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REVIEW Open Access

Quantification of short and long asbestos fibers
to assess asbestos exposure: a review of fiber size
toxicity
Guillaume Boulanger1, Pascal Andujar2,3,4, Jean-Claude Pairon2,3,4, Marie-Annick Billon-Galland5, Chantal Dion6,7,

Pascal Dumortier8, Patrick Brochard9, Annie Sobaszek10,11, Pierre Bartsch12, Christophe Paris13,14

and Marie-Claude Jaurand15,16*

Abstract

The fibrogenicity and carcinogenicity of asbestos fibers are dependent on several fiber parameters including fiber

dimensions. Based on the WHO (World Health Organization) definition, the current regulations focalise on long

asbestos fibers (LAF) (Length: L≥ 5 μm, Diameter: D < 3 μm and L/D ratio > 3). However air samples contain short

asbestos fibers (SAF) (L < 5 μm). In a recent study we found that several air samples collected in buildings with

asbestos containing materials (ACM) were composed only of SAF, sometimes in a concentration of ≥10 fibers.L−1. This

exhaustive review focuses on available information from peer-review publications on the size-dependent pathogenetic

effects of asbestos fibers reported in experimental in vivo and in vitro studies. In the literature, the findings that SAF are

less pathogenic than LAF are based on experiments where a cut-off of 5 μm was generally made to differentiate short

from long asbestos fibers. Nevertheless, the value of 5 μm as the limit for length is not based on scientific evidence,

but is a limit for comparative analyses. From this review, it is clear that the pathogenicity of SAF cannot be completely

ruled out, especially in high exposure situations. Therefore, the presence of SAF in air samples appears as an indicator

of the degradation of ACM and inclusion of their systematic search should be considered in the regulation.

Measurement of these fibers in air samples will then make it possible to identify pollution and anticipate health risk.
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Background
Asbestos remains a public health concern. After a long

latency period, asbestos exposure in humans is associ-

ated with severe diseases, including mesothelioma, lung

cancer and fibrosis. Although asbestos has been banned

in several countries, many other countries still produce

and/or use it. Epidemiological findings have depicted

several waves of asbestos diseases. One may consider

the first wave having occurred in miners, the second

one in workers in the asbestos manufacturing industry,

and the third wave among secondary occupations in

buildings and constructions. Nowadays, even in coun-

tries where asbestos was banned, workers and the gen-

eral public can be exposed during incorrectly performed

removal procedures, or in buildings with altered asbes-

tos containing material (ACM). In addition, environ-

mental exposures have been reported. In this context, it

is important to monitor the level of asbestos fibers in

such environments, in order to avoid a new wave of as-

bestos diseases.

Regulatory threshold levels for asbestos exposure are

based on size-dependent fiber concentrations. Accord-

ing to the World Health Organization (WHO), only

fibers thinner than 3 μm, longer than 5 μm and a

length-width ratio above 3 (so-called here long asbestos

fibers (LAF)) are taken into account for regulatory pur-

poses. Short asbestos fibers (SAF) (length (L) < 5 μm;

diameter (d) < 3 μm and length/diameter ratio > 3) are

not taken into account. The optical microscopy proced-

ure also excludes thin LAF with a diameter of less than

0.2 μm.
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In the course of a collective appraisal conducted by

the ANSESa working group, air samples collected be-

tween 1997 and 2004 in a range of French public build-

ings (gymnasiums, schools, day-care centers, etc.) were

analysed a second time in order to assess the size distri-

bution of asbestos fibers including SAF [1]. Among the

105 samples analysed and positive for asbestos, the

results showed that 40 samples contained only SAF,

sometimes in concentrations above 10 f.L−1. Currently,

these fibers are not taken into consideration for regula-

tory purposes.

While it is widely agreed that long fibers are more

toxic than short ones, the safety of SAF is not estab-

lished, and it appears worthwhile addressing the ques-

tion of the scientific bases substantiating measurement

of airborne fiber concentrations for regulatory purposes,

and of our knowledge about the biological activity of

SAF. In this paper, we report the original results of the

re-analysis of air samples focusing on the respective

concentrations of SAF and LAF. To review the role of

asbestos fiber dimensions on health risk, we performed

an in-depth analysis of the relevant epidemiological and

toxicological data collected from the peer-reviewed and

grey literature. In particular, we specially reviewed

experimental literature data which determined the role

of fiber size in the biological effects of asbestos fibers,

and summarized the mechanisms of action of asbestos

fibers focusing on the impact of fiber dimensions. We

reviewed experimental and epidemiological papers on

the size-dependent toxic effects of asbestos fibers.

Papers were searched in PubMed with these groups of

keywords: “asbestos toxicity”, “epidemiology OR animal

OR in vitro”, “short OR long”. Papers dealing with the

effects of fiber dimensions were selected, as well as pa-

pers where the distribution of fiber dimensions was re-

ported, not directly focusing on the effects of fiber size.

We also considered independently all review papers. The

related citations in a given paper and in review papers, not

found in the first round, were taken into consideration. Ref-

erences were regularly updated. Moreover, we reviewed

public reports from ATSDR (Agency for Toxic Substances

and Diseases Registry), NIOSH (National Institute for Oc-

cupational Safety and Health), US-EPA (US Environmental

Protection Agency), HSL-UK (Health and Safety Labora-

tory UK) and FIOH (Finnish Institute of Occupational

Health). Then our search was not only conducted on the

results of these keywords queries. As quoted in the manu-

script, this work was carried out in the course of a collective

appraisal conducted by an ANSES working group, in com-

pliance with the French Standard NF X 50–110 “Quality in

Expert Appraisal - General Guidelines for an Expert Ap-

praisal“ with the objective of covering the following points:

competence, independence, transparency and traceability.

Our findings suggest that the presence of high levels of

SAF is a health concern, and alert on the degradation of

ACM.

Human exposure to asbestos fibers

Size distribution of asbestos fibers in the environment

In the present paper, we report original data of several

analyses requested by ANSES carried out using trans-

mission electron microscopy (TEM) [2] (Additional

file 1). Only few publications dealing with the asbestos

fiber size distribution are then compared to our new

data. In France, measurement of exposure in the occu-

pational environment was based on the phase contrast

microscopy (PCM) method [3] until 2012, and is now

based on the TEM method, as environmental exposure

[2]. Currently, only WHO fibers (L ≥ 5 μm, D < 3 μm

and L/D > 3) are counted in the French legislation

to assess both exposure of workers and general

population.

The PCM method presents a number of limitations as it

does not identify the nature of the fiber, and does not assess

SAF and LAF with a diameter < 0.2 μm. However it is an

international standard in occupational hygiene, as it is easy,

rapid and has low cost. In contrast, there is no international

standard for the use of TEM, and the method may vary by

country or laboratory (direct or indirect transfer method)

or use of analytical scanning electron microscopy. In both

direct and indirect methods, only fibers greater than 5 μm

in length are currently counted (L ≥ 5 μm, L/D > 3, 0.2

μm<D< 3 μm with PCM or D < 3 μm with TEM). Due to

the different sensitivities between the two methods and the

absence of fiber type identification in PCM, there is no reli-

able modeling method allowing comparing PCM and TEM

values. Conversion factors have been suggested, to compare

data obtained with the two methods but they differ between

studies, ranging from 1.7 to 4, sometimes reaching 30 in

certain studies [1]. TEM coupled with chemical analysis is

the only method enabling the precise identification of as-

bestos fibers, and the counting of fibers in the different size

classes, and undeniably the most appropriate to carry out

fiber size distribution analysis of asbestos in air samples.

To investigate outdoor environment, the Research La-

boratory on Inhaled Particles (LEPI - Ville de Paris) has

proceeded with the re-analysis of 115 air samples collected

between 1993 and 1995 in the Ile de France area, taking

into account all dimensional classes of fibers [1]. Samples

only contained chrysotile. The median and maximum

concentrations were 0.12 and 0.47 f.L−1 respectively for fi-

bers longer than 5 μm (including LAF with a diameter

< 0.2 μm), and 0.32 and 2.73 f.L−1 for SAF.

So far, there are few data on the asbestos level in the

outdoor environment. One Japanese work has reported

asbestos fiber size distribution in about 100 samples

collected from outdoor air analyzed by TEM. Results
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indicated a high proportion of SAF chrysotile (85–92% of

chrysotile SAF and 71% of chrysotile fibers < 1 μm) [4].

Concerning the indoor environment, 105 samples were

obtained in public buildings in Paris area, between 1997

and 2004, for asbestos regulatory diagnosis purpose, and

reanalyzed by the LEPI [1]. Samples were collected dur-

ing normal building occupancy and usage, in the rooms

where one ACM was present. ACM consisted in sprayed

asbestos (25 samples), heat insulation (8 samples), sus-

pended ceiling (25 samples), floor tiles (25 samples),

coating (10 samples) and asbestos cement (12 samples).

A total of 64 buildings were investigated (schools, gym-

nasium, museums, public buildings, etc.). They are how-

ever not representative of all French buildings [1]. In the

indoor environment, chrysotile was the main asbestos

type detected. It was present in more than 90% of the

positive samples (range: 91 to 100%). Some ACM con-

tained amphibole fibers, mainly amosite (up to 8% in the

heat insulating products). Concentrations of up to 630.9

f.L−1 for SAF and 16.3 f.L−1 for the WHO asbestos fibers

were recorded. Concentrations and percentages of SAF

apparently varied according to the type of ACM. SAF

mean concentrations were as follows: heat insulation 91

f.L−1, floor tiles 36.2 f.L−1, sprayed asbestos 20.4 f.L−1,

suspended ceiling 5.1 f.L−1, coating 2.4 f.L−1, asbestos ce-

ment 0.9 f.L−1. Average percentage of SAF ranged from

70% (sprayed asbestos) to 96% (asbestos cement) of the

total fibers. These findings show that “regulatory” WHO

fibers represented less than 20% of the size distribution.

The majority of chrysotile fibers (between 60 and 80%)

was found to have a length shorter than 2 μm and a

diameter less than 0.2 μm, independently of the type of

ACM. The percentage of SAF and regulatory WHO fi-

bers are presented in Figure 1, according to the type of

ACM. SAF were present in high percentage in all indoor

air samples, and their concentration was dependent on

the ACM. In this context, SAF could be an efficient indi-

cator of the deterioration of ACM. These results are

consistent with published exposure data in indoor air

obtained by TEM, indicating a high proportion of SAF;

90 to 100% in most studies [5-9].

Occupational environment was also investigated. 192

samples, analyzed using PCM by the Institut de recherche

Robert-Sauvé en santé et sécurité du travail (IRSST,

Québec) between 1990 and 2006, representative of 7 indus-

trial sectors (asphalt production, brake manufacturing, min-

ing, textiles, ACM removal, recycling and asbestos cement

production) were re-analyzed using TEM by the LEPI [1].

In the occupational environment, more than 45,000 fi-

bers have been counted, of which 98% were chrysotile.

The average and maximum concentrations were 16.3 and

505.2 f.mL−1 respectively for SAF; 0.4 and 18.4 f.mL−1 for

LAF with a diameter < 0.2 μm, and 0.5 and 9.3 f.mL−1 for

fibers with PCM measured dimensions (L > 5; D >

0.2 μm). There was little variation in the percentage of

SAF and LAF with a diameter < 0.2 μm between these

samples (from 87% to 96% and 2.1% to 5.6% respectively).

Few data related to different sectors (industries and

mines) are available in the literature, and they are diffi-

cult to compare as they have been obtained over a long

period of about 20 years, and with different analytical

methods of analysis [10-18]. In these studies the non-
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Figure 1 Percentage of short asbestos fibers (SAF): L < 5 μm, d < 3 μm and L/d > 3 and regulatory WHO fibers: L ≥ 5 μm, d < 3 μm and

L/d > 3, according to the type of asbestos containing materials (ACM), measured by transmission electron microscopy (TEM) in 105 air

samples obtained in 64 public buildings in Paris area, between 1997 and 2004, for asbestos regulatory diagnosis purpose.
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regulated fibers, SAF, and LAF with a diameter < 0.2 μm,

represented between 50 and 100% of the total fibers,

with the majority of samples between 80 and 100% re-

spectively. The sector of activity corresponding to the re-

moval of floor tiles stands a priori by the very low level

or absence of LAF [10,13,14].

Finally, our original and the published data highlight,

both in general and occupational environments, the high

percentage of SAF in all air samples, with a large part of

samples containing only SAF in the indoor air samples of

public buildings with deteriorated ACM. Therefore, a

broad review of epidemiological and experimental litera-

ture is presented and discussed in the following section to

assess the potential effects of SAF.

Human data

Several investigators have suggested that SAF may play a

role in the induction of pathologies, particularly cancer,

and do not recommend immediately ruling out this par-

ticle size class [19-22].

The epidemiological review of the health effects of ex-

posure to SAF remains very fragmented. Analysis of as-

bestos size categories according to sectors of activity and

the concentration levels found in the literature [10-18]

highlight a number of sectors with higher prevalence of

SAF, including in particular asbestos cement production,

friction materials production, brake systems repair and

mining. Few studies reported the presence of SAF or indi-

cated the size distribution of these fibers. The uncertain-

ties that can be attributed to the estimated exposure

levels, the non-representative nature of the measurement

data collected and the presence, even in small quantities,

of fibers ≥ 5 μm in length in sectors where the excess risk

is lower, do not allow a formal conclusion to be drawn

concerning the absence or presence of a low carcinogenic

effect for SAF. No validated epidemiological morbidity or

mortality data have been associated with SAF according to

an expert panel set up by ATSDR [23]. This opinion is

based primarily on epidemiological studies in the mining

sector (defined by high concentrations of SAF) that show

an absence or slight excess of general mortality or mortal-

ity due to respiratory cancer [23].

Meta-analyses underline a difference in risk for lung

cancer and mesothelioma, expressed in the form of differ-

ent slopes, depending among other on the type of fibers,

but also, to a lesser extent according to the industrial sec-

tors. Several assumptions have been proposed to explain

these findings [24,25]. The first one is co-exposures in dif-

ferent sectors, such as lung carcinogen factors (e.g. mineral

oil), but studies including this factor are not in favor of this

hypothesis [26]. Contamination with amphibole fibers is

also probably a confounding factor. In addition, these co-

exposures cannot explain the differences observed with

mesothelioma for which exposure to asbestos is the major

risk factor. The second assumption is based on the vari-

ability of size distribution and especially fiber length. In-

deed, it is reported that different work places have

distinct size distributions, the highest concentrations of

SAF being observed in the brake repair and mainten-

ance and mining sectors. In addition to the potential

role of co-exposures, these approaches are based on un-

certainties in the estimates of exposure levels and death

from lung cancer or mesothelioma. These uncertainties

have been estimated to be of the same order of magni-

tude as the variation between the industries themselves.

The variations would therefore reflect fluctuations of

measurements. These uncertainties may however partly

explain the heterogeneity of results observed within in-

dustry sectors [27].

Others publications found that the risk of asbestos-

related cancer mortality increases with exposure to lon-

ger and thinner fibers, particularly for lung cancer

[28,29]. The authors indicate that the inclusion of fiber

lengths <5 μm does not improve the fit of the model

and consider that these fibers should not be taken into

account in the estimation of dose-effect relationships.

Nevertheless, some recent publications assessed the role

of different asbestos fiber parameters in terms of specific

sizes (length and diameter), using TEM data from North

and South Carolina asbestos textile workers exposed to

chrysotile [30-35]. Stayner et al. [35] demonstrated a

stronger association with long thin fibers than with short

or thick ones. In this study, they investigated the associ-

ation between lung cancer and asbestos using fiber size-

specific TEM-based estimates of cumulative exposure.

They found a better prediction using TEM than with

PCM analyses and reported that cumulative exposures to

all fiber size classes, including fibers ≤ 5 μm in length,

were statistically significant predictors of lung cancer mor-

tality. However, because of the correlations in these fiber

size distributions, it is not possible to clearly distinguish

between a biological basis for a specific fiber dimension

(e.g., ≤ 5 μm) versus a simple association with exposure

to the longer fibers in this facility. The models compar-

ing the shorter (≤5 μm) and longer (>5 μm) fibers did

not completely resolve this question. The authors dis-

cuss the high correlation across all fiber sizes categories

in this cohort for the cumulative exposures which com-

plicates the interpretation of the study designs.

Results from Loomis et al. [34] are consistent with those

reported for South Carolina asbestos textile workers. Cu-

mulative exposure to all fibers counted by TEM was sig-

nificantly associated with lung cancer risk, and to fibers of

every length and diameter category when each dimension

was considered separately. The model for TEM fibers >

5 μm of length fits the data better than models for other

TEM exposure indicators of size classes. Models for ex-

posure to longer fibers fit the data best and indicated the
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strongest association with lung cancer. In another paper,

Loomis et al. [36] conclude that exposure to fibers

throughout the range of lengths and diameters was signifi-

cantly associated with increased risk of lung cancer.

Models for fibers >5 μm long and <0.25 μm in diameter

provided the best fit to the data, while fibers 5–10 μm

long and <0.25 μm in diameter were associated most

strongly with lung cancer mortality. The findings support

the hypothesis that the occurrence of lung cancer is asso-

ciated with exposure to asbestos fibers of all sizes but

most strongly with exposure to long thin fibers. In a more

recent paper, using a hierarchical Bayesian model to cor-

relate lung cancer to size-specific asbestos fiber groups,

the authors reported little difference between groups of

different lengths- and diameters, although <0.25 μm in

diameter and <1.5 μm in length provided the most precise

results [37].

Mossman et al. recognized that a possible role of SAF

cannot be ruled out [38]. Adib et al. [22] examined the

lung burden in asbestos-exposed workers with asbes-

tosis, lung cancer or mesothelioma. They found a low

proportion of WHO fibers (about 20%), and a majority

of SAF (about 50%), including chrysotile. These authors

suggest taking into account these different dimensional

criteria to characterize the health risk associated with as-

bestos inhalation. In humans, certain epidemiological

studies involving high occupational exposures report

that the presence of interstitial pulmonary fibrosis corre-

lated with a high quantity of short fibers measured in

the lungs [22].

Synthesis of experimental studies of cancer

This part summarizes both animal and cell studies car-

ried out to assess the carcinogenic and genotoxic poten-

cies of asbestos fibers related to the fiber size criteria.

Publications of interest were identified from PubMed,

searching for papers on adverse effects of asbestos, and

in vitro and in vivo studies focusing on genotoxicity and

cancer. Works providing data on size-dependent effects

of asbestos were selected, as well as the associated re-

lated citations.

Asbestos samples used in experimental studies

Most experimental studies have been carried out with

standard samples by the Union Internationale contre le

Cancer (UICC) and the National Institute of Environ-

mental Health Sciences (NIEHS). UICC provided

one anthophyllite sample from Finland, two chrysotile

samples (from Zimbabwe, former Rhodesia: chrysotile A;

and a mixture of samples from several asbestos mines in

Canada: chrysotile B). Crocidolite came from South

Africa and amosite from Zimbabwe. The characteristics

of the UICC asbestos samples have been reported in sev-

eral documents [39-42]. Details on sample preparation

are provided in Timbrell and Rendall [43]. The reference

samples from the NIEHS were crocidolite and chrysotile

(Jeffrey Mines, Quebec, Canada). Their characteristics

can be found in Campbell et al. [44] as quoted by Wu

et al. [45]. Some other samples have been used (e.g.

chrysotile CA300 or Calidria; materials re-created to

mimic chysotile used in joint systems [46]), but their ef-

fects were tested in single or duplicate of experiments.

Generation of samples containing only SAF is difficult,

and usually contain a small percentage of LAF. One ex-

ample is given in Table 1. Samples have to be separated to

select size classes. Then fibers may physically and

chemically modify fibers, possibly adding contaminants

(e.g. metals) and induce physical and/or physico-chemical

changes to the fibers (aggregation, surface reactivity,

leaching, etc.). In an article on the biological effects of

short fibers, Wagner [47] raised issues and challenges re-

lated to the critical limit in length. According to Langer

et al. [48], limiting measurement to fibers longer than

5 μm was mainly based on the methodology proposed by

the U.S. Public Health Service, referring to a study on the

environment in textile industries in the U.S. According to

this British publication, 5 μm was selected as the lower

counting limit for fibers, mainly for practical consider-

ations as the reliability of the analytical method routinely

used to determine airborne exposures (i.e. PCM method)

severely decrease below this length.

Experimental studies in animals

Animals were exposed to asbestos by inhalation, in inhal-

ation chambers or stabulated for “nose only” exposure [49].

Intratracheal instillation has been used as a surrogate for

inhalation, and intracavitary inoculation (intrapleural and

intraperitoneal) to assess the fibrogenic and carcinogenic

potency on the serosa. Both inhalation methods have

Table 1 Size distribution of one crocidolite sample

according to log(number of particles/mg) (from [58])

Diameter
(μm)

Length (μm)

>0.01-1 >1-4 >4-8 >8-64 >64

>8.0 - - - - -

>4.0-8.0 - - - - -

>2.5-4.0 - - - - -

>1.5-2.5 - - - - -

>0.5-1.5 3.53 4.53 4.37 4.30 -

>0.25-0.5 4.22 4.53 4.70 4.22

>0.10-0.25 5.55 5.57 4.73 4.00

>0.05-0.10 5.71 4.96 - 4.00

>0.01-0.05 4.57 3.83 - - -

This table shows that a sample of fibers with a geometric (or arithmetic) mean

length lower than 5 μm contains fractions of fibers with greater lengths.
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pitfalls. In one hand, a precise analysis of the aerosol can be

made following exposure in chamber, but the amount of in-

haled fibers is less precise (hair deposition, etc.); on the

other hand, animals housed in a container represent a dif-

ferent situation from the human working activities, and

some studies suggest that animals can be stressed in these

conditions [50-55]. Intracavitary injections are not physio-

logical routes of particle deposition in the lung and bypass

translocation to the serosa, but they enable mesothelial cell

responses to asbestos to be assessed.

Several data from Research and Consulting Company

(RCC) studies concerned the toxicity of synthetic min-

eral fibers, using asbestos as positive control [49,56].

Metrologic measurements, both in the aerosol and in

the lung, allowed the assessment of short fibers. Al-

though these authors considered the amount of WHO

fibers, associated with a 5 μm length limit, others de-

fined different classes of length distribution with limit

values generally close to 5 μm. Therefore, when used

below, the term “short” asbestos fiber (SAF) refers to

fibers shorter than 5 μm in length, unless otherwise

specified.

One of the first studies showing lower toxicity of short

fibers compared to long fibers was published by Stanton

et al. [57]. Since the results of this work led to the defin-

ition of “Stanton fibers”, which is frequently referred to

in the literature, and provided the substratum to further

investigations, this publication deserves being summa-

rized. In a first study, the authors implanted 70 fiber

samples of various size distributions in the pleura of rats

[57,58]. Fiber samples were included in gelatin and de-

posited on a substratum of coarse glass. The whole was

implanted in the pleural cavity of rats (40 mg per rat; 30

rats per sample). The probability of pleural tumors was

calculated from survival, using a method taking into ac-

count the early deaths without pleural tumor and allow-

ing a good comparison between different experiments.

Authors found that a greater likelihood of pleural tu-

mors was observed for fibers longer than 8 μm and with

a diameter of less than 1.5 μm. In a subsequent study,

authors correlated the fibers’ dimensions with carcino-

genicity for all samples that were “durable” and within

the range of “respirable particles” [58]. This led to the

analysis of 72 experiments with particles of different

chemical composition and structure: 22 samples of fiber

glass, 8 samples of aluminum oxide fibers, 7 samples of

talc, 7 samples of dawsonite (hydroxy-carbonate, sodium

aluminum), 4 samples of wollastonite, 13 samples of cro-

cidolite, 2 samples of tremolite, one sample of amosite, 2

samples of attapulgite, 2 samples of halloysite, one sam-

ple of silicon carbide and 3 samples of titanate. The au-

thors mentioned that they did not take chrysotile

samples into account for statistical analyses despite their

carcinogenic potency, due to the difficulty in measuring

fiber size with the same degree of accuracy (probably

due to the shape of the fibers, which in our experience is

often curled). The dimensional characteristics of the fi-

bers were determined by TEM, after controlling for the

satisfactory dispersion of the fiber suspension and deter-

mination of the representativeness of the counting area.

The amount of fibers by unit weight was calculated as-

suming a cylindrical shape and using their density. Fiber

size was broken down into 34 size classes (see Table 1).

Thirty four size categories of fibers were arbitrarily

grouped into 11 categories, and coefficients of correl-

ation between classes of dimensions and pleural tumors

were calculated. The incidences of tumors in control an-

imals were very low, 0.6% (3/488) in untreated animals

and 1.9% (29/1518) in animals treated only with the sub-

stratum without fibers, and mortality was due to causes

other than pleural tumors. In treated animals, the per-

centage of mesotheliomas ranged from 0% to 72.4%,

depending on the sample. The best correlation with di-

mensions and carcinogenicity was obtained with fibers

that were less than 0.25 μm in diameter and more than

8 μm in length (Table 2). A relatively good correlation

was also observed in other categories, for fibers with di-

ameters of up to 1.5 μm and a length greater than 4 μm

[58]. No correlation was observed for fibers ≤ 4 μm in

length and > 1.5 μm in diameter. However, the authors

did observe 7 outlier samples (3 crocidolite, 2 tremolite,

1 aluminum oxide and 1 talc) showing a response

beyond the prediction possibly related to size classifica-

tion and problems of agglomeration. Nevertheless, they

emphasized the demonstration of a tumorigenic poten-

tial depending on the size of the fibers regardless of

their structure and chemistry, and that carcinogenicity

is not limited to the size characteristics of the fiber di-

mensions [58].

A histological analysis of tumors of the pleura of ex-

posed and controls animals has demonstrated a severe

granulomatous reaction resulting in fibrosis adherent to

the pleura and pericardium. The intensity of the fibrotic

response appeared roughly correlated with the incidence

of pleural tumors. In contrast, fibrosis was absent or

negligible in animals implanted with the fiber

Table 2 Correlation coefficient between Logit(p)* and log

(number of particles/mg according to size category)

(from [58])

Diameter
(μm)

Length (μm)

≤4 >4-8 >8

>4 - −0.28 −0.30

>1.5-4 - −0.24 0.13

>0.25-1.5 −0.45 0.45 0.68

≤0.25 0.0 0.63 0.80

*Logit (p) = log[p/(1-p)], with p = probability of tumor formation.
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substratum. Tumors formed of masses of atypical cells,

with random orientation and abundant mitoses, on

pleural fibrosis. Most tumors were detected late, but

were not distinct from tumors identified early. These tu-

mors had features of mesothelioma with predominant

fusiform subtype, sometimes pleiomorphic or showing

bone differentiation. These features are recurrently

found in human mesothelioma (Table 3) [59].

The data from Stanton et al. [57,58] were further ana-

lyzed by other authors. Bertrand and Pezerat [60] con-

firmed a size effect, and concluded that carcinogenicity

continuously increased as a function of the fibers’ aspect

ratio (length/diameter). Oehlert [61] reconfirmed the hy-

pothesis that the log (number fiber > 8 μm in length

and ≤ 0.25 μm in diameter) was a good parameter for

predicting tumor incidence, but added that the correl-

ation was better if each fiber type was treated separately.

This author also considered that the log (coefficient of

average aspect ratio; i.e. the mean of the aspect ratio),

was not as pertinent for predicting the incidence of tu-

mors as the log of the number of fibers having the char-

acteristics defined above.

Wylie et al. [62] performed a size analysis of crocido-

lite samples used by Stanton et al. [58], as some samples

of crocidolite were outliers. Moreover, some samples did

not show a satisfactory dose–response. When discussing

their findings, Stanton et al. [58] suggested that errors in

the measurement of fibers could be the cause of these

anomalies, and parameters other than the dimensions

were likely to be involved. Wylie et al. [62] found that

for samples containing a low number of fibers > 8 μm in

length and ≤ 0.25 μm in diameter, the correlation coeffi-

cient was low enough to suggest that other parameters

(other categories of size, shape or other factors) may

play a role in carcinogenicity. Wylie et al. [62] also found

that the correlation was better between the probability

of tumor formation and the number of fibers > 8 μm in

length and ≤ 0.25 μm in diameter than between logit(p)

(defined in Table 2) and number of fibers. This re-

analysis confirms the major effect of fiber dimensions

and the role of other unidentified parameters.

Data obtained from several inhalation experiments

conducted by Davis et al. in AF/HAN rats exposed to as-

bestos fibers (amphiboles, chrysotile) were gathered for

statistical analyses to determine which exposure parame-

ters can help predict the incidence of tumors [63,64].

The results demonstrated that no univariate measure

can adequately describe the tumor response, although

consideration of the concentration of particles with

length > 20 μm provided the best correlation. A multi-

variate analysis that incorporated several categories of

length (<5 μm, 5 to 10 μm, 10 to 20 μm, 20 to 40 μm

and ≥ 40 μm), in combination with diameters (<0.15 μm,

0.15 to 0.30 μm, 0.30 to 1 μm, 1 to 5 μm and ≥ 5 μm)

suggested that structures (fibers and clusters) of less

than 5 μm in length had no carcinogenic potential, and

that structures that are either thin (diameter < 0.3 μm),

and possibly very thick clusters (≥5 μm) have a positive

potential. For both types, the carcinogenic potential in-

creased with the length.

Further studies were conducted comparing the effects

of LAF and SAF samples. Table 4 summarizes the re-

sults obtained by Davis et al. [65,66]. Intraperitoneal in-

jection assays in rats showed that SAF induced tumors,

provided they were administered at high doses. The la-

tency period for disease detection was greater with SAF

than with LAF. Rats treated by inhalation developed six

times more pulmonary fibrosis and three times more

lung tumors with LAF than with SAF. The SAF sample

contained fibers longer than 5 μm. The calculation of

the cumulative dose of fibers > 5 μm inhaled by the ani-

mals was 213 × 104 f.mL−1xh and 997 × 104 f.mL−1xh

for SAF and LAF samples, respectively. Then, the differ-

ences in tumor incidence could also be interpreted in

terms of differences in the LAF dose for these two

samples.

Lemaire et al. [67] also highlighted the varying fibrotic

potential of asbestos samples, depending on the fiber

length. This study was based on intratracheal instillation

of chrysotile B (UICC) and chrysotile obtained by sedi-

mentation, from Johns-Manville 4 T30 grade chrysotile.

According to the available data, 58% of fibers had a

length < 5 μm and 98% were < 3 μm, for UICC and

4 T30 respectively. Within two months of exposure,

changes were minimal with the sample of 4 T30 short fi-

bers, and without fibrotic lesions, whereas severe fibrosis

in the terminal bronchioles was observed with UICC fi-

bers, highlighting their fast action. These results support

the role of fiber length as a critical factor, but they do

not suggest the absence of the fibrotic potential of SAF

at higher and/or longer exposures.

Table 3 Histological subtypes of 169 mesotheliomas

induced by asbestos fibers and glass fibers in rats

(from [59])

Mesothelioma* Asbestos Glass

Fusiform

Fibrogenic 105 9

Osteogenic 12 2

Giant cells 9 0

Pleiomorph

Medullar 23 1

Tubulopapillar 8 0

Total 157 12

*Mesothelioma classification was later modified. Fusiform morphology

corresponds to sarcomatoid subtype, and fibrogenic differentiation likely

corresponds to desmoplastic subtype.
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A study by Adamson et al. [68,69] concerned intratra-

cheal instillation of samples of short or long crocidolite

fibers in mice. The samples studied were UICC crocido-

lite (average length 24.4 ± 0.5 μm; 12% < 2.5 μm) and a

fraction of short fibers in the UICC sample separated

by sedimentation (average length 0.6 ± 0.1 μm; 99% <

2.5 μm). Exposure to the sample of short fibers resulted

in phagocytosis and in a brief inflammatory response

(<15 days). Almost all short fibers were phagocytosed by

alveolar macrophages, and only a few fibers reached the

interstitium, but no cellular injury was highlighted here.

The cellular damage was minimal and reversible. After

instillation of the same dose of long fibers, early lesions

in the bronchial and bronchiolar epithelium were identi-

fied at the site of fiber deposition, with development of

granulomas. The authors also noted that the sample of

long fibers caused the formation of small foci of lymph-

oid tissue at the pleural surface, attached to the under-

lying subpleural connective tissue. In these studies cell

proliferation was assessed by the method of tritiated thy-

midine incorporation (3HdThd) [68,69]. A small and

transient increase in the percentage of lung cells incorp-

orating 3HdThd was observed in mice treated with the

sample of short fibers compared to control mice. A

greater increase was found after exposure to the sample

of long fibers, also transient but of a longer duration.

Similar results were obtained by the observation of

pleural mesothelial and subpleural cells. In earlier work,

the authors noted that alveolar macrophages secrete a

growth factor for fibroblasts in response to SAF, likely

accounting for these effects.

In an article on the biological effects of short fibers,

Wagner [70] mentioned that studies conducted by himself

and others clearly showed the greater potential of long fi-

bers. In this paper, two kinds of fibers were studied: UICC

crocidolite (short or long) and erionite (short or long).

There were no lung tumors in rats, after inhalation with

the sample of SAF and no mesothelioma was noted. In

contrast, one case of mesothelioma in 24 animals was de-

tected with long crocidolite fibers, and 24 cases of meso-

thelioma in 27 animals were observed with the sample of

long erionite fibers. After intrapleural inoculation there

were 24/32 and 1/32 cases of mesothelioma with long and

short crocidolite fiber samples respectively, and 30/32 and

0/32 due to the long and short erionite fibers [47,70].

Platek et al. [71] published the results of a study of long-

term chronic inhalation (7 hours/day, 5 days/week for

18 months) with low doses of chrysotile fibers (1 mg/m3)

in rats and in monkeys. Maximum post-exposure period

was 24 months. Fibers were prepared by grinding for

24 hours in a ceramic ball mill. The number of fibers in

the aerosol, greater than 5 μm in length, was determined

by light microscopy (0.79 ± 0.42 f.mL−1) and SEM (Scan-

ning Electron Microscopy) (3.0 f.mL−1). Fiber dimensions

were determined by SEM (median count: length = 0.67 ±

1.87 μm; diameter = 0.09 μm). The average number of fi-

bers lower than 5 μm in length was 493 f.mL−1 air, and

their proportion was about 98%. There was no fibrosis, or

lung tumors in either species. A publication by Stettler

et al. [72] complemented that of Platek et al. [71] by ex-

tending the post-exposure period to 15.5 years in mon-

keys. No lesions attributable to exposure were found.

Finally, the results obtained with primates involved expos-

ure to low concentrations of finely crushed chrysotile fi-

bers, and after a relatively short exposure time compared

to human exposure. The authors considered that the im-

plications of these results, namely the lack of toxicity of

chrysotile fibers, are limited and must be considered in

the context of the study.

Ilgren and Chatfield [73] reported inhalation studies in

rats exposed to a chrysotile sample (Coalinga fiber or

COF-25). This fibers sample is described as short, but

there is no accurate data on its dimensions. Thus, this

study is not informative because it is impossible to ex-

clude the presence of long fibers in small quantities.

Table 4 Incidence of lung tumors and mesotheliomas in

rats following exposure to asbestos samples

(from [65,66])

Inhalation 10 mg/m3*

Amosite

LAF SAF

11% >10 μm 0.1% > 10 μm

Number of rats 40 42

Lung tumor 11 (27.5%) 0 (0%)

Mesothelioma 3 (7.5%) 1 (2.4%)

Chrysotile

LAF SAF

2% >10 μm 0.7% > 10 μm

0.1% >30 μm 0.03% >30 μm

Number of rats 40 40

Lung tumor 20 (50%) 7 (17.5%)

Mesothelioma 3 (7.5%) 1 (2.4%)

Mesotheliomas after intraperitoneal injection**

Amosite

LAF SAF

Number of rats Not provided Not provided

10 mg 21 (88%) 0 (0%)

25 mg 20 (90%) 1 (4%)

Chrysotile

Number of rats 24 24

2.5 mg 22 (91.6%) 8 (33.3%)

25 mg 23 (95.8%) 22 (91.6%)

*Inhalation: 2 lung tumors and no mesothelioma in control rats.

**Intraperitoneal injection: no mesothelioma in control rats.
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The important role of fibers corresponding to Stan-

ton’s criteria (L > 8 μm; d ≤ 0.25 μm) has been evidenced

in other reports where asbestos fibers were injected in the

pleural cavity [74-76]. In these studies, other factors play-

ing a role in the toxicity of fibers were identified and in-

vestigated. The results showed that the physico-chemical

modification of the fibers influenced the relationship be-

tween the number of fibers and their potential carcinogen-

icity. Indeed the dimensional characteristics of asbestos

fibers are an important parameter influencing carcinogen-

icity in animals, but this parameter does not fully explain

the potency. In a study of the tumorigenicity of several

samples of chrysotile, it was observed that the tumorigenic

potential of different samples could also be explained by a

difference in the chemical composition of the fibers [75].

In this study, the chemical composition of fibers was

modified by magnesium solubilization following acid

treatment. A decrease in carcinogenicity was observed

with the treated sample suggesting that, directly or indir-

ectly, the chemical composition of the fibers modulated

their activity. An inverse relationship was found between

magnesium loss and tumorigenicity. The dimensions and

chemical composition of the fibers can be considered as

playing a role, but these parameters cannot be dissociated

as they were modified simultaneously. Acid treatment also

resulted in shorter and thicker fibers, and greatly

enhanced specific surface area, as measured by BET

(Brunauer-Emmett-Teller) method.

Davis et al. [77] compared the effects of six samples of

tremolite injected in the peritoneal cavity of rats. These

samples included particles of different morphologies, ei-

ther only “asbestiform” (three samples), or elongated

fragments (cleavage fragments) with aspect ratio above 3

(three samples). These later samples were less tumori-

genic but one of them (Italian tremolite) caused a high

rate of mesothelioma. However this sample also con-

tained some very long and thin fibers. The authors stud-

ied the relationship between the risk of mesothelioma

(based on both percentage of animals developing meso-

thelioma and time of appearance of the tumor) and indi-

cators of injected doses (expressed in number of fibers,

weight, average concentration, etc.). They found that the

best fit between the risk of mesothelioma and the loga-

rithm of the number of fibers in size categories was

found for fibers > 8 μm in length and < 0.25 μm in diam-

eter. As samples containing a small number of long and

thin fibers led to a high percentage of mesothelioma, the

authors considered that other factors could account for

the carcinogenic potential (potential role of cleavage

fragments). However they noted that size alone did not

explain the different carcinogenic potencies between the

different samples.

Several studies in mice have explored the effects in-

duced by intraperitoneal administration of single doses of

amosite samples, with LAF or SAF [78-80]. These studies

showed that LAF induced marked local inflammatory re-

actions, compared to SAF, with activation of macrophages,

increased extracellular production of cytokine and ROS

(Reactive Oxygen Species), as well as immunosuppression.

Although the intraperitoneal administration of a single

dose of SAF did not seem to have a great impact on local

inflammation in mice, repetitive exposures increased the

inflammatory reactions. For this study, it is important to

note that the LAF and SAF were injected in equal num-

bers, corresponding to 480 μg and 120 μg respectively.

In a recent study, Schinwald et al. [81] injected several

types of fibers with different lengths (metallic nanofibers

and amosite) in the pleural cavity of mice. They showed

a threshold effect demonstrating that fibers beyond

4 μm in length are pathogenic to the pleura. Using this

route of exposure, it is likely that parameters other than

size will account for the lower effect of short fibers in

comparison with long fibers. That is, short fibers will be

easily cleared by the pleural lymphatic system and not

persistent in the pleural space.

Studies carried out with cell systems in culture

The studies are summarized in the Additional file 2:

Table S1.

Numerous published studies have compared the effects

of asbestos samples of different sizes on cells in culture.

The main studies are summarized here.

Cytotoxicity

A study examined the cytotoxic effects of 15 samples of

different particles, including 11 samples of asbestos fi-

bers in V79/4 (Chinese hamster lung fibroblasts) and

A549 cells (human lung adenocarcinoma) [82]. The

study focused on the statistical correlation between cyto-

toxicity and the number of fibers with length or diam-

eter greater than a given size. Fiber dimensions were

ranged in classes of 1 μm and 0.1 μm in length and

diameter respectively. The results showed a correlation

for a fiber length greater than 3 μm (V79/4) or 4 μm

(A549 cells). The correlation improved as the length in-

creased. For diameter, the only significant association

was related to the fiber diameter <0.2 μm (A549).

Goodglick and Kane [80] evaluated the cytotoxicity of

crocidolite fibers on macrophages of mice. The LAF

sample consisted of 72.4% of fibers less than or equal to

5 μm in length while the SAF sample contained 98.5% of

these fibers, i.e. 8.8×108 and 46×108 f.mg−1 respectively.

Cytotoxicity was demonstrated for both types of sam-

ples, although a comparison on the basis of the number

of fibers showed lower toxicity for the short fibers. The

authors considered that the effects were dependent on

the presence of iron in the samples, because the pre-
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treatment of samples by a chelating agent inhibited the

toxicity.

Amosite samples of LAF and SAF, already mentioned

in the paper by Davis et al. [65] (Table 4), were also

studied by Donaldson and Golyasnya [83]. The authors

underlined that the grinding step of the LAF sample

used to reduce the fibers’ size did not affect their crystal-

linity, and that the SAF sample did not contain WHO fi-

bers. Chromosomal aberrations and hyperploidy were

detected in CHO (Chinese Hamster Ovary) cells incu-

bated with the LAF sample, but not with the SAF sample

at equivalent mass. These results are therefore in line

with those of the in vivo study carried out in rats, where

27.5% of lung tumors and 7.5% of mesotheliomas were

observed after inhalation of amosite LAF, and 0% of lung

tumors and 2.4% of mesotheliomas after inhalation of

amosite SAF (Table 4). After intraperitoneal inoculation

of 25 mg of amosite fibers, the incidence of mesotheli-

oma was 90% and 4% for the LAF and SAF samples re-

spectively (Table 4) [65].

Riganti et al. [84] recently compared the effects of

amosite LAF (L: 70% < 5 μm and 25% < 2 μm) and SAF

(L: 98% < 5 μm and 75% < 2 μm) on human epithelial

cells. It seems that these samples were identical to those

used by Davis et al. [65,66] in animal experiments. Re-

sults showed a greater effect of the LAF sample regard-

ing generation of free radicals, and inhibition of glucose

metabolism and pentose phosphate pathway on A549

cells. Analysis of the fiber size showed that in fact 30%

of the fibers in the LAF sample were longer than 5 μm,

and about 2% in the SAF sample prepared by prolonged

grinding of the long fiber sample. This shows that SAF

were present in a large proportion in both samples. In

addition, the authors considered the preparation

method for short fibers (in a ceramic ball grinding mill)

could alter the fiber surface (note that these results do

not support an effect dependent on the surface area, nor

on the iron content as the SAF sample released a larger

quantity of FeII and FeIII than the LAF sample in the

presence of the chelating agent).

Genotoxicity

Hart et al. [85] studied the cytotoxic and genotoxic ef-

fects of 5 samples of fibers (4 crocidolite samples, and

one chrysotile sample). Fiber dimensions were not de-

tailed, only average size was provided. Results showed

that the proliferation of CHO cells was inhibited in sam-

ples whose average length was 1.4 μm; 1.8 μm or 3.3 μm

for UICC chrysotile, UICC crocidolite, and short NIEHS

crocidolite respectively. This comparison was made on

the basis of the number of fibers. The other 2 crocidolite

samples containing long fibers were more active. In

agreement with other studies their average length was

higher, i.e. 11.4 μm and 7.7 μm respectively.

One study focused on detecting mitotic abnormalities in

cultures of rat pleural mesothelial cells exposed to differ-

ent types of asbestos fibers. Samples were previously used

for intrapleural inoculation in rats (12 asbestos and 5 syn-

thetic mineral fibers) [74,76,86]. The results showed that

percentage of cells with abnormal anaphase/metaphase

depended on the number of fibers corresponding to Stan-

ton’s criteria (L > 8 μm; d ≤ 0.25 μm) present in the sample

[87]. Moreover fiber dimensions were determined by ref-

erence to “Pott’s criteria” (L > 5 μm, d < 2 μm), as well as

to lengths greater than 4 μm regardless of diameter.

Table 5 shows the correlation between the incidence of

mesotheliomas in rats and cell response. Among the 10

samples of chrysotile fibers tested, 5 induced a significant

increase in the number of cells with mitotic abnormalities

and 5 remained without significant effect. Table 6 shows

the related fiber concentrations in these samples. From

these results, we note that while the length parameter

seems important, it is not the sole parameter accounting

for the effects as the number of fibers in a given length

category is sometimes very similar between the samples

showing significant and no observable effect.

Hypotheses on the mechanism of action of asbestos

fibers

The mechanisms of carcinogenesis and fibrosis are not

completely understood, but fiber size is not the only

parameter linked to the mechanism of action of asbestos

fibers. A number of in vitro and in vivo studies have

suggested that shape, cristallinity, chemical composition

and durability are important factors accounting for the

biological activities of fibers, especially their carcino-

genic potency. Comparison between the biological

effects of asbestos and non-fibrous particles of similar

chemical composition, such as crocidolite and riebeck-

ite, has demonstrated a greater potency of the fibrous

counterparts to produce apoptosis, oxidative DNA dam-

age, DNA breakage and to induce proto-oncogene ex-

pression [88-93].

Biolgical effects of asbestos fibers related to carcinogenesis

As far as carcinogenesis is concerned, asbestos fibers

were found to be mutagenic, an important effect in car-

cinogenesis [94]. Several hypotheses, which are not ex-

clusive, have been suggested to account for the fiber-

induced pathogenesis. One mechanism concerns the

production of oxidative species occurring during the

process of phagocytosis, in which free radicals are

formed (“oxidative stress theory”). The presence of iron

at the fiber’s surface also allows the generation of ROS.

A second mechanism involves chromosome damage

due to the interaction between asbestos fibers and chro-

mosomes during cell division, resulting in genetic alter-

ations in daughter cells (“chromosome tangling theory”)
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[95]. Different types of chromosomal damage caused by

asbestos fibers may be observed in asbestos-exposed

cells, including chromosomal breaks and fragments

(micronuclei), lagging chromosomes, exchange of chromo-

somal segments between two chromosomes and chromo-

somal missegregation. A third mechanism is related to the

sorptive capacities of the fibers. It has been demonstrated

that asbestos fibers can adsorb different sorts of molecules,

including polycyclic aromatic hydrocarbons. This last prop-

erty could account for the synergy between asbestos expos-

ure and cigarette smoking observed in epidemiological

studies and in animal experiment [38,96-98]. It is important

to note that the production of oxidative species associated

with fiber uptake, and adsorption of chemicals and

molecules at the fiber’s surface are not independent of the

fiber’s dimensions. Other fiber parameters such as surface

reactivity will also modulate the amount of ROS production

and molecule adsorption.

Fate of asbestos fibers following inhalation

Fiber length modulates fiber deposition in, and clearance

from, the respiratory airways, and consequently fiber re-

tention. Due to the airway anatomy and the mechanisms

of particle deposition, large particles are eliminated in the

upper airways [38]. Once deposited, clearance mecha-

nisms operate to remove the particles. Biopersistence is

defined as the duration of retention of fibers or particles

in the tissues. When deposited in the respiratory airways,

the particles are cleared rapidly by the mucociliary escal-

ator and by alveolar macrophages. Clearance also occurs

Table 5 Correlation between the incidence of mesothelioma in rats and in vitro cytotoxicity or initiation of abnormal

anaphase/telophase in cultures of rat pleural mesothelial cells * [87]

Probability of mesothelioma induction based on:

Metric Cytotoxicity (IC75) Abnormal mitosis

Weight 0.16 0.27

Total fibers 0.56 0.14

“Stanton” fibers 0.84 0.0075

“Pott” fibers ND 0.14

Fibers > 4 μm in length ND 0.25

*Rank Spearman test.

ND: not determined.

Table 6 Number of fibers in different chrysotile samples, according to size classification and induction of abnormal

anaphase/telophase (from [87])

Chrysotile Lower positive
concentration* (μg/cm2)
or highest tested
(for negative samples)

Number of fibers/cm2 (x 106) Number of fibers/cm2 Number of fibers/cm2

>5 μm L (x 106) (x 106)

< 2 μm Ø (Pott’s criteria) <5 μm L* (Stanton’s criteria)

“Positive” samples

Calidria 0.5 4.8 19.6 1.5

NIEHS 0.5 1.2 3.1 0.4

UICCA 0.5 0.8 10.2 0.3

4.4.3 1.0 1.1 15.9 0.3

4.4.5 1.0 1.8 14.2 1.0

SF 1.0 0.4 3.9 0.2

P3 1.0 1.3 3.7 0.66

Pmilled 2.0 3.7 9.3 2.1

“Negative” samples

Ox89% 2.0 0.2 3.7 0.06

SCF 1.5 0.66 21.8 0.22

*Number deduced from the total number of fibers and >5 μm L; < 2 μm Ø.

UICC A = UICC Chrysotile from Zimbabwe.

443 and 445 = Canadian chrysotile.

SCF = Short Canadian Chrysotile SF = Superfine Chrysotile.

P3 = Phosphorylated Canadian chrysotile.

Pmilled = Phosphorylated and milled Canadian chrysotile.

Ox89% = Leached UICC A chrysotile A treated with oxalic acid, 89% magnesium depleted.
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via the lymphatics. Short fibers are more easily phagocy-

tized by alveolar macrophages than long fibers, so their re-

tention half-life is shorter, and long fibers are generally

found to be more persistent in the lung than short fibers.

Moreover, biopersistence is dependent on the chemical

stability of the fibers. The biological milieu can attack the

fibers, solubilizing some chemical elements and breaking

them into smaller fibers. Conversely, fiber-tissue interac-

tions may result in iron and protein deposits at the fiber’s

surface, especially on long fibers, as proven by the occur-

rence of asbestos bodies, then modification of the surface

properties. Consequently, biopersistence is not solely

dependent on fiber length [38].

Persistence of asbestos fibers in the respiratory system

may have several consequences causing sustained inflam-

mation associated with the production of inflammatory

factors, including ROS. Persistence also modulates the re-

tention rate.

Animal experiments to assess biopersistence

Several experiments have investigated the biopersistence

of asbestos fibers, according to their dimensions. Ro-

dents were exposed in inhalation chambers or by the

“nose only” inhalation method. The results are summa-

rized in the Additional file 2: Tables S2, S3, S4 and S5.

Long-term studies in rats using the “nose only” inhal-

ation method are summarized in the Additional file 2:

Table S2. Two studies carried out with crocidolite and

amosite fibers demonstrated that the percentage of

retention for fibers > 20 μm was greater than that of fi-

bers > 5 μm [99,100] . With chrysotile, the retention of

WHO fibers was lower than that of fibers < 5 μm and fi-

bers of any length, or showed a low value [86,101,102]

suggesting a better clearance of WHO fibers. However,

these samples consisted of short fibers (arithmetic mean

length: 1.2 μm and 2.2 μm respectively [86,102]), and no

fiber > 20 μm length [86,102,103] , then the fate of LAF

versus SAF was not assessed. In another study, the per-

centage of retention of chrysotile fibers > 5 μm (WHO)

and > 20 μm was slightly higher than that of fibers <

5 μm and total fibers, and the mean length increased

from 3.5 μm to 4.20 μm after 90 days, in agreement with

a better clearance of shorter fibers or breakage of the

longest fibers [104].

Finally, there are no published data that directly

assessed the biopersistence of amphibole fibers < 5 μm.

However, the shorter fibers (>5 μm versus > 20 μm) ap-

pear less persistent [99,100]. With chrysotile, two nose-

only experiments performed with samples of very short

mean lengths have provided conflicting results because

the retention rate of SAF was either higher or lower than

that of other fibers [86,104], but, studies performed in

inhalation chambers demonstrated lower biopersistence

of SAF in comparison with long fibers.

Long-term studies in rats carried out in inhalation

chambers are summarized in the Additional file 2:

Table S3. In rats exposed to “long fibers” and “short fi-

bers” of crocidolite samples, fiber retention in the lung

increased over a period of 365 days post-inhalation, for

both classes 3–6 μm and > 6 μm for the “long fibers”

sample, and 3–5 μm for the “short fibers” [47]. These

results are consistent with breakage and splitting of fi-

bers. With amphiboles, two studies reported lower

clearance of long fibers in comparison with short fi-

bers. Davis et al. [65] found a decrease in the total

number of fibers 180 days post-exposure of 21% and

14% for the short and long samples respectively. Ac-

cording to Davis et al. [105] and Cullen et al. [106] the

clearance rate of both fibers < 5 μm and > 20 μm was

quite similar (≈60%), while that of fibers > 5 μm was

lower (≈44%). The question may be raised about the

possible fracture of fibers > 20 μm in length, which

would increase the fraction of fibers > 5 μm. With

chrysotile fibers, two studies reported higher biopersis-

tence of long fibers than that of short fibers. Platek

et al. [71] reported that the number of fibers > 5 μm

was stable, and the number of short fibers decreased

after a post-exposure period of 180 days. Davis et al.

[105] determined the amount of chrysotile fibers. The

persistence of long fibers, expressed by weight, was

higher than that of short fibers. Based on these data,

SAF appear less persistent than long fibers, regardless

of the type of asbestos.

Long-term inhalation studies in hamsters are sum-

marized in the Additional file 2: Table S4. Using the

“nose only” method of exposure the number of amosite

fibers, > 5 μm (WHO) and > 20 μm, did not decrease at

low (0.8 mg/m3) and medium doses and there was no

difference in the retention rate between the two

lengths of fiber at the highest dose [107]. With chryso-

tile, the number of fibers > 5 μm in length was slightly

decreased after a post-exposure period of 60 days while

fibers < 5 μm and total fibers were increased, suggest-

ing a fragmentation of the fibers [108]. Interestingly,

one study illustrated changes in the chemical compos-

ition of chrysotile fibers by intratracheal instillation in

hamsters [109]. The mean length of fibers was in-

creased from 0.9 ± 2.4 μm to 1.4 ± 2.1 μm then to 1.2 ±

2.2 μm after periods of 1 day, 1 year and 2 years re-

spectively, indicating a clearance of short fibers from

the lung [108]. These authors determined the evolution of

the chemical composition of fibers by the Mg/Si ratio.,

and observed a small but significant decrease, from 1.44 ±

0.14 (after 1 day) to 1.38 ± 0.14 (after 2 years) [109]. This

result is consistent with a partial leaching of fibers in the

lung, previously described by other authors [110,111]. In

conclusion, only two studies [107,108] were available in

the literature. The data are consistent with the hypothesis
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of transversal breakage of the fibers, which increases the

percentage of SAF.

Short-term studies in rats, according to the “nose only”

inhalation method consisted in the exposure of animals

for a period of 5 days (6 hours/day), and post-exposure

times, up to 545 days. The half-life of the fibers was

calculated using a model taking into account the

rapid early clearance of fibers (weighted half-time)

(Additional file 2: Table S5). Most data are consistent

with a better clearance of fibers < 5 μm compared to fi-

bers > 5 μm and > 20 μm. Studies conducted with cro-

cidolite fibers showed a lower retention of fibers < 5 μm

compared to fibers > 5 μm or > 20 μm [112,113] or to

WHO fibers [114]. Similarly, a greater retention of

amosite fibers > 5 μm and > 20 μm in length compared

to < 5 μm up to 60 days post-exposure was reported

[103]. However later, retention was the same for

fibers > 5 μm, while the fibers > 20 μm had disappeared

[103,115]. Otherwise, three studies from the same team

reported conflicting data using chrysotile, which indi-

cated a lower retention of fibers > 5 μm and > 20 μm

compared to fibers < 5 μm and total fibers [116-119]. In

contrast, data obtained with tremolite fibers were con-

sistent with a longer half-life of LAF compared with

SAF of tremolite [116]. The loss of fibers > 20 μm in

length may correspond to the fiber fragmentation

hypothesis.

In conclusion, the analysis of 5 publications related to

nose-only exposure of amphiboles in rats, demonstrated a

lower biopersistence of SAF than LAF [102,112-114,116],

in agreement with other results using long-term inhalation

exposure. In contrast to other assays, SAF fraction in

chrysotile samples was more biopersistent than LAF, but

the chrysotile samples were different from the standard

samples (Canadian QS Grade 3 F, Brazilian, Californian

Calidria RG144), and issues of conflict have been raised

about these studies, which hampers a reliable synthesis of

the biopersistence studies, and an objective consideration

of this parameter. For nose-only exposure, fibers were pre-

selected using a water-based separation process [104,120],

a procedure that may alter the physico-chemical state of

the fibers. In human, chrysotile fibers remain in the lung

decades after exposure [22]. Differences are possibly

related to the sample preparation and aerosolization

methods [121]. Further investigations would be helpful to

clarify these points.

Short-term studies in rats carried out in inhalation

chambers confirmed the more rapid clearance of short

chrysotile fibers. Kauffer et al. [122] studied the length

and diameter of the fibers after inhalation of a single

dose of chrysotile fibers, 5 mg/m3 over 5 hours. The au-

thors found a increase in the average length of fibers in

the lung and a reduction in diameter. Similar results

were published by Coin et al. [123,124] in short-term

inhalation studies of chrysotile at 10 mg/m3 for 3 hours,

and post-exposure 1–29 days. After a period of one day,

the authors reported a low clearance of fibers longer

than or equal to 16 μm, while short fibers were quickly

removed. As post-exposure time increased, a decrease in

fiber diameter was observed, which is consistent with a

longitudinal splitting.

Despite discrepancies in some literature data, long fi-

bers appear to be more persistent than short fibers. This

statement is supported by our knowledge of the physio-

logical mechanisms of pulmonary clearance. However,

these discrepancies make it difficult to validate biopersis-

tence as a sound parameter for assessing fiber toxicity.

The impact of biopersistence on health effects of asbes-

tos is debated [121,125,126]. Moreover, considering the

hypothesis of a differential effect of fibers according to

their length, the occurrence of breakage and dispersion

make it difficult to consider short-term experiments, es-

pecially with regard to diseases that develop over dozens

of years in humans. Differences of biopersistence be-

tween amphiboles and chrysotile could be explained by

the different physicochemical properties and their solu-

bilisation potential by the acid pH from macrophages

[127,128]. The conclusions are leading to act that long

and thin fibers seem more toxic than short fibers defined

by a faster clearance.

Discussion
The assessment of air contamination by asbestos, for

health safety purposes, is carried out by determining the

structures with a specific length-to-diameter ratio, and a

length over 5 μm. The limit of 5 μm in length was arbi-

trarily chosen by the scientific community and adminis-

trators in the 1960s, because it was convenient for

metrological analysis using light microscopy, and is ra-

ther consistent with literature data which highlights the

role of fiber dimensions in asbestos toxicity. Here we

reviewed literature data on the health effects of asbestos

fibers, from epidemiological data to animal experiments

and studies of the cell system.

According to recent human data [33-37], it can be in-

ferred that exposure to longer fibers was associated with

higher rates of lung cancer, but no definite conclusion can

be ascertained for the other size classes. Nevertheless, the

authors noted that exposure to short, thin fibers was asso-

ciated with lung cancer risk, and these fibers represented

the majority of those counted by TEM. It cannot be deter-

mined yet whether the association of these short fibers

with lung cancer is a spurious effect due to correlations

among fiber-size categories or evidence that short fibers

do play a specific role in carcinogenesis.

In experimental studies, the differences in toxicity ac-

cording to the dimensional characteristics of fibers arise

from comparative studies between the effects of asbestos
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samples with different average lengths or size distribu-

tions, and their fibrogenic or carcinogenic potency. SAF

are less active than LAF. However, SAF in high doses can

cause inflammation, interstitial pulmonary fibrosis and

pleural reactions. The data suggest that the toxic effect of

asbestos fibers increases with length, despite certain not-

able exceptions. Parameters other than size could account

for the differences between samples and make it difficult

to claim that the adverse effects are only related to one

fiber parameter. Preparation can change the physiochem-

ical properties of fibers (aggregation, surface reactivity,

leaching etc.) as can the almost systematic presence of a

residual percentage of LAF fibers in SAF samples, the ana-

lytical methods for fiber analysis, the fiber type and the

type of exposure and the metric (on a per weight basis the

number of short fibers is greater than that of long fibers).

Despite these limitations there is a consensus which con-

siders that fiber toxicity also depends on the redox proper-

ties of the fiber surface and its ability to adsorb biological

macromolecules and chemical molecules present in the

environment, and on biopersistence, which modulates the

number of fibers accumulated in the lungs. However, bio-

persistence results are conflicting concerning the relative

half-times of SAF and LAF in animals, showing either

shorter or longer biopersistence of SAF in comparison

with LAF. The variety of methodologies used for sample

preparation, analytical techniques, duration of exposure

and post-exposure monitoring may account for these dis-

crepancies. For example, reduction in fiber size, which is

associated with increased surface area, due to defibrilla-

tion, may also be associated with a change in the surface

reactivity and aggregation state. Acidic conditions may in-

crease the specific surface area, possible transversal break-

age and fiber shortening. Interaction with biological

macromolecules may modify the cell-fiber interaction, etc.

Our MET analysis of air samples showed that air sam-

ples considered as safe can contain high levels of SAF.

These air samples were collected between 1997 and

2004 in various public buildings (gymnasiums, schools,

day-care centers, etc.) in France showed that about 40%

(40 of 105 samples) contained only SAF, sometimes in

concentrations higher than 10 f.L−1. This finding sug-

gests that the fibers came from the degradation of ACM.

In light of these results, it would be necessary to search

for the presence of such SAF, and to consider that these

fibers are a useful indicator of the degradation of ACM,

if not as a health indicator. Measuring SAF would make

it possible to identify pollution sources and the need for

action to anticipate a possible health risk.

Conclusions
In view of the experimental and epidemiological studies,

the toxicity of SAF cannot be dismissed. The potential

toxicity of SAF remains widely debated in the scientific

community. The lower effect of SAF in comparison with

LAF is mostly founded on experimental studies as few epi-

demiological studies took short fibers into consideration.

Additional data are needed as recent epidemiological

studies suggest a risk for short fibers. Based on literature

data determining the role of fiber size in biological effects

of asbestos fibers and on our present knowledge on their

mechanism of action, it appears that the measurement of

airborne asbestos concentrations limited to fibers with a

length > 5 μm leaves out other types of fibers that may also

have health adverse effects. MET analyses of air samples

reveals that SAF are systematically present, and in signifi-

cant proportions. Consequently, regarding the size-

dependent biological effects of asbestos, it seems that the

content of both LAF and SAF present in air samples

should be taken into consideration. Measuring SAF would

make it possible to identify pollution sources and the need

for action to anticipate a possible health risk.
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