
PROC. OF THE 7th EUR. CONF. ON PYTHON IN SCIENCE (EUROSCIPY 2014) 27

SPySort: Neuronal Spike Sorting with Python
Christophe Pouzat∗†, Georgios Is. Detorakis‡

F

Abstract—Extracellular recordings with multi-electrode arrays is one of the
basic tools of contemporary neuroscience. These recordings are mostly used to
monitor the activities, understood as sequences of emitted action potentials, of
many individual neurons. But the raw data produced by extracellular recordings
are most commonly a mixture of activities from several neurons. In order to get
the activities of the individual contributing neurons, a pre-processing step called
spike sorting is required. We present here a pure Python implementation of a
well tested spike sorting procedure. The latter was designed in a modular way in
order to favour a smooth transition from an interactive sorting, for instance with
IPython, to an automatic one. Surprisingly enough—or sadly enough, depending
on one’s view point—, recoding our now 15 years old procedure into Python was
the occasion of major methodological improvements.

Index Terms—clustering, sampling theorem, sampling jitter correction, dimen-
sion reduction, E-M algorithm, Gaussian Mixture Model, kmeans.

1 INTRODUCTION

The role of neuronal synchronisation in the information
processing performed by (actual) neuronal networks is an
actively debated question in neuroscience. Direct experimental
measurement of synchronisation requires the recording of
the activities of "as many neurons as possible" with a fine
time resolution. In this context, multi-electrode arrays (MEA)
recordings constitute nowadays the technique of choice. The
electrodes making an MEA are located in the extracellular
space and can thereby record the action potentials or spikes
emitted by many neurons in their vicinity—an analogy is
provided by a microphone for an electrode and many static
people talking all at once in a language unknown to us for
the neurons. Electrophysiologists can therefore monitor many
neurons with a "limited" tissue damage—the more electrodes
are pushed into a tissue, the more damage ensues: a very
attractive feature of the methodology. However this attractive
feature of multiple neurons recordings comes at a price:
since many neurons are recorded from a single electrode,
the raw data are a mixture (of single neuron activities) and
a comprehensive use of the data requires the separation of this
mixture into its individual components. This "separation" step
is what is referred to as spike sorting in neurophysiology.

Extracellular recordings have been used for a long time (60
years at least) and it is not surprising that many spike sorting

* Corresponding author: christophe.pouzat@parisdescartes.fr
† MAP5 lab., Paris-Descartes University and CNRS, Paris, France
‡ LSS, Supélec, Gif-sur-Yvette, France

Copyright c○ 2014 Christophe Pouzat et al. This is an open-access ar-
ticle distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction
in any medium, provided the original author and source are credited.
http://creativecommons.org/licenses/by/3.0/

procedures have appeared in the literature (see [Ein12] for a
recent review). Extracellular recordings are also used daily in
an applied context when neurologists perform electromyogra-
phy—extracellular recording from skeletal muscles where the
recorded action potentials are generated by the muscular cells,
not by neurons—giving data and data analysis problems very
similar to the ones we have presented so far. Very similar spike
sorting methods have been developed in the former context
(e.g., [McG85]) but scientists working in the different contexts
("neurons" and "muscles") do not seem to be aware that they
have colleagues doing the same thing on slightly different data!
We present here a rather "simple" approach (in the realm of
the existing ones) which is the one we have used most often
in the last 15 years. This approach was published in 2002
[Pou02] and was successively "incarnated" using IGOR Pro
(Wavemetrics), Scilab, MATLAB (MathWorks), R and now
Python. This work which was initially planed as a recoding
of our present R code into Python was also the occasion to
re-think some of the key steps of our procedure. This lead
to a major improvement (also back ported to our R code)
in the way a specific step, the sampling jitter estimation and
correction, is performed. This new development is given due
space in section 4.7 of the present manuscript.

This contribution is written with two generic readers in
mind: scientific python users and neurophysiologists doing
spike sorting. For the first "reader" we present another example
of an actual scientific data analysis problem that is easily han-
dled within the scientific Python ecosystem. The second reader
is likely to perform spike sorting with a commercial software
provided by one of the MEA amplifiers manufacturers. We
do not want to claim that these software are necessarily bad,
but it is our experience that when we deal with data sets
from different preparations, it is extremely useful to be able
to adapt our method to the specific features of the data. For
instance, when switching from the first olfactory relay of a
locust (Schistocerca americana) to the first olfactory relay of a
cockroach (Periplaneta americana)—they have many different
features [Cha07], we will start in a interactive mode, say with
IPython, using the method previously developed for the locust,
try out some alternative approaches at the key steps (spike
detection, dimension reduction, clustering) before settling on
a new procedure involving only few experiment specific pa-
rameters. The nature of the Python environment providing
interactive development and leading to "black box" procedures
is a clear advantage here. Doing this kind of method adaptation
is hard, not to say impossible, with commercial solutions
implementing a "one size fits all" approach. It moreover

ar
X

iv
:1

41
2.

63
83

v1
 [

cs
.C

E
]

 1
9

D
ec

 2
01

4
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL Descartes

https://core.ac.uk/display/52193212?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://en.wikipedia.org/wiki/Multi-electrode_array
mailto:christophe.pouzat@parisdescartes.fr
http://en.wikipedia.org/wiki/Electromyography
http://en.wikipedia.org/wiki/Electromyography
http://www.wavemetrics.com/
http://www.scilab.org/fr
http://www.mathworks.fr/products/matlab/
http://www.r-project.org/
https://www.python.org/

28 PROC. OF THE 7th EUR. CONF. ON PYTHON IN SCIENCE (EUROSCIPY 2014)

turns out that it is, nowadays, not that hard to implement
the full sequence of steps required for spike sorting thanks
to environments like Python that are both user friendly and
computationally efficient. So we hope to motivate our second
reader to give a try to open solutions giving access to "what’s
going on under the hood". In addition we are advocates of
the reproducible research paradigm ([Sto14] , [Del12]) and
an implementation of the latter requires accessibility of the
code used for a published analysis.

Two versions of the source code are available. A "sim-
ple" one associated with a step-by-step tutorial http://xtof.
perso.math.cnrs.fr/locust_sorting_python.html, the source file
(in emacs org mode) necessary to produce an extended version
of the present document is available at the following ad-
dress: http://xtof.perso.math.cnrs.fr/org/PouzatDetorakis2014.
org. An object-oriented implementation of the method is
available on Github: https://github.com/gdetor/SPySort. The
present methodological developments will be soon merged
with OpenElectrophy.

2 DATA PROPERTIES

The data used for illustration here were recorded from the
first olfactory relay, the antennal lobe, of a locust (Schisto-
cerca americana). Recording setting and acquisition details
are described in [Pou02]. The data are available and can be
dowloaded with:

from urllib.request import urlretrieve
data_names = [’Locust_’ + str(i) + ’.dat.gz’

for i in range(1,5)]
data_src = [’http://xtof.disque.math.cnrs.fr/data/’

+ n for n in data_names]
[urlretrieve(data_src[i],data_names[i])
for i in range(4)]

They were stored as floats coded on 64 bits and compressed
with gnuzip. 20 seconds of data sampled at 15 kHz are
contained in these files. Four files corresponding to the four
electrodes or recording sites of a tetrode (see Sec. 2.1) are
used. The first second of data from the four recording sites is
shown next (Figure 1).

Here, the action potentials or spikes are the sharp (upward
and downward) deviations standing out of the "noise". When
doing spike sorting we try to find how many different neurons
contribute to the data and, for each spike, what is the (most
likely) neuron that generated it.

2.1 Why tetrode?

The main parameter controlling the amplitude of a recorded
spike is the distance between the neuron and the electrode. It
follows that if two similar neurons are equidistant to a given
electrode, they will give rise to nearly identical spikes—for an
elaboration on that and on how the signals recorded on dif-
ferent electrodes could be use to perform source localisation,
see [Che05]. These (nearly) identical recorded spikes are a
big problem since the spike waveform (combination of shape
and amplitude) is going to be our classification criterion. In
some preparation, like the locust antennal lobe (but not the
cockroach antennal lobe) using tetrodes, groups of four closely

Fig. 1: First second of data recorded from the four recording sites
of a tetrode.

spaced electrodes, is going to help us as illustrated in figure
2.

Imagine here that only the lowest electrode is available.
Given the noise level, it would be hard to decide if the four
spikes (arrows in figure 2) are originating from the same
neuron or not. If we now look at the same events from the
additional viewpoints provided by the other electrodes (the
three upper traces) it is clear that the four events cannot arise
from the same neuron: the first and fourth events (seen on the
lowest trace) are large on the four electrodes, while the second
and third are large on the top and bottom traces but very tiny
on the two middle traces.

3 MAIN MODELLING ASSUMPTIONS

We will simplify the neurons discharge statistics by modelling
them as independent Poisson processes—the successive inter
spike intervals (ISI) of a given neuron are independently and
identically distributed following an exponential distribution,
they are also independent of the ISI of the other neurons.
This is obviously a gross simplification: we know that the
ISI of a given neuron are not Poisson distributed and that
the discharges of different neurons are correlated—that is
precisely what we want to study with these experiments—but
the deviations of the actual data generation mechanism from
our simple model (independent Poisson processes) has, in
general, a negligible impact on the sorting results. If we want
to work with more realistic models, we can (although not yet in
Python), but the computational price is rather heavy ([Pou04]
and [Del06]). We do go even further on the simplification path
for these data since we are going to "forget" about the different

http://xtof.perso.math.cnrs.fr/locust_sorting_python.html
http://xtof.perso.math.cnrs.fr/locust_sorting_python.html
http://xtof.perso.math.cnrs.fr/org/PouzatDetorakis2014.org
http://xtof.perso.math.cnrs.fr/org/PouzatDetorakis2014.org
https://github.com/gdetor/SPySort
https://github.com/OpenElectrophy/OpenElectrophy

SPYSORT: NEURONAL SPIKE SORTING WITH PYTHON 29

Fig. 2: 100 ms of data from the four recording sites of a tetrode.
Four clear spikes on the fourth recording site are marked by coloured
arrows.

discharge rates (at the classification stage, Sec. 4.8) and use
only the amplitude information.

When a neuron fires a spike the same underlying waveform
with some additive auto-correlated Gaussian noise is recorded
on each site (more precisely there is one waveform per
electrode and per neuron). Four comments:
• For some data sets (e.g., [Del06]) the underlying wave-

form of a given neuron is changing during the discharge;
we can model that if necessary ([Pou04] and [Del06]),
but the computational cost is high and the neurons of the
data set considered here do not exhibit this feature.

• Following [Che05] we could simplify the model assuming
that we have a single "mother" waveform per neuron and
that the underlying waveform seen on each electrode are
just scaled versions of the mother waveform. We haven’t
implemented this feature yet but it will come next.

• Some authors [Sho03] argue that the additive noise would
be better described by a multivariate t-distribution; they
are lead to this assumption because they do not resolve su-
perposed events—when two or more neurons fire at nearly
the same time the observed event is a "superposition": the
sum of the underlying waveforms of the different neurons
plus noise. If superpositions are resolved, the Gaussian
noise assumption is perfectly reasonable [Pou02].

• The noise is necessarily auto-correlated since the data are
low-pass filtered prior to digitisation.

4 THE SORTING PROCEDURE

A very detailed, "step-by-step", account of the analysis pre-
sented here can be found on our dedicated web page (http://

xtof.perso.math.cnrs.fr/locust_sorting_python.html). For most
of the steps only a brief description is given in order to save
space for the original part. We moreover focus on the first
part of the analysis of what is typically a large data set.
Experimentalists usually record for hours if not days [Cha07]
from the same preparation. In our experience such recordings
are stable on a time scale of 10 minutes or more. It therefore
makes perfect sense to split the analysis in two parts:

1. Model estimation: in the "easy" settings as here,
a model boils down to a catalogue of waveforms,
one waveform per neuron and per recording site.
More sophisticated models can be used but the case
illustrated here—and that is not a rare case—they
are not necessary.

2. Once the model / waveform catalogue has been
obtained the data are processed; that is events are
detected and classification is performed by tem-
plate matching—the catalogue’s waveforms being
the templates.

The key point is that part 1 can be done on a short data
stretch—in the example bellow we are going to use 10 seconds
of data. This part is also the one that can require the largest
amount of user input, in particular when a choice on the
number of neurons to include in the model has to be made.
The second part is straightforward to automate: a short Python
script loading, say, 2 minutes of data and the catalogue will
do the template matching as illustrated in Sec. 4.8. A "poor’s
man" illustration of this 2 parts approach is provided here since
the model is estimated on the first half of the data set and the
classification is performed on the whole set. When applying
this approach, one should monitor the number of unclassified
events over a given time period and update the model if this
number increases suddenly.

4.1 Data normalisation

If the data have not been high-passed filtered prior to digitiza-
tion, they are so filtered (with a cutoff frequency between 200
and 500 Hz) using function firwin of module scipy.signal.
The trace of each electrode is then median subtracted and
divided by its median absolute deviation (MAD). The MAD
provides a robust estimate of the standard deviation of the
recording noise. After this normalisation, detection thresholds
are comparable on the different electrode.

4.2 Spike detection

Spikes are detected as local extrema above a threshold. More
precisely, the data are first filtered with a box filter (a moving
average) in order to reduce the high frequency noise; the
filtered data are normalised like the raw data before being
"rectified": amplitudes below a threshold are set to zero;
the filtered and rectified data from each electrode are added
together and local maxima are identified. This is a very simple
method that works well for these data. This is clearly an
important step that must typically be adapted to the data one
works with. For instance when the signal to noise ratio is
lower, we often construct a "typical waveform"—by detecting

http://xtof.perso.math.cnrs.fr/locust_sorting_python.html
http://xtof.perso.math.cnrs.fr/locust_sorting_python.html
http://docs.scipy.org/doc/scipy/reference/tutorial/signal.html#fir-filter
http://en.wikipedia.org/wiki/Median
http://en.wikipedia.org/wiki/Median_absolute_deviation

30 PROC. OF THE 7th EUR. CONF. ON PYTHON IN SCIENCE (EUROSCIPY 2014)

the largest events first, averaging and normalising them (peak
at 1 and mean at 0)—that we convolve with the raw data. The
detection is subsequently done on these filtered data. Working
with an environment like Python we can do that with a few
lines of code, try different ideas and different parameters, etc.

4.3 Events set (sample) construction

After a satisfying detection has been obtained, events are "cut"
from the raw data. An optimal cut length is obtained by first
using overly large cuts (say 80 sampling points on both sides
of the detected peak). The point-wise MAD is computed and
the locations at which the MAD reaches 1 (the noise level on
the normalised traces) give the domain within which "useful
sorting information" is to be found. New shorter cuts are then
made (in the illustrated case, Fig. 3, using 14 points before
the peak and 30 points after) and an event is then described
by a set of N amplitudes on 4 electrodes (in our case 180
amplitudes). The first 200 events are shown in Figure 3.

Fig. 3: First 200 events: Black, non-superposed events; red, superpo-
sitions. The cuts are 3 ms (45 sampling points) long. Identical scales
on each sub-plot.

Superpositions (i.e., two or more spikes fired at nearly the
same time by two or more neurons) are clearly visible as
secondary peaks on each recording site (red in figure 3).

4.4 Dimension reduction

The cuts shown in Fig. 3 are 3 ms or 45 sampling points long.
That means that our sample space has 45x4 = 180 dimensions.
Our model assumptions imply that, in the absence of recording
noise, each neuron would generate a single point in this
space—strictly speaking, because of the sampling jitter (see
Sec. 4.7), each neuron would generate a small cloud—and the
recording noise will transform these "centers" into clouds, each
cloud having the same variance-covariance matrix—this is of
course expected only for the events that are not superpositions.
At that stage sorting reduces to a clustering problem and
doing clustering in a 180 dimensional space is rarely a good

idea. We therefore reduce the dimension of our events’ space
using principal component analysis (PCA) keeping only a few
of the first principal components. But before that, the "most
obvious" superpositions are removed from the sample. We do
that because a few superpositions can dominate (and strongly
corrupt) the result of a PCA analysis. The goal of this initial
part of our procedure is moreover to build a catalogue of
underlying waveform associated with each neuron. The actual
sorting will be subsequently accounting for superpositions
when they occur. The "most obvious superpositions" are
removed by looking for side peaks on each individual event.
Figure 4 (made with scatter_matrix of pandas) shows
the events projected on the planes defined by every pair of the
first four principal components.

Fig. 4: Scatter plot matrices of the events that are not superposi-
tions on the plans defined by every pair of the first four principal
components.

We get an upper bound on the number of components
to keep by building figures like Fig. 4 with higher order
components until the projected data look featureless (like a
two dimensional Gaussian). We get an idea of the number
of neurons by counting the number of clouds on the "good"
projections (looking at the plot on row 1 and column 2 in Fig.
4 we see 10 clouds).

4.5 Dynamic visualisation

At that stage, dynamic visualisation can help a lot. We
therefore typically export in csv format the data projected
on the sub-space defined by principal components up to the
upper bound found as just described. We then visualise the
data with the free software GGobi. The latter is extremely
useful to: reduce further the dimension of the sub-space used;

http://scikit-learn.org/stable/modules/clustering.html#clustering
http://pandas.pydata.org/
http://www.ggobi.org/

SPYSORT: NEURONAL SPIKE SORTING WITH PYTHON 31

refine the initial guess on the number of clouds; evaluate the
clouds shape (which conditions the clustering algorithm used).

4.6 Clustering

Although most of the spike sorting literature focuses on
clustering methods, in our experience standard, well known
and thoroughly tested methods work fine. After observing
the data as in Fig. 4 and with GGobi, we can decide what
method should be used: a "simple" K-Means; a Gaussian
mixture model (GMM) fitted with an E-M algorithm—both
implemented in scikit-learn—; bagged-clustering [Lei99] that
we implemented in Python. For the data analysed here, we
see 10 well separated clusters (clouds) that have uniform
(spherical) shapes, suggesting that the K-Means are going to
work well.

Figure 5 shows the events attributed to the first 2 clusters.
In order to facilitate model comparison (when models with
different numbers of neurons are used or when a K-Means fit
is compared with a GMM fit), clusters are ordered according
to their centers’ sizes. That is, for each cluster the point-wise
median is computed and its size, the sum of its absolute values
(an L1 norm), is obtained.

Fig. 5: Left: the 52 events attributed to cluster 0. Right: the 65 events
attributed to cluster 1. In red, the point-wise MAD (robust estimate
of the standard deviation) .

The point-wise MAD has been added to the events as a
red trace in Fig. 5. If the reader remembers our modelling
assumptions he or she will see a problem with the MAD of
the second cluster (right column) on the top electrode: the
MAD is clearly increasing on the rising phase of the event
while our hypothesis imply that the MAD should be flat. But
this MAD increase is obviously due to bad events’ alignment.
Seeing this kind of data, before rejecting our model hypothesis,
we should try to better align the events to see if that could
solve the problem. This is what we are going to do in the next
section.

4.7 Jitter estimation and cancellation

The "misaligned" events of Fig. 5 (top right) have two origins.
First, even in the absence of recording noise, we would have a
jitter since the clock of our A/D card cannot be synchronised
with the "clocks" of the neurons we are recording. This implies
that when we are repetitively sampling spikes from a given
neuron, the delay between the actual spike’s peak and its
closest sampling time will fluctuate (in principle uniformly
between -1/2 and +1/2 a sampling period). Since we are
working with the sampled versions of the spikes and are
aligning them on their apparent peaks, we are introducing a
distortion or a sampling jitter [Pou02]. In addition, and that’s
the second origin of the misaligned events, we definitely have
some recording noise present in the data and because of this
noise we are going to make mistakes when we detect our local
maxima at the very beginning of our procedure. In other words
we would like to find local maxima of the signal but we
can’t do better (at that stage) than finding the local maxima of
the signal + noise. Having a clear idea of the origin of
the misalignment, we could decide that the MAD increase is
not a real problem (we could in principle re-align the events
and get rid of it) and live with it. Unfortunately, if we want
to handle properly the superposed events, we have to estimate
and compensate the sampling jitter as will soon become clear.

When we first published our method [Pou02] we dealt
with this jitter problem by using Nyquist theorem that tells
us that if our data were properly sampled—with a sampling
frequency larger than twice the low-pass cutoff frequency of
our acquisition filter—we can reconstruct exactly the data in-
between our sampled points by convolving the sampled data
with a sinc function. We therefore went on, over sampling
the data numerically, before shifting our individual events in
order to align them on their cluster centre. This approach
has several shortcomings: i) the support of the sinc is
infinite but we are dealing with finite (in time) data and are
therefore doing an approximate reconstruction; ii) computing
the (approximate) interpolated values takes time. Luckily,
recoding our procedure into Python led us to finally "see the
light"—others [Pil13] followed a similar path before us. We
can indeed solve our problem much more efficiently, without
using the sinc function.

Formally if we write g(t), the observed waveform of an
event within one of our cuts (the time t runs from -1 ms to +2
ms in our examples), and f (t), the underlying waveform—we
are considering an event that is not a superposition and we
write things for a single recording site to keep notations
lighter, the generalisation to several recording sites is straight-
forward—we have:

g(t) = f (t +δ)+Z(t) , (1)

where δ is the jitter we want to estimate and Z(t) is a
stationary and centred Gaussian process (E(Z(t)) = 0 and
Var(Z(t))=σ2

Z). Our approach seems to simplify considerably
the estimation problem when compared to [Pil13]. A second
order Taylor expansion is used in our case, leading to:

g(t)≈ f (t)+δ f ′(t)+δ
2/2 f ′′(t)+Z(t) . (2)

http://scikit-learn.org/stable/
http://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theorem

32 PROC. OF THE 7th EUR. CONF. ON PYTHON IN SCIENCE (EUROSCIPY 2014)

If we assume that δ is the realisation of a random variable
∆ with a null expectation, E(∆) = 0—that’s a reasonable
assumption given the origins of the jitter—and finite variance,
σ2

∆
, then:

E(g(t))≈ f (t)+σ
2
∆/2 f ′′(t) . (3)

In other words, to the first order in δ (i.e., setting σ2
∆

to 0), the
expected value of the event equals the underlying waveform.
Sticking to the first order we get for the variance:

Var(g(t)) = E
[
(g(t)− f (t))2

]
≈ σ

2
∆ f ′(t)2 +σ

2
Z . (4)

Implying that the square root of the events variance minus
the noise variance should be proportional to their absolute
derivative; this explains why the MAD (a robust estimate of
the standard deviation) peaks on the rising phase of the cluster
centre (Fig. 5, top right) since that’s where the time derivative
is the largest.

Equation (3) tells us that our cluster centres estimated as
point-wise median are likely to be "good" (in other words
their error should be dominated by sampling variance, not by
bias). Using the same argument, we can get first an estimate
of the time derivative of the raw data by using the central
difference (divided by two), then we can make cuts at the
same locations and in exactly the same way as our original
cuts and compute cluster specific point-wise medians giving
us reasonable estimates of the time derivatives of the cluster
centres (the f ′(t) above). We can iterate this procedure one
step further to get estimates of the second derivatives of the
cluster centres (the f ′′(t) above).

We now have the required elements to go back to our
jitter (δ) estimation problem using Eq. (2). We don’t have
g(t), f (t), f ′(t) or f ′′(t) directly but only sampled versions
of those, that is: [gi = g(ti)]i=t1,...,tw , [fi = f (ti)]i=t1,...,tw and
[f ′i = f ′(ti)]i=t1,...,tw

where w is the width of one of our cuts
(45 sampling points). Starting with the first order in δ , we
can get an estimate δ̃ of δ by minimising the residual sum of
squares (RSS) criterion:

δ̃ = argmin
δ

∑
i

(
gi− fi−δ f ′i

)2
. (5)

Since the (fi) and (f ′i) are known, we are just solving a
classical linear regression problem whose solution is:

δ̃ =
∑i(gi− fi) f ′i

∑i f ′2i
. (6)

We could take the noise auto-correlation (that we can estimate)
into account, but it turns out to be not worth it (the precision
gain is not really offsetting the computational cost).

We now solve the second order optimisation problem:

δ̂ = argmin
δ

∑
i

(
gi− fi−δ f ′i −δ

2/2 f ′′i
)2

. (7)

Since the latter does not admit (in general) a closed form
solution, we perform a single Newton-Raphson step, start-
ing from δ̃ to get δ̂ . Only a single Newton-Raphson step
is used because there is not much to be gained by refin-
ing the solution of an optimisation problem (Eq. 7) that
only provides an approximate solution to the problem we

are really interested in—which would be written here: δ̂ =
argminδ

∫
(g(t)− f (t +δ))2 dt—the main error is likely to

arise from the second order approximation of the latter—this
point is clearly made in an other context, predictor-corrector
method for ordinary differential equation, by Acton in [Act70]
on pp. 133-134.

Figure 6 illustrates jitter estimation and cancellation at work.
The left column shows one of the events attributed to cluster
1 (black, g(t) in our previous discussion) together with the
cluster centre estimate (blue, f (t) in our previous discussion)
and the difference of the two (red, g(t)− f (t) in our previous
discussion). The right column shows again the event (black)
with the aligned centre (blue, f (t)+ δ̂ f ′(t)+ δ̂ 2/2 f ′2(t) in
the previous discussion) and the difference of the two (red).

Fig. 6: Left: event 50 of cluster 1 (black), centre of cluster 1 (blue),
difference of the 2 (red). Right: event 50 of cluster 1 (black), aligned
centre of cluster 1 (blue), difference of the 2 (red) .

4.8 Spikes "peeling"

We have almost reached the end of our journey. The clustering
step gave us a catalogue of waveforms: the cluster centre, its
first and second derivative for each of the K neurons / clusters
on each site. We now go back to the raw data and for each
detected event we do:

1. Compute the squared Euclidean norm of event
(over the 4 cuts corresponding to the 4 electrodes)
to get R2.

2. For each of the K neurons, align the centre’s
waveform on the event (as described in the previous
section) and subtract it from the event. Compute
the squared norm of this residual to get R2

j where
j = 1, . . . ,K.

3. Find ĵ = argmin j R2
j and if R2

ĵ < R2 then:

• Keep the jitter corrected time for ĵ in the list
of spikes and keep ĵ as the neuron of origin.

• Subtract the ĵ-th aligned centre from the raw
data

http://en.wikipedia.org/wiki/Newton-Raphson

SPYSORT: NEURONAL SPIKE SORTING WITH PYTHON 33

Fig. 7: Illustration the "peeling" procedure. Left: raw data (black) and first prediction (red); middle: previous raw data minus previous
prediction (black) and new prediction (red); right: what’s left (no more waveforms corresponding to the catalogue’s content). The small
spike left on the right (clearly visible in the middle on the four sites) does not belong to any neuron of the catalogue because the events used
to built the latter where detected as local maxima (and we would need to detect local minima to catch events like the one we see here) .

otherwise tag the event as unclassified and don’t
perform any subtraction.

Once every detected event has been examined, we are left
with a "new" version of the raw data from which the aligned
"best" centre waveforms have been subtracted (only when
doing so was reducing the sum of squares of the amplitudes
over the cuts). For the event illustrated in Fig. 6 we go from
the black trace on the left column to the red trace on the right
column. It is clear that for this "peeling procedure" to work
we have to cancel the jitter otherwise we would be going from
the black trace on the left column to the red trace on the same
column (where what remains as a peak amplitude similar to
what we started with!).

We then iterate the procedure, taking the "new" raw data as
if they were original data, detecting events as on the raw data,
etc. We do that until we do not find anymore events for which
the proposed subtraction is accepted; that is until we are only
left with unclassified events. The first two iterations of this
procedure are illustrated on figure 7. See how the superposed
event in the middle of the trace (left column) is nicely resolved
into its two components.

5 CONCLUSIONS

Recoding our procedure from R to Python turned out to
be easy (and an excellent way to learn Python for the
first author). The efficient memory management provided by
numpy for large arrays turns out to be very attractive. The
"idiosyncrasies" of matplotlib (e.g., linewidth abbreviation
is lw in Matplotlib and lwd in R, color abbreviation is c in
Matplotlib and in R is col, etc) turn out to be the longest to
digest—for an R user—, but once they are mastered, IPython
provides an excellent environment for interactive sorting. We
are clearly going to carry out the subsequent developments
of our methods—starting by porting our C code dealing
with more sophisticated data generation models [Pou04] and
[Del06] within the Python ecosystem.

More fundamentally, the new jitter estimation and cancel-
lation procedure we introduced is deceptively simple—similar
to the method of [Pil13] but much simpler; to be fair, these
authors also considered a possible amplitude and duration
variability of the spikes generated by a given neuron. Our
method is in fact, we think, an important step forward since
it allows electrophysiologists to process superposed events
systematically and efficiently. And, in our view, without super-
posed events processing there is no trustworthy spike sorting.

6 ACKNOWLEDGMENTS

This work has been supported by the ANR JCJC project
“SynchNeuro”.

REFERENCES

[Act70] F. S. Acton. Numerical Methods That Work, Harper & Row, 1970.
[Cha07] A. Chaffiol. Étude de la représentation des odeurs dans le lobe

antennaire de Periplaneta americana, PhD Thesis, Université Paris
XIII (in French), 2007.

[Che05] M. I. Chelaru and M. S. Jog. Spike source localization with tetrodes,
J. Neurosci. Methods, 142(2):305-315, 2005.

[Del06] M. Delescluse and C. Pouzat. Efficient spike-sorting of multi-state
neurons using inter-spike intervals information, J. Neurosci. Meth-
ods, 150(1):16-29, 2006.

[Del12] M. Delescluse, R. Franconville, S. Joucla, T. Lieury and C. Pouzat.
Making neurophysiological data analysis reproducible. Why and
how?, Journal of Physiology (Paris), 106(3-4):159-170, 2012

[Ein12] G. T. Einevoll, F. Franke, E. Hagen, C. Pouzat and K. D. Harris.
Towards reliable spike-train recordings from thousands of neurons
with multielectrodes, Current Opinion in Neurobiology, 22(1):11-17,
2012.

[Lei99] F. Leisch. Bagged clustering, TR 51 SFB Adaptive Information
Systems and Modelling in Economics and Management. Available
at: http://epub.wu.ac.at/id/eprint/1272.

[McG85] K. C. McGill, K. L. Cummins and L. J. Dorfman. Automatic
decomposition of the clinical electromyogram, IEEE Trans. Biomed.
Eng., 32(7):470-477, July 1985.

[Pil13] J. W. Pillow, J. Shlens, E. J. Chichilnisky and E. P. Simoncelli.
A Model-Based Spike Sorting Algorithm for Removing Correlation
Artifacts in Multi-Neuron Recordings, PLOS One, 8:e62123, May
2013.

[Pou02] C. Pouzat, O. Mazor and G. Laurent. Using noise signature to
optimize spike-sorting and to assess neuronal classification quality,
J. Neurosci. Methods, 122(1):43-57, 2002.

http://epub.wu.ac.at/id/eprint/1272

34 PROC. OF THE 7th EUR. CONF. ON PYTHON IN SCIENCE (EUROSCIPY 2014)

[Pou04] C. Pouzat, M. Delescluse, P. Viot and J. Diebolt. Improved spike-
sorting by modeling firing statistics and burst-dependent spike
amplitude attenuation: a Markov chain Monte Carlo approach, J.
Neurophys., 91(6):2910-2928, 2004.

[Sho03] S. Shoham, M. R. Fellows and R. A. Normann. Robust, automatic
spike sorting using mixtures of multivariate t-distributions, J. Neu-
rosci. Methods, 127(2):111-122, 2003.

[Sto14] V. Stodden, F. Leisch and R. Peng. Implementing Reproducible
Research, Chapman & Hall/CRC The R Series, 2014.

	1 Introduction
	2 Data properties
	2.1 Why tetrode?

	3 Main modelling assumptions
	4 The sorting procedure
	4.1 Data normalisation
	4.2 Spike detection
	4.3 Events set (sample) construction
	4.4 Dimension reduction
	4.5 Dynamic visualisation
	4.6 Clustering
	4.7 Jitter estimation and cancellation
	4.8 Spikes "peeling"

	5 Conclusions
	6 Acknowledgments
	References

