
A Unified Framework based on HTN and POP for

Approaches for Multi-Agent Planning

Damien Pellier, Humbert Fiorino

To cite this version:

Damien Pellier, Humbert Fiorino. A Unified Framework based on HTN and POP for Ap-
proaches for Multi-Agent Planning. International Conference on Intelligence Agent Technology,
Nov 2007, Silicon Valley, United States. 2007. <hal-00981704>

HAL Id: hal-00981704

https://hal.inria.fr/hal-00981704

Submitted on 22 Apr 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL Descartes

https://core.ac.uk/display/52193988?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.inria.fr/hal-00981704


A Unified Framework based on HTN and POP Approaches
for Multi-Agent Planning

Damien Pellier
Dept. of Mathematics & Computer Science

Paris-Descartes University
45 rue des Saints-Pères F-75270 Paris

Email: Damien.Pellier@math-info.univ-paris5.fr

Humbert Fiorino
Laboratoire d’Informatique de Grenoble

46, avenue Félix Viallet F-38031, Grenoble
Email: Humbert.Fiorino@imag.fr

Abstract

The purpose of this paper is to introduce a multi-agent
model for plan synthesis in which the production of
a global shared plan is based on a promising unified
framework based on HTN and POP approaches. In or-
der to take into account agents’ partial knowledge and
heterogeneous skills, we propose to consider the global
multi-agent planning process as a POP planning pro-
cedure where agents exchange proposals and counter-
proposal. Each agent’s proposal is produced by a re-
laxed HTN approach that defines partial plans in ac-
cordance with the plan space search planning, i.e., plan
steps can contain open goals and threats. Agents inter-
actions define a joint investigation that enable them to
progressively prune threats, solve open goals and elab-
orate solutions step by step. This distributed search is
sound and complete.

Introduction

The problem of plan synthesis achieved by autonomous
agents in order to solve complex and collaborative tasks is
still an open challenge. Increasingly new application areas
can benefit from this research domain: for instance, cooper-
ative robotics (Alami et al. 1998) or composition of seman-
tic web services (Wu et al. 2003) when considering actions
as services and plans as composition schemes. In this pa-
per, we introduce a multi-agent model for plan synthesis in
which the production of a global shared plan is viewed as a
collaborative goal directed reasoning about actions. The key
idea is to take advantage of two planning approaches: POP
planning that is well adapted to produce concurrent plans in
distributed environment (because no explicit global state is
required) and HTN planning for its expressiveness and per-
formance in order to generate refinements.

At the team’s level, each agent can refine, refute or repair
the ongoing team plan with a POP procedure (Penberthy &
Weld 1992). If the repair of a previously refuted plan suc-
ceeds, it becomes more robust but it can still be refuted later.
If the repair of the refuted plan fails, agents leave this part of
the reasoning and explore another possibility: finally, “bad”
sub-plans are ruled out because there is no agent able to push
the investigation process further. As in an argumentation

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

with opponents and proponents, the current plan is consid-
ered as an acceptable solution when the proposal/counter-
proposal cycles end and there is no more objection.

At the agent’s level, the specificity of this approach relies
on the agent’s capabilities to elaborate plans under partial
knowledge and/or to produce plans that partially contradict
its knowledge. In other words, in order to reach a goal, such
an agent is able to provide a plan which could be executed
if certain conditions were met. Unlike “classical” planners,
the planning process does not fail if some conditions are not
asserted in the knowledge base, but rather proposes plans
where action preconditions are possibly not resolved and are
considered as open goals. Obviously, the goal cannot be
considered “achieved” and the open goals must be as few
as possible because they become new goals for the other
agents. For instance, suppose that a door is locked: if the
agent seeks to get into the room behind the door and the key
is not in the lock, the planning procedure fails even though
the agent is able to fulfill 100% of its objectives behind the
door. Another possibility is to suppose for the moment that
the key is available and then plan how to open the door etc.
whereas finding the key becomes a new goal to be delegated.
To that end, we designed a planner based on the HTN proce-
dure (Nau et al. 2003) that relaxes some restrictions regard-
ing the applicability of planning operators.

Our approach differs from former ones in two points. First
of all, unlike approaches that emphasize the problem of con-
trolling and coordinating a posteriori local plans of indepen-
dent agents by using negotiation (Zlotkin & Rosenschein
1990), argumentation (Tambe & Jung 1999), or synchro-
nization (Tonino et al. 2002; Clement & Barrett 2003) etc.,
the unified planning framework presented here focuses on
generic mechanisms allowing agents to jointly elaborate a
global shared plan and carry out collective actions. Sec-
ondly, by elaboration, we mean plan production and not
instantiation of predefined global plan skeletons (Grosz &
Kraus 1996; D’Inverno et al. 2004). This is achieved by
composing agents’ skills, i.e., the actions they can execute
for the benefit of the group. Thus, the issues are: how can
agents produce plans as parts of the global team plan with
their partial and incomplete beliefs? What kind of refuta-
tions, i.e., threats according to POP terminology, and repairs
agents can propose to produce robust plans? And how to
define such a distributed planning procedure to guarantee its



soundness and completeness?

Plan and Open Goal

In this section, we define the syntax and semantics used
in the planning algorithms. In particular, we use the usual
first order logic definitions: constant, function, predicate
and variable symbols. Propositions are tuples of param-
eters, (i.e., constants or variables), and can be negated
or not. Codesignation is an equivalence relation on vari-
ables and constants. Binding constraints enforce codesig-
nation or noncodesignation of parameters and two propo-
sitions codesignate if both are negated or both are not
negated, and if the tuples are of the same length and if cor-
responding parameters codesignate. An operator is a tu-
ple of the form o = (name(o), precond(o), add(o), del(o)):
name(o) is denoted by n(x1, . . . , xk) where n is an oper-
ator symbol and x1, . . . , xk parameters; precond(o), add(o)
and del(o) are respectively the preconditions, the operator’s
add list and delete list. A method is a tuple of the form
m = (name(m), precond(m), reduction(m)): name(m) is
denoted by n(x1, . . . , xk) where n is the method name and
x1, . . . , xk its parameters; precond(m) are the method pre-
conditions; reduction(m) is a sequence of relevant opera-
tors or methods to achieve m. An agent is an autonomous
planning process. More formally:

Definition. 1 (Agent) An agent is a tuple of the form ag =
(name(ag), operators(ag), methods(ag), beliefs(ag)):

• name(ag) identifies the agent;

• operators(ag) and methods(ag) is respectively a set of
operators and methods;

• beliefs(ag) are facts about the world that the agent be-
lieves to be true.

It is worth noting that absent facts are not false but un-
known. Moreover, we consider that each agent’s beliefs are
mutually consistent: if a fact is asserted in one agent’s be-
liefs, it cannot be negated elsewhere.

Definition. 2 (Planning problem) A planning problem is a
tuple of the form P = (s0, T , g):

• s0 is the union set of the agents’ beliefs;

• T is a set of agents;

• g is the goal i.e. facts about the world to be achieved by
T .

In order to solve a planning problem, the agents seek
to find the different steps that will bring them from s0 to
g. These steps are partially ordered actions (concurrency is
possible between agents), i.e., operators or methods whose
parameters are instantiated according to their corresponding
binding constraints. A partial plan is an endeavor to find a
solution:

Definition. 3 (Partial Plan) A partial plan is a tuple of the
form π = (A,≺, I, C):

• A = {a0, . . . , an} is a set of actions;

• ≺ is a set of ordering constraints on A where ai ≺ aj

means ai precedes aj;

• I is a set of binding constraints on action parameters de-
noted by x = y, x "= y, or x = cst such that cst ∈ Dx and
Dx is the domain of x;

• C is a set of causal links denoted by ai
p
−→ aj such that

ai and aj are two actions of A; the ordering constraint
ai ≺ aj exists in ≺; the fact p is an effect of ai and a
precondition of aj , and the binding constraints about the
parameters of ai and aj corresponding to p are in I.

When asserting, an agent can use actions whose precon-
ditions are not totally endorsed by causal links. In a multi-
agent context, this makes sense because these open goals
become sub-goals to be achieved by the other agents.

Definition. 4 (Open Goal) Let π = (A,≺, I, C) be a par-
tial plan. An open goal stated by π is defined as a pre-
condition p of an action aj ∈ A such that, for all actions

ai ∈ A, the causal link ai
p
−→ aj "∈ C. opengoals(π)

and opengoals(aj) respectively denote the set of open goals
stated by π and aj .

We assume that ≺ is consistent: it is possible to find at least
one total order compliant with ≺, (i.e., a completion). In
other terms, there is no cycle in A and ≺ represents a class
of total orders.

Definition. 5 (Linearization) Let π = (A,≺, I, C) be a
partial plan.

1. A linearization of π is a partial plan λ = (A, <, I, C),
where < is a total order on A consistent with ≺, that de-
fines a sequence of n + 1 states 〈s0, . . . , si, . . . sn〉 with

si = (((si−1∪opengoals(ai−1))−del(ai−1))∪add(ai−1)

for 0 ≤ i ≤ n.

2. A completion of π is the set of all the linearizations of π
denoted by completion(π).

Solution plan and refutation

Obviously, planning is finished when the completion of a
partial plan solves the assigned goal.

Definition. 6 (Solution plan) A partial plan π = (A,≺,
I, C) is a solution plan for P = (s0, T , g) if:

• the sets of ordering constraints ≺ and of binding con-
straints I are consistent;

• all the linearizations λ ∈ completion(π) define a sequence
of states 〈s0, . . . , si, . . . sn〉 for 0 ≤ i ≤ n such that:

– the goal g is satisfied in sn, i.e., g ⊆ sn;

– λ does not state open goals, i.e., opengoals(λ) = ∅.

But the number of linearizations of a partial plan is ex-
ponential in its size and computing them in order to decide
whether or not a partial plan is a solution plan would be
time consuming. Therefore, we propose a necessary crite-
rion based on the notion of refutation to fix the correctness
of a partial plan (Chapman 1987).

Definition. 7 (Refutation) A refutation on π = (A,≺,

I, C) is a tuple (ak, ai
p
−→ aj) such that:



• ak produces the effect ¬q, and, p and q codesignate;

• the ordering constraints ai ≺ ak and ak ≺ aj are consis-
tent with ≺;

• the binding constraints corresponding to the codesigna-
tion of p and q are consistent with I.

Proposition. 1 A partial plan π = (A,≺, I, C) is a solution
plan for a problem P if:

• ≺ and I are consistent;

• π contains no threat, i.e., neither open goal nor refutation.

Here is a lemma necessary to prove the proposition 1:

Lemma. 1 Let π = (A,≺, I, C) be a partial plan without

open goal and (ai
p
−→ an) ∈ C a causal link. Necessarily

p ∈ sn if there is no refutation (ak, ai
p
−→ an).

Proof. 1 This lemma is proved by induction on the length of
λ ∈ completion(π):

Base step: let π = (A,≺, I, C) with A = {a0, a∞}.
completion(π) = {λ} and λ = 〈a0, a∞〉. s0 = sn and,
by definition, there is no possible refutation (∀p ∈ s0, p ∈
sn).

Induction step: suppose that the lemma is true for π with
n actions. Let us prove this is also true for π with
n + 1 actions. Let λ ∈ completion(π) with λ =
〈a0, . . . , an−1, an〉 (an = a∞) and λ′ = 〈a0, . . . , an−1〉.

By induction, ∀(ai
p
−→ an−1) for 0 ≤ i < n−1, p ∈ sn−1

if there is no refutation (ak, ai
p
−→ an−1) for 0 ≤ k < n−

1. By definition, sn = (sn−1−del(an−1)) ∪ add(an−1).
Thus, ∀p ∈ sn, either p ∈ add(an−1), or p ∈ sn−1 and
p "∈ del(an−1). In the former case, p is produced by an−1

and there is no possible refutation. In the latter case, p is
produced by λ′ and it is not refuted by an−1. Thus, in any
case, the lemma is true.

Proof. 2 Proposition 1 proof is as follows: let π = (A,≺
, I, C) be a partial plan. ≺ and I are consistent and there
is no threat in π. Therefore, ∀λ ∈ completion(π), λ defines
a sequence of states 〈s0, . . . , sn〉 such that si = (si−1 −
del(ai−1)) ∪ add(ai−1) because opengoals(π) = ∅. As
there is no refutation in π, g ⊆ sn. This can be proved by
contradiction: suppose it exists p ∈ g and p "∈ sn. As p

cannot be an open goal (∃(ai
p
−→ an)), the absence of p in

sn is due to a refutation according to the lemma 1. This is
contradictory with the absence of threat. Thus, g ⊆ sn and
π is a solution plan.

Team Planning Procedure

Agents Interactions Rules. The agents involved in the
process of cooperatively building a solution plan are com-
mitted to follow several interactions rules so as to guar-
antee the validity of the reasoning as well as the correct-
ness of the proposed solution plan. Each agent handles
its own view of the space search in which it records the
propositions of the other agents. The space search is a
Directed Acyclic Graph (DAG) whose nodes are partial

plans and edges are refinement, refutation or repair opera-
tors. The agents produce two kinds of interactions: infor-
mational interactions such as refine, refute, repair , failure,
that enable them to exchange information about the partial
plans contained in their space search, and contextualization
interactions such as prop.solve, prop.failure, prop.success,
ack.failure, ack.success, that enable them to set the interac-
tion context. Each agent’s search space is initiated with π0:
A = {a0, a∞} such that precond(a∞) = g and add(a0) =
s0; (a0 ≺ a∞); the binding constraints corresponding to a0,
a∞ and an empty set of causal links. The agents broadcast
asynchronous messages whose delivery time is finite. All
messages are delivered in the causal order of their emission
so as to ensure that their space search remains consistent
with each other. The informational interactions comply with
the agent’s rationality and update rules given in table 1.

Contextualization Rules. This section explains how the
agents start and stop the plan synthesis. The corresponding
contextualization rules are represented as a finite state au-
tomaton (cf. figure 1) whose states are the dialog states and
edges are the dialog acts (cf. table 1). ? and ! before an
act respectively means that the act is received or sent by the
agent.

Initially, the agents are in IDLE state: they wait for a goal
to solve. When sending or receiving prop.solve, they switch
to Planning state in which they exchange refinements, refu-
tations and repairs according to table 1. There are two possi-
bilities to leave this state: either the agent proposes to stop or
it receives a proposition to stop. In the former case, the agent
releases the act prop.failure (resp. prop.success) to stop with
failure (resp. to stop with success). Then, the automaton
switches to the Failure state (resp. Success) in which the
agent waits the local acknowledgments of the other agents.
If all teammates acknowledge the proposition, the stopping
conditions with failure (resp. with success) are satisfied. In
the latter case (when the agent is requested to stop), the in-
teractions closing needs a two steps procedure.

The first step is the verification one: the interactions
switche either to the IF state, i.e., Instance Failure or to
the IS state i.e. Instance Success. In the case of a stop-
ping proposition with failure, the agent must verify if it can-
not provide a solution and, in case of a stopping proposition
with success, it must verify that the proposed plan is a so-
lution plan. Indeed, it can still refute it on the grounds of
facts ignored by the proposer. For instance, effects that do
not support preconditions through causal links are not com-
municated and can generate refutations.

The second step is the acknowledgment one: if stopping
with failure (resp. with success) is asserted locally, the
agent acknowledges the stopping proposition by releasing
ack.failure (resp. ack.success) and the interations changes to
the Failure state (resp. Success). The Failure and Success
states correspond to an agent’s waiting of the other agents’
acknowledgments. It is worth noting that the non acknowl-
edgment of a stopping proposition conveys no specific con-
textualization act. Indeed, suppose an agent is in IF: if it
receives or sends a refinement, a refutation or a repair, that
means at least an agent is able to carry on the planning pro-



!ack.failure !ack.success

|

|

?refute

?repair

!refine

!refute

!repair

IF

|

Planning

Idle

?refute|

|

?prop.solve

?refine |

|

?repair

?refute

?refine

|

|

?repair

?refute

?refine
?refute

?prop.success?prop.failure

SuccessFailure

!prop.solve|

IS

?ack.success

!prop.failure

?ack.failure

!prop.success

Figure 1: Contextualization automaton

cess. Therefore, the agents must reassess their space search
because it has been modified. Similarly, if an agent, which
is in IS, receives or sends a refutation, the proposed plan is
rejected and the planning process must be continued. In any
case, the agents return to Planning.

Agent Planning Algorithm. The agent planning algo-
rithm is given by the algorithm 1. First of all, a non terminal
partial plan is nondeterministically chosen within the search
space (a partial plan is terminal if no refinement, repair or
refutation is applicable). If all the partial plans are termi-
nal (line 3), investigation cannot be pushed further and the
agent proposes to stop with failure and ends its reasoning
loop (line 5). The stopping proposition is submitted to its
teammates.

If at least one of the partial plan is non terminal, the agent
must assess whether or not this partial plan is a solution
plan: in this case, the plan π does not contain any open
goal and cannot be refuted. The former condition is ver-
ified by the procedure OpenGoals(π). This procedure
can be efficiently implemented with a hash table: each time
a new action is added, its open goals are added to the ta-
ble, and, whenever a causal link is added, the corresponding
open goal is withdrawn. The latter condition is checked by
the procedure Threat(π).

When a plan is considered to be a solution plan (line 9),
the agent proposes to stop the investigation process and ends
its reasoning loop. Otherwise, it proposes to apply a refine-
ment, a repair or a refutation. Let suppose it decides to apply
a refinement (line 14): Refine(φ, π) returns all the pos-
sible refinements where φ are the open goals of π. If there
is no possible refinement, φ is labeled as unsolved and the
agent broadcasts the failure. Otherwise, the agent picks up
a refinement and submits it to the other agents. The same
mechanism is applied for repairs (line 24). Finally, if φ is
a refutation (line 35), the agent broadcasts it to the other
agents. The main characteristic of the agent planning proce-
dure is the following:

Proposition. 2 The multi-agent planning procedure is
sound and complete: every time there is a solution for
P = (s0, T , g) from an agent’s view, this agent ends its pro-
cedure by releasing a proposition of success and a solution
plan.

Proof. 3 (Soundness) By definition, the initial partial plan
π0 is defined by A = {a0, a∞}, where ≺ and I are respec-
tively a consistent set of ordering constraints and binding
constraints. When an agent makes a proposition of success,
the proposed plan π contains no more threat and all the re-
finement and repair operators keep ≺ and I consistent. This
is guaranteed by the interactions rules. Thus, according to
proposition 1, π is a solution plan.

But the multi-agent planning procedure is also sound from
the group’s view because the interactions’ cycle ends if and
only if an agent has released a proposition of success about
π (π locally satisfies the properties of a solution plan) and π
is not refuted by the other agents. Thus, π is a solution plan
for P at the group’s level.

Proof. 4 (Completeness) We must prove that, at least, one
execution trace of the multi-agent planning procedure re-
turns a solution plan from an agent’s view whenever it ex-
ists. The proof is by induction on the solution plan length
k.

Base step (k = 0): the empty plan π is solution of P . Thus,
π contains no threat and the multi-agent procedure imme-
diately releases a success proposition.

Induction step: let us suppose that the multi-agent proce-
dure is complete for problems having k-length solutions.
Let P = (s0, T , g) having a (k + 1)-length solution plan
〈a0, . . . , ak〉. As ak is relevant to achieve the goal g, there
is at least one agent that nondeterministically will pro-
pose an operator to apply to the initial plan π0 and adding
ak. Let sk+1 = ((sk ∪ opengoals(ak)) − del(ak)) ∪
add(ak), the state following the application of ak. At
the next recursive call of the procedure, the plan π1 is, at
least, composed of tree actions {a0, ak, a∞}. π1 is simi-
lar to the initial plan of a problem defined by the state s0

and g = opengoals(ak) ∪ opengoals(a∞). This problem
admits a solution 〈a0, . . . , aj〉 with a length j ≤ k. By in-
duction, the recursive calls of the procedure from π1 build
up a trace that finds a solution plan 〈a0, . . . , aj〉 and the
algorithm proposes to stop with success.

Multi-agent Planning Heuristics. As the search space is
a DAG, it can be explored with A*. But this raises many
problems.First of all, A* is not a distributed algorithm and



refine(ρ, p, π) : ρ is a refinement and p the refined open
goal of partial plan π.

Rationality: the agent ensures that:

• π is a partial plan of its space search;

• h is an open goal of π;

• ρ has not been proposed as refinement of p;

• the partial plan π′, result of ρ, contains consistent
binding and ordering constraints.

Dialog: the agents can either refine all the open goals
of π′ or refute π′.

Update: add π′ as refinement of p in π into its space
search.

refute(φ, π) : φ refutes π.

Rationality: the agent ensures that:

• π is in its space search;

• φ has not been proposed as refutation of π.

Rules: the agents can repair π.

Update: add φ as refutation of π into its space search.

repair(ψ, φ, π) : ψ is a repair of π corresponding to the
refutation φ.

Rationality: the agent ensures that:

• π is in its space search;

• φ refutes π;

• ψ has not been proposed as repair of π about the
refutation φ;

• the partial plan π′ provided by ψ contains consis-
tent binding and ordering constraints.

Rules: either its teammates refine all the open goals
of π′ or they refute π′.

Update: add π′ as repair of the refutation φ in π.

failure(Φ,π) :

Rationality: the agent ensures that:

• π is in its space search;

• Φ is a threat of π;

Rules: ∅

Update: label Φ as unsolved by the agent that pro-
duces the interaction.

Table 1: Interactions Rules

agents’ interactions are asynchronous. It would have been
possible to implement a deliberation protocol in order to
jointly choose among the pending plans which one is the
more promising. But this approach has some drawbacks.
Deliberations would be time consuming and would not take
advantage of possible concurrent explorations; agents un-
able to cooperate at a moment to the planning procedure
would be idle until another plan is chosen. For those reasons,
we propose that all the agents implement the same heuristic
function.

Then, the issue is how to tailor an appropriate heuristic
function f(π) = g(π) + h(π)? To find an optimal solution

Algorithm 1: Agent planning procedure

while planning = true do1

plans ← non terminal plan in the space search;2

if plans is empty then3

Submit failure proposition;4

planning ← false ;5

else6

Select a plan π ∈ plans ;7

flaws ← OpenGoals(π) ∪ Threats(π);8

if flaws is empty then9

Submit a success proposition about π;10

planning ← false ;11

else12

Select a threat φ ∈ flaws ;13

if φ is an open goal then14

refinements ← Refine(φ, π);15

if refinements is empty then16

Label φ as unsolved;17

Assert failed repair of φ;18

else19

Select refinement ρ ∈ refinements ;20

Submit ρ as refinement φ of π;21

else if φ is a threat already asserted then22

repairs ← Repair(φ, π);23

if repairs is empty then24

Label φ as impossible to solve;25

Assert the failed repair of φ;26

else27

Select repair ψ ∈ repairs ;28

Submit ψ as repair of φ in π;29

else30

Submit φ as new refutation of π;31

plan, h(π) must be admissible and never overestimate the
distance to a solution1. To that end, g(π) is the number of
actions and h(π) is the number of open goals. Alternatively,
g(π) could be the number of causal links. Indeed, each ac-
tion is at least connected to another one through a causal
link. But plans that have several open goals refined by an
action would be penalized, which is not convenient.

Moreover, when a plan is chosen, another decision must
been taken: should the plan be refuted, refined or repaired?
This question can expressed itself how an agent must select
a flaw, i.e., an open goal or a threat. Obviously, all open
goals and refutations must be fixed by a resolver refining or
repairing the current plan. But, when several refinements or
repairs are possible, only one of them is required. Therefore,
an agent must choose the flaw having the smallest number

1As shown by (Penberthy & Weld 1992; Gerevini & Schubert
1996), h(π) is only admissible as long as the refinement cost from
one partial plan to the next is not null. Indeed, h(π) sometimes
overestimates the distance to a solution because an open goal re-
finement not always entails the addition of actions.



of resolvers. The rational for that is to work on flaws with
the smallest branching factor as early as possible in order to
limit the cost of eventual space search backtrack. The FAF
heuristic is easy to compute in O(n), where n is the number
of flaws in a plan. Furthermore, experimental results (Pol-
lack, Joslin, & Paolucci 1997) have shown that FAF works
relatively well compared to other flaw selection strategies.

Finally, when many resolvers are available to solve a
flaw, an agent must decide which resolver is the best can-
didate node at the search point. Let π1, . . . , πn be the set
of open nodes at some search point and opengoals(π) the
set of propositions in π without causal link. A very simple
and intuitive heuristic is to choose a partial plan π that has
the smallest number of open goals. We will introduce how
this heuristic is implemented in the last section. Note, there
are others resolvers selection heuristics (Ghallab & Laruelle
1994), which are based on the initial state of the planning
problem. However, these heuristics are more difficult to im-
plement due to the distribution of the initial state among the
agents.

Refinement mechanisms

In this section, we present the different refinement mecha-
nisms.

Causal link addition. This is the simplest refinement: if p
is an open goal of aj and there is an action ai that produces

p, then (ai
p
−→ aj) is added to C. Causal link addition allows

to take advantage of the favorable relations between actions
in a plan. Moreover, it enables the agents to iteratively build
a0 (i.e. s0). This initial state is scattered over the agents, but
thank to causal link additions relevant initial facts are broad-
casted. More generally, this kind of refinement is important
because it provides a rational means to share beliefs.

Sub-plan addition. In this kind of refinement, a sub-plan
is added to support an open goal. But, this sub-plan can itself
contain open goals that will have to be solved etc. This can
be achieved by our relaxed HTN planning approach, which
is detailed later.

Refutation mechanism. The refutations have been de-
fined in definition 7: computing a refutation means to find

an action ak that invalidates a causal link ai
p
−→ aj .

Repair mechanisms

Repair mechanisms compute the modifications to be done on
refuted plan. We distinguish ordering constraints addition,
binding constraints modification and sub-plan addition.

Ordering constraints addition. In this kind of repair, or-
dering constraints are added in order to prevent the rebut-
ting action ak from being executed between ai and aj . The
different possibilities are listed in table 2. It is worth not-
ing that, when the plan cannot be repaired by ordering con-
straints addition, it can eventually be repaired by adding a
sub-plan.

Sub-plan addition. When ak deletes p necessary to aj ,
sub-plan addition must enforce the production of p after
ak. This can be achieved by our relaxed HTN planning ap-
proach, which is detailed in the next section.

Existing constraints on ak Constraints to add

∅ aj ≺ ak or ak ≺ ai

ak ≺ aj ak ≺ ai

ai ≺ ak aj ≺ ak

ai ≺ ak and ak ≺ aj no solution

Table 2: Ordering constraints addition

Binding constraints modification. Another way to repair
a refutation is to prevent the undercutting facts p and ¬q
from codesignating. To that end, binding constraints can be
modified as long as consistency is preserved.

Refinement based on HTN Planning

Relaxed HTN and refinement. We postulate that opera-
tors or methods can be triggered even though some precon-
ditions are not satisfied by the agent’s beliefs. These pre-
conditions are assumed by the agent. Formally, open goal
computation is based on the identification of all the possible
substitutions to apply a method or an operator. The results
of these substitutions are respectively complex or primitive
actions. Furthermore, there are two kinds of open goals: hy-
potheses are facts not included in the agent’s beliefs; denials
are facts that correspond to negated beliefs. In the former
case, the agent requests its teammates to provide a resource.
In the latter case, the agent believes p but submits ¬p as a
sub-goal for its teammates.

The refinement algorithm is based on (Nau et al. 2003).
We consider that the goal g of a planning problem represents
the preconditions of a complex action, i.e., a sequence of
primitive or complex actions. Then refinement is defined as
follows:

Definition. 8 (Refinement) Let P = (s0, T , 〈α0, . . . , αn〉)
be a planning problem. Plan π is a refinement of P if all
the linearizations λ ∈ completion(π) refine P . Let λ =
〈a0, . . . , ak〉 be a sequence of primitive actions, λ refines P
if one of the following conditions is true:

Case 1: the sequence of actions to be achieved is empty then
λ is empty;

Case 2: α0 is primitive: α0 is relevant for a0, α0 is
applicable from s0 and λ = 〈a1, . . . , ak〉 refines
(s1, T , 〈α1, . . . , αn〉);

Case 3: α0 is complex: there is a reduction 〈r1, . . . , rj〉
applicable to achieve α0 from s0 and λ refines
(s′0, T , 〈r1, . . . , rj , α1, . . . , αn〉) with s′0 = s0 ∪
opengoals(α0).

Algorithm 2 implements the definition 8. It explores a
state space called refinement tree. Each node of the tree is
a tuple (s, 〈α0, . . . , αn〉) where s is the state of the world
and 〈α0, . . . , αn〉 the remaining actions at this decomposi-
tion step. The edges are the possible transition between the
different states. Each transition is labeled by the applied op-
erator or method with its binding constraints and its possible
open goals.

The refinements are produced in two steps: the expansion
of the refinement tree which is detailed below and the plan



extraction which is built on a path from the root to a solution
leaf. The refinement tree construction is based on the re-
cursive decomposition of the complex actions contained in
the nodes until a leaf is produced i.e. a node with an empty
sequence of actions. This leaf represents the state reached
after the refinement execution. The expansion procedure be-
gins with the agent’s initial beliefs s0 and the sequence of
the actions to realize 〈α0, . . . , αn〉. First of all, the proce-
dure tests if this sequence is empty (line 2). In this case, a
leaf is reached and the initial node is returned as solution.
Otherwise, the procedure tries to achieve the first action α0.
Two cases must be considered according to α0:

1. α0 is primitive. For each operator of O, the procedure
tests if it can achieve α0 (line 3). In this case, the pro-
cedure computes the substitutions codesignating the op-
erator preconditions with the current state s contained in
n (line 7). Finally, for each substitution σ, the algorithm
adds a successor to n (cf. case 2 of definition 8).

2. α0 is complex. The procedure is based on the same prin-
ciple. However, this time, the procedure tests the methods
enable to achieve a0 and applicable in s (line 17). For
each of this method, a successor is added to n (cf. case 3
of definition 8).

Finally, a node nc is nondeterministically chosen among
the successors of n (line 32) and the procedure is called re-
cursively with this node as parameter.

Proposition. 3 (Soundness) Let λ = 〈a0, . . . , ak〉 be a
nondeterministic execution trace. If Refine(n,O,M)
returns a node (sk, 〈〉) then λ refines P =
(s0, T , 〈α0, . . . , αn〉).

Proof. 5 The proposition is proved by induction on m, the
number of calls to the procedure Refine:

Base step (m = 1): there is only one call to Refine.
Therefore, the procedure ends at line 2 with the node
(s0, 〈〉). The returned node is the root node, λ = 〈〉 and λ
refines P = (s0, T , 〈〉).

Induction step: let m > 1. Suppose that the proposition is
true for m < m′. Two cases must be considered:

Case 1: α0 is primitive. Let α0 be the first action of
n = (s0, 〈α0, . . . , αn〉) and λ = 〈a1, . . . , ak〉 the
trace provided by the procedure at line 33 when called
with the node nc = (s1, 〈α1, . . . , αn〉) and s1 =
((s0 ∪ opengoals(α0)) − del(α0)) ∪ add(α0). By
induction, λ refines P = (s1, T , 〈α1, . . . , αn〉). But α0

is primitive and achieves a0 from s0. Thus, as stated
by case 2 of definition 8, λ = 〈a0, . . . , ak〉 refines
P = (s0, T , 〈α0, . . . , αn〉).

Case 2: α0 is complex. Let α0 be the first action of
n = (s0, 〈α0, . . . , αn〉) and λ the trace provided by
the procedure at line 33. The chosen node to extend
the tree is nc = (s′0, 〈reduction(α0), α1, . . . , αk〉) with
s′0 = s0 ∪ opengoals(α0) and reduction(α0) =
〈r1, . . . , rj〉 (line 25). By induction, λ refines P =
(s′0, T , 〈r1, . . . , rj , α1, . . . , αn〉). But, α0 is complex
and the reduction achieves a0 from s0. Thus, as stated
by case 3 of definition 8, λ = 〈a0, . . . , ak〉 refines
P = (s0, T , 〈α0, . . . , αn〉).

Algorithm 2: Refine(n, O, M)

Let n = (s, 〈α0, . . . , αn〉) ;1

if 〈α0, . . . , αn〉 is an empty sequence then return n ;2

else if α0 is primitive then3

foreach operator o ∈ O do4

θ ← Unify(name(α0), name(o)) ;5

if θ "= Failure then6

Σ ← Satisfy(precond(o), s, θ);7

if Σ is empty then return Failure ;8

foreach substitution σ ∈ Σ do9

G ← OpenGoals(precond(o), σ, s);10

add a successor to n with a0 = σ(o)11

such that (((s ∪ G) − del(a0)) ∪
add(a0)), 〈α1, . . . , αn〉) ;

else12

return Failure ;13

else if α0 is complex then14

foreach method m ∈ M do15

θ ← Unify(name(α0), name(m));16

if θ "= Failure then17

Σ ← Satisfy(precond(m), s, θ);18

if Σ is empty then return Failure ;19

foreach substitution σ ∈ Σ do20

G ← OpenGoals(precond(m), σ, s);21

add a successor to n with a0 = σ(m)22

such that ((s ∪ G),
Append(reduction(a0), 〈α1, . . . , αn〉));23

else24

return Failure ;25

nondeterministically choice a node nc ∈ successor(n);26

Refine(nc, O, M);27

Proposition. 4 (Completeness) Let P =
(s0, T , 〈α0, . . . , αn〉) be a problem for which a refine-
ment exists. There is at least one nondeterministic trace
λ = 〈a0, . . . , ak〉 of Refine(n,O,M) that returns a node
(sk, 〈〉) such that λ refines P .

Proof. 6 (Completeness) The procedure Refine explores
a tree that has a finite branching factor. Indeed, there is a
limited number of operators and methods in P applicable
to achieve a specific action. This limitation is due to the
fact that a0 is triggered to achieve α0 only if name(a0) can
be unified with name(α0). Moreover, the nondeterministic
choice of a pending node (line 33) ensures that, if there is a
finite path, it will be found. Therefore, Refine is complete.
More formally, the completeness can be proved by induction
on the length of the refinement λ.

Base step (m = 0): P = (s0, T , 〈〉) admits the refinement
λ = 〈〉. This refinement is immediately returned at line 2.

Induction step: suppose the completeness for re-
finements with a length inferior to m. Let
P = (s0, T , 〈α0, . . . , αn〉). Two cases must be
considered:



Case 1: α0 is primitive. The only way that P has a
refinement with a length m is that a refinement with
a length j < m is returned at line 33 for P =
(s0, T , 〈α1, . . . , αn〉). By induction, this recursive call
finds it and, thus, the initial call returns a solution with
a length m by adding a0 on the left of the trace returned
at line 33. Indeed, the refinement of 〈α1, . . . , αn〉 is
necessarily smaller than the one of 〈α0, . . . , αn〉.

Case 2: α0 is complex. The proof is similar to case 1.

Of course, the deterministic implementation of the algo-
rithm does not necessarily guarantee the completeness. This
problem can be solved by constraining the description of the
methods so as to limit the number of their recursive calls.
Another solution is to apply a breadth-first search, which is
time consuming. Moreover, the agent must produce reason-
able and robust plans. That means plans must contain as
few open goals as possible in order to facilitate their refine-
ment as explained in the heuristics section. In the same way,
plans are easier to refute, i.e., less robust if they have lots of
causal links. Thus, a kind of greedy search is convenient:
at each recursion, the chosen node in the refinement tree is
the one containing the less open goals within the list of the
pending nodes. In case of equality, decision is made accord-
ing to the number of causal links. An exploration bound is
defined as the number of open goals that can be done in a re-
finement: this limits the refinement tree expansion to refine-
ments whose number of open goals is inferior to this bound
and enables to adapt the search to the computing capabilities
of each agent.

Conclusion

In this paper, we introduced a multi-agent model for plan
synthesis in which the production of a global shared plan
is viewed as a collaborative goal directed reasoning about
actions. At the team’s level, each agent can refine, refute
or repair the ongoing team plan based on the POP proce-
dure. At the agent’s level, agents elaborate plans under par-
tial knowledge and/or to produce plans that partially contra-
dict its knowledge in order to propose refinement. To that
end, we designed a planner based on HTN procedure that
relaxes some restrictions regarding the applicability of plan-
ning operators.

The advantages of the presented model is to enable agents
to compose dynamically their heterogeneous skills and be-
liefs through a unified planning framework based on POP
and HTN procedures. Moreover, it structures the interac-
tions as a collaborative sound and complete investigation
process and former works on synchronization, coordination
and conflict resolution are integrated through the notions of
refutation/repair. From our point of view, this approach is
suitable for applications in which agents share a common
goal and in which the splitting of the planning and the co-
ordination steps becomes difficult due to the agents strong
interdependence: usually, when agents have independent
goals, they classically generate plans and then solve their
conflicts with specific multi-agent protocols.

The line of work presented here opens two areas of future
research. First, we are interested in to testing classical POP

heuritics on our framework to study in a distributed manner
which are more appropriate, e.g., in terms of the number of
exchanged messages. Secondly, we want extend our plan-
ning framework for continual planning and generalize the
concept of open goals and refutation to properties which are
discovered during plan execution.

References

Alami, R.; Fleury, S.; Herrb, M.; Ingrand, F.; and Robert,
F. 1998. Multi robot cooperation in the martha project.
IEEE Robotics and Automation Magazine 5(1):36–47.

Chapman, D. 1987. Planning for conjunctive goals. Artifi-
cial Intelligence 32(3):333–377.

Clement, B., and Barrett, A. 2003. Continual coordination
through shared activities. In Proceedings of the Interna-
tional Conference on Autonomous Agent and Muti-Agent
Systems, 57–67.

D’Inverno, M.; Luck, M.; Georgeff, M.; Kinny, D.; and
Wooldridge, M. 2004. The dmars architecture: A spec-
ification of the distributed multi-agent reasoning system.
Autonomous Agents and Multi-Agent Systems 9(1-2):5–53.

Gerevini, A., and Schubert, L. 1996. Accelerating partial-
order planners: Some techniques for effective search con-
trol and pruning. Journal of Artificial Intelligence Research
5(1):95–137.

Ghallab, M., and Laruelle, H. 1994. Representation and
control in ixtet, a temporal planner. In Proceedings of the
Artificial Intelligence Planning Systems, 61–67.

Grosz, B., and Kraus, S. 1996. Collaborative plans for
complex group action. Artificial Intelligence 86(2):269–
357.

Nau, D.; Au, T.; Ilghami, O.; Kuter, U.; Murdock, W.; Wu,
D.; and Yaman, Y. 2003. Shop2: An htn planning system.
Journal of Artificial Intelligence Research 20(1):379–404.

Penberthy, J., and Weld, D. 1992. Ucpo: A sound, com-
plete, partial order planner for ADL. In B. Nebel, C. R., and
Swartout, W., eds., Proceedings of the International Con-
ference on Principles of Knowledge Representation and
Reasoning, 103–114. Morgan Kaufmann Publishers.

Pollack, M.; Joslin, D.; and Paolucci, M. 1997. Flaw se-
lection strategies for partial-order planning. Journal of Ar-
tificial Intelligence Research 6(1):223–262.

Tambe, M., and Jung, H. 1999. The benefits of arguing in
a team. Artificial Intelligence Magazine 20(4):85–92.

Tonino, H.; Bos, A.; de Weerdt, M.; and Witteveen, C.
2002. Plan coordination by revision in collective agent-
based systems. Artificial Intelligence 142(2):121–145.

Wu, D.; Parsia, B.; Sirin E, J.; and Nau, D. 2003. Au-
tomating daml-s web services composition using shop2. In
Proceedings of International Semantic Web Conference.

Zlotkin, G., and Rosenschein, J. 1990. Negotiation and
conflict resolution in non-cooperative domains. In Pro-
ceedings of the American National Conference on Artificial
Intelligence, 100–105.


