properties of order statistics

• Distribution of order statistics (see e.g. [13])

Recall that the pdf f(i) of X(i) (1 ≤ i ≤ n) is given by

f(i)(x) =
1

B(i, n− i+ 1)
F i−1(x)

(
1− F (x)

)n−i
f(x), with B(a, b) =

(a− 1)!(b− 1)!

(a+ b− 1)!
, a, b ∈ N∗
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that the joint pdf f(n1)...(nk) of the order statistics X(nj), j = 1, . . . , k, with 1 ≤ n1 <
. . . < nk ≤ n; 1 ≤ k ≤ n is, for 1 < x1 ≤ · · · ≤ xk

f(n1)...(nk)(x1, . . . , xk) = n!
(F (x1))

n1−1

(n1 − 1)!
f(xk)

(1− F (xk))
n−nk

(n− nk)!

k−1∏
j=1

f(xj)

(
F (xj+1)− F (xj)

)nj+1−nj−1(
nj+1 − nj − 1

)
!

It becomes, for successive order statistics, for 1 < x1 ≤ · · · ≤ xj, for i ≥ 1, j ≥ 2, with
i+ j ≤ n,

f(i+1)...(i+j)(x1, . . . , xj) =
n!

i! (n− i− j)!
F i(x1)(1− F (xj))

n−i−j
j∏
l=1

f(xl)

For α-Pareto rv’s, those pdf of order statistics are expressed as

f(i)(x) =
n!

(i− 1)!(n− i)!
α(1− x−α)i−1x−α(n−i+1)−1 (3)

and, for 1 < x1 ≤ · · · ≤ xk,

f(n1)...(nk)(x1, . . . , xk) = n! αk
(1− x−α1 )n1−1

(n1 − 1)!

x
−α(n−nk+1)−1
k

(n− nk)!

k−1∏
j=1

x−α−1j

(
x−αj − x−αj+1

)nj+1−nj−1(
nj+1 − nj − 1

)
!

(4)

and for successive order statistics, for 1 < x1 ≤ · · · ≤ xj, for i ≥ 1, j ≥ 2, with
i+ j ≤ n,

f(i+1)...(i+j)(x1, . . . , xj) =
n! αj

i! (n− i− j)!
(1− x−α1 )i x

−α(n−i−j)
j

j∏
l=1

1

xα+1
l

(5)

Moments of α-Pareto order statistics satisfy

E[Xp
(j)] <∞ iff p < α(n− j + 1) (6)

and E[Xp
(j)] =

n! Γ(n− j + 1− p/α)

(n− j)! Γ(n+ 1− p/α)

and, for 1 ≤ i < j ≤ n,

E[X(i)X(j)] <∞ iff min
(
n− j + 1 , (n− i+ 1)/2

)
> 1/α (7)

and E[X(i)X(j)] =
n! Γ(n− j + 1− 1/α)Γ(n− i+ 1− 2/α)

(n− j)! Γ(n− i+ 1− 1/α)Γ(n+ 1− 2/α)
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• Conditional distribution of order statistics

Let us look now at conditional distributions, in the general case (with the notation f
and F ), then for Pareto rv’s.
We deduce from (3) and (4) that the joint pdf of X(i) given X(j), for 1 ≤ i < j ≤ n, is,
for x ≤ y,

fX(i)/(X(j)=y)(x) =
(j − 1)!

(i− 1)!(j − i− 1)!
f(x)

(
F (y)− F (x)

)j−i−1 F i−1(x)

F j−1(y)

=
α (j − 1)!

(i− 1)!(j − i− 1)!
x−α−1

(
x−α − y−α

)j−i−1 (1− x−α)i−1

(1− y−α)j−1
(8)

and that the joint pdf of (X(i), X(j)) given X(k), for 1 ≤ i < j < k ≤ n is, for x ≤ y ≤ z,

fX(i),X(j)/(X(k)=z)(x, y) =
(k − 1)!

(i− 1)!(j − i− 1)!(k − j − 1)!
f(x)f(y)

×
F i−1(x)

(
F (y)− F (x)

)j−i−1(
F (z)− F (y)

)k−j−1
F k−1(z)

=
α2 (k − 1)! x−α−1y−α−1 (1− x−α)i−1

(
x−α − y−α

)j−i−1(
y−α − z−α

)k−j−1
(i− 1)!(j − i− 1)!(k − j − 1)! (1− z−α)k−1

(9)

Using (3) and (5) provides, for y ≤ x1 ≤ . . . ≤ xj−1,

fX(i+2)...X(i+j)/X(i+1)=y(x1, . . . , xj−1) =
(n− i− 1)!

(n− i− j)!
(
1− F (y)

)n−i−1 (1− F (xj−1))
n−i−j

j−1∏
l=1

f(xl)

=
(n− i− 1)! αj−1

(n− i− j)! y−α(n−i−1)
1

x
α(n−i−j+1)+1
j−1

j−2∏
l=1

1

xα+1
l

(10)

Then we can compute the first conditional moments. We obtain, using (8),

E
[
X(i)/X(j) = y

]
=

(j − 1)!

(i− 1)!(j − i− 1)! F j−1(y)

∫ y

1

xF i−1(x)
(
F (y)− F (x)

)j−i−1
dF (x)

=
(j − 1)!

(i− 1)!(j − i− 1)!

∫ 1

0

F←
(
uF (y)

)
ui−1(1− u)j−i−1 du (11)

(with the change of variables u = F (x)/F (y))

=
(j − 1)!

(i− 1)!(j − i− 1)!

∫ 1

0

(
1− uF (y)

)− 1
αui−1(1− u)j−i−1 du

' 1

B(i, j − i)

{
B(i, j − i) +

∑
l≥1

B(i+ l, j − i)(F (y))l

l!

l−1∏
m=0

(m+ 1/α)

}

= 1 +
Γ(j)

Γ(i)

∑
l≥1

Γ(i+ l)

l Γ(j + l)Γ(l)
(F (y))l

l−1∏
m=0

(m+ 1/α)
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and, with the same change of variables,

E
[
X2

(i)/X(j) = y
]

=
(j − 1)!

(i− 1)!(j − i− 1)!

∫ 1

0

[
F←
(
uF (y)

)]2
ui−1(1− u)j−i−1 du (12)

=
(j − 1)!

(i− 1)!(j − i− 1)!

∫ 1

0

(
1− uF (y)

)− 2
αui−1(1− u)j−i−1 du

' 1 +
Γ(j)

Γ(i)

∑
l≥1

Γ(i+ l)

l Γ(j + l)Γ(l)
(F (y))l

l−1∏
m=0

(m+ 2/α)

and, for 1 ≤ i < j < k ≤ n, via (9),

E
[
X(i)X(j)/X(k) = y

]
=

(k − 1)!

(i− 1)!(j − i− 1)!(k − j − 1)! F k−1(y)

∫ y

1

xi F
i−1(xi)(∫ y

xi

xj
(
F (xj)− F (xi)

)j−i−1(
F (y)− F (xj)

)k−j−1
dF (xj)

)
dF (xi)

=
(k − 1)!

(i− 1)!(j − i− 1)!(k − j − 1)!

∫ 1

0

F←
(
uF (y)

)
ui−1(∫ 1

u

F←
(
vF (y)

) (
v − u

)j−i−1(
1− v

)k−j−1
dv
)
du (13)(

with the change of variables u = F (xi)/F (y) and v = F (xj)/F (y)
)

=
(k − 1)!

(i− 1)!(j − i− 1)!(k − j − 1)!

∫ 1

0

(
1− uF (y)

)− 1
α ui−1(∫ 1

u

(
1− vF (y)

)− 1
α
(
v − u

)j−i−1(
1− v

)k−j−1
dv
)
du

where F (y) = 1− y−α.

Moreover, the joint conditional distribution of (X(i+1), . . . , X(p−1)) given (X(k) = xk, k ≤
i, k ≥ p), for 1 ≤ i < p ≤ n, denoted by fX(i+1),...,X(p−1) / (X(k)=xk, k≤i, k≥p), or
f(i+1),...,(p−1) / (X(k)=xk, k≤i, k≥p) when no ambiguity, is, for x1 < . . . < xn,

f(i+1),...,(p−1) / (X(k)=xk, k≤i, k≥p)(xi+1, . . . , xp−1) =

(p− i− 1)!(
F (xp)− F (xi)

)p−i−1 p−1∏
l=i+1

f(xl) =
(p− i− 1)! αp−i−1(
x−αi − x−αp

)p−i−1 p−1∏
l=i+1

1

xα+1
l

(14)

It implies thatX(i+1), . . . , X(p−1) are independent ofX(1), . . . , X(i−1) andX(p+1), . . . , X(n)

when X(i) and X(p) are given, and that the order statistics form a Markov chain.
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2 Normex : a mixed normal and extremes limit

In this approach, inspired by Zaliapin et al.’s paper, we go further in the direction
of separating mean and extreme behaviors in order to improve approximations and
to settle a method in a formal way. It means to answer the question of how many
largest order statistics Xn−j, j > k, would explain the divergence between the underly-
ing distribution and the normal, stable respectively, approximation when considering
a Pareto sum with α ≥ 2, or α < 2 respectively. Normex gives an answer in a simple
and efficient way.

We are mainly interested in the case of a shape parameter larger than 2, since it is
the usual case when studying market risk data, for instance. For such a case, the CLT
applies because of the finiteness of the 2nd moment but provides wrong results for the
tails, as expected. Indeed, the CLT only concentrates on the average behavior; it is
equivalent to the CLT on the trimmed sum (i.e. Sn minus a given number of the largest
order statistics) (see [34]), which emphasizes that the tail is not considered, and the
rate of convergence improves for trimmed sums (see e.g. [24], [25]).
Moreover, as already mentioned, a fat tail behavior may clearly appear on high fre-
quency data but be not visible anymore (empirically) when aggregating data or when
considering short samples, although it is well known that shape parameter of the un-
derlying distribution remains constant under aggregation. Hence we really have to be
aware that using CLT to obtain information on something else than the average is sim-
ply wrong in presence of fat tails, even if in some situations the plot of the empirical
distribution fits well a normal one.

Although our focus will be mainly ob the case α ≥ 2, we will develop Normex for any
α ∈ (0; 4]. We aim at determining in an ’optimal way’ (in order to improve at most
the distribution approximations) the number k that corresponds to a threshold when
splitting the sum of order statistics into two subsums, the second one constituted by
the k largest order statistics, under realistic assumptions. We will drop in particular
Zaliapin’s et al ’s assumption of independence between the two subsums.

Although the study is developed on the Pareto-example, note that its goal is to propose
a method that may be applied to other examples and to real data, hence this choice
of looking for limit theorems in order to approximate the true (and most of the time
unknown) distribution.
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2.1 How to fit for the best mean behavior of aggregated heavy
tail distributed risks?

Let us start by studying the behavior of the trimmed sum Tk when writing down the
sum Sn of the iid α-Pareto rv’s (with α > 0), Sn :=

∑n
i=1Xi, as

Sn = Tk + Un−k with Tk :=
n−k∑
j=1

X(j) and Un−k :=
k−1∑
j=0

X(n−j) (15)

Much literature, since the 80’s, has been concerned with the behavior of trimmed sums
by removing extremes from the sample; see e.g. [25], [34], [24].
The main issue is the choice of the threshold k, in order to use the CLT but also to
improve its fit since we want to approximate the behavior of Tk by a normal one.
We know that a necessary and sufficient condition for the CLT to apply on Tk is to
require the summands X(j), j = 1, . . . , k, to be L2-rv’s. But we also know that requiring
only the finitude of the 2nd moment may lead to a poor normal approximation, if higher
moments do not exist, as occurs for instance with financial market data. In particular,
including the finitude of the third moment provides a better rate of convergence to
the normal distribution in the CLT (Berry-Esséen inequality). Another information
that might be quite useful to improve the approximation of the distribution of Sn with

its limit distribution, is the Fisher index, defined by the ratio γ =
E[(X − E(X))4]

(var(X))2
,

which is a kurtosis index. The skewness E[(X −E(X))3]/(var(X))3/2 of X and (γ− 3)
measure the closeness of the cdf F to Φ. Hence we will choose k based on the condition
of existence of the 4th moment of the summands of Tk (i.e. the first n − k order
statistics)
Note the following Edgeworth expansion involving the Hermite polynomials (Hn, n ≥
0) which points out that requiring the finitude of the 4th moments appears as what
we call the ’optimal’ solution (of course, the higher order moments exist, the finer the
normal approximation becomes, but it would imply too strong conditions, difficult to

handle). If Fn denotes the cdf of the standardized Sn defined by
Sn − nE(X)√
n var(X)

, then

Fn(x)− Φ(x) =
1√
n
Q1(x) +

1

n
Q2(x) + o(1/n) (16)

uniformly in x, with

Q1(x) = −ϕ(x)
H2(x)

6

E[(X − E(X))3]

(var(X))3/2

Q2(x) = −ϕ(x)
{H5(x)

72

(
E[(X − E(X))3]

)2
(var(X))3

+
H3(x)

24

(
γ − 3

)}
and

H2(x) = x2 − 1; H3(x) = x3 − 3x; H5(x) = x5 − 10x3 + 15x

11



The rate of convergence appears clearly as n−δ/2 whenever E[X2+δ] <∞, δ > 0.

Note that in our Pareto case, the skewness γ1 := E[(X−E(X))3]

(var(X))3/2
and the excess kurtosis

γ2 := γ − 3 = E[(X−E(X))4]
(var(X))2

− 3 are, respectively,

γ1 = 2(1+α)
α−3

√
α−2
α

if α > 3

γ2 = 6(α3+α2−6α−2)
α(α−3)(α−4) if α > 4

Therefore we set p = 4 (but prefer to keep the notation p so that it remains general) to
obtain what we call an ’optimal’ approximation. Then we select the threshold k = k(α)
such that

E(Xp
(j))

{
<∞ ∀j ≤ n− k
=∞ ∀j > n− k (17)

which applied to our case of α-Pareto iid rv’s, using (6), gives:

k >
p

α
− 1 (18)

This condition allows then to determine a fixed number k = k(α) as a function of the
shape parameter α of the underlying heavy tailed distribution of the Xi’s but not of the
size n of the sample. We can take it as small as possible in order to fit for the best both
the mean and tail behaviors of Sn. Note that we look for the smallest possible k to be
able to compute explicitly the distribution of the last upper order statistics appearing
as the summands of the second sum Un−k. For this reason, based on condition (18),
we will choose

k = [p/α− 1] + 1 (19)

Let us summarize in the table below the necessary and sufficient condition on α to
have the existence of the p-th moments for the upper order statistics, for p = 2, 3, 4
respectively,(and for α > 1/4; we could of course complete the table for any choice of

α > 0 using (6)), using (18) written as α >
p

k + 1
.

We deduce the value of the threshold k = k(α) satisfying (18) for which the 4th moment
is finite, according to the set of definition of α:
We notice from this table that we would use Zaliapin et al.’s decomposition Sn =∑n−2

j=1 X(j) +
∑1

j=0X(n−j) only when α ∈]4
3
; 2[, using then the limit distribution of

each term (a normal one for the first sum and the exact joint distribution of the
two largest observations for the second one) to approximate the distribution of Sn.
When considering, as they do, α > 2/3, we would rather introduce the decomposition
Sn =

∑n−k
j=1 X(j) +

∑k−1
j=0 X(n−j), with k varying from 2 to 5 depending on the value of

α, to improve the approximation of the distribution of Sn.

12



k E(Xp
(n−k)) p = 2 p = 3 p = 4

0 E(Xp
(n)) <∞ iff α > 2 iff α > 3 iff α > 4

1 E(Xp
(n−1)) <∞ iff α > 1 iff α > 3/2 iff α > 2

2 E(Xp
(n−2)) <∞ iff α > 2/3 iff α > 1 iff α > 4/3

3 E(Xp
(n−3)) <∞ iff α > 1/2 iff α > 3/4 iff α > 1

4 E(Xp
(n−4)) <∞ iff α > 2/5 iff α > 3/5 iff α > 4/5

5 E(Xp
(n−5)) <∞ iff α > 1/3 iff α > 1/2 iff α > 2/3

6 E(Xp
(n−6)) <∞ iff α > 2/7 iff α > 3/7 iff α > 4/7

7 E(Xp
(n−7)) <∞ iff α > 1/4 iff α > 3/8 iff α > 1/2

Table 1: Necessary and sufficient condition on α for having E(|X(n−k)|p) <∞

α ∈ I(k) with I(k) = ]1
2
; 4
7
] ]4

7
; 2
3
] ]2

3
; 4
5
] ]4

5
; 1 ]1; 4

3
] ]4

3
; 2[ [2,4]

k = k(α) = 7 6 5 4 3 2 1

Table 2: Value of k(α) for having up to E(|X(n−k(α))|4) <∞

2.2 A conditional decomposition

Whatever is the size of the sample, because of the handy magnitude of k, we are able
to compute explicitly the distribution of the last upper order statistics appearing as
the summands of the second sum Un−k defined in (15). The choice of k allows also
to obtain a good normal approximation for the distribution of the trimmed sum Tk.
Nevertheless, since Tk and Un−k are not independent, we decompose the Pareto sum
Sn in a slightly different way than in (15) (but keeping the same notation), namely

Sn = Tk +Xn−k+1 + Un−k+1 (20)

and use the property of conditional independence (recalled in §1.2) between the two
subsums Tk/X(n−k+1) and Un−k+1/X(n−k+1) (for k ≥ 1).
Then we obtain the following approximation of the distribution of Sn, for k ≥ 1 (i.e.
when the pth moment of the k largest order statistics do not exist).

Theorem 2.1 The cdf of Sn expressed in (20) with k = k(α) ≥ 1 defined in (19),
can be approximated by Gn,α,k defined for any x ≥ 1 by

Gn,α,k(x) =


nα

∫ x

1

1

σ(y)

(1− y−α)n−1

y1+α

∫ x−y

0

ϕ

(
v −m1(y)

σ(y)

)
dv dy if k = 1

∫ x

1

f(n−k+1)(y)

∫ x−y

0

ϕm1(y),σ2(y) ∗ h(k−1)∗y (v)dv dy if k ≥ 2

13



with f(i) computed in (3), hy the probability density function of a Pareto rv with pa-

rameters α and y, i.e. defined by hy(x) =
α yα

xα+1
1I(x≥y), and where the mean m1(y) and

the variance σ2(y) of the normal density ϕm1(y),σ2(y) are defined respectively by

m1(y) = m1(α, n, k, y) =
n− k(α)

1− y−α
×


1− y1−α

1− 1/α
if α 6= 1

ln(y) if α = 1

(21)

and

σ2(y) = σ2(α, n, k, y) := m2(α, n, k, y)−m2
1(α, n, k, y)

= (n− k(1)) y

(
1− y ln2(y)

(y − 1)2

)
1I(α=1) + 2(n− k(2))

y2

y2 − 1

(
ln(y)− 2

y − 1

y + 1

)
1I(α=2)

+
n− k(α)

1− y−α

(
1− y2−α

1− 2/α
− 1

(1− 1/α)2
× (1− y1−α)2

1− y−α

)
1I(α 6=1,2) (22)

Comments

1. The distribution Gn,α,k can also be expressed as

Gn,α,1(x) = α n

∫ x

1

(1− y−α)n−1

y1+α

(
Φ
(m1(y)

σ(y)

)
− Φ

(m1(y)− (x− y)

σ(y)

))
dy (23)

and, for k ≥ 2,

Gn,α,k(x) =

∫ x

1

f(n−k+1)(y)

σ(y)

∫ x−y

0

(∫ v

0

ϕ
(v − u−m1(y)

σ(y)

)
h(k−1)∗y (u)du

)
dv dy (24)

2. Note that we considered iid Pareto rv’s only as an example to illustrate our
method intended to be extended to unknown distributions, using the CLT for
the mean behavior and heavy tail distributions of the Pareto type for the tail.
Since the exact distribution of the Pareto sum Sn of iid Pareto rv’s is known,
we will be able to judge about the quality of the approximation proposed in
Theorem 2.1 when comparing Gn,α,k with the exact distribution of Sn. We will
then compare the respective associated risk measures.
Recall that the distribution of the sum Sn of iid Pareto rv’s is given by the
following (see [41] and references therein).

. For 0 < α < 2 and α 6= 1, the pdf fn of Sn is given explicitly by the series
expansion (see Brennan et al., 68, and Blum, 70 [5])

fn(x) =
−1

π

n∑
j=1

(
n

j

)(
−Γ(1−α)

)j
sin(παj)

∞∑
m=0

Cn−j,m
Γ(m+ αj + 1)

xm+αj+1
(25)
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where Ck,m is the mth coefficient in the series expansion of the kth power of

the confluent hypergeometric function:
∞∑
m=0

Ck,mt
m =

(
∞∑
j=0

(
−α
j − α

)
tj

j!

)k

but computational difficulties may arise for large values of n and certain
ranges of x and α, as pointed out in [5].

. An alternative method, based on the inversion of the Laplace transform, has
been proposed in [41] and provides an explicit expression as well in the case
α ∈ N∗ and for a Pareto Hβ (ie not only for the case β = 1). We have

fn(t) =
1

nβ

∫ ∞
0

γm,n(v/n)e−
(
1+ t

nβ

)
vdv (26)

where, for v > 0,

γm,n(v) := (−1)n+1mn

[(n−1)/2]∑
j=0

(−π2)j
(

n

2j + 1

)(
Eim+1(v)

)n−2j−1(vm
m!

)2j+1

Eim+1(x) :=
xm

m!

(
γ + lnx−

m∑
j=1

1

j
+

∑
j≥0,j 6=m

xj

(j −m)j!

)

γ being the Euler constant.

. The pdf fn of Sn, satisfying fn = fn∗, can also be simply evaluated numeri-
cally using the recursive convolution equation

f j∗(x) = f ∗(j−1) ∗ f(x) =

∫ x

0

f (j−1)∗(x− u)f(u) du, for j ≥ 2, (27)

and f 1∗ = f . This recursive approach may yield good results, but is rela-
tively slow for large values of n and x.

3. The convolution product h
(k−1)∗
y appearing in Gn,α,k can be numerically evaluated

using, either the recursive convolution equation (27) applied to h (note that k−1
being small, there is no problem of convergence anymore), or, for α = 1, 2, the
explicit expression (26) when replacing β by y.

4. Finally recall the following result by Feller (see [20]) on the convolution closure
of distributions with regularly varying tails, which applies in our Pareto example
but may also be useful when extending the method.

Lemma 2.1 If F1 and F2 are two cdfs with regularly varying tails with tail index
β ≥ 0, then the convolution F1 ∗ F2 is also regularly varying with the same tail
index β.

15



Note that this lemma implies the result given in Lemma 1.1.

As a consequence of Lemma 2.1 in our Pareto case, we have∫ ∞
x

h(k−1)∗y (u)du ∼
x→∞

(k − 1)

∫ ∞
x

hy(u)du (28)

Proof of Theorem 2.1

. Let us express the cdf of Sn. Note that P(Sn ≤ x) = P(1 ≤ Sn ≤ x). For any x ≥ 1,
we can write

P(Sn ≤ x) =

∫ x

1

P
(
Tk + Un−k+1 ≤ x− y / X(n−k+1) = y

)
f(n−k+1)(y)dy

Hence, if k = 1,

P(Sn ≤ x) =

∫ x

1

f(n)(y)

∫ x−y

0

fT1/X(n)=y(v)dv dy (29)

and, for k ≥ 2, using the conditional independence of Tk/X(n−k+1) and Un−k+1/X(n−k+1),

P(Sn ≤ x) =

∫ x

1

f(n−k+1)(y)

∫ x−y

0

fTk/X(n−k+1)=y ∗ fUn−k+1/X(n−k+1)=y(v)dv dy (30)

The next two steps consist in evaluating the limit distribution of Tk / (X(n−k+1) = y)
and the exact distribution of Un−k+1 / (X(n−k+1) = y).

. A limiting normal distribution for Tk/(X(n−k+1) = y)

Proposition 2.1 The conditional distribution of the trimmed sum Tk defined in (15)
given the (n − k + 1)th largest rv X(n−k+1) can be approximated, for large n, by the

normal distribution N
(
m1(α, n, k, y), σ2(α, n, k, y)

)
:

L
(
Tk/(X(n−k+1) = y)

)
d∼

n→∞
N
(
m1(α, n, k, y), σ2(α, n, k, y)

)
(31)

with y > 1 and where the mean m1(α, n, k, y) and the variance σ2(α, n, k, y) are defined
in (21) and (22) respectively.

Proof of Proposition 2.1

Since Tk/X(n−k+1) has the same distribution as
∑n−k

j=1 Yj with (Yj) an (n− k)-sample

with parent cdf defined by FY (.) = P
(
Xi ≤ . / Xi < X(n−k+1)

)
, we may apply the
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CLT whenever the 2nd moment of Yj is finite. Note that for the reasons explained
previously, we will choose p ≥ 4 for a better fit (after noticing that if X(i) has a finite
pth moment, for i ≤ n− k, so does X/X < X(n−k+1)).
We need to compute the first two moments of Tk/(X(n−k+1) = y), m1(α, n, k, y) and
m2(α, n, k, y) respectively. We do it when considering the sum itself, since it involves
less computations than the direct computation. Indeed, using (11), (12) and (13)
respectively, and applying the multinomial theorem, lead to, for k > p/α− 1,

m1(y) := m1(α, n, k, y) :=
n−k∑
j=1

E
(
X(j)/X(n−k+1) = y

)
= (n− k)

∫ 1

0

F←
(
uF (y)

) n−k−1∑
j=0

(
n− k − 1

j

)
uj(1− u)n−k−1−j du

where

(
n− k − 1

j

)
denotes the binomial coefficient

= (n− k)

∫ 1

0

F←
(
uF (y)

)
du (using the binomial theorem)

i.e. when considering the α-Pareto distribution, using (2),

m1(y) = (n− k(α))

∫ 1

0

(
1− uF (y)

)−1/α
du

=
n− k(α)

F (y)
×


1−

(
F (y)

)1−1/α
1− 1/α

if α 6= 1

| lnF (y) | if α = 1

hence (21).
Let us compute the 2nd moment m2(y) := m2(α, n, k, y), introducing the notation
a = F (y).

m2(y) =
n−k∑
j=1

E
(
X2

(j)/X(n−k+1) = y
)

+ 2
n−k∑
j=2

j−1∑
i=1

E
(
X(i)X(j)/X(n−k+1) = y

)
= (n− k)

∫ 1

0

(
F←(au)

)2
du + 2(n− k)(n− k − 1)

∫ 1

0

F←(au)

∫ 1

u

F←(av)

×
n−k−2∑
j=0

j∑
i=0

(
n− k − 2

i, j − i, n− k − 2− j

)
ui
(
v − u

)j−i(
1− v

)n−k−2−j
dv du

where

(
n− k − 2

i, j − i, n− k − 2− j

)
denotes the multinomial coefficient

= (n− k)

{∫ 1

0

(
F←(au)

)2
du+ 2(n− k − 1)

∫ 1

0

F←(au)

∫ 1

u

F←(av)dv du

}
(using the multinomial theorem)
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Hence, for Pareto, via (2), it comes

m2(y) = (n− k)

{∫ 1

0

(1− au)−2/αdu+ 2(n− k − 1)

∫ 1

0

(1− au)−1/α
∫ 1

u

(1− av)−1/αdv du

}
= (n− k)

∫ 1

0

(1− au)−2/αdu + (n− k)(n− k − 1)×
2

a(1− 1/α)

(∫ 1

0

(1− au)1−2/αdu − (1− a)1−1/α
∫ 1

0

(1− au)−1/αdu

)
if α 6= 1

ln2(1− a)

a2
if α = 1

i.e. m2(y) =
n− k(α)

F (y)
×


1−

(
F (y)

)1−2/α
1− 2/α

if α 6= 2

| lnF (y)| if α = 2

+

(
n− k(α)

)(
n− k(α)− 1

)
F 2(y)

×


(
1− (F (y))1−1/α

)2
(1− 1/α)2

if α 6= 1

ln2
(
F (y)

)
if α = 1

hence (22).
Then the result given in Proposition 2.1 follows. 2

. A Pareto distribution for the conditional sum of the largest order statistics

Now, let us look at Un−k+1/
(
X(n−k+1) = y

)
, assuming k ≥ 2. Its distribution may be

computed explicitly via (10) that becomes, when taking i = n− k and j = k, and for
y ≤ x1 ≤ . . . ≤ xk−1,

fX(n−k+2),...,X(n)/X(n−k+1)=y(x1, . . . , xk−1) =
(k − 1)!(

1− F (y)
)k−1 k−1∏

l=1

f(xl) =
(k − 1)! αk−1

y−α(k−1)

k−1∏
l=1

x−α−1l

i.e. fX(n−k+2),...,X(n)/X(n−k+1)=y(x1, . . . , xk−1) = (k − 1)!
k−1∏
l=1

hy(xl)1I(x1≤...≤xk−1)

where hy is the probability density function (df) a Pareto rv with parameters α and y.
We can then deduce, taking into account the number of possible permutations, that
the conditional density of the sum Un−k+1 given that (X(n−k+1) = y) is defined, for any
s ≥ (k − 1)y, by

fUn−k+1/(X(n−k+1)=y)(s) = h(k−1)∗y (s) (32)
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where (k − 1)∗ denotes the convolution product of order k − 1.
Note that we could have retrieved this conditional density, noticing, as previously for

Tk, that Un−k+1/X(n−k+1) can be written as Un−k+1/X(n−k+1)
d
=

k−1∑
j=1

Zj where the Zj are

i.i.d. rv’s with parent rv Z and parent cdf defined by FZ(.) = P
[
X ≤ . / X > X(n−k+1)

]
.

. Combining Proposition 2.1, the result (32), and (29), (30), allows to conclude to
Theorem 2.1. 2

2.3 On the quality of the approximation of the distribution of
the Pareto sum Sn

To estimate the quality of the approximation of the distribution of the Pareto sum
Sn, we compare analytically the exact distribution of Sn with the distribution Gn,α;k

defined in Theorem 2.1. It could also be done numerically, as for instance in [21] with
the distance between two distributions F and G defined by di(F,G) =

∫∞
1

∣∣F (x) −
G(x)

∣∣idx, with i = 1, 2. We will proceed numerically only when considering the tail
of the distributions, estimating the distance in the tails through the VaR measure
(see §3.3). When looking at the entire distributions, we will focus on the analytical
comparison mainly for the case α > 2 (with some hints for the case α ≤ 2). Note
that it is not possible to compare directly the expressions of the VaR corresponding
to, respectively, the exact and approximative distributions, since they can only be
expressed as the inverse function of a cdf. Nevertheless, we can compare the tails of
these two distributions to calibrate the accuracy of the approximative VaR since∣∣P(Sn > x)−Gn,α;k(x)

∣∣ = |P(Sn ≤ x)−Gn,α;k(x)|

Moreover, we will compare analytically our result with a normal approximation made
on the entire sum (and not the trimmed one) since, for α > 2, the CLT applies and,
as already noticed, is often used in practice.

Since Normex uses the exact distribution of the last upper order statistics, comparing
the true distribution of Sn with its approximation Gn,α;k simply comes back to the
comparison of the true distribution of n−k iid rv’s with the normal distribution (when
applying the CLT). Note that, when extending Normex to any distribution, an error
term should be added to this latter evaluation. It comes from the approximation of
the extremes distribution by a Pareto one.

Suppose α > 2. Applying the CLT gives the normal approximation N (µn, s
2
n), with

µn := E(Sn) and s2n := var(Sn), where in the case of a Pareto sum, µn = nα
α−1 , and

s2n =
nα

(α− 1)2(α− 2)
. We know that applying the CLT directly to Sn leads to non

satisfactory results, not only for the estimation of risk measures but even for the mean
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behavior, since for any x, the quantity Q1(x), involving the 3rd moment of X, ap-
pearing in the error (16) made when approximating the exact distribution of Sn by a
normal one, is infinite for any 2 < α ≤ 3. The rate of convergence in n is reduced to
O(1). When α > 3, even if the rate of convergence improves because Q1(x) < ∞, we
still have Q2(x) =∞ (because the 4th moment of X does not exist), which means that
we cannot get a rate of order 1/n.
Now let us look at the rate of convergence when approximating Sn with Gn,α;k.

Recall (29) and (30). Considering the exact distribution of the Pareto sum Sn means

taking, at given y > 1 and for any k ≥ 1, Tk ≤ x−y / (X(n−k+1) = y)
d
=
∑n−k

j=1 Yj with
Yj iid rv’s with parent rv Y with finite pth moment and pdf g defined, for z ≤ (n−k)y,
by

fTk/X(n−k+1)=y(z) = g(n−k)∗(z) with g(u) =
α

F (y)
u−α−11I(1≤u≤y) (33)

Considering our approximation means to replace fTk/X(n−k+1)=y by the pdf ϕm1k,σ
2
k
, of

the normal distribution N
(
m1(α, n, k, y), σ2(α, n, k, y)

)
defined in Proposition 2.1.

Let us look at the three first moments of Y . Although the direct dependence is on α
(and y) and only indirectly on k since k = k(α), we introduce k in the index notation
for convenience and have

µy := E(Y ) =
m1(α, n, k; y)

n− k
=

1

1− 1/α
×1− y1−α

1− y−α
1I(α 6=1,2)+

ln(y)

1− y−1
1I(α=1)+

2

1 + y−1
1I(α=2)

(34)
(note that µ(y) > 1, for any α that we consider, and any y > 1), and

γ2y := var(Y ) =
σ2(α, n, k; y)

n− k
=

1

1− y−α

(
1− y2−α

1− 2/α
− 1

(1− 1/α)2
× (1− y1−α)2

1− y−α

)
1I(α 6=1,2) (35)

+ y

(
1− y ln2(y)

(y − 1)2

)
1I(α=1) + 2

y2

y2 − 1

(
ln(y)− 2

y − 1

y + 1

)
1I(α=2)

We also need to compute the third moment. A straightforward computation provides

E(|Y − µy|3) =
α

1− y−α
[2h(µ)− h(1)− h(y)]

where h denotes the antiderivative of the function H(z) = (µ3−3µ2z+3µz2−z3)z−α−1,
i.e., if α 6= 1, 2,

E(|Y − µy|3) =
α

1− y−α

[
1I(α 6=3)

3− α
y3−α + 1I(α=3) ln(y) +

3µy
α− 2

y2−α −
3µ2

y

α− 1
y1−α +

µ3
y

α
y−α+

12 µ3−α
y 1I(α 6=3)

α(α− 1)(α− 2)(α− 3)
−
(

2 lnµy +
11

3

)
1I(α=3) +

µ3
y

α
−

3µ2
y

α− 1
+

3µy
α− 2

−
1I(α 6=3)

α− 3

]
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whereas, if α = 1,

E(|Y − µy|3) =
1

(1− y−1)2

[
y2

2
− y

(
1

2
+ 3 ln(y)

)
+

ln3(y)

1− y−1

(
3 +

1

y − 1
+

1

1− y−1

)
+

3 ln2(y)

1− y−1
[
1− 2 ln2(y) + 2 ln(1− y−1)

]
− 3 ln(y) +

1− y−1

2

]
and, if α = 2,

E(|Y − µy|3) =
4

1− y−1

[
2y

1 + y−1
− 3 ln(y)− 6

1 + y
+

2

(1 + y)2
+

1 + y−1

2

+ 3
(
1 + 2 ln 2− 2 ln(1 + y−1)

)
− 6

1 + y−1
+

2

(1 + y−1)2

]
For simplicity, let us look at the case 2 < α ≤ 3 and consider the Berry-Esséen in-
equality. For α > 3, we would use the Edgeworth expansion, with similar arguments as
developed below. Various authors have worked on this type of Berry-Esséen inequality,
in particular to sharpen the accuracy of the constant appearing in it. In the case of
Berry-Esséen bounds, the value of the constant factor c has decreased from 7.59 by
Esséen (1942) to 0.4785 by Tyurin (2010; [48]), to 0.4693 by Shevtsova (2012, [45]; see
also [28] for a detailed review), in the iid case, and to 0.5600 in the general case. Note
also that these past decades, much literature has been dedicated to the generalization
of this type of inequality; we will not provide exhaustive references, besides pointing
out the remarkable contribution by Stein (1972 [46], 1986 [47]) who proposed a uniform
upper bound to the normal approximation as in the Berry-Esséen bound, but under
general distributional assumptions, allowing dependent and nonidentical distributions;
the Stein method has been used to develop many studies, in particular by Chen & Shao
(2004, [7]) to obtain sharp bounds of the Berry-Esséen type under local dependence
(see also [40] for new developments).

Since α > 2, we only have to consider the case k = 1 (see Table 2). We can write

|P(Sn ≤ x)−Gn,α;1(x)| ≤
∫ x

1

|P
(
T1 ≤ x−y / X(n) = y

)
−Φ(n−1)µy ,(n−1)γ2y(x−y)|f(n)(y)dy

Since the conditions on moments of Y are satisfied, we can use the Berry-Esséen in-
equality to provide a non-uniform bound of the error made when approximating the
exact distribution by Gn,α;1. Indeed, we have∣∣∣P(T1 ≤ x− y / X(n) = y

)
− Φ(n−1)µy ,(n−1)γ2y(x− y)

∣∣∣
=

∣∣∣∣∣P
(∑n−1

i=1 Yi − (n− 1)µy√
n− 1 γy

≤ x− y − (n− 1)µy√
n− 1 γy

)
− Φ

(
x− y − (n− 1)µy√

n− 1 γy

)∣∣∣∣∣
≤ c C(y)√

n− 1
× 1(

1 +
∣∣∣x−y−(n−1)µy√

n−1 γy

∣∣∣)3 (36)
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where µy and γy are defined in (34) and (35) respectively, and

C(y) :=
E(|Y − µy|3)

γ3y
, with E(|Y − µy|3) computed above. (37)

We can deduce that, for any x ≥ 1,

|P(Sn ≤ x)−Gn,α;1(x)| ≤ K(x) :=
c√
n− 1

∫ x

1

C(y)(
1 +

∣∣∣x−y−(n−1)µy√
n−1 γy

∣∣∣)3 f(n)(y) dy (38)

We can compute numerically the function K in (38), as there is no known analytical
solution for the antiderivative. We use the software R for that.
We represent the bound K as au function of x for various α ∈ (2; 3] and various n in
the figures below.
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Graph of the function K for various α and n

The bound K is an increasing then decreasing function of x, with a maximum less
than 5%, which is decreasing with n and α. The x-coordinate of the maximum is
proportional to n, the proportion decreasing with α. The interval on the x-axis for
which the error is larger than 1% has a small amplitude, which is decreasing with α.
We show in Table 3 the values of the coordinates (xmax, ymax) of the maximum of K
computed on R for α = 2.01, 2.5, 3 and n = 52, 250, 500 respectively.

α = 2.01 α = 2.5 α = 3.0
n xmax ymax xmax ymax xmax ymax

52 101 4.9 % 86 4.9 % 78 4.9 %
100 196 4.6 % 166 4.6 % 150 4.6 %
250 494 4.2 % 417 4.1 % 376 4.0 %
500 990 3.9 % 834 3.7 % 751 3.5 %

1000 1984 3.6 % 1667 3.3 % 1501 3.0 %

Table 3: Coordinates of the maximum of K as a function of n and α

We can then conclude to the following proposition.
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Proposition 2.2 The error between the true distribution of Sn and its approximation
Gn,α;1 is bounded by:

|P(Sn ≤ x)−Gn,α;1(x)| ≤ K(x) =
c√
n− 1

∫ x

1

C(y)(
1 +

∣∣∣x−y−(n−1)µy√
n−1 γy

∣∣∣)3 f(n)(y) dy

with c = 0.4693, f(n) computed in (3), C(y) defined in (37), and µy and γy in (34) and
(35) respectively.
Moreover, for any n ≤ 52 and α ∈ (2; 3], 0 ≤ max

x>1
K(x) < 5% and K decreases very

fast to 0 after having reached its maximum; the larger n, the faster to 0.

Remark. Let us briefly look at the case α ≤ 2 (and α > 1/2).
We have seen that such a case implies k ≥ 2 (see Table 2). We have

|P(Sn ≤ x)−Gn,α;k(x)| ≤
∫ x

1

f(n−k+1)(y)

∫ x−y

0

fUn−k+1/X(n−k+1)=y ∗∣∣∣g(n−k)∗ − ϕ(n−k)µy ,(n−k)γ2y

∣∣∣ (v)dv dy

Note that the Berry-Esséen inequality has been proved by Petrov to hold also for
probability density functions (see [37], or [38]). It has been refined by Shevtsova (see

[44]) and we will use her result to evaluate
∣∣∣g(n−k)∗ − ϕ(n−k)µy ,(n−k)γ2y

∣∣∣. So we need to

go back to the pdf of the standardized sum
n−k∑
i=1

Yi − µy√
n− k γy

of iid rv’s with pdf g̃, which

can be expressed as

g̃(n−k)∗ where g(.) =
1√

n− k γy
g̃

(
. − µy√
n− k γy

)
It is straightforward to show by induction that

g(n−k)∗(v) =
1√

n− k γy
g̃(n−k)∗

(
v − (n− k)µy√

n− k γy

)

Then, since ϕa,b2(x) =
1

b
ϕ

(
x− a
b

)
, we can write

g(n−k)∗(v)− ϕ(n−k)µy ,(n−k)γ2y(v) =
1√

n− k γy

(
g̃(n−k)∗ − ϕ

)(v − (n− k)µy√
n− k γy

)
(39)

Since we consider a sum of (n−k) iid rv’s Yi (i = 1, . . . , n−k) with parent rv Y having
a finite pth moment, we obtain via Petrov ([37]) and Shevtsova ([44]) that there exists
a constant c = 0.4014 such that

sup
v

∣∣∣∣(g̃(n−k)∗ − ϕ)(v − (n− k)µy√
n− k γy

)∣∣∣∣ = sup
v

∣∣g̃(n−k)∗(v)− ϕ(v)
∣∣ ≤ c C(y)√

n− k
(40)
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where C(y) is defined in (37).
Hence, combining (39) and (40) gives

sup
v

∣∣∣g(n−k)∗(v)− ϕ(n−k)µy ,(n−k)γ2y(v)
∣∣∣ ≤ c C(y)

(n− k)γy
=

c

n− k
× E(|Y − µy|3)

var2(Y )

and so

|P(Sn ≤ x)−Gn,α;k| ≤
c

(n− k)

∫ x

1

C(y)

γy
f(n−k+1)(y)

∫ x−y

0

∫
fUn−k+1/X(n−k+1)=y(t)dt dv dy

with f(n−k+1)(y) =
α n!

(n− k)!(k − 1)!
(1−y−α)n−ky−αk−1 (see (3)) and fUn−k+1/X(n−k+1)=y(t) =

h
(k−1)∗
y (t) defined in Theorem 2.1. As in the case k = 1, this bound can be computed

numerically.

3 Application to risk measures and comparison

3.1 Introduction

Let us introduce the risk measures used in solvency calculations, namely the Value-at-
Risk, denoted VaR, and the Expected Shortfall Expected Shorfall (named also Tail-
Value-at-Risk) ES (or TVaR), of a rv X with continuous cdf FX (and inverse function
denoted by F←X ).

• Definitions.

– The Value-at-Risk of order q of X is simply the quantile of FX of order q,
q ∈ (0, 1):

V aRq(X) = inf{y ∈ R : P [X > y] ≤ 1− q} = F←X (q)

– If E|X| < ∞, the expected shortfall (ES), at confidence level q ∈ (0, 1) is
defined as

ESq(X) =
1

1− q

∫ 1

q

V aRβ(X) dβ or ESq(X) = E[X | X ≥ V aRq]

It can also be thought as an average over all risks exceeding V aRq(X).
This risk measure does depend only on the tail cdf of X and satisfies
ESq(X) ≥ V aRq(X).

Note that we will simplify the notation of those risk measures writing V aRq or
ESq when no confusion is possible.

24



• Aggregated risks
When looking at aggregated risks

∑n
i=1Xi, it is well known that the risk measure

ES is coherent (see [2]). In particular it is subadditive, i.e.

ESq
( n∑
i=1

Xi

)
≤

n∑
i=1

ESq(Xi)

whereas VaR is not a coherent measure, because it is not subadditive. Many
examples (see e.g. [17], [12]) can be given where VaR is superadditive, i.e.

V aRq

( n∑
i=1

Xi

)
≥

n∑
i=1

V aRq(Xi).

We have the following property.

Proposition 3.1 ([17])
Consider i.i.d. rv’s Xi, i = 1, . . . , n with parent rv X and cdf FX . Assume they
are regularly varying with tail index β > 0, which means that the right tail 1−FX
of its distribution satisfies

lim
x→∞

1− FX(ax)

1− FX(x)
= a−β, ∀a > 0

Then the risk measure VaR is asymptotically subadditive for X1, . . . , Xn if and
only if β ≥ 1:

lim
q↗1

V aRq

(∑n
i=1Xi

)∑n
i=1 V aRq(Xi)

≤ 1 ⇔ β ≥ 1

In particular, for large q, V aRq being interpreted as the risk capital, the diversi-
fication benefit breaks down whenever 0 < β < 1.

• Pareto risks
In the case of a α-Pareto distribution, we deduce from (2) analytical expressions
of those two risk measures, namely

V aRq(X) = F←(q) = (1− q)−
1
α (41)

and, if X ∈ L1, i.e. if α > 1, then

ESq(X) =
α

(α− 1)(1− q)
(V aRq(X))1−α =

α

(α− 1)
(1− q)−1/α (42)

Proposition 3.1 applies when considering α-Pareto iid rv’s, and the risk measure
VaR is asymptotically superadditive (respectively subadditive), if α ∈ (0, 1) (α ≥
1 respectively).
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3.2 Possible approximations of VaR

As an example, we treat the case of one of the two main risk measures, and choose the
VaR, since it is the main one used for solvency requirement. We would proceed in the
same way for the Expected Shortfall.

We deduce the approximations z
(i)
q of the VaR of order q from the various limit theo-

rems, (i) indicating the chosen method, namely (1) for the GCLT approach, (2) for the
CLT one, (3) for the max one, (4) for the Zaliapin et al.’s method, and (5) for Normex.
We obtain:

. via the GCLT , for 0 < α ≤ 2:

- for α < 2 :

z(1)q = n1/αCα G
←
α (q) + bn (with Gα (α, 1, 1, 0)-stable distribution)

for 1/2 < α < 2, and for q > 0.95,

z(1bis)q = n1/αq−1/α + bn

- for α = 2 :

z(1)q = dn Φ←(q) + 2n

. via the CLT, for α > 2:

z(2)q =

√
nα

(α− 1)
√
α− 2

Φ←(q) +
nα

α− 1

. via the Max (EVT) approach, for high order q, for any positive α:

z(3)q = n1/α
(

log(1/q)
)−1/α

+ bn

. via the Zaliapin et al.’s method ([49]), for 2/3 < α < 2:

z(4)q =
(
σ(α, n, 2) Φ←(q) +m1(α, n, 2)

)
+ T←α,n(q)

with Tα,n the cdf of
(
X(n−1) +X(n)

)
. via Normex, for any positive α:

z(5)q = G←n,α,k(q) with

Gn,α,k(x) =

∫ x

1

f(n−k+1)(y)

σ(y)

∫ x−y

0

(∫ v

0

ϕ
(v − u−m1(y)

σ(y)

)
h?(k−1)y (u)du

)
dv dy
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3.3 Numerical study - comparison of the methods

Since there is no explicit analytical formula for the true quantiles of Sn, we will complete
the analytical comparison of the distributions of Sn and Gn,α,k given in §2.3, providing
here a numerical comparison between the quantile of Sn and the quantiles obtained by
the various methods seen so far.

3.3.1 Presentation of the study

We simulate (Xi, i = 1, . . . , n) with parent r.v. X α-Pareto distributed, with different
sample sizes, varying from n = 52 (corresponding to aggregating weekly returns to
obtain yearly returns), through n = 250 (corresponding to aggregating daily returns
to obtain yearly returns), to n = 500 representing a large size portfolio.

We consider different shape parameters, namely α = 3/2; 2; 5/2; 3; 4, respectively.
Recall that simulated Pareto rv’s Xi’s (i ≥ 1) can be obtained simulating a uniform rv
U on (0, 1] then applying the transformation Xi = U−1/α.

For each n and each α, we aggregate the realizations xi’s (i = 1, . . . , n). We repeat the
operation N = 107 times, thus obtaining 107 realizations of the Pareto sum Sn, from
which we can estimate its quantiles.

Let zq denotes the empirical quantile of order q of the Pareto sum Sn (associated with
the empirical cdf FSn and pdf fSn), defined by

zq =:= inf{t | FSn(t) ≥ q}, with 0 < q < 1.

Recall, for completeness, that the empirical quantile of Sn converges to the true quantile
as N →∞ and has an asymptotic normal behavior, from which we deduce the following
confidence interval at probability a for the true quantile:

zq ± Φ←(a/2)×
√
q(1− q)

fSn(q)
√
N

(43)

where fSn can be empirically estimated for such a large N . We do not compute them
numerically: N being very large, bounds are close.

We compute the values of the quantiles of order q, z
(i)
q ((i) indicating the chosen

method), obtained by the three main methods, the GCLT method, the Max one, and
Normex, respectively. We do it for various values of α and n. We compare them
with the (empirical) quantile zq obtained via Pareto simulations (representing the true
quantile). For that, we introduce the approximative relative error:

δ(i) = δ(i)(q) =
z
(i)
q

zq
− 1
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We consider three possible order q: 95%, 99% (threshold for Basel II) and 99.5%
(threshold for Solvency 2).

We use the software R to perform this numerical study, with different available packages
(see the appendix). Let us particularly mention the use of the procedure Vegas in the
package R2Cuba for the computation of the double integrals. This procedure turns
out not to be always very stable for the most extreme quantiles, mainly for low values
of α. In practice, for the computation of integrals, we would advise to test various
procedures in R2Cuba (Suave, Divonne and Cuhre, besides Vegas) or to look for other
packages. Another possibility would be implementing the algorithm using all together
a different software, as e.g. Python.

3.3.2 Estimation of the VaR with the various methods

All results obtained for various n and α are given in [29]. Here we select one example
related to our focus when looking at data under the presence of moderate heavy tail
(i.e. α > 2), but will draw conclusions based on all the results.

Let us consider the example of α = 5/2.

n = 52 Simul CLT Max Normex

q zq z
(2)
q z

(3)
q z

(5)
q

δ(1) (%) δ(3)(%) δ(5)(%)

95% 103.23 104.35 102.60 103.17
1.08 -0.61 -0.06

99% 119.08 111.67 117.25 119.11
-6.22 -1.54 0.03

99.5% 128.66 114.35 127.07 131.5
-11.12 -1.24 2.21

n = 100 Simul CLT Max Normex

q zq z
(2)
q z

(3)
q z

(5)
q

δ(1) (%) δ(3)(%) δ(5)(%)

95% 189.98 191.19 187.37 189.84
0.63 -1.38 -0.07

99% 210.54 201.35 206.40 209.98
-4.36 -1.96 -0.27

99.5% 222.73 205.06 219.14 223.77
-7.93 -1.61 0.47

n = 250 Simul CLT Max Normex

q zq z
(2)
q z

(3)
q z

(5)
q

δ(1) (%) δ(3) (%) δ(5) (%)

95% 454.76 455.44 446.53 453.92
0.17 -1.81 -0.18

99% 484.48 471.5 473.99 483.27
-2.68 -2.17 -0.25

99.5% 501.02 477.38 492.38 501.31
-4.72 -1.73 0.06

n = 500 Simul CLT Max Normex

q zq z
(2)
q z

(3)
q z

(5)
q

δ(1) (%) δ(3) (%) δ(5) (%)

95% 888.00 888.16 872.74 886.07
0.02 -1.72 -0.22

99% 928.80 910.88 908.97 925.19
-1.93 -2.14 -0.39

99.5% 950.90 919.19 933.23 948.31
-3.33 -1.86 -0.27
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3.3.3 Discussion of the results

• Those numerical results are subject to numerical errors due to the finite sample
of simulation of the theoretical value, as well as the choice of random generators,
but the most important reason for numerical error of our methods resides in the
convergence of the integration methods. Thus, one should read the results, even
if reported with many significant digits, to a confidence we estimate to be around
0.1%

• Concerning Normex, we find out that:

- the accuracy of the results appears more or less independent of the sample
size n, which is the major advantage of our method when dealing with the
issue of aggregation

- for α > 2, it always gives sharp results (error less than 0.5% and often
extremely close); for most of them, the estimation is indiscernible from the
true value, obviously better than the ones obtained with the other methods

- for α ≤ 2, the results for the most extreme quantile are less satisfactory
than expected. We attribute this to a numerical instability in the integra-
tion procedure used in R. Indeed, for very large quantiles (≥ 99.5%), the
convergence of the integral seems a bit more unstable (due to the use of the
package Vegas in R), which may explain why the accuracy decreases a bit,
and may sometimes be less than with the max method. We plan to explore
this problem further.

• The max method overestimates for α < 2 and underestimates for α ≥ 2; it
improves a bit for higher quantiles and α ≤ 2. It is a method that practitioners
should think about, because it is very simple to use and gives already a first good
approximation for the VaR (as the CLT does for the mean)

• The GCLT method (α < 2) overestimates the quantiles but improves with higher
quantiles and when n increases

• Concerning the CLT method, we find out that:

- the higher the quantile, the higher the underestimation; it improves slightly
when n increases, as expected

- the smaller α, the larger the underestimation

- for α ≥ 2, the VaR evaluated with the normal approximation is always
lower than the VaR evaluated via Normex. The lower n and α, the higher
the difference

- the difference between the VaR estimated by the CLT and the one estimated
with Normex, appears large for relatively small n, with a relative error going
up to 13%, and decreases when n becomes larger
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• We have concentrated our study on the VaR risk measure because it is the one
used in solvency regulations both for banks and insurances. However, the Ex-
pected Shortfall, which is the only coherent measure in presence of fat tails,
would be more appropriate for measuring the risk of the companies. The dif-
ference between the risk measure estimated by the CLT and the one estimated
with Normex would certainly be much larger than what we obtain with the VaR,
when the risk is measured with the Expected Shortfall, pleading for using this
measure in presence of fat tails.

Conclusion

The main motivation of this study was to propose a sharp approximation of the entire
distribution of aggregated risks under the presence of fat tails, in view of application
on financial or insurance data. In particular the aim was to obtain the most accurate
evaluations of risk measures. There was still mathematically a missing ’brick’ in the
literature on the behavior of the sum of iid rv’s with a moderate heavy tail, for which
the CLT applies but with a slow convergence for the mean behavior and certainly does
not provide satisfactory approximation for the tail. Our study fills up this gap, by
looking at an appropriate limit distribution.
After reviewing the existing methods, we built Normex, a method mixing a limit nor-
mal distribution via the CLT and the exact distribution of a small number (defined
according to the range of α and the choice of the number of existing moments of order
p) of the largest order statistics.
In this study, Normex has been proved, theoretically as well as numerically, to deliver a
sharp approximation of the true distribution, for any sample size n and for any positive
tail index α, and generally better than what existing methods provide.
An advantage of Normex is its generality. Indeed, trimming the total sum by taking
away extremes having infinite moments (of order p ≥ 3) is always possible and allows
to better approximate the distribution of the trimmed sum with a normal one (via the
CLT). Moreover, fitting a normal distribution for the mean behavior can apply, not
only for the Pareto distribution, but for any underlying distribution, without having
to know about it, whereas for the extreme behavior, we pointed out that a Pareto type
is standard in this context.
Normex could also be used from another point of view. We could apply it for a type
of inverse problem, to find out a range for the tail index α when fitting this explicit
mixed distribution to the empirical one. Other approaches have been proposed to
estimate the tail index, which may be classified into two classes, supervised procedures
in which the threshold to estimate the tail is chosen according to the problem (as e.g.
the MEP ([14]), Hill ([26]), or QQ ([30]) methods) and unsupervised ones, where the
threshold is algorithmically determined (as e.g. in [6], [15]). Normex would be a new
unsupervised approach, since the k is chosen algorithmically for a range of α.
Other perspectives concern the application of this study to real data, as well as its
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extension to the dependent case for which some interesting recent results on stable
limits for sums of dependent infinite variance r.v. from Bartkiewicz et al. (see [3]) and
Large Deviation Principles from Mikosch et al. (see [32]) may be useful.
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