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Abstract

We prove a Marcinkiewicz-Zygmund type inequality for random variables taking values in a
smooth Banach space. Next, we obtain some sharp concentration inequalities for the empiri-
cal measure of {T,T2,---,T"}, on a class of smooth functions, when T belongs to a class of
nonuniformly expanding maps of the unit interval.

1 Introduction and notations

Let (B,| - |g) be a separable Banach space. The notion of p-smooth Banach spaces (1 < p < 2)
was introduced in a famous paper by Pisier (|[17], Section 3). These spaces play the same role
with respect to martingales as spaces of type p do with respect to the sums of independent
random variables.

We shall follow the approach of Pinelis [16], who showed that 2-smoothness is in some sense
equivalent to a control of the second directional derivative of the map 19 defined by ¥ (z) = |z|3.
In particular, if there exists C' > 0 such that, for any z,u in B,

D2¢2(m)(u,u) < C\uhQB, (1.1)

then the space B is 2-smooth (here D%g(z)(u, v) denotes the second derivative of ¢ at point z, in
the directions w,v). In his 1994 paper, Pinelis [16] used the property (1.1) to derive Burkholder
and Rosenthal moment inequlities as well as exponential bounds for B-valued martingales.

We shall consider two different classes of 2-smooth Banach spaces, whose smoothness prop-
erties are described as follows. Let p be a real number in [2, co[ and let 1, be the function from
B to R defined by

Up(x) = |zl - (1.2)
We say that the separable Banach space (B, | - |g) belongs to the class Ca(p,cp) if the function
1y is two times differentiable and satisfies for all z and u in 1B,

| D24y(@)(u,0)] < eplafhulf (1.3)

We say that (B, |- |g) belongs to the class Cs (p, &) if the more restricive inequality holds: for all
T, u,v in B,
| D) (u,0)| < Eplalf|ulslv]s - (1.4)

Before describing our results, let us quote that the class C~2 (p, €p) contains the Li-spaces for
g > 2, for which one can compute the constant ¢,. The following lemma will be proved in
Appendix.



Lemma 1.1.

1. For any q € [2,00[ and any measure space (X, A, 1), the space L = LI(X, A, ) belongs
to the class Ca(p,cp) with ¢, = p(max(p,q) — 1), and to the class Ca(p,&p) with ¢, =
p(max(p,2g —p) — 1).

2. If B is a separable Hilbert space then it belongs to the class 52(]9, ¢p) with &, = p(p — 1).

The main result of this paper is a Marcinkiewicz-Zygmund type inequality for the moment of
ordrer p of partial sums S;, of B-valued random variables, when B belongs to the class Cs (p, &p).
The upper bound is expressed in terms of conditional expecations of the random variables with
respect to a past o-field, and extends the corresponding upper bound by Dedecker and Doukhan
[3] for real-valued random variables. As in [18] and [3]|, the proof is done by writing v, (Sy) as
a telescoping sum. The property (1.3) enables to use the Taylor integral formula at order 2 to
control the terms of the telescoping sums.

This Marcinkiewicz-Zygmund type bound together with the Rosenthal type bound given in
[6] and the deviation inequality given in [5] provide a complete picture of the moment bounds
for sums of B-valued random variables, when B belongs to the class Ca(p, é,). As we shall see,
these bounds apply to a large class of dependent sequences, in the whole range from short to
long dependence.

As an application, we shall focus on the L%-norm of the centered empirical distribution
function G,, of the iterates of a nonuniformly expanding map 7' of the unit interval (modelled
by a Young tower with polynomial tails). On the probability space [0, 1] equipped with the
T-invariant probability v, the covariance between two Holder observables of 7" and T" is of
order n~1="/7 for some v € (0,1). Hence the sequence of the iterates (T%);>1 is short-range
dependent if v < 1/2 and long-range dependent if v € [1/2,1). Moment and deviation bounds for
the L4-norm of GG, are given in Theorem 4.1 in the short range dependent case, and in Theorems
4.2 and 4.3 in the long range dependent case. In Remark 4.1, we give some arguments, based
on a limit theorem for the L2-norm of G,,, showing that the deviations bounds of Theorem 4.3
are in some sense optimal.

As a consequence of these results, we obtain in Corollary 4.1 a complete picture of the
behavior of ||Wq(vp,v)||, for p > 1, where Wj (v, v) is the Wasserstein distance between the
empirical measure v, of {T,T? ..., T"} and the invariant distribution v. These results are
different but complementary to the moment bounds on Wi (v, v) — E(Wi(vy,v)) obtained by
Chazottes and Gouézel [1] and Gouézel and Melbourne [10] as a consequence of a concentration
inequality for separately Lipschitz functionals of (T,72,...,T™). See Section 4.3 for a deeper
discussion.

All along the paper, the notation a, < b, means that there exists a numerical constant C'
not depending on n such that a, < Cb,, for all positive integers n.

2 A Marcinkiewicz-Zygmund type inequality

Our first result extends Proposition 4 of Dedecker and Doukhan [3] to smooth Banach spaces
belonging to Ca(p, ép).

Theorem 2.1. Let p be a real number in [2,00[ and let (B, |- |g) be a Banach space belonging
to the class Ca(p, ¢p). Let (Xi)ien be a sequence of centered random variables in LP(B). Let
(Fi)i>0 be an increasing sequence of o-algebras such that X; is F;-measurable, and denote by
E;(-) = E(:|F;) the conditional expectation with respect to F;. Define then

= s, (e o))



For any integer n > 0, the following inequality holds:

Eo(|Snlf) < Kp< g bi,n)p almost surely, where K = \/2p~1/max(é,,p/2). (2.1)
i=1

Remark 2.1. Taking Fo = {Q, 0}, it follows that, for any integer n > 0,

2
]BHP/Q)p/ where K = +/2p~1\/max(é,,p/2) .
2.

2)
In addition, if we assume that P(|Xglp < M) = 1 for any k € {1,...,n}, Inequality (2.2)

E(|S, ) < Kp(f: max

i<l<n

l
[Xile | Y~ B(Xil7)
k=i

combined with Proposition 5.2 of the appendix leads to the bound

n—1
_ p/2
E( max [Sif3) < C,M7 lnp”(;o: 020 (k))", (23)
where
_ l 2pK \P 3p—4ap — | ;
C, = 2(p_ 1) + P43y and  O(k) = max{E(\E(X,\]—"Z,k)]B),z e {k+ 1,...,n}}.

A complete proof of Inequality 2.8 will be given in Section 5.4.

When B = LL? for ¢ > 2, the constant K of Inequality (2.2) is equal to y/max(4q — 2p, 2p) — 2.
However we notice that we can obtain a better constant when the underlying sequence is a
martingale differences sequence. More precisely, the following extension of the Marcinkiewicz-
Zygmund type inequality obtained by Rio (2009) when the random variables are real-valued
holds:

Theorem 2.2. Let p be a real number in [2,00] and let (B, |- |g) be a Banach space belonging
to the class Ca(p,cp). Let (d;)ien be a sequence of martingale differences with values in B with
respect to an increasing filtration (F;)ien and such that for all i € N, |||d;|gll, < oo. Then,
setting M, = > """ | d;, the following inequality holds:

B0 ) < (e (3 llailel2)” (24)
=1

In particular if B = LI(X, A, 1) with ¢ € [2,00[ and (T, .A,v) a measure space, Inequality
(2.4) combined with Lemma 1.1 leads to

E(M,) < (masx(p.q) - 172( 3 [l 12)” (25)
=1

| - |4 being the norm on LY(X, A, it).
Proof of Theorem 2.1. As in [18] and [3|, we shall prove the result by induction. For any

t €10,1] let
b (t) = Eo(|Sn—1 + tXn[}) - (2.6)

Our induction hypothesis at step n — 1 is the following: for any &k <n — 1,

k—1 /2
=1



Since K > 1, the above inequality is clearly true for k = 1. Assuming that it is true for n — 1,
let us prove it at step n.
Assume that one can prove that

n—1

1 t
a(t) < max(@y,p/2)( Y brn /O (n(s)) s by [ () rds). 28)
k=1

0

then, using our induction hypothesis, it follows that
n—1 1 k—1 '
ha(t) < maX(Ep,p/Q) < Z bk,n / KP_Q(Z bi i + Sbhk) (p72)/2d8 +bpn / (hn(s))liwp)
k=1 0 i=1 0

n—1 1 k-1 t
< max(éy, p/2) (KP2 Y b /0 (S bin + sbin) P22 ds + by /0 (hns))'~*7ds)
i=1

k=1
Integrating with respect to s, we get

k—1 k—1

=1

~

implying that

k—1 n—1

n—1 1 -
(p—2)/2 p/2
> ben / bin + b ds=2p7 (> bin) .
k=1 0 <z’:1 ) (izl )
Therefore, since K2 = 2p~! max(¢,, p/2),
n—1 /2 t -
hn(t) < KP<Z bim) + max(ép,p/2)bn,n/ (hn(s)) Pgs . (2.9)
i=1 0
Let H,(t) = (f (hn(s))l_Z/pds. The differential integral inequation (2.9) writes
Kt N ~1+2/p
H! (s) (Kp ( Z bim) + max(ép,p/Q)bmnH(s)) <1
i=1
Setting

R,(s) = (Kp < S bi,n) v + max(ép,p/Q)bmnH(s)) 2 ,
i=1

the previous inequality can be rewritten as
R, (s) < 2~ max(Ey, /b

Integrating between 0 and ¢, we derive

n—1
(ha(0)*" = K23 by < Ru(t) — Ru(0) < 2tp~ " max(éy, p/2)byn

i=1

1

Taking into account that K2 = 2p~! max(¢,,p/2), it follows that

n—1
()™ < K2 bi + thin)
i=1

4



showing that our induction hypothesis holds true at step n. To end the proof it suffices to prove
(2.8). We shall proceed as in the proof of Theorem 2.3 in [18]. With this aim, let

Sp(t) = ZY}(t), where Y;(t) = X; for 1 <i<n—1and Y,(t) = tX,.
i=1

Notice that for any integer k in [1,n — 1], Sk(t) = Si. Let now 1, be defined by (1.2). Applying
Taylor integral formula at order 2, we get

n

Up(Sn(t) = D (p(Si(t) = Up(Si-1(t)))

i=1

n n 1
= DS )00 + 3 [ (1= DAy (Sica + D)V, i(0)ds.
k=1 i=1

But, for any integer k in [1,n],

k—1

D (Sk—1)(Ve(£)) =D (Dp(S5) (Vi (t)) — Db (Sio1) (Vi (1))

i=1
k=1 .
-3 / D2, (Sioy + sX:) (Ya (1), X;)ds .
=170
Notice now that for any = and w in B, D?¥,(z)(u,u) > 0. Indeed, the function z — 1,(z) =

\x!ﬁ/ % is convex for any p > 2 and is by assumption 2-times differentiable, implying that the

second differentiable derivative at x in the direction u is non-negative. So, overall, using the fact
that D2, (z)(u,u) > 0,

n

Yp(Sn(t)) < 75:1/01 D2¢p(5i—1 + 3Xi)< Z Yk(t),Xi)ds

k=i+1

+i/5%wH+mwmw%ww
=170

Taking the conditional expectation w.r.t. Fy and recalling the definition (2.6) of h,(t), it follows
that, for any ¢ € [0, 1],

n—1 .1 n—1
ha(t) < Z/ o (D%,,(Si_l +5X;) ( X+ tXn,Xi)ds)
i=1 70 k=i
1
+ / E, (Dz%(sn,1 + stXn)(Xn,Xn)ds) .
0
Using again the fact that D%y, (v)(u,u) > 0, we have

2 /01 Eo <Dzwp(sn_1 + stXn)(Xn,Xn)ds) < /Ot Eo <D21/1p(5n_1 + an)(Xn,Xn)du> .

Hence setting

n—1
ain(t) =Xi+ Y E(Xi|F) +tE(X,|F),
k=i+1



and using the fact that (F;) is an increasing sequence of o-algebras, we derive

(1) gni /0 11@0(92%(&1+5Xi)(al,n(t),xi)ds) + /0 tIEO<D2¢p(Sn1+5Xn)(Xn,Xn)ds>.
=1

Using (1.4), we then get

n—1 1 t
ha(t) <y > / Bo (185145 Xil}lain(t) 2| Xils ) ds+, / Eo (S5 Xal5 | X 3 ) ds.
i=1"0 0
Holder’s inequality implies that

2/p

1
m( <6 [ )" (Bl X)) s
¢ p—2)/p py\ 2P
6 [ ()PP (B, s (210

Let G;n(t) = Eo(|ain(t) ]fl%/Z]Xi\ﬁ/Q). Since it is a convex function, for any ¢ € [0, 1],

Gi,n(t) < max (Gi,n(o)’ Gl,n(l)) < bp/2 . (2'11)

—= Yi,n

Starting from (2.10), using (2.11) and the fact that (Eq(|X,|5))*? < byn, the inequality (2.8)
follows. ¢

Proof of Theorem 2.2. The proof follows the lines of the proof of Proposition 2.1 in [19]. The
only difference is that Inequality (1.3) is used to get his bound (2.1). For the reader’s convenience,

)
let us give the main steps of the proof. For any ¢ € [0, 00, let ¢y, (t) = |||Mp—1 + td,|s|/5. Using
Taylor’s integral formula at order two together with Inequality (1.3), we infer that

on(t) < on(0) + cplldnlal2 /0 (t - $)(p(s) 27 = du(t).

Proceeding as at the top of page 150 in [19], it follows that for any non-negative real x,

Pn(x) < mdnhaa!!p\/(ppipl) \/(%(x))?*?/p — (pn(0) 7.

Next, using lemma 2.1 in [19] and the arguments following it, we derive

1-2 2 2
6(@) < Mdalsllpy /5 (00(@)) ™ (6a(2)) 7 = (0n(0)*”,
and then y y
(¢n(@)7" < (2n(0)7? +p~ cpa®||dnlzl; -
Since pp(z) < ¢n(x), it follows that
MBI = (pn(1)?" < [ Mn1157 + p~ " pllldnlsll;

proving the theorem. ¢



3 Hoeffding type inequalities for martingales

In the following corollary, we give an exponential inequality for the deviation of the LY-norm of
martingales.

Corollary 3.1. Let ¢ € [2,00] and (X, A, u) a measure space. Let (d;)ien be a sequence of
martingale differences with values in L9 = LI(X, A, n) (equipped with the norm | - |,) with
respect to an increasing filtration (F;)ien. Assume that for all i € N, there exists a positive real
b such that |||d;|g||lcc < b. Let My, = """, d;. For any positive integer n and any positive real x,
the following inequality holds

1 if v <by/(¢g—1)n
P(lrggg | Mg|q > x) < W if by/(g—1)n < x < by/e(qg—1)n (3.1)
<k<n 2 :
ﬁexp(—Q:b—Qn) if £ > by/e(q—1)n.

Under the assumptions of Corollary 3.1, Theorem 3.5 in [16] gives the following upper bound:
for any positive integer n and any positive real x,

2

X
]P’( M|, > ><2 <_7) 2
o Mg 2 @) < 2exp | = 5o =y (3:2)

It is noteworthy to indicate that for any ¢ > e+ 1, the bound in (3.1) is always better than the
one given in (3.2).

Proof of Corollary 3.1. Let p be a real number in [2, co[. By the Doob-Kolmogorov maximal
inequality,

>x) <az? P).
P(1?£§n|Mk|q > :U) <z PE(|M,)

Therefore, using Inequality (2.5), we derive that for any p > ¢,

Vahn\’
IP’( max |Myl|, > x) < (M) , where a, = max(p,q) — 1.

1<k<n T

Taking p = ¢ if v < ((¢ — 1)eb2n)1/2 (so in this case a, = ¢ —1) and p = 1 + % if v >
((g — 1)eb*n) 1/2 (so in this case a, = p — 1), the inequality (3.1) follows. ¢
In the following corollary, we give an exponential inequality for the deviation of the L4-norm

of partial sums. The proof is omitted since it is exactly the same as that of Corollary 3.1, by
using Inequality (2.2) instead of Inequality (2.5).

Corollary 3.2. Let g € [2,00[ and (X, A, u) a measure space. Let (X;)ien be a sequence of
random variables with values in LY = LY(X, A, ) (equipped with the norm |- |,). Let (Fi)i>o be
an increasing sequence of o-algebras such that X; is F;-measurable, and denote by E;(-) = E(-|F;)
the conditional expectation with respect to F;. For any positive integer n, let S, = > i X;.
Assume that for any integer i € [1,n],

n

S| <1

Then, for any positive real x, the following inequality holds

1 if © < bp\/2(q—1)n
]}D(’Sn’qzx) < | @il if bun/2(q — D < x < bpr/2e(q — D
2 .
ﬁexp(—%mbw) if © > bpy/2e(q — 1)n.



4 Moment and deviation inequalities for the empirical process of
nonuniformly expanding maps

In this section, we shall apply Theorem 2.1 and the inequalities recalled in Appendix to obtain
moment and deviation inequalities for the LY norm of the centered empirical distribution function
of nonuniformly expanding maps of the interval. More precisely, our results apply to the iterates
of a map T from [0, 1] to [0, 1] that can be modelled by a Young tower with polynomial tails of
the return time.

In Section 4.1, we recall the formalism of Young towers, which has been described in many
papers (see for instance [20] and [13]) with sometimes slight differences. Here we borrow the
formalism described in Chapter 1 of Gouézel’s PhD thesis [§].

The moment inequalities are stated in Section 4.2, and an application to the Wassertein
metric between the empirical measure of {T,T2% ..., 7"} and the T-invariant distribution is
presented in Section 4.3. To be complete, we give in Section 4.4 some upper bounds for the
maximum of the partial sums of Holder observables, which can be proved as in Section 4.2.

4.1 One dimensional maps modelled by Young towers

Let T be a map from [0,1] to [0,1], and A be a probability measure on [0,1]. Let Y be a
Borel set of [0,1], with A(Y)) > 0. Assume that there exist a partition (up to a negligible set)
{Ye}reqr,...xy of Y (note that K can be infinite) and a sequence (¢r)req1,.. .k} of increasing
numbers such that T%*(Y;) =Y. Let then py be the function from Y to {¢k}req1,.. xy such

that oy (y) = ¢ if y € Y.
We then define a space

X={(y,9) yeY,i<eyy)}
and a map T on X:
= . ,i+1 if 1 < —1
T(y, i) = (y ()) i ey (y)
(T (y),0) if i = ey (y) — 1.

The space X is the Young tower. One can define the floors Ay ; for £ € {1,..., K} and
i€{0,...,0p —1}: Ap; ={(y,%) : y € Y }. These floors define a partition of the tower:

X g U Ak,l .
ked{l,...,K},ie{0,...,0—1}

On X, the measure m is defined as follows: if B is a set included in Ay, that can be written
as B = B x {i} with B C Y}, then m(B) = A\(B). Consequently, for a set A C Ue: o3 Do
which can be written as A = A x {i} = (U{kmpk>i} By) x {i} with By, C Y}, one has

m(A) =XMA) = D ABy).

{k:pp>i}
Let 7 be the “projection” from X to [0, 1] defined by 7(y,i) = T%(y). Then, one has
noT =Tor.
Indeed, if i < py (y) — 1, then T(y,4) = (y,i + 1) so that
moT(y,i) =n(y,i+1)=T"(y) =Ton(y,i).
If i = @y (y) — 1, then T(y,7) = (T*¥®)(y),0) so that

moT(y, oy (y) — 1) =T?W(y) = (T W1 (y)) = Tor(y, oy (y) — 1).



Assume now that T preserves the probability # on X, and let v be the image measure of ¥
by m. Then, for any measurable and bounded function f,

v(f(T) =v(f(Tom) =v((for)(T)) =v(for) =v(f),

and consequently v is invariant by 7.
The map T can be modelled by a Young tower if:

1. For any k € {1,..., K}, T%* is a measurable isomorphism between Y; and Y. Moreover
there exists C' > 0 such that, for any k£ € {1,..., K} and almost every z,y in Yy,

(T#r)" ()
(1) (y)

2. There exists C' > 0 such that, for any k € {1,..., K} and almost every z,y in Y}, for any
i < P,

1- < CIT () =T (y)l -

T () = T'(y)| < O|T#(a) — T¥*(y)|.
3. There exists 7 > 1 such that, for any k& € {1,..., K} and almost every x,y in Yj:

|T?% (x) — T (y)| > 7]z —yl.

430 oA (Yy) < 0.

If T can be modelled by a Young tower, then, on the tower, there exists a unique 7T-invariant
probability measure v which is absolutely continuous with respect to m. Hence, there exists
a unique T-invariant measure v which is absolutely continuous with respect to the measure A
(see [8], Proposition 1.3.18). This measure is the image measure of by the projection 7 and is
supported by
A= TMY).
n>0

Let Y be the basis of the tower, that is Y = {(y,0),y € Y}. Let ¢y be the function from
Y to {@r}treq,.. ky such that oy ((y,0)) = py(y). By definition of T one gets T%(Ay) =Y.
In addition, the quantity 7({(y,0) € Y : ¢y ((y,0)) > k}) is exactly of the same order as
My €Y :py(y) > k}) (see [8], Proposition 1.1.24).

On the tower, one defines the distance s as follows: s(z,y) = 0 is  and y do not belong to
the same partition element Ay ;. If © = (a,i) and y = (b, i) belong to the same Ay ; (meaning
that a and b belong to Y}), then &(z,y) = °*¥ for 3 = 1/7, where s(z,y) is the smallest
integer n such that S™(a) and S™(b) are not in the same Y.

Because of Item 3, we know that |S’| > 7 > 1, so that S is uniformly expanding. For
x = (a,4) and y = (b,7) in Ay ;, one has

m(z) = 7(y)| = |T"(a) = T'(b)| < C|T**(a) — T#*(b)]
by Item 2. Since T%* = S on Y}, and since |S’| > 7, it follows that
_ C
(@) — n(y)] < €t < G,
Now, if # and y do not belong to the same partition element Ay, ;, then |7 (z)—7(y)| < g5@Y) = 1.
It follows that there exists a positive constant K such that

(@) —m(y)| < KB

meaning that 7 is Lipschitz with respect to the distance 6.
Among the maps that can be modelled by a Young tower, we shall consider the maps defined
as follows.



Definition 4.1. One says that the map T can be modelled by a Young tower with polynomial
tails of the return times of order 1/y with v € (0,1) if \{y € Y : oy (y) > k}) < Ck~1/7.

Let us briefly describe some properties of such maps. For a € (0, 1], let 6, = 0%, let L, be
the space of Lipschitz functions with respect to d,, and let

La(f) = sup. lf(;:(;’z;gw\. (4.1)

For any positive real a, let L, , be the set of functions such that L,(f) < a.
Denote by P the Perron-Frobenius operator of 1" with respect to v: for any bounded mea-
surable functions ¢, 1,

v(p o T) =v(P(e)y).

Let T be a map that can be modelled by a Young tower with polynomial tails of the return
times of order 1/v4. Then one can prove that (see [13] and Lemma 2.2 in [7]): for any m > 1
and any « € (0, 1], there exists C,, > 0 such that, for any ¢ € L,

[P () (x) = P" () (y)| < Cadalz,y)La(i). (4.2)

Moreover, starting from the results by Gouézel [8], we shall prove in Proposition 5.3 of the
appendix that, for any « € (0, 1] there exists K, > 0 such that
o sup [P - PD]) < et (43)
- pd=-/y '

feLa,l

A well known example of map which can be modelled by a Young tower with polynomial tails
of the return times is the intermittent map T, introduced by Liverani et al. [12]: for v € (0, 1),

x(1+2727) ifxel0,1/2]

7(@) = {235 1 if 7 € [1/2,1]; (44)

For this map, A is the Lebesgue measure on [0, 1] and one can take Y =|1/2,1]. Let zp = 1,
and define recurswely Tny1 = T (2,) N[0,1/2]. One can prove that z, = ()77 Let
then y, = T Yo, 1)N]1/2,1]. The yr's are built in such a way that Yy =|yri1,yx] is the
set of points y in Y for which Tvk(Yk) = Y. One can verify, by controling explicitely the
distortion, that the items 1,2 and 3 are satisfied with ¢ = k. Item 4 follows from the fact that

2 EMYR) < C Y00 kk~OFD/Y < oo, since v € (0,1). Moreover, one has

MyeY oy(y) >k}) = Z)\ ) < CEY7,
i=k+1

so that the tail of the return times is of order 1/~.

4.2 Moment and deviation inequalities for the empirical process

For any ¢ € [2, 00], let
! 1/q
= ([ 1eutmpmar)™, (145)

where G, is defined by

Gn(t) = (Lpeey —v([0,8])) , t €[0,1]. (4.6)

10



Applying Lemma 1 in [4], we see that

D= sup 230 (T - i),

K FeWy '

where ¢’ = ¢/(q — 1) and Wy ; is the Sobolev ball

Woa={s: [Irwra<a). (@)

Consequently, a moment inequality on D, , provides a concentration inequality of the empirical
measure of {T,72,--- T"} around v, on a class of smooth functions. Note that, the class
W 1 is larger as ¢ increases, and always contains the class of Lipschitz functions with Lipschitz
constant 1.

In what follows, we shall denote by || - ||, the LP-norm on ([0, 1],v)

Theorem 4.1. Let T be a map that can be modelled by a Young tower with polynomaial tails of
the return times of order 1/~ with v € (0,1/2), and let py = 2(1 —~)/vy. For q € [2,00[ let Dy, 4
be defined by (4.5). Then, there exists a positive constant C' such that for any n > 1,

< Cv/n.

max D
ngkgn 4

p,y,lj

As a consequence of Theorem 4.1, for any v € (0,1/2) and any positive real z,

C
> < —F.
(2, Dea 2 v < o
In addition, proceeding as at the beginning of page 872 of the paper [1], we infer that, under
the assumptions of Theorem 4.1, for any real p > 2(1 — )/, there exists a positive constant C'
such that, for any n > 1,
< OnOrty=1/(wp) |

p,l/

max D ‘
‘1§k§n koa

Let us examine now the case where v > 1/2.

Theorem 4.2. Let T be map that can be modelled by a Young tower with polynomial tails of
the return times of order 1/~ with v € [1/2,1). For q € [2,00], let Dy, 4 be defined by (4.5).

1. There exists a positive constant C such that for any n > 1,

‘ max D, ,

< C(nl v,
1<k<n Hl/’y,u B (n o8 n)

2. If p > 1/, then there exists a positive constant C' such that for any n > 1,

< cnplptr=1/0p)

H max Dkq‘
“Hpw

1<k<n

For the optimality of the moment bounds of Theorems 4.1 and 4.2, we refer the paper by
Melbourne and Nicol [14]| and to the recent paper by Gouézel and Melbourne [10]. Since, for
q > 2, the class W ; contains the class of Lipschitz functions with Lipschitz constant 1, one can
apply Proposition 1.1 and 1.2 in [10], showing that these bounds are optimal. See also Remark
4.1 below for more comments about the optimality.

Theorem 4.3. Let T be map that can be modelled by a Young tower with polynomial tails of the
return times of order 1/y with v € (1/2,1). For q € [2,00], let Dy, 4 be defined by (4.5). Then,
there exists a positive constant C' such that for any n > 1 and any positive real x,

y( max Dy, > mn“’) < Cz /7, (4.8)
1<k<n

11



Applying Theorem 4.3, one gets for p € [1,1/7],

00 ) n”Y . 00 1
= P~ V< max Dy, > :U)dﬂ: < 2P~ dx + Cn / —dx.
PV p/o 1<k<n k. - p/o + p ny 1+ 1-p

Consequently, for p € [1,1/~], there exists a positive constant C' such that

H max Dy q‘
1<k<n k,

< Cn”.
p7l/

max Dy ‘
‘1§k§n a

Remark 4.1. Inequality (4.8) cannot hold for v = 1/2. Indeed, for the map T, defined in (4.4),
Item 1 of Theorem 1.1 in [2] implies that, for any positive real x,

lim v

1
n—o0 (\/W

where N is a real-valued centered Gaussian random variable with positive variance. In addition,
for v € (1/2,1), Item 2 of the same paper implies that

Dna > x> =P(IN| > z) >0,

1
lim y( D, 2>t> P(|Zy| > t) >0,
ny

n—o0
where Z., is an 1/v-stable random variable such that lim,_, '/ 7P(|Z,| > 2) = ¢ > 0.
4.3 Application to the Wasserstein metric between the empirical measure
and the invariant measure

Let us give an application of the results of Section 4.2 to the Wasserstein distance between the
empirical measure of {T,T?,...,T"} and the invariant distribution v. Recall that Wasserstein
distance W7 between two probability measures vy and v on [0, 1] is defined as

Wi (vy,ve) = inf{ / |z — y|p(dz, dy), u € M(Vl,VQ)} .

where M (1, 12) is the set of probability measures on [0, 1] x [0, 1] with margins v; and v». Recall
also that, in this one dimensional setting,

1
Wi, va) = /0 (Fon(t) — Fiu(t)dt

where F),, and F),, are the distribution functions of v and vy respectively. Therefore, setting

1 n
-1
n“
=1
we get that for any ¢ > 2,
1
Wl(er V) S EDn,q
The following corollary is a direct consequence of the results of Section 4.2.

Corollary 4.1. Let T be map that can be modelled by a Young tower with polynomial tails of
the return times of order 1/~ with v € (0,1).

1. If vy € (0,1/2), then [|[W1(vy,v)|Ihy < n=CI1 for any p > 2(1 — ) /7.
2. If y € [1/2,1), then

—(1=-7)/7 ifp =
Wil < 4" 1T =
n Rz ifp>1/y.
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3. If y € (1/2,1), then, for any n > 1 and any positive real x,

v(Wi(vp,v) > xnv_l) <z V.

In their Theorem 1.4, Gouézel and Melbourne [10] obtain general bounds for the mo-
ment of separately Lipschitz functionals of (T,T?,...,T"), where T is a (non necessarily one-
dimensional) map that can be modelled by a Young tower with polynomial tails of the return
times.

As a consequence of their results, one gets the same inequalities as in Corollary 4.1 but for
the quantity Wy (v, v) — E(W1(un,v)) instead of Wi (vy,,v). Note that the upper bounds for
Wi (vp,v) — E(Wi(pn,v)) are valid if T' is nonuniformly expanding from X to X', where X’ can
be any bounded metric space.

The two results are not of the same nature. However, in our one dimensional setting, the
moments bounds of Corollary 4.1 imply the same moment bounds for Wi (v, v) — E(W1(un, v)),
because (E(Wi(vp,v)))P < ||[Wi(pn,v)|[h. The same remark does not hold for the deviation
bounds, which are not directly comparable.

To conclude this section, let us mention that there is no hope to extend Corollary 4.1 to
higher dimension with the same bounds. To see this, let us consider the case of R%valued
random variables (X7, X»,...,X,,) that are bounded, independent, and identically distributed.
Let v, be the empirical measure of {X7, Xo,..., X, } and v be the common distribution of the
X;’s. It is well known that, when d > 3 and v has a component which is absolutely continuous
with respect to the Lebesgue measure, E(W;(vy,,v)) is exactly of order n~1/4
slower than n~1/2.

, which is much

4.4 Moment and deviation inequalities for partial sums

In this section, we assume that 7" is a nonuniformly expanding map on (X, A) with A a probability
measure on X, and that T can be modelled by a Young tower. Contrary to the previous sections,
X can be any bounded metric space and not necessarily the unit interval. Let f be a Hdélder
continuous function from X to R and S, (f) =Y (fo T — v(f)).

Theorem 4.4. Let T be map that can be modelled by a Young tower with polynomial tails of
the return times of order 1/~v with v € (0,1).

1. If v € (0,1/2) then H 1r<nl?<xn\5k(f)]‘ ZV < nP~ =1/ for anyp >2(1 —~)/~.
2. If y € [1/2,1), then
P nlogn ifp=1/y
‘ 1glkél<x |Sk(f)|‘ < { p—(1—v)/~ . /
<k<n DV n ifp>1/v.

3. If y € (1/2,1), for any n > 1 and any positive real x,

gl —1/7
y(lrél]?é(n]Sk(f)\ >axn > <Lz .

The proof is omitted since it is a simpler version of the proofs of Theorems 4.1, 4.2 and 4.3.
Indeed the norm | - |, is replaced by the absolute values and we do not need to deal with the
supremum over a subset of the class of Holder functions of order 1/q.

After this paper was written, we became aware that, using different methods based on
martingale approximations, Gouézel and Melbourne [10] had independently obtained the upper
bounds given in Theorem 4.4 (but for |S,(f)| instead of max;<x<p |Sk(f)]).
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As in Section 4.2, applying Propositions 1.1 and 1.2 in [10], we see that the moments bounds
of Theorem 4.4 cannot be improved.

Note also that, for the map 77, defined in (4.4), we can make a similar remark as Remark 4.1:
Firstly, Inequality (4.8) cannot hold for v = 1/2. Indeed by Item 3 page 88 [9], if f(0) # v(f),
for any positive real x,

. 1
,g;n;ou(mwn(m > ) =P(N| >2) >0,

where N is a real-valued centered Gaussian random variable with positive variance. In addition,
for v € (1/2,1), Theorem 1.3 of the same paper implies that

lim v(|S,(f)| > an?) =P(|Z,| > z) > 0,

n—oo

where Z. is an 1/v-stable random variable such that lim, ., 2'/7P(|Z,| > z) = ¢ > 0.

4.5 Proofs of Theorems 4.1, 4.2 and 4.3.

Proof of Theorem 4.1. For any ¢, let f; be the function defined by fi(x) = 1,<;. Notice first
that, for any p > 1,

p p/q
| max i = v( max / 12% —v((o.1)|"at|")
7 \Zf Tom— wfyom)|'a ")
frd O O _ @]
7 \Zf T = w(giom)|'af™).
— (@] (@] — O

Let g; :== from and G(x) = {g:(x),t € [0,1]}. Denote by |- |, the norm associated to the Banach
space B = IL9([0, 1], dt). With these notations, we then have

k
> @) - we@y)|). (4.9)

p —
=v| max
v

‘ max Dy q‘
b 2 1<k<n

1<k<n

Let now (X;);en be a stationary Markov chain defined on a probability space (€,.4,P), with
state space X, transition probability P and invariant distribution . Recall then (see for instance
Lemma XI.3 [11]) that for every n > 1, we have the following equalities in law (where in the
left-hand side the law is meant under 7 and in the right-hand side the law is meant under P)

n d
(T, T) L (X1,...,X»)

k n
max |3 (G(T) - #(G(T))], £ max |3 (G(X:) ~ EGX))]]- (4.10)
hen | - Sksn | £

Therefore, starting from (4.9) and using (4.10), we infer that for any real p € [1, 00,

| ms, D], == e [ (60 - BGxN|)
< 2pE<1rSnl§SXn Ek: G(X;) —E(G(Xz)))‘) (4.11)
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Whence, Theorem 4.1 will follow if one can prove that there exists a positive constant C' such
that for any n > 1,

11—y

Z (G(X) — E(G(X z‘)))(: ’ ) <Cn’7 . (4.12)

(1<k<n

With this aim, we shall apply the Rosenthal type inequality (5.2) given in Appendix, with
p = 2(1 —v)/y (note that p > 2 since y € (0,1/2)). Letting F = o(X;,i < k) and G =
G — E(G(X1)), this leads to

2(1—v) 2(1—7)

) < nE(j6x)),

k
> (G(X:) ~ B(G(X1))

1=

E< max
1<k<n

q

)
; 1 S CTNEN S
(X g B (| 260 )], 7 @

where § = min(1/2,v/(2 — 4v)). To handle the terms ||Eq(| Z§=1 GO (Xi)‘j)u(l—«/)/«/ in In-
equality (4.13), we shall use Inequality (2.2) which together with Item 1 of Lemma 1.1 leads
to

k k
) < 2 2q — ZZEQ G(O |q|IE ( )(Xﬁ))|(I)

i=1 (=i
2(2q — ZZEO GO (Xe)ly)

where for the last inequality, we have used the fact that for any i, |G (X;)|, < 1 almost surely.
Hence

Eo ZG 2(29 - 3) Zkzzk:\mo (B(GOX)) 1=y - (4.14)
(1- v)/v

=1 (=1

(| e

Let us now handle the term ||Eq(|E;(G© (X))l (1=~)/y in Inequality (4.14). With this aim,
we first notice that

1
E(GO (X))t = /0 B (Lyex,y<t | X5) — E(Lyx,y<0)|"dt

Using Lemma 1 in [4], we have

q

)

1
/ [E(Lr(x)<tlXi) = E(Lrxy<o)|"dt = sup  |[Prixyix, (h) = Prix,)(h)
0 hEWq/’l

where the Sobolev ball Wy ; is defined in (4.7), Pr(x,) x, is the conditional distribution of 7(Xy)
given X;, and Pr(x,) is the distribution of m(X,). Therefore

E(GO(X))lg = sup [Prixyx, (h) = Prixp(h)] =  Sup | Px,|x,(hom) = Px,(hom)],
hGWq/’l W /1

where Py, x, is the conditional distribution of Xy given X;, and Py, is the distribution of X,.
Notice now that if f € Wy 1 then for any x and y in [0, 1],

@)= 1wl =| [ ] <je—oo( [ @)
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Therefore,
Wya CHyga,s

where Hy, 1 is the set of functions that are 1 /q-Holder with Holder constant 1. It follows that,
for any h € Wy 1, there exists a positive constant C' such that

hom(z) = hom(y)| < |m(x) = m(y)|'? < Cbyy(w,y),
proving that h o 7 belongs to the set L;/, o defined right after (4.1). Let now
foein(@) == |Px, xi=e(hom) = Px,(hom)| = |P" (hor)(z) — v(hom)|.
Using the triangle inequality, we have
\foein(@) = frmin()| < | P (hom)(z) — P (hom)(y)|.
Since h o 7 belongs to Lj 4 ¢, the contraction property (4.2) entails that
|fe—in(®) = fooin(@)] < CCgb1/4(2,y)

Let C = CC /4. We have shown that, for any h € Wy 1, fr—in € Fr—i C Ly, 7. Then, setting

/q,

my—i(x) = sup fr—in(x)
hGWq/’l

we have my_;(z) = sup,ez, , g(v). Therefore, if my_;(x) > my_(y),

me—i(x) = me_i(y) = g2(2) — 9y (y) < g2() — go(y) < Ty 4(2,7) |

since Fy_; C L1/q,5' So overall,

[E(GO(X0)ly — BIEA(GO (X0))lg = me—i(Xi) — E(me—i(X3)),

with my_; € Ll/qé' Next, using (4.3), it follows that there exists a positive constant C' such

that, for any ¢ > 1,
IEo (JE:(G(X0))q) — E[E(GO (X))l = [P (i) — p(mg—y)|1 < Ci~0017 0 (4.15)

Using similar arguments we infer that there exists a positive constant C' such that, for any
0>0+1,

IE(GOXKlal = B G Ke-lall < 7( swp [P*e) =#10)]) < 00 =i) "
9 l/q,é
(4.16)
We control now the quantity S S™F [|Eo(|E;(G© (Xe))lg)ll(1—y)/y With the help of (4.15)
and (4.16). With this aim, we first write the following decomposition:

k k k k
S Y IE(E(GO X)) a—ny <D > ME(GO X))l
i=1 =3 i=1 4=2i+1
k2 k2
) Y B ([E(GO(X0))lg) = BIE(GO (X)) gl amypy + > D IE(GO (Xe))lglln
=1 (=1 =1 (=1
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Next, since (1 —~)/y > 1 and for any i, |G(?(X;))|, < 1 almost surely, we get
k k k k
1—
> D IE(E(GO XDy < D2 D NGO E)gf
i=1 (=1

i=1 ¢=2i+1

Ly, k2 - ko2
+27150 3N B (E(G@ (X0))lg) — EEAGO XDl + 37 STIE(GO (X))l -

i=1 (=i i=1 (=g

Therefore, using (4.15) and (4.16), we derive that

kok
DO B (G (X0)) o)l 1)/

i=1 =3
k k
<> +/<:+Z Z <k. (4.17)

=1 (—2i+1 i=1 (=i i=1 r=it1 ( )

So starting from (4.13) and taking into account (4.14), (4.17) and the fact that v/(1 —v) < 1,
we get

E G —EG)| T SR NGOy,
(lrgngécn Z( (X:) — E(G( ’)))‘ ><<n+n<kz_l k1+5v/(1—v)) <n ’

which completes the proof of (4.12) and then of the theorem. ¢

Proof of Theorem 4.2. We keep the same notations as in the proof of Theorem 4.1.
We start by proving Item 1. By (4.11), it suffices to prove that there exists a positive constant
C such that for any n > 1,

Z (G(X:) — E(G( i)))‘;”) < Cnlogn. (4.18)

( max
1<k<n

Assume first that v = 1/2. Applying Inequality (2.3), taking into account the stationarity and
the fact that |G(X;) — E(G(X1))|q < 1 almost surely, we derive

E( mas !Z E@XN]) < ntn 3 B/ (i)

1<k<n ' 4
_ k=1

Therefore, using (4.16), it follows that

Z (G(x (G(X i)))‘l/PY) <<n+nik_1.

a k=1

(1<k<n

proving (4.18) in the case v = 1/2. We turn now to the proof of (4.18) when v € (1/2,1). With
this aim, we apply the moment inequality (with p = 1/7) stated in Proposition 5.1. This leads
to

k 1/~ n—1

> (GO ~BGD)| ) < Con 3+ DI [Ea( G (Xl

i=1 k=0

IE( max
1<k<n

where O, is a positive constant depending only on 7. Therefore, for any v € (1/2,1) using
(4.16), we get

IE( max

n—1
~ -1
)< Cn1+ 7).



proving (4.18) in case vy € (1/2,1). This ends the proof of Item 1.

We turn now to the proof of Item 2. By (4.11), it suffices to prove that, for v € [1/2,1) and
p > 1/, there exists a positive constant C' such that for any n > 1,

Z (G(x) ~ EG(X)|

— q
1=

) < OnptG-D/7, (4.19)

< max
1<k<n

We shall distinguish two cases: (p > 2 and p > 1/v) or p €]1/v,2[. We first consider the case
where p > 2 and p > 1/v. To prove (4.19), we shall apply Inequality (2.3). Taking into account
the stationarity and the fact that |G(X;) — E(G(X1))|, < 1 almost surely, we derive

k
p 2/p p/2
E( G(X, ‘) P2 (3 E(GO (X )
| 26060 - ") <n Zur (GO Xl
Next, using (4.16) and the fact that 2(1 — v)/(yp) < 1, Inequality (4.19) follows.
We consider now the case where p €]1/7,2[. Using, once again, the moment inequality stated

in Proposition 5.1, we get

k
> (G(X:) ~ B(G(X1))

IE( max
1<k<n

n—1
p —
) <G Yk + 172 [Eo(GO (X))
k=0

q

where C), is a positive constant depending only on p. Using then (4.16) and the fact that p > 1/7,
(4.19) follows. This ends the proof of the theorem. ¢

Proof of Theorem 4.3. We keep the same notations as in the proof of Theorem 4.1. Notice
first that, for any non-negative x,

y( max Dy, >x) :D( max /01‘i(ftoTimr—u(ftOW)‘th‘l/q 236)
i=1

1<k<n 1<k<n

1 & . a (1/a
:D(lrg]?%xn /0 ‘Z(ftOﬂ'OTZ—Ij(ftOﬂ')‘ dt‘ Zm>
- =1

According to (4.10),

> (@) - BEx)| 2 )

i=

1/( max Dy, , >x) :]P’( max
1<k<n 1<k<n

k
> (G(X) ~ EGX)]| > 2/2).

1=

< P( max
1<k<n

The theorem will then follow if we can prove that, for any positive real x,

k
> (G(X) - B(G(X))|

1=

IP( max
1<k<n

> 430) < na 7. (4.20)
q

To prove this inequality, we shall apply Proposition 5.1 with lag [z]. Using (4.16), this leads to
the following inequality: for any positive real x,

Z (G(X) - E(G(X.)))

and (4.20) follows. ¢

[x]
n
24x) 1/7 _2; k+1) (1 /v’

< max

1<k<n q
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5 Appendix

5.1 A Rosenthal-type inequality for stationary sequences

In this section, for the reader convenience, we recall the Rosenthal-type inequality stated in
[6] (see Inequality (3.11) therein). This inequality is the extension to Banach-valued random
variables of the Rosenthal type inequality given by Merlevéde and Peligrad [15].

Let (€2, A,P) be a probability space, and 6 : Q — Q be a bijective bimeasurable transforma-
tion preserving the probability P. For a o-algebra Fy satisfying Fo C T~ (Fy), we define the
nondecreasing filtration (F;);ez by F; = 07%(Fp). We shall use the notations Ej(-) = E(-|F).

Let X be a random variable with values in B. Define the stationary sequence (X;);ez by
X; = XgoT", and the partial sum S, by S, = X1 + Xo + --- + X,,.

Theorem 5.1. Assume that Xy belongs to LP(B) where (B, |- |g) is a separable Banach space
and p is a real number in ]|2,00[. Assume that Xy is Fo-measurable. Then, for any r > 0,

r_ 26)
! \\E()(\szk@)ugﬂ)”“

E< max |Sj|ﬁ) < 2"E(|Xol) + 2" <Z 925k /p

1
1<j<2r (5:1)
k=0

where 6 = min(1/2,1/(p — 2)).
Remark 5.1. The inequality in the above theorem implies that for any positive integer n,

n

p/(26)
1 21116
E( e |Sj|ﬁ> < nE(|Xo[g)” +n (kzl WHEO(WHB)Hp/z) : (52)

5.2 A deviation inequality

The following proposition is adapted from Proposition 4 in [5]. It also extends Proposition 6.1
in [2] to random variables taking values in a separable Banach space belonging to the class
Ca(2,¢2).

Proposition 5.1. Let Y1,Ys,....Y, be n random variables with values in a separable Banach
space (B,| - |g) belonging to the class Cy(2,é). Assume that P(|Yilz < M) = 1 for any k €
{1,...,n}. Let Fi,...,F, be an increasing filtration such that Yy is Fi-measurable for any
ke{l,....,n}. Let Sp, = 1 Yy, and for k € {0,...,n — 1}, let

8(k) = max {E(|E(}Q|}}_k)|]g),i e{k+1,... ,n}} . (5.3)

Then, for any q € {1,...,n}, and any x > qM, the following inequality holds

—1
nf(q) 469 K*nM <
P(lfélggn |SklB > 490) < qu<n T kzoe(k) ; (5.4)

where K = y/max(éq,1). In addition, for any p € [1,2],

4Pt pey K2 i,
P P p—1
E( max [Silf) < (4 o )M n;)(k; +1)0(k). (5.5)
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Proof of Proposition 5.1. Let So = 0 and define the random variables U; by: U; = Sig—S;_1)
fori e {1,...,[n/q|} and Uy, q41 = Sn — Sqn/q- By Proposition 4 in [5], for any = > Mg,

3
~
<

1+1 - [n/ql+1

1 02 2
P( max [Sifp > 4x) < >, E(BUIFena)ls) + 35 3 E(U: ~ EWIFny)l)
1 [n/q]+1 46y [n/q]+1
= E(E(Ui|Fi-2)q)IB) + gy Z E(|Uilg) - (5.6)
1=3 i=1

Since (6(k))x>0 is a non-increasing sequence, it is not hard to see that

[n/q]+1

Z E(E(UiFi—2)q)IB) < nb(q)1g<n - (5.7)
=3

To handle the second term in (5.6), we use Inequality (2.2) with p = 2. This leads to the
following upper bounds: for any i € {1,...,[n/q]},

iq iq
E(UIR) < K* Y Y E(YilsEIF)IE)
k=(i—1)g+1 j=k

and

E(|Upngeils) < K2 > D E(|VilelE(Y;|Fe)le)
k=q[n/q]+1 j=k

where K = y/max(é2,1). Using the fact that P(|Yy|g < M) =1 for any k € {1,...,n} and that

(0(k))k>0 is a non-increasing sequence, we then derive that, for any i € {1,...,[n/q]},
iq iq q—1
E(Uilf) < K*M Y7 > 00 —k) < K*Mqy_0(k),
k=(i—1)g+1 j=k k=0
and
n n g—1
E(Upjgn2) < K2M 3 S0 — k) < K2M(n - qln/q) S 008).
k=qln/ql+1 j=F k=0
Whence
[n/q)+1 q-1
> E(Uilg) < K*Mn Y 0(k). (5.8)
1=1 k=0

Starting from (5.6) and using the upper bounds (5.7) and (5.8), Proposition 5.1 follows. ¢

5.3 A maximal inequality

Proposition 5.2. Let n > 2 be an integer and Y1,Yo,...,Y, be n random variables with values
in a separable Banach space (B, |- |p). Assume that P(|Yi|g < M) =1 for any k € {1,...,n}.
Let Fy,...,Fp be an increasing filtration such that Yy, is Fp-measurable for any k € {1,...,n}.
Let Sy, = >3, Yi and (k) be defined by (5.3). Then, for any real p > 1, the following inequality
holds:

n—2
1/ 2p \? _ _ —
P <« Z (£ P p—1lap, 3 rp—1 p—2
E(lgllzcn|5k|ﬂ> < Q(p— 1) E(|Snl|g) + 2P 3PpM nkg_o(k+1) 0(k).
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Proof of Proposition 5.2. All along the proof, Ex(-) = E(:|F)). We start by noticing that
S = Ek(sn) + Ek(sk - Sn) .
Therefore

E< S P><2p—1E< E P) zp—lﬂ«:( E (S, — S p).
e, 15u85) < 27 jmp IBW(SWIR) + 27 B 1B (S — Sl

Notice now that (|Ex(Sy)|, Fr)i<k<n is a submartingale. Therefore by the Doob’s maximal
inequality,

E( max [Ex(5018) < (S25) ESA)-

1<k<n

So, overall,

_1( 2p \? _
D) <27 (2 o)+ 212 s, s - S0)-
E( max I545) <27 (o27) EUSAE) + 27 E( max [Bi(S) — Sl

To end the proposition, it remains to prove that

n—2
B g, FESn — SU) <90 3Gk 100 (59)

With this aim, we write

E< max |Eg(Sy, —Sk)|p> = /nM xp_1[P< max |[Ex(S, — Sk)|lp > x)d

1<k<n 1<k<n

Let ¢ be a non-negative integer such that ¢ < n. Notice that

<‘ZEkX Ei (X ‘—i—‘ZEqu )(B

Ex(Sn— Sl = | - EnlXs

i=k+1 i=k+1 i=k+1
But
q+k
( Z E(X; — Ei q(X))‘ _‘ 3 (Bx(X0) — B q(X))‘ < 2gM
i=k+1 i=k+1

Therefore, for any real x such that = € [0, n], choosing ¢ = [z], we get

P(1r<nax IE4 (S, — Si)|s > 3Mﬂ:) < P(1I<nka<xn 3 Ek(Ei_[m](Xi))‘B > M:v)
- i—=k+1

1=
<IP’< IE< E, ) M)
< P( max Ey Z' > Me

But (B (Y iy [Ei— (X)), Fi)i<k<n is a martingale, so the Doob-Kolmogorov’s inequality
implies

<1I<nl§<ank<Z\E ’ \B)>Mx)<—ZE (X)) < 2000

So, overall,

n/3
_ Py _ p p—1 _
E(1r<n]?<x |Ex(Sn — Sk)[k) = p(3M) /0 x IP’<11<nl?<x |Ex(Sn — Sk)|B > 3Mx>dw

n/3
< 3ppMp_1n/ 2P20([z])dz
0

proving (5.9) by using the fact that (0(k))x is a non-increasing sequence. The proof of the
proposition is therefore complete. ¢
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5.4 Proof of Inequality (2.3)
Proposition 5.2 together with Inequality (2.2) leads to

E( max |Sf2) < 2_1<p2—pl) KP(Z max H|X IB{ZE Xl Fi) ‘BH )

1<k<n — i<t<n
n—2
+ 207 18PpMP I > "(k+ 1)P20(K) . (5.10)
k=0
Since P(|Xk|g < M) =1 for any k € {1,...,n}, it follows that
2-2 2
> max ny \B\ZE X3 F) \BH <nM /PZe /7 (k (5.11)
=1 k=0
On the other hand, since (0(k));>1 is non-increasing,
N9 logy(n—1)—12¢+1_1 logy(n—1)
Sk+1PP0(k)y = D > (k1P R0k <207 Y 2fmp(2f).
k=1 =0 k=2¢ £=0

Hence, using the fact that p > 2 and again that (6(k))r>1 is non-increasing, we successively
derive

n—2 logy(n—1)

2
Z(]H' 1)P20(k) < 2p—2( Z 2((2—2/]))92/1)(2())7’/
k=1 =0
logy(n—1) /2 n—1 p/2
< op— 2(92/p )+ 2 Z Z 2t(1-2/p) 92/1)(25)) §22p73<zk172/p92/p(/€)> .
(=1 k=20-141 k=1

Since p > 2, it follows that

n—2 n—1 9
S (k + 1)P20(k) < 2% Ppp/2 ( 3 k1*2/p02/p(/<:)>p/ . (5.12)
k=1 k=1

Starting from (5.10) and considering the upper bounds (5.11) and (5.12), the inequality (2.3)
follows. O

5.5 Dependence properties of Young towers

In this section, we assume that 7" is a nonuniformly expanding map on (X', \) with A a probability
measure on X, and that T can be modelled by a Young tower. As in Section 4.4, X can be any
bounded metric space and not necessarily the unit interval.

Proposition 5.3. Let T' be map that can be modelled by a Young tower with polynomial tails of
the return times of order 1/y with v € (0,1). Then the inequality (4.3) holds, that is: for any
€ (0,1] there exists K, > 0 such that

K,
n(I*’Y)/’Y ’

7( sup [P"(f) = w(f)]) <

feLa,l
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Proof of Proposition 5.3. The proof is a slight modification of the proof of Theorem 2.3.6

in [8] and is included here for the sake of completeness. In this proof, C' is a positive constant,

and C|, is a positive constant depending only on «. Both constants may vary from line to line.
We keep the same notations as in Subsection 4.1. For f € L, let

1|20 = La(f) + [ flloo -
Let fO = f — o(f). Since ||f |0 < Lo(f), it follows that

1f = 2(N)llza < 2La(f)- (5.13)

Recall that one has the decomposition

P'f= 3" MNAQy)+ DY AEBf+Cuf, (5.14)

a+k+b=n a+k+b=n

where the operators A,,, B, C, and E,, and are defined in Chapter 2 of Gouézel’s PhD thesis
[8] and Ap(f) = v(By(f)). In particular, Gouézel has proved that

Callf|

Callflza
(k+1)A-1/7

E < .
|| k‘f”ch — (kj—{— 1)1/’}/

and | By fllL. < (5.15)

Following the proof of Lemma 2.3.5 in [§8], there exists a set Z,, such that, for any bounded

measurable function g,
[Cn(9)| < Cliglloclz, , (5.16)

and

B C
v(Zy) < —(n N

We now turn to the term >, ., A EBpf in (5.14). Following the proof of Lemma 2.3.3.
in [8], there exist a set U,, such that, for any bounded measurable function g,

(5.17)

|An(9)| < Cllglloo1u, (5.18)
and o
v(U,) < ———. 5.19

Using successively (5.18) and (5.15), we obtain that

Y ABBS|<C Y BB,
a+k+b=n a+k+b=n

1y,
<Coa Y, |Bfla——r—7
a+k+b=n k + 1)( N

1y
< Collfllee D T . (5.20)
i (k +1)A=/7(b + 1)1/~

We now turn to the term » ., Au(1ly) - 7(Bpf) in (5.14). From the last equality of
(2.21) in [8], if #(f) = 0,

= > v(Bf)

b>n—a

Callf]La
<Y IBfll. < D G+

b>n—a b>n—a

CallfllLa
- (n +1—- a)(1*7)/7

(5.21)
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From (5.21) and (5.18), if v(f) =0,

ZA (1y) - (naﬂ (Byf) )
0

b=

n

1y,
< ColflLa Z% CrSE (5.22)

From (5.13), || f —v(f)|lz, < 2La(f). Hence, it follows from (5.14), (5.16), (5.20) and (5.22)
that

n 1y, 1y,
|P (f—]/(f))| SC’CVLC'l(f)(]‘Zn +Z n+1_a (1— 'y)/'y Z (k+1)(1—’y)/’y(b_|_1)1/’y) '

+b=
(5.23)
From (5.23), (5.17) and (5.19), it follows that
o swp 1P() = o)) < Cal 4 Y !
f€La1 o (n =+ 1)(1—7)/7 = (a + 1)1/'y(n 41— a)(l—V)/V

1
. (5.24
’ a+l§:n (a+ D)V7(k+1)=9/7(b + 1)1/'y> (5.24)

All the sums on right hand being of the same order (see the end of the proof of Proposition 6.2
in [2]), it follows that there exists K, > 0 such that

K,
n(=1/v"’

7( sup [P(f) = w(f)]) <

fELa,l

and the proof is complete. ¢

5.6 Proof of Lemma 1.1

We shall prove here that Lemma 1.1 also holds for the derivative in the sense of Fréchet. Hence
in the proof D and D? are the first and second derivatives in the sense of Fréchet.

Set |z]q = ([ |(t)|9dv (2 ))l/q and observe that for, any = and h in L9, by the Taylor integral
formula at order 2,

o+ hJ? — |2]? = g /X h(t) ()] sign (@ () u(de)
1
— 2 —3s)|z S =24 .
Falg—1) /X B (1) /O (1= )[(t) + sh(t)|"2dsp(dt)

implying that
|z + h[§ — [x[g = Q/X h() ()72 (t)u(dt) + O(|h[}) - (5.25)

Define now the function ¢ from L9 to R by

U(x) = |3

Using (5.25), we derive that, for any x and h in L9,

U+ ) = t(@) = 207 (¢(@) "2 ( /X (l2(t) + h(B)|7 = |o(&)|)dv (1)) + o((|Rly)
=2()'™" [ hOROF2Oudn) +ollbl,). (20
X
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Therefore ¢ is Fréchet differentiable and
1—q/2 _
Di(x)(h) = 2(6(3:)) a/ /Xh(t)|x(t)|q 2:c(t),u(dt). (5.27)

Let us prove that £ is two times Fréchet differentiable. Starting from (5.27), we first write that,
for any x, h,v in L9,

Dl(x 4+ v)(h) — Dl(z)(h) = 2(6(3: + 1)))1_"/2 /X h(t)|z(t) + v(t)|72(x(t) + v(t))u(dt)
= 2(e@) " [ hio)la(o) (o) (e
X
Notice that
/ ROLe(t) + v(1)] (2(t) + v(t)p(dt) - / B | ()| 2 () ()
X X
= (- 1) / R (0] (t)]* p(dt) + ol [hlylvl)
X
Hence
DUz +v)(h) = D) (h) = 2(q — 1)(((x))' " /X B )o(t) ()| p(dt)
+2(q = (U +0)' 7 = (U))' ™) / Bty () () p(dt)

X

+2((Uz + )7 = (0()) 777 /X B(®)]e ()| 722 () (dt) + ol hlgvlg) -
Using (5.26), we infer that

(8o +0) 7 = (@) = 2= ) (¢12)) ™ [ oOlOan(d) + ool

X

So, overall,
Dt(z +v)(h) — DU(x)(h) = 2(q — 1) (¢(x)) "~ * /X h(tyo(t)] ()12 pu(dt)

+2(2- Q)(e(w))lq/ v(t)w(t)lw(t)!q2u(dt)/ h(t)a(t) ()| p(dt) + o(|hlglv]4) -
x X
Therefore ¢ is two-times Fréchet differentiable and
DA4(a)(h.v) = 2(a = D) ()) ™" [ e la(o) (et
+2(2 - q)(60)' ™" [ Ol lat) [ OOl (). (529

Since ¥, (z) = (€(z))” / 2, 1y is also two-times Fréchet differentiable. Moreover

Dy () () = 2(¢(x)) "2 /X Bt (1) 12 ()l )

and
Dy () (h,v) = plq — 1) (¢(x)) P~/ /X h(t)o(t)]a(t)]42 p(dt)
+p(p — g)(¢(x) """ / o(B) ()] (D)1 u(dt) / Bt (OB u(de) . (5.29)
X X
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Starting from (5.29) and using the fact that ¢(x) = |x|3, we get

D*p(x)(h,v) = p(g — 1)zl /X h(t)o(t)]a(6)|"2 p(dt)

+p(p—q)\x!Z_Qq/Xv(t)w(t)!w(t)!q_Zu(dt)/Xh(t)m(t)!w(t)!q_Zu(dt)7 (5.30)

and an application of Holder’s inequality shows that IL? belongs to the class Co (p, &p) with &, =
p( max(p,2q—p)— 1). To prove that L7 belongs to the class Ca(p, ¢p) with ¢, = p(max(p, q)—1),
it suffices to write (5.30) with h = v, and to use the fact that (fXv(t)|x(t)|q_2x(t)p(dt))2 is
non-negative. This ends the proof of Item 1.

The proof of Item 2 is omitted since it uses the same arguments as for L2, ¢
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