
An UCT Approach for Anytime Agent-based Planning

Damien Pellier, Bruno Bouzy, Marc Métivier

To cite this version:

Damien Pellier, Bruno Bouzy, Marc Métivier. An UCT Approach for Anytime Agent-based
Planning. International Conference on Practical Applications of Agents and Multi-Agent Sys-
tems, Apr 2010, Salamanca, Spain. 2010. <hal-00981649>

HAL Id: hal-00981649

https://hal.inria.fr/hal-00981649

Submitted on 22 Apr 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.inria.fr/hal-00981649

An UCT Approach for Anytime Agent-based

Planning

Damien Pellier, Bruno Bouzy, and Marc Métivier

Abstract In this paper, we introduce a new heuristic search algorithm based on mean

values for anytime planning, called MHSP. It consists in associating the principles of

UCT, a bandit-based algorithm which gave very good results in computer games, and

especially in Computer Go, with heuristic search in order to obtain an anytime planner

that provides partial plans before finding a solution plan, and furthermore finding an

optimal plan. The algorithm is evaluated in different classical planning problems and

compared to some major planning algorithms. Finally, our results highlight the capacity

of MHSP to return partial plans which tend to an optimal plan over the time.

1 Introduction

The starting point of this work was to apply Upper Confidence bounds for Trees (UCT)

[13], an efficient algorithm well-known in the machine learning and computer games

communities, and originally designed for planning, on planning problems. A weakness

of classical planners is the all-or-nothing property. First, when the problem complexity is

low enough, classical planners find the best plan very quickly. Second, when the problem

complexity is medium, planners first try to find a solution plan (not the optimal one)

and then pursue their search to extract a better solution [6, 4]. This technique is called

anytime planning. Finally, when the problem complexity is too high, planners are not

able to find any solution plan. In order to answer in part to this weakness, we introduce

a new approach based on heuristic search and mean values for anytime planning able to

provide partial plans before finding a first plan, and furthermore finding an optimal plan.

Anytime planning can be understood in two meanings. In the planning domain, any-

time planning means finding a solution plan, and then refining it to find an optimal plan.

There is a good chance that if you stop the planner before finding an optimal plan, the

planner has already a solution plan to provide, and it looks like anytime. However, if you

stop the planner before having a first solution plan, the planner is not anytime in a strict

meaning. When stopped before having a first solution plan, an anytime planner should

be able to give some relevant information, for example the beginning of a plan, a partial

plan, or the first action. Until a solution plan is found, the longer the time the longer

the partial plan is. In this work, the term anytime refers to the strict meaning. We are

interested in partial plans.

Originally, UCT is a bandit-based planning algorithm designed for Markov Decision

Process (MDP). UCT builds a tree whose root is the current state on which a decision

must be taken. The principal variation of the tree is the current solution, and when a plan

is found, the principal variation of the tree is the sequence of actions to perform to reach

the goal. As time is going on, UCT builds up its tree adding nodes at each iteration. At any

time, UCT has a principal variation which can be considered as a partial plan. However,

[13] did not give known successful applications in the planning domain yet. Instead,

UCT gave tremendous results in computer games, and specifically in computer go with

Laboratoire d’Informatique de Paris Descartes 45, rue des Saints Pères, 75006 France

1

2 Damien Pellier, Bruno Bouzy, and Marc Métivier

the Go playing program Mogo [5]. In computer go, UCT is efficient for several reasons.

The first reason is that the Go complexity is high, and games are played in limited time.

Consequently Go playing programs must find moves that does not need to be optimal,

but that need to be the less bad as possible given the limited time. The anytime property

is crucial in computer games, and UCT has it. Consequently, studying UCT, anytime

algorithm originally designed for planning problems successful in two-player games,

was a good starting point to attempt removing the all-or-nothing weakness observed on

classical planners. In this attempt, we reached an interesting point to contribute to the

planning community. This paper presents the work consisting in associating UCT ideas

with heuristics in state space search in order to obtain an anytime planner which provides

partial plans before finding a first plan, and furthermore finding the best plan. The paper

shows a new heuristic search algorithm based on mean values for anytime planning,

called Mean-based Heuristic Search for anytime Planning (MHSP).

The outline of the paper is the following. Section 2 describes previous works. Section

3 presents MHSP. Section 4 shows experimental results. Finally, section 5 discusses this

approach and concludes.

2 Previous works

UCT and Computer Go. UCT worked well in Go playing programs, and it was used

under many versions leading to the Monte-Carlo Tree Search (MCTS) framework [3]. A

MCTS algorithm starts with the root node as a tree, and while time remains, it iteratively

grows up a tree in the computer memory by following the steps below: (a) starting from

the root, browse the tree until reaching a leaf by using (1), (b) expand the leaf with its

child nodes, (c) choose one child node, (d) perform a random simulation starting from

this child node until the end of the game, and get the return, i.e. the game’s outcome, and

(e) update the mean value of the browsed nodes with this return. With infinite time, the

root value converges to the minimax value of the game tree [13]. The Upper Confidence

Bound (UCB) selection rule (1) answers the requirement of being optimistic when a

decision must be made facing uncertainty [1].

Nselect = argmax
n∈N
{m+C

√

log p

s
} (1)

Nselect is the selected node, N is the set of children, m is the mean value of node n, s is

the number of iterations going through n, p is the number of iterations going through

the parent of n, and C is a constant value setup experimentally. (1) uses the sum of two

terms: the mean value m, and the UCB bias value which guarantees exploration.

Planning under time constraints. Besides, planning under time constraints is an active

research domain that results in adaptive architectures [9], real-time control architectures

[16], and real-time heuristic search [15].

3 MHSP

This section defines our algorithm MHSP. We made two important choices in designing

MHSP after which we give the pseudo-code of MHSP.

An UCT Approach for Anytime Agent-based Planning 3

Heuristic values replace simulation returns. On planning problems, random sim-

ulations are not appropriate. Browsing randomly the state space does not enable the

algorithm to reach goal states sufficiently often. Many runs complete without reaching

goal states. Replacing the simulations by a call to the heuristic is far better. Not only

the algorithm finds the goal, but it may reach it very quickly: on certain classes of

problems, MHSP is as fast as a classical planner to find the best solution. In Computer

Go, the random simulations were adequate mainly because they always completed after

a limited number of moves, and the return values (won or lost) were roughly equally

distributed on most positions of a game. Furthermore, the two return values correspond

to actual values of a completed game. In planning, one return means that a solution

has been found (episode completed), and the other return means that the episode has

not been completed. This simulation difference is fundamental between the planning

problem, and the game playing problem. Furthermore, heuristic values bring domain-

dependent knowledge into the returns. In Computer Go, replacing the simulations by

evaluation function calls is forbidden by fifty years of computer Go history. However,

in Computer Go, and in other domains, adding proper domain-dependent knowledge

into the simulations improves the significance of the returns, henceforth the level of the

playing program. Consequently, using heuristic values in our work should be positive

bound to the condition that the heuristic value generator is good, which is the case in

planning. In MHSP, we replace stage (d) of MCTS above by a call to a heuristic function.

Optimistic initial mean values. Computer games practice shows that the UCB bias

of (1) can merely be removed provided the mean values of nodes are initialized with

sufficiently optimistic values. This simplification removes the problem of tuning C, while

respecting the optimism principle. Generally, to estimate a given node, the planning

heuristics give a path length estimation. Convergence to the best plan is provided by

admissible heuristics, i.e. heuristics ensuring the heuristic value is inferior to the actual

distance from the node to the goal, i.e. optimistic heuristics. Consequently, the value

returned by planning heuristics on a node can be used to initialize the mean value of this

node. In MHSP, the returns are negative or zero, and they must be in the opposite of the

distance from s to g. Thus, we initialize the mean value of a node with ∆(s,g) which is

minus the distance estimation to reach g from s. With this initialization policy, the best

node according to the heuristic value will be explored first. Its value will be lowered

after some iterations whatever its goodness, and then the other nodes will be explored in

the order given by the heuristic.

The algorithm. MHSP algorithm is shown in algo. 1 : O is the set of operators, s0 the

initial state, g the goal, C[s] the set of children of state s, R[s] the cumulative return of

state s, V [s] the number of visits of state s, and P[s] the parent of s. The outer while (line

2) ensures the anytime property. The first inner while (line 4) corresponds to stage (a)

in UCT. The default reward is pessimistic: (R[s0]/V [s0]) + 1 is the current pessimism

threshold. The first two i f test whether the inner while has ended up with a goal achieved

(line 6) or with a leaf (line 7). If the goal is not reached, the leaf is expanded, stage (b)

in MCTS. The second i f corresponds to stage (c). Stage (d) is performed by writing

∆(s′,g) into the return. The second inner while (line 14) corresponds to stage (e). Func-

tion reconstruct solution plan() browses the tree by selecting the child node with the

best mean, which produces the solution plan. Function reconstruct best plan() browses

the tree by selecting the child node with the best number of visits. The best plan recon-

4 Damien Pellier, Bruno Bouzy, and Marc Métivier

Algorithm 1: MHSP(O,s0,g)

C[s0]← /0 ; R[s0]← ∆(s0,g) ; V [s0]← 1; π ← nil1

while has time do2

s← s03

while g 6⊆ s and V [s] 6= 1 do s← argmaxs′∈C[s](R[s′]/V [s′])4

reward← (R[s0]/V [s0])+15

if g⊆ s then reward← 06

else if V [s] = 1 then7

A←{a | a ground instance of an operator in O and precond(a)⊆ s}8

foreach a ∈ A do9

s′← (s∪ effects+(a))− effects−(a)10

C[s′]←C[s]∪{s′} ; R[s′]← ∆(s′,g) ; P[s′]← s ; V [s′]← 111

if C[s] 6= /0 then s← argmaxs′∈C[s](R[s′]) ; reward← R[s]12

i← 013

while s 6= s0 do s← P[s] ; R[s]← R[s]+ (reward− i) ; V [s]←V [s]+1 ; i← i+114

if g⊆ s then15

π
′← reconstruct solution plan()16

if length(π) > length(π ′) then π ← π
′17

if π = nil then return reconstruct best plan() ; else return π18

struction happens when the time is over before a solution plan has been found. In this

case, it is important to reconstruct a robust plan, may be not the best one in terms of

mean value. With the child with the best mean, a plan with newly created nodes could be

selected, and the plan would not be robust. Conversely selecting the child with the best

number of visits ensures that the plan has been tried many times, and should be robust to

this extent.

4 Experimental Results

In this section, we present experimental results in two steps: a first experiment aiming at

showing that MHSP can be compared to state-of-the-art planners, and a second exper-

iment aiming at underlining the anytime feature of MHSP (anytime meaning building

good partial plans when the running time is shorter than the time necessary to build

the first solution plan). We present experimental results obtained in test domains and

problems from International Planning Competition, which illustrates the effectiveness

of our techniques implemented in MHSP. All the tests were conducted on an Intel Core

2 Quad 6600 (2.4Ghz) with 2 Gbytes of RAM. The implementation of MHSP used for

experiments is written in Java based on the PDDL4J library.

First experiment. The experiments were designed in order to show that MHSP: (1)

performs almost as well as classical planners on classical planning problems, and (2)

returns, given a fixed amount of time, the beginning of the optimal plan that classical

planners cannot solve with the same amount of time.

Figures 1(a) and 1(b) show (on log scale) performance of MHSP-speed on two

domains (blocksworld and ferry) according to the problem size. The planners used to

the comparison were chosen for their planning techniques: IPP for planning graph [14],

Satplan 2006 for planning by satisfiability [12], SGPlan-5 for subgoal decomposition

planning [11] and FDP for constraint satisfaction techniques [7]. For both domains,

An UCT Approach for Anytime Agent-based Planning 5

MHSP was tested with three heuristics: Hs+, Hsmax used by HSP planner [2] and

FF-heuristic used by [10]. The CPU-time limit for each run was 10000 seconds, after

which termination was forced. The results show that MHSP performs almost the most

quickly (except SGPlan which is based on hill climbing and heuristic search and goal

agenda techniques). However, the three heuristics do not perform as well. As expected,

Hsmax is less informative than Hs+ and FF-heuristic. Thus, MHSP with Hsmax performs

more slowly than with the other heuristics. Moreover, Hs+ is more efficient than

FF-heuristic as displayed by Table 1. This difference can be explained by the fact that

Hs+ returns values more dispatched than FF-heuristic which is more informative for

MHSP. Finally, if we look at the number of actions of the first solution plan found

by the different planners, we observe that MHSP finds solution plan of good quality.

To conclude this first experimentation, let’s consider the figure 1(c) that displays the

behavior of MHSP on a specific blocksworld problem containing 17 blocks. This figure

shows that the number of actions belongs to the optimal solution plan found by MHSP

given a fixed amount of time. Notice that the results are statistically meaningful (MHSP

was run 20 times each 10 ms time step using FF-heuristic). We observe that MHSP finds

very quickly the first actions of the optimal solution plan. It meaningfully needs only

1500ms to find the first 10 actions of the optimal solution plan that has a length of 31

actions. Of course, MHSP performs only if the heuristic is informative and a complete

study of the behavior of MHSP with all the heuristics available in the literature would be

necessary.

Partial plan experiment. We present the results obtained by A*, Greedy Search (GS),

MHSP-ff, and Enforced Hill-Climbing (EHC) [10] on four problems: Blocksworld prob-

lem 12, Ferry problem L6 C9, Gripper problem 6, and Hanoi problem 6. The aim of

this second experiment is to see whether the partial plans built by the four algorithms are

good or not when the running time is shorter that the time to build a first solution plan. To

evaluate a partial plan, we define two distances: the distance to the goal and the distance

to the optimum.

• Distance to the goal. The distance to the goal of a partial plan is the length of the opti-

mal plan linking the end state of this partial plan to the goal state. When the distance to

the goal diminishes, the partial plan has been built in the appropriate direction. When

the distance to the goal is zero, the partial plan is a solution plan.

• Distance to the optimum. The distance to the optimum of a partial plan is the length

of the partial plan, plus the distance to the goal of the partial plan, minus the length

of the optimal plan. When the distance to the optimum of a partial plan is zero, the

partial plan is the beginning of an optimal plan. The distance to the optimum of a

solution plan is the diffence between its length and the optimal length. The distance

to the optimum of the void plan is zero.

The distance to the goal and the optimal distance of an optimal plan is zero.

Conversely, when the distance to the goal and the distance to the optimum of a partial

plan are zero, the partial plan is an optimal plan. For each problem, the results are shown

with figures giving the distance to the goal and the distance to the optimum of the partial

plan in the running time. These distances are computed every ms by calling an optimal

planner (i.e. A*).

Partial plans of the four algorithms. The partial plan given by A* at a given time is the

path linking the root node to the current expanded leaf node. Given A* manages a list

6 Damien Pellier, Bruno Bouzy, and Marc Métivier

of whole leaf nodes, the partial plan provided by A* varies a lot from a given time to

another. To get the partial plan provided by MHSP at a given time, we browse the MHSP

tree from the root using the number of visits, and we stop when this number is below a

threshold that equals the branching factor of the tree. This way, the partial plan is more

stable, but shorter. GS browses and expands the tree starting from the root by selecting

the child whose heuristic value is minimal. The weakness of GS is its non-optimality.

EHC chooses the first node whose heuristic value is strictly inferior to the heuristic value

of the current node, insuring a progress toward the goal is made when selecting this

node. The weakness of EHC is its inability to go out of a deadend or a plateau. In such

cases, our EHC returns a failure. With the state-of-the-art heuristics, when they find a

solution, GS and EHC are actually very fast.

Blocksworld problem 12. In this problem, A* finds the optimal solution in 130ms (see

figure 1(d)). When the running time is inferior to 50 ms, the distance to the goal remains

at its initial value. Between 50 ms and 130 ms, the distance to the goal decreases but

remains high before the optimal plan is found. Along the running time, the distance

to the optimum is low but strictly greater than zero. Experimental results of GS and

EHC are not shown. Both algorithms go to deep in the search space. Consequently the

algorithm used to compute the distance to the optimum (in our experiments A*) falls to

find the optimum plan in a reasonable time frame. These results highlight the weakness

of both algorithms in that problem. MHSP optimally solves this problem in 230 ms (see

figure 1(e)). Like A* does, when the running time is inferior to 50 ms, the distance to

the goal remains at its initial value, and between 50 ms and 230 ms, the distance to

the goal decreases but remains high before the optimal plan is found. MHSP explores

along optimal partial plans for running times inferior to 200 ms. When looking at the

distance to the goal, the relative comparison between A* and MSHP on this problem

is in favour of A*, but the distance to the goal of MHSP decreases almost monotically

while the distance to the goal of A* is decreasing with large oscillations. When looking

at the distance to the optimum, the relative comparison between A* and MSHP on this

problem is in favour of MHSP (except after 130 ms).

Hanoi problem 6. In this problem, A* finds the optimal solution in 1900ms (see figure

1(f)). On this problem, the distance to the goal decreases with oscillations. The distance

to the optimum increases before the optimal plan is found. EHC falls in a deadend and

cannot solve this problem. GS is very efficient on this problem, making good use of the

heuristics (see figure 1(g)). It finds a solution plan in about 450 ms. MHSP solves this

problem in 600 ms (see figure 1(h)). However, as time is running, the distance to the

optimum of the partial plan of MHSP increases, and the solution found by MHSP on

this problem is not optimal at all. Finally, MHSP is slower than GS but faster than A* to

find a plan on this problem.

Ferry problem L6 C9. On the Ferry problem L6 C9, MHSP finds the optimal solution

in 1050 ms (see figure 2(a)), A* finds the optimal solution in 2100 ms (see figure 2(b)).

MHSP is twice faster than A* on this problem. The distance to the goal of MHSP

decreases more quickly than it does for A*. MHSP shows a better anytime ability than

A* on this problem. However, EHC finds a solution in 230 ms, four times faster than

MHSP (see figure 2(c)), but this solution is not optimal. Besides, GS finds a solution in

60 ms, four times faster than EHC (see figure 2(d)), but this solution is not optimal. EHC

An UCT Approach for Anytime Agent-based Planning 7

and GS are one order of magnitude faster than MHSP and A* and they find solutions not

far from optimal. MHSP is the fastest algorithm to find an optimal plan on this problem.

Gripper problem 6. On the Gripper problem 6, the same remarks can be made. MHSP

finds the optimal solution in 1400 ms (see figure 2(e)), A* finds the optimal solution in

8000 ms (see figure 2(f)), which is rather slow. MHSP is five times faster than A* on this

problem. The distance to the goal of MHSP decreases more slowly than it does for A*.

Furthermore MHSP partial plans are far from being optimal. EHC finds a solution in 100

ms, fourteen times faster than MHSP (see figure 2(g)), but this solution is not optimal.

Besides, GS finds an optimal solution in 85 ms (see figure 2(h)). EHC and GS are one

order of magnitude faster than MHSP and A*.

5 Conclusion

Anytime heuristic search has been studied already [8]. However, this work focused on

finding a first plan, and refining it to find the best plan. Such a method cannot give any

information before a first plan is found, especially a partial plan.

In this paper, we presented MHSP a new anytime planning algorithm which provides

partial plans before finding a solution plan. This algorithm combines an heuristic search

and the learning principles of UCT algorithm, i.e. states’ values based on mean returns,

and optimism in front of uncertainty. Of course, when given insufficient time, the partial

plan is not garanteed to be a prefix of an optimal plan or of a solution plan. However,

on average over our benchmark, the partial plans returned by MHSP are prefix of either

solution plans or optimal plans. Evaluated in several classical problems, our first results

showed that MHSP performs almost as well as classical planners on classical planning

problems. However, MHSP is surpassed by SGPlan that uses a goal agenda (MHSP does

not). We defined two distances to evaluate partial plans provided by a planner at a given

time: the distance to the goal and the distance to the optimum. With such measures, we

experimentally compared MHSP, A*, EHC and GS. Given a fixed amount of time, MHSP

provides partial plans which tend to be the beginning of solution plans and then optimal

plans when the running time increases. However, given the speed of EHC and GS when

they find solution plans, anytime conclusions can hardly be drawn when considering

absolute running times.

Averaging in MHSP may be discussed. A possibility is to replace averaging by

backing-up the best child value. Then MHSP would look like Greedy Search which may

fall into deadends, even with admissible heuristics. Therefore, a first reason for averaging

is to avoid deadends. With heuristics admissible or not, MHSP expands a different leaf

than A* when, in the upper part of the tree, a mean value is high and leads to a bottom

part of the tree where the heuristics values are high on average but inferior to the heuris-

tic value of the node selected by A*. Our partial plan experiment shows that MHSP have

both their pros and cons since MHSP is better than A* on Ferry and Gripper, but worse

on Blocksworld and Hanoi.

In the future, we want to apply MHSP on problems with non deterministic environ-

ments to take avantage of the averaging of MSHP. Furthermore, since MHSP is success-

fully validated on four benchmarks of classical planning, integrating MHSP into practi-

cal applications remains an enlightening future work. In the current study, we used three

heuristic functions: seeing which function is best-suited to each problem is another inter-

esting research direction.

8 Damien Pellier, Bruno Bouzy, and Marc Métivier

References

1. Auer, P., Cesa-Bianchi, N., Fisher, P.: Finite-time Analysis of the Multiarmed Bandit Problem. Ma-

chine Learning 47(2–3), 235–256 (2002)

2. Bonet, B., Geffner, H.: Planning as Heuristic Search. Artificial Intelligence 129(1–2), 5–33 (2001)

3. Chaslot, G., Winands, M., van den Herik, H., Uiterwijk, J., Bouzy, B.: Progressive Strategies for

Monte-Carlo Tree Search. New Mathematics and Natural Computation 4(3), 343–357 (2008)

4. Chen, Y., Huang, R., Zhang, W.: Fast Planning by Search in Domain Transition Graphs. In: Proc.

AAAI, pp. 886–891 (2008)

5. Gelly, S., Wang, Y., Munos, R., Teytaud, O.: Modification of UCT with Patterns in Monte-Carlo Go.

Tech. Rep. RR-6062, INRIA (2006)

6. Gerevini, A., Serina, I.: LPG: A Planner Based on Local Search for Planning Graphs with Action

Costs. In: Proc. ICAPS, pp. 13–22 (2002)

7. Grandcolas, S., Pain-Barre, C.: Filtering, Decomposition and Search Space Reduction for Optimal

Sequential Planning. In: Proc. AAAI (2007)

8. Hansen, E.A., Zhou, R.: Anytime Heuristic Search. JAIR 28(1), 267–297 (2007)

9. Hayes-Roth, B.: An architecture for adaptive intelligent systems. Artificial Intelligence 72, 329–365

(1995)

10. Hoffmann, J., Nebel, B.: The FF Planning System: Fast Plan Generation Through Heuristic Search.

JAIR 14(1), 253–302 (2001)

11. Hsu, C.W., Wah, B., Huang, R., Chen, Y.: Handling Soft Constraints and Goals Preferences in

SGPlan. In: Proc. of the ICAPS Workshop on Preferences and Soft Constraints in Planning (2006)

12. Kautz, H.A., Selman, B.: Unifying SAT-based and Graph-based Planning. In: Proc. IJCAI, pp.

318–325 (1999)

13. Kocsis, L., Szepesvari, C.: Bandit-based Monte-Carlo Planning. In: Proc. ECML, pp. 282–293

(2006)

14. Koehler, J., Nebel, B., Hoffmann, J., Dimopoulos, Y.: Extending planning graphs to an ADL subset.

In: Proc. ECP, pp. 273–285 (1997)

15. Korf, R.: Real-Time Heuristic Search. Artificial Intelligence 42(2-3), 189–211 (1990)

16. Musliner, D., Goldman, R., Krebsbach, K.: Deliberation scheduling strategies for adaptive mission

planning in real-time environments. In: Proceedings of the Third International Workshop on Self

Adaptive Software (2003)

domains best mhsp+ mhsp-ff ipp satplan sgplan5 fdp

plan time cost time cost time cost time cost time cost time cost

hanoi-4 15 0.32 15 0.31 15 0.00 15 0.53 15 0.00 15 0.05 15

hanoi-6 63 1.30 66 1.74 75 0.03 63 > 120 na 0.02 63 10.92 63

hanoi-7 127 4.56 145 5.19 147 0.11 127 > 120 na 0.08 127 > 120 na

gripper-7 21 4.55 23 6.66 21 0.16 21 20.57 21 0.00 21 1.42 15

gripper-8 21 11.91 27 22.51 23 0.43 23 25.38 23 0.01 23 4.10 23

gripper-9 27 28.88 29 85.57 27 1.61 27 > 120 na 0.01 27 15.39 27

satellite-2-4 20 0.71 20 27.87 20 41.36 23 0.45 25 0.00 24 > 120 na

satellite-2-5 29 7.76 29 > 120 na > 120 na 11.40 43 0.04 35 > 120 na

satellite-2-6 43 28.79 43 > 120 na > 120 na > 120 na 0.11 71 > 120 na

zeno-2-6 15 9.71 16 118.79 15 0.03 17 0.18 19 0.01 24 51.61 15

zeno-3-6 11 24.48 11 > 120 na 0.04 18 0.39 18 0.01 15 > 120 na

zeno-3-8 23 24.28 23 > 120 na 77.23 29 0.92 27 0.01 29 > 120 na

Table 1 Comparison of the time (sec.) and cost (number of actions) of the plan found by MHSP

An UCT Approach for Anytime Agent-based Planning 9

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 5 10 15 20 25 30 35 40 45

fdp
sgplan-5

ipp
satplan
mhsp+

mhsp-max
mshp-ff

(a) Planning times (sec.) – blocksworld do-

main

 0.01

 0.1

 1

 10

 100

 1000

 0 5 10 15 20 25 30 35

fdp
sgplan-5

ipp
satplan
mhsp+

mhsp-max
mshp-ff

(b) Planning times (sec.) – ferry domain

 0

 5

 10

 15

 20

 25

 30

 35

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

n
b
.
a
c
ti
o
n
s

time (ms)

mhsp
optimal plan length

(c) The number of actions belongs to the op-

timal solution plan found by MHSP given

a fixed amount of time on a specific

blocksworld problem containing 17 blocks

 0

 5

 10

 15

 20

 25

 0 50 100 150 200

nb
. a

ct
io

ns

time (ms)

distance to goal
distance to optimum
optimum plan lenght

(d) A* Blocksworld problem 12

 0

 5

 10

 15

 20

 25

 0 50 100 150 200 250 300

nb
. a

ct
io

ns

time (ms)

distance to goal
distance to optimum
optimum plan lenght

(e) MHSP Blocksworld problem 12

 0

 10

 20

 30

 40

 50

 60

 70

 0 500 1000 1500 2000 2500

nb
. a

ct
io

ns

time (ms)

distance to goal
distance to optimum
optimum plan lenght

(f) A* Hanoi problem 6

 0

 10

 20

 30

 40

 50

 60

 70

 0 100 200 300 400 500 600

nb
. a

ct
io

ns

time (ms)

distance to goal
distance to optimum
optimum plan lenght

(g) Greedy Search Hanoi problem 6

 0

 10

 20

 30

 40

 50

 60

 70

 0 100 200 300 400 500 600 700 800

nb
. a

ct
io

ns

time (ms)

distance to goal
distance to optimum
optimum plan lenght

(h) MHSP Hanoi problem 6

Fig. 1 First experimental results

10 Damien Pellier, Bruno Bouzy, and Marc Métivier

 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200

nb
. a

ct
io

ns

time (ms)

distance to goal
distance to optimum
optimum plan lenght

(a) MHSP Ferry problem L6 C9

 0

 5

 10

 15

 20

 25

 0 500 1000 1500 2000 2500

nb
. a

ct
io

ns

time (ms)

distance to goal
distance to optimum
optimum plan lenght

(b) A* Ferry problem L6 C9

 0

 5

 10

 15

 20

 25

 0 50 100 150 200 250

nb
. a

ct
io

ns

time (ms)

distance to goal
distance to optimum
optimum plan lenght

(c) EHC Ferry problem L6 C9

 0

 5

 10

 15

 20

 25

 0 20 40 60 80 100
nb

. a
ct

io
ns

time (ms)

distance to goal
distance to optimum
optimum plan lenght

(d) Greedy Search Ferry problem L6 C9

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 200 400 600 800 1000 1200 1400 1600

nb
. a

ct
io

ns

time (ms)

distance to goal
distance to optimum
optimum plan lenght

(e) MHSP Gripper problem 6

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 2000 4000 6000 8000 10000

nb
. a

ct
io

ns

time (ms)

distance to goal
distance to optimum
optimum plan lenght

(f) A* Gripper problem 6

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 20 40 60 80 100 120 140

nb
. a

ct
io

ns

time (ms)

distance to goal
distance to optimum
optimum plan lenght

(g) EHC Gripper problem 6

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 20 40 60 80 100 120

nb
. a

ct
io

ns

time (ms)

distance to goal
distance to optimum
optimum plan lenght

(h) GS Gripper problem 6

Fig. 2 Second experimental results

