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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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HAZARD ESTIMATION FOR CENSORED DATA CONTAMINATED WITH

ADDITIVE MEASUREMENT ERROR: APPLICATION TO LENGTH OF

PREGNANCY

FABIENNE COMTE(1), ADELINE SAMSON(1,2), AND JULIEN J STIRNEMANN(1,3)

(1) MAP5, UMR CNRS 8145, Université Paris Descartes
(2) Laboratoire Jean Kuntzmann, UMR CNRS 5224, Univ Grenoble-Alpes, France

(3) Obstetrics and Maternal - Fetal Medicine, GHU Necker-Enfants Malades, Université Paris
Descartes.

Abstract. We consider random variables which can be subject to both censoring and measurement
errors. We focus on the case where the measurement errors affect both the variable of interest and
the censoring variable, which is the case of the timing of spontaneous delivery among pregnant
women. We propose an estimation strategy to estimate the hazard rate of the underlying variable
of interest. We explain the model and this strategy and provide L2-risk bound for the data driven
resulting estimator. Simulations illustrate the performances of the estimator. Lastly, the method
is applied to a real data set of length of pregnancy.

Keywords. Censored data; Measurement error; Survival function estimation; Hazard rate
function estimation; Nonparametric methods; Deconvolution;

1. Introduction

The length of pregnancy is defined as the time between the spontaneous fertilization of the
oocyte and spontaneous delivery following labor. However, despite the simplicity of the definition,
the estimation of the physiological length of pregnancy is a challenging problem since both the time
origin and the time of onset of labor are only partly observed. Several events may occur during
pregnancy and interfere with its physiological course prior to spontaneous labor, such as medical
induction of labor or cesarean section, intrauterine fetal death or any fetal or maternal medical
condition that leads to delivery before its ”physiological” time.

Using time-to-event terminology, the time to spontaneous labor is therefore randomly right-
censored. Right-censored data, in its standard presentation, involves independent observations
((Xj ∧Cj),1Xj≤Cj ) for j = 1, . . . , n where the variable X denotes the true time between the origin
and the occurrence of the event of interest and the variable C denotes the true time between the
origin and the occurrence of censoring. We classically assume that X and C are independent.

As stated above, the time of fertilization (the time origin) is ill-observed and can never be directly
measured, except in the very special case of in vitro fertilization, which we do not consider here,
as this case cannot be considered as physiological. In practice, in spontaneous pregnancies, the
time of onset of pregnancy is predicted either from the last menstrual period, by simply adding 14
days or, better, by the sonographic measurement of the length of the embryo in the first trimester.
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Because it is not directly observed and estimated from biological data, the time of fertilization is
known up to an error, the magnitude of which is of several days, regardless of the method.

In this paper, we consider the problem of censored data prone to measurement error. As the time
origin of pregnancy is known up to an additive (random) error, both variables X (time between
the true onset and the natural childbirth) and C (time between the true onset and any censoring
event) are observed up to this additive error.

Let us define the model more precisely. Let ε denote the random error variable assumed to be
independent of X and C. We assume that the observations are properly classified as censored or
uncensored and that both the censored and uncensored observations are measured with error:

Yj = (Xj ∧ Cj) + εj = (Xj + εj) ∧ (Cj + εj), j = 1, . . . , n(1)

δj = 1Xj≤Cj ,

Note that the censoring indicator δj is unchanged by the measurement error: 1Xj≤Cj = 1Xj+εj≤Cj+εj .
The purpose of this work is to provide a nonparametric estimator of the hazard function hX of

X, based on the observations (Yj , δj).

Nonparametric methods have been proposed in the frameworks of both censored data and de-
convolution. Regarding censoring, Antoniadis et al. [1999] consider a wavelet hazard estimator
which is not adaptive, whereas Li [2007, 2008] suggests estimators based on wavelet with hard or
block thresholding. Estimators based on model selection via penalization have also been proposed:
Dohler and Ruschendorf [2002] estimate the log-hazard function using a penalized likelihood-based
criterion, Brunel and Comte [2005, 2008] consider penalized contrast estimators for both the density
and the hazard rate using either the Nelson-Aalen estimator of the cumulative hazard function or
the Kaplan-Meier cumulative hazard estimator, Reynaud-Bouret [2006] proposes a penalized pro-
jection estimator of the Aalen multiplicative intensity process with adaptive results and minimax
rates and Akakpo and Durot [2010] consider a histogram selection for both density and hazard rate
estimation.

We can also consider our estimation problem in the setting of deconvolution. Deconvolution has
been widely studied in various contexts. We hereby restrain to references with a known density
of the noise. Kernel estimators have been proposed by Stefanski and Carroll [1990], Fan [1991],
with bandwidth selection strategies [Delaigle and Gijbels, 2004]. Wavelet estimators [Pensky and
Vidakovic, 1999, Fan and Koo, 2002], and projection methods with model selection [Comte et al.,
2006] have also been developed. A pointwise estimation method for SX has been proposed by
Dattner et al. [2011] when the data are noisy but not censored. In this work, we estimate the
hazard rate hX based on the ratio of deconvolution estimators, using the developments of Dattner
et al. [2011] in the setting of distribution functions (with no censoring) for the denominator.

The paper is organized as follows: Section 2 studies a quotient estimator of the hazard rate
hX . The estimator is illustrated with a simulation study in Section 3 and is compared to results
obtained when neither measurement error nor censoring are considered. The motivating application
of estimation of length of pregnancy is illustrated by an analysis of real data in Section 4. In Section
5, we discuss the alternative problem where the noise affects only the variable X, a problem that
remains open. Proofs are gathered in Appendix.

Notations. We denote fU the density of a variable U . We denote SU (t) = P(U ≥ t) the survival
function at point t of a random variable U , hU (t) = fU (t)/SU (t) the hazard ratio at point t
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and f∗U the characteristic function. We denote g∗(t) =
∫
eitxg(x)dx the Fourier transform of any

integrable function g. For a function g : R 7→ R, we denote ‖g‖2 =
∫
R g

2(x)dx the L2 norm. For
two integrable and square-integrable functions g and h, we denote g ? h the convolution product
g ? h(x) =

∫
g(x− u)h(u)du. For two real numbers a and b, we denote a ∧ b = min(a, b).

2. Censored data and measurement noise

2.1. Setting. We observe for j = 1, . . . , n

Yj = (Xj ∧ Cj) + εj , δj = 1Xj≤Cj .

We assume that the law of the noise is known and that its characteristic function is such that

∀u ∈ R, f∗ε (u) 6= 0.

The following assumption, which is verified by exponential or Gamma distributions for example,
will be considered fulfilled throughout this section:

Assumption (A1) We assume both X and C to be nonnegative random variables. We also as-
sume E(X) < +∞ and E(C) < +∞.

In this section, we want to estimate the hazard rate hX of X. This hazard rate may be expressed
as the following nonstandard quotient, where SX is the survival function:

hX =
fX
SX

=
fXSC
SXSC

=
fXSC
SX∧C

.

The idea is to estimate separately the numerator fXSC and the denominator SX∧C .

2.2. Construction of the estimator for the numerator. It is rather easy to get an estimator
of the numerator fXSC , and more precisely of its projection on the space

(2) Sm := {t ∈ L2(R), supp(t∗) ⊂ [−πm, πm]}.

For a square-integrable function g, let us denote gm its orthogonal projection on Sm, such that
g∗m(x) = g∗(x)1|x|≤πm. Then (fXSC)m is estimated by the following deconvolution estimator:

(3) ̂(fXSC)m(x) =
1

2πn

n∑
j=1

∫ πm

−πm

e−iuxδje
iuYj

f∗ε (u)
du.

Indeed

E(δ1e
iuY1) = E(1X1≤C1e

iu(X1∧C1)eiuε1) = E(1X1≤C1e
iuX1)f∗ε (u)

= E(SC(X1)eiuX1)f∗ε (u) = (fXSC)∗(u)f∗ε (u).

Therefore

E( ̂(fXSC)m(x)) =
1

2π

∫ πm

−πm
e−iux(fXSC)∗(u)du := (fXSC)m(x).
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Under integrability conditions, (fXSC)m(x) tends to fXSC(x) when m tends to infinity by the

Fourier inverse formula. Then the risk bound of ̂(fXSC)m can easily be deduced from Comte et
al. (2006):

E(‖ ̂(fXSC)m − (fXSC)‖2) ≤ ‖fXSC − (fXSC)m‖2 +
E(δ1)

2π

∫ πm

−πm

du

|f∗ε (u)|2

where the bias term

‖fXSC − (fXSC)m‖2 =
1

2π

∫
|u|≥πm

|(fXSC)∗(u)|2du

is decreasing with m while the variance term, (2π)−1E(δ1)
∫ πm
−πm du/|f

∗
ε (u)|2, obviously increases.

As a consequence, we wish to choose m so that a good compromise is reached. This is done by
estimating each term. The variance is estimated by a quantity pen1(m) proportional to the bound
on the variance. Since ‖fXSC − (fXSC)m‖2 = ‖fXSC‖2 − ‖(fXSC)m‖2, the bias term can be
replaced by −‖(fXSC)m‖2 in the search for an optimal m, as it amounts to omit a term which does

not depend on m. Therefore, this term is estimated by −‖ ̂(fXSC)m‖2. This explains why we select
m̂1 as follows.

(4) m̂1 = arg min
m∈{1,...,mn,1}

(−‖ ̂(fXSC)m‖
2 + pen1(m)),

where mn,1 is such that mn,1 ≤ n and

(5) pen1(m) =
κ1

n

(
1

n

n∑
k=1

δk

)
log(J1(m))J1(m), with J1(m) =

1

2π

∫ πm

−πm

du

|f∗ε (u)|2
.

In pen1(m), the constant κ1 is calibrated from preliminary simulations.
Following Comte et al. [2006], applying Talagrand’s Inequality,

E(‖ ̂(fXSC)m̂1
− fXSC‖2) ≤ C inf

m∈{1,...,mn,1}

(
‖(fXSC)m − fXSC‖2 + pen1(m)

)
+
C ′

n

for C and C ′ two constants which do not depend on n. In other words, the estimator ̂(fXSC)m̂1

realizes the adequate squared-bias/variance trade off, up to the multiplicative factor C and the
negligible residual term C ′/n.

2.3. Construction of the estimator for the denominator. We now wish to estimate the
denominator SX∧C = SXSC . Note that under assumption (A1), the survival functions are square-
integrable over R+ (thus over R if they are extended by 0), as opposed to cumulative distribution
functions. This is true, for example, for exponential distributions, classically used in survival
analysis: the associated survival functions are clearly square integrable.

We define for x ≥ 0, the following estimator of SX∧C , as proposed by Dattner et al. [2011]:

(6) ̂(SX∧C)m(x) =
1

2
+

1

πn

n∑
j=1

Re

∫ πm

0

1

iu

(
eiu(Yj−x)

f∗ε (u)

)
du.

While only the pointwise risk of this estimator is studied in Dattner et al. [2011], we want hereby

to compute the integrated L2-risk of ̂(SX∧C)m. It is not trivial from (6) why this integrated risk is
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properly defined. Therefore, before proceeding to the study of the integrated risk we consider an

alternate expression of ̂(SX∧C)m using (1/π)
∫ +∞

0 sin(v)/vdv = 1/2, as follows:

̂(SX∧C)m(x) = Re

 1

2πn

n∑
j=1

∫ πm

−πm

e−iux

iu

(
eiuYj

f∗ε (u)
− 1

)
du

+ ψm(x)(7)

with

ψm(x) = − 1

2iπ

∫
|u|≥πm

e−iux

u
du =

1

π

∫ +∞

πm

sin(ux)

u
du.

Note that ψ∗m(u) = −1/(iu)1|u|≥πm. This implies by Parseval formula that
∫ +∞

0 |ψm(x)|2dx =

(1/2π2)m−1. Moreover, the real part Re(·) in formula (7) is not mandatory because the integral is
real, given the symmetry of the domain and the properties of the function under integration.

Then, in order to compute the integrated L2-risk of ̂(SX∧C)m, we can see (7) as a deconvolu-

tion estimator of S∗X∧C . First, notice that S∗X∧C(u) =
∫ +∞

0 eiuvSX∧C(v)dv is well defined under
assumption (A1) because SX∧C is integrable and square integrable on R+, its support. Then, let
us introduce the following estimate of S∗X∧C(u): for all u,

(8) Ŝ∗X∧C(u) =
1

n

1

iu

n∑
j=1

(
eiuYj

f∗ε (u)
− 1

)
.

Lemma 1. The estimator Ŝ∗X∧C given by (8) is well defined on R and is an unbiased estimate of
S∗X∧C(u).

The estimator ̂(SX∧C)m written as (7) can be seen as the Fourier inversion of (8). Here, however,
the Fourier inversion is done with a cutoff πm on the first part of the estimator, which is not
integrable, and on the whole real line for the non random part which has a known value. This
allows us to write

̂(SX∧C)m(x) = Re

(
1

2π

∫ πm

−πm
e−iuxŜ∗X∧C(u)du

)
+ ψm(x)

=
1

2π

∫ πm

−πm
e−iuxŜ∗X∧C(u)du+ ψm(x).

We emphasize that, in practice, the ψm(x) term is a very useful correction of the estimator for
x ∈ [0, 1]. We are now able to study the integrated L2-risk and prove the following result.

Proposition 1. Let ̂(SX∧C)m be defined by (6). Under assumption (A1), we have

E(‖ ̂(SX∧C)m − SX∧C‖
2) ≤ 1

π

∫
|u|≥πm

|S∗X∧C(u)|2du+
2

π2m
+

4

πn

∫ πm

1

du

u2|f∗ε (u)|2
+
c

n

where c is a positive constant, c = (E(Y 2
1 )/π)

∫ 1
0 du/|f

∗
ε (u)|2.

The first two terms in the upper bound are squared bias terms decreasing when m increases, the
third is a variance term which increases with m; the last term is a negligible residual. Contrary to
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the numerator estimator, the bias decreases at a slower rate. This is due to the term 1/(π2m) and
to

S∗X∧C(u) =
f∗X∧C(u)− 1

iu
=
f∗X∧C(u)

iu
− 1

iu
which implies

1

2π

∫
|u|≥πm

|S∗X∧C(u)|2du = O

(
1

m

)
.

This slow bias order is due to the discontinuity in 0 of survival functions for positive random vari-
ables, while computing a global risk over R+. Even with a slow bias decrease rate, we could still
obtain a satisfactory convergence rate for the estimator. Indeed, the noises we have in mind must
also have lower bounded supports. For example, an exponential distribution for ε yields a variance
term of order m/n. The optimal value mopt for the cutoff given by the bias-variance compromise

is such that mopt = O(
√
n) and the resulting rate is O(n−1/2), which is good for a nonparametric

deconvolution problem.

All these considerations being asymptotic, we propose a finite sample model selection strategy
for choosing m. Let us denote by

(9) J2(m) :=
1

π

∫ πm

1

du

u2|f∗ε (u)|2
, and pen2(m) = κ2 log(n)

J2(m)

n
,

where κ2 is a constant to be calibrated by simulations. Note that the lower bound of the integral
is 1 so that the integral is properly defined. Then, setting

(10) m̂2 = arg min
m∈{1,...,mn,2}

(−‖ ̂(SX∧C)m‖
2 +

3

2π2m
+ pen2(m)),

for mn,2 such that mn,2 ≤ n and J2(mn,2) ≤ n, we obtain an adaptive estimator of SX∧C , which is
rather simple to implement, compared to the pointwise procedure of [Dattner et al., 2011].

We can prove

Theorem 1. Let ̂(SX∧C)m be defined by (6) and m̂2 by (10). Then there exists a numerical constant
κ0, such that for κ2 ≥ κ0, we have

E(‖ ̂(SX∧C)m̂2
− SX∧C‖2) ≤ inf

m∈{1,...,mn,2}

(
3

π

∫
|u|≥πm

|S∗X∧C(u)|2du+
2

π2m
+ 4pen2(m)

)
+
C

n

where C is a constant depending on f∗ε .

From the proof we find that κ0 = 48 suits, but this theoretical value is too large in practice (see
Section 3).

Our adaptive procedure ̂(SX∧C)m̂2
has the simplicity of choosing a unique global cutoff m̂2 for

m. This is an advantage compared to the pointwise selection procedure described in [Dattner et al.,
2011], where the selection is repeated for each point. As a counterpart, we obtain a theoretical
global rate which is not as good as the pointwise one. This is due to the fact the pointwise strategy
avoids the point x = 0 where a discontinuity occurs.



HAZARD ESTIMATION WITH CENSORING AND MEASUREMENT ERROR 7

2.4. Construction of the estimator of hX . The two estimators ̂(fXSC)m̂1
and ̂(SX∧C)m̂2

allow
us to build the final estimator of the hazard rate hX as a quotient estimator. To prevent the
denominator to get small, a truncation is required when computing the quotient. The estimator of
hX(x) is finally

(11) ĥm̂1,m̂2(x) =
̂(fXSC)m̂1

(x)

̂(SX∧C)m̂2
(x)

1 ̂(SX∧C)m̂2
(x)≥λ/

√
n

where λ is a constant to be calibrated. Note that, heuristically, the resulting risk of ĥm̂1,m̂2 is the
addition of the risks of the numerator and the denominator, up to a multiplicative constant.

3. Simulation

3.1. Design of simulation. Simulations are used to evaluate the performances of the estima-
tor. For each design of simulations, 500 datasets are simulated. We consider samples of size
n = 400, 1000. Data are simulated with a Laplace noise with variance σ2 = 2b2 as follows:

fε(x) =
1

2b
e−|x|/b and f∗ε (x) =

1

1 + b2x2

with b = 1/(2
√

5) or b = 1/(
√

5). We consider four densities for X.

(1) Mixed Gamma distribution: X = 1/
√

5.48W with W ∼ 0.4Γ(5, 1) + 0.6Γ(13, 1)
(2) Beta distribution: X ∼ B(2, 5)/

√
0.025

(3) Gaussian distribution: X ∼ |N (5, 1)|
(4) Gamma distribution: X ∼ Γ(5, 1)/

√
5

These densities are normalized with unit variance, thus allowing the ratio 1/σ2 to represent the
signal-to-noise ratio, denoted s2n. We considered signal to noise ratios of s2n = 2.5 and s2n = 10
in our simulations.

The censoring variable C is simulated with an exponential distribution, with parameter chosen
to ensure 20% or 40% of censored observations.

3.2. Estimator implementation. We first describe the implementation of the numerator ̂(fXSC)m̂1
.

The penalty depends on J1(m), which is computed by discretization of the integral. Then we com-
pute pen1(m) defined by (5) with the choice κ1 = 2, obtained after a set of simulation experiments
to calibrate it. We consider mn,1 = argmax(m ∈ N, J1(m)/n ≤ 1). Following, we have the final es-

timation of m̂1 defined by (4). By plugging (4) into (3) we obtain ̂(fXSC)m̂1
which is our estimator

for the numerator.
For the implementation of the denominator ̂(SX∧C)m̂2

, the penalty depends on J2(m), which is
computed by discretization of the integral. We take pen2(m) as defined by (9) with κ2 = 5, after
a set of simulation experiments to calibrate it. We define mn,2 = argmax(m ∈ N, J2(m)/n ≤ 1).
Following, we have the final estimation of m̂2 defined by (10). By plugging this in (6) we obtain

our estimator for the denominator ̂(SX∧C)m̂2
.
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Finally, we estimate hX as a quotient:

ĥm̂1,m̂2(x) =
̂(fXSC)m̂1

(x)

̂(SX∧C)m̂2
(x)

1 ̂(SX∧C) ̂̂m2
(x)≥λ/

√
n
,

with the numerical constant λ = 0.1.

Table 1. MISE×100 of the estimation of hX , compared with the MISE obtained
when data are not censored, or not noisy, or neither censored nor noisy. MISE
was averaged over 500 samples. Data are simulated with a Laplace noise, and an
exponential censoring variable.

s2n = 10 0% censoring 20% censoring 40% censoring

n = 400 n = 1000 n = 400 n = 1000 n = 400 n = 1000

fX Mixed Gamma with noise 0.723 0.285 0.857 0.423 1.426 0.726
without noise 0.793 0.287 1.120 0.381 2.071 0.690

fX Beta with noise 1.405 0.813 1.780 1.019 2.328 1.354
without noise 1.288 0.641 1.767 0.793 2.454 1.050

fX Gaussian with noise 0.598 0.250 1.238 0.703 6.580 6.077
without noise 0.656 0.201 2.009 0.628 8.934 5.808

fX Gamma with noise 0.805 0.361 0.843 0.364 0.988 0.408
without noise 0.684 0.275 0.865 0.268 1.058 0.327

s2n = 2.5 0% censoring 20% censoring 40% censoring

n = 400 n = 1000 n = 400 n = 1000 n = 400 n = 1000

fX Mixed Gamma with noise 1.129 0.497 1.235 0.645 1.727 0.915
without noise 0.793 0.287 1.120 0.381 2.071 0.690

fX Beta with noise 2.075 1.154 2.878 1.455 3.437 1.847
without noise 1.288 0.641 1.767 0.793 2.454 1.050

fX Gaussian with noise 0.950 0.437 1.978 1.031 5.526 4.940
without noise 0.656 0.201 2.009 0.628 8.934 5.808

fX Gamma with noise 1.173 0.613 1.379 0.660 1.538 0.821
without noise 0.684 0.275 0.865 0.268 1.058 0.327

3.3. Results. The values of the MISE are computed from 500 simulated data sets, for each density
and simulation scenario and are given (multiplied by 100) in Table 1. Note that even based on 500
simulated datasets, a variability remains in the MISE results, that might be due to the quotient
estimator. Therefore, only the trends of the MISE should be interpreted.

Results are compared to estimators obtained in the three following cases: 1/ data with no noise
and no censoring, 2/ data with no noise but censoring, 3/ data with noise but no censoring. These
three cases can be considered as benchmarks for our situation including both noise and censoring.
For case 1, hX is estimated as a quotient of a projection estimator of fX with a trigonometric basis
and a Kaplan-Meier estimator of SX . For case 2, hX is estimated as a quotient with numerator



HAZARD ESTIMATION WITH CENSORING AND MEASUREMENT ERROR 9

and denominator adapted from ̂(fXSC)m̂1
and ̂(SX∧C)m (removing the noise 1/|f∗ε |). For case 3,

hX is estimated as the quotient of the projection estimator of fX with the trigonometric basis and

an estimator of SX directly deduced from ̂(SX∧C)m. Note that trigonometric polynomials are easy
to implement but are sometimes subject to bad side-effects.

Table 1 shows that the MISE obtained with the new estimator are close to the MISE obtained
with the more standard estimators without noise or without censoring. The results are satisfactory
for the four distributions of X. The MISE are reduced when n increases, whatever the censoring
level and the signal to noise ratio. Similarly, the MISE decreases when the censoring level decreases,
whatever the value of n and the signal to noise ratio.

We also compare the MISE obtained for ĥm̂1,m̂2 with the MISE obtained on the same noisy and
censored data but modeling either only the noise, or only the censoring, or neither the noise nor the
censoring. Results are presented in Table 2 for data with 20% of censoring, small noise (s2n = 10)
and n = 400, 1000. We see that when the model is misspecified, the MISE increases. This is
especially true when censoring is neglected (two last columns). Neglecting the noise increases the
MISE in the Gaussian and the Gamma case. For the Mixed Gamma and the Beta distributions,
the MISE are of the same order in the first two columns, when censoring is appropriately modeled.

Table 2. MISE×100 of the estimation of hX , compared with the MISE on the same
noisy and censored data but assuming in the modeling either only the noise, or only
the censoring, or neither the noise nor the censoring. MISE was averaged over 500
samples. Data are simulated with a Laplace noise, and an exponential censoring
variable with 20% of censoring, small noise (s2n = 10) and n = 400 or n = 1000.

estimation assuming noise no noise noise no noise
censor censor no censor no censor

fX Mixed Gamma n = 400 0.857 1.196 1.833 2.049
n = 1000 0.423 0.397 1.378 1.307

fX Beta n = 400 1.780 1.877 2.682 1.760
n = 1000 1.019 1.017 2.002 1.134

fX Gaussian n = 400 1.238 2.552 5.751 5.774
n = 1000 0.703 1.178 5.017 4.982

fX Gamma n = 400 0.843 1.116 1.499 1.110
n = 1000 0.364 0.506 0.992 0.675

4. Application to length of pregnancy

This work was motivated by the problem of estimating the physiological length of pregnancy,
i.e. the time between spontaneous oocyte fertilization and spontaneous delivery.

Although many estimates have been reported, usually of around 40 weeks following last menstrual
period (i.e. around 38 weeks after conception), they all rely on imperfect dating of the time origin
since the precise time of conception remains unknown in spontaneously conceived pregnancies. In
practice, the onset of pregnancy may be estimated by adding two weeks to the last menstrual period,
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Table 3. Outcomes and main reasons for censoring in a sample of 8960 singleton
pregnancies followed in Necker Enfants Malade teaching hospital

Termination of pregnancy or intrauterine fetal demise 110

Induction at term (≥ 41 weeks) 903

Induction for maternal or fetal reasons before term 1490

Planned cesarean section 907

Spontaneous labor 5550

by biochemical tests and also by fetal ultrasound, which is in many cases the preferred method
Stirnemann et al. [2013]. Prediction of the time origin using ultrasonographic measurement of fetal
crown-rump is not exact and one should take into account this prediction error.

In such data, censoring may occur because of medically planned deliveries whenever maternal or
fetal conditions require delivery prior to spontaneous labor. For example, induction (or cesarean
section) may be offered whenever women reach 41 weeks and is medically indicated at 41 weeks and
3 days in the Obstetrics unit of Paris Necker Hospital, to avoid fetal complications of prolonged
pregnancy. Other medical indications for timely delivery include maternal conditions such as
preeclampsia or fetal conditions such as growth restriction or fetal malformations. For obvious
reasons, termination of pregnancy or intrauterine fetal demise also require preterm induction of
labor.

As already explained, the prediction error using ultrasonographic measurement of fetal crown-
rump affects the time origin. Therefore it impacts both censoring times and the variable of interest
which is the occurrence of a spontaneous onset of labor. This situation refers to the model studied
in Section 2. In the following, we consider the measurement error as a Gaussian distribution with
mean=0 and standard deviation of 0.35 weeks, as estimated by [Stirnemann et al., 2013].

The data we consider here is a sample of 8960 consecutive singleton pregnancies followed in
the department of obstetrics, Necker teaching hospital in Paris, from the routine first trimester
ultrasound around 12 weeks to delivery between 2011 and 2014. Dating of conception was performed
by ultrasonographic measurement of crown-rump length in all cases. In this dataset, censoring
occurred in 3410/8960 (38%) cases. The outcomes in the sample are presented in Table 3.

We estimated the hazard rate of the length of pregnancy for spontaneous delivery using estimator
(11). The resulting hazard rate for spontaneous delivery is presented in Figure 1. This function
increases rapidly from 37 weeks onwards reaching its maximum at 40 weeks and 6.5 days followed
by a rapid decrease. In this population this result is markedly different from the usual estimate of
40 weeks that is considered in clinical practice. Therefore, our results would suggest that the true
underlying length of pregnancy is longer than observed using noisy data. For comparison, in Figure
1, we also added the hazard rate function for misspecified models that do not model censoring and
measurement error. In agreement with the simulation study (Table 2), the misspecified models show
significant deviations from our estimator. Interestingly, the model that neglects dating error yields
a maximum hazard at 40 weeks and 5 days, 1.5 days earlier than what we found using our estimator.
Such a difference may impact on several aspects of clinical care and pregnancy management, when
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Figure 1. Hazard rate for spontaneous delivery estimated from the noisy and cen-
sored dataset of 8960 pregnancies. Solid line: our estimator (11) modeling both
measurement error and censoring; broken line: censoring is modeled but not mea-
surement error on time origin; dotted line: neither censoring nor measurement error
is modeled

seeking to optimize obstetric protocols at term by reducing unnecessary inductions and planning
follow-up in prolonged pregnancies.

5. Discussion and perspectives

In this section, we discuss an alternative model that could be considered when both noise and
censoring contaminate the data. Assume that we observe

(Wj = (Xj + εj) ∧ Cj , ∆j = 1Zj≤Cj )

for j = 1, . . . , n and where Zj = Xj + εj . Despite its simple presentation, seemingly closely related
to model (1), this model is more difficult to work with. In this case, the most natural quantity to
estimate is the density fX of X, rather than the hazard function. However, we were not able to
prove the upper bound of the L2 risk of the estimator of fX .
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More precisely, we consider the estimator by deconvolution of fX of X, as follows:

f̂X,m(x) =
1

2π

∫ πm

−πm
e−iux

f̂∗Z(u)

f∗ε (u)
du

where

(12) f̂∗Z(u) =
1

n

n∑
j=1

∆j

SC(Wj)
eiuWj .

The censoring correction ∆j/SC(Wj) is standard for such data and sometimes called “Inverse Prob-
ability Censoring Weight” (IPCW) in the literature. Then setting fm such that f∗m = f∗1[−πm,πm],
we would easily get under the assumption

Assumption (A2): τZ < τC where τL = sup{y, SL(y) > 0},

E(‖f̂X,m − f‖2) ≤ ‖f − fX‖2 + 2E
(

1

SC(Z1)

)
J(m)

n
.

Taking the variance term as a penalty for model selection would give an adaptive estimator with
good theoretical properties under (A2).

As SC is unknown, it can be estimated with the Kaplan-Meier estimator ŜC , with the modifica-
tion suggested by Lo et al. [1989]:

ŜC(y) =
∏

W(i)≤y

(
n− i+ 1

n− i+ 2

)1−∆(i)

where (W(i),∆(i)) is ordered following the Wj ’s. Then this estimator can be plugged into (12) to
obtain the estimator

(13) f̃X,m(x) =
1

2π

∫ πm

−πm
e−iux

f̃∗Z(u)

f∗ε (u)
du, with f̃∗Z(u) =

1

n

n∑
j=1

∆j

ŜC(Wj)
eiuWj .

However, Assumption (A2) is no longer adequate to handle the substitution of SC by its esti-

mator, and contradictory conditions appear. To obtain an upper bound of the L2 risk of f̃X,m, one
would need to restrict the variables to belong a fixed compact set, which is rather standard in the
the context of estimation with censored data (see the discussion in Gross and Lai [1996]), but this
is not possible due to the additional deconvolution step: it leads to an assumption regarding the
Z’s that is contradictory. Thus, the estimation of fX remains an opened theoretical question in
this model. Note that we implemented the method and provide in Table 4 the empirical results on
simulation: from practical point of view, the procedure seems to work and gives coherent results.
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Table 4. MISE×100 of the estimation of fX , compared with the MISE obtained
when data are not censored, or not noisy, or neither censored nor noisy. MISE
was averaged over 100 samples. Data are simulated with a Laplace noise, and an
exponential censoring variable.

s2n = 10 0% censoring 20% censoring 40% censoring

n = 400 n = 1000 n = 400 n = 1000 n = 400 n = 1000

fX Mixed Gamma with noise 0.203 0.097 0.381 0.171 0.445 0.185
without noise 0.181 0.082 0.258 0.087 0.259 0.102

fX Beta with noise 0.271 0.193 0.353 0.258 0.432 0.255
without noise 0.975 0.579 0.280 0.163 0.349 0.191

fX Gaussian with noise 0.139 0.054 0.527 0.255 1.719 0.973
without noise 0.481 0.237 0.146 0.070 0.452 0.127

fX Gamma with noise 0.290 0.138 0.316 0.166 0.371 0.170
without noise 0.549 0.235 0.196 0.083 0.211 0.114

6. Proofs

We recall the following version of Talagrand inequality.

Lemma 2. Let T1, . . . , Tn be independent random variables and νn(r) = (1/n)
∑n

j=1[r(Tj) −
E(r(Tj))], for r belonging to a countable class R of measurable functions. Then, for ε > 0,

(14) E[sup
r∈R
|νn(r)|2 − (1 + 2ε)H2]+ ≤ C

(
v

n
e−K1ε

nH2

v +
M2

n2C2(ε)
e−K2C(ε)

√
εnH

M

)
with K1 = 1/6, K2 = 1/(21

√
2), C(ε) =

√
1 + ε− 1 and C a universal constant and where

sup
r∈R
‖r‖∞ ≤M, E

(
sup
r∈R
|νn(r)|

)
≤ H, sup

r∈R

1

n

n∑
j=1

Var(r(Tj)) ≤ v.

Inequality (14) is a straightforward consequence of the Talagrand inequality given in [Klein and
Rio, 2005]. Moreover, standard density arguments allow us to apply it to the unit ball of spaces.

The following elementary inequalities will be also used:

(15) ∀u ∈ R, ∀a ∈ R,
∣∣∣∣sin(u)

u

∣∣∣∣ ≤ 1 and

∣∣∣∣eiua − 1

u

∣∣∣∣ ≤ |a|.
6.1. Proof of Lemma 1. Let us first remark that Ŝ∗X∧C is well defined on R because

lim
u→0

eiuYj − f∗ε (u)

iu
= Yj − E(ε1).

Moreover limu→0 Ŝ
∗
X∧C(u) = 1

n

∑n
i=1 Yj − E(ε1) which tends a.s. when n grows to infinity to

E(Y1 − ε1) = E(X1 ∧ C1) = S∗X∧C(0).
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Then we prove that Ŝ∗X∧C is an unbiased estimate of S∗X∧C . We have

E[Ŝ∗X∧C(u)] =
1

iu
E[eiu(X∧C) − 1] =

1

iu

∫
(eiuz − 1)fX∧C(z)dz.

Then, noticing that (eiuz−1)/(iu) =
∫ z

0 e
iuvdv and that

∫ +∞
0

∫ +∞
0 |eiuvfX∧C(z)1v≤z|dvdz ≤ E(X∧

C) <∞, the Fubini Theorem implies that

E[Ŝ∗X∧C(u)] =

∫ +∞

0

(∫ z

0
eiuvdv

)
fX∧C(z)dz =

∫ +∞

0
eiuv

(∫ +∞

v
fX∧C(z)dz

)
dv

=

∫ +∞

0
eiuvSX∧C(v)dv = S∗X∧C(u).

6.2. Proof of Proposition 1. Let us set ˜(SX∧C)m = ̂(SX∧C)m − ψm(x). Clearly,

E(‖SX∧C − ̂(SX∧C)m‖
2) = ‖SX∧C − (SX∧C)m + ψm‖2 + E(‖ ˜(SX∧C)m − (SX∧C)m‖2)

≤ 2‖SX∧C − (SX∧C)m‖2 + 2‖ψm‖2

+E(‖ ˜(SX∧C)m − (SX∧C)m‖2),(16)

where (SX∧C)m is such that (SX∧C)∗m = S∗X∧C1[−πm,πm].
First we have, by Parseval formula,

(17) 2‖SX∧C − (SX∧C)m‖2 =
1

π

∫
|u|≥πm

|S∗X∧C(u)|2du.

Next, as ψm is the Fourier transform of 1|x|≥πm/(2iπx), we have ψ∗m(u) = −1/(iu)1|u|≥πm, and

(18) ‖ψm‖2 = (1/2π)‖ψ∗m‖2 = 1/(π2m).

For the last term, we use Parseval equality again:

E(‖ ˜(SX∧C)m − (SX∧C)m‖2) =
1

2π

∫ πm

−πm
E(|Ŝ∗X∧C(u)− S∗X∧C(u)|2)du.

Let us set

Ŝ∗X∧C(u)− S∗X∧C(u) =
1

n

1

iu

n∑
j=1

Zj(u)− E(Zj(u))

f∗ε (u)

with Zj(u) = eiuYj − 1. We notice that eiuYj − f∗ε (u)−E(eiuYj − f∗ε (u)) = Zj(u)−E(Zj(u)). Thus,

E(|Ŝ∗X∧C(u)− S∗X∧C(u)|2) =
1

nu2

Var(Z1(u))

|f∗ε (u)|2
≤ 1

nu2

E(|eiuY1 − 1|2)

|f∗ε (u)|2
=

4

n

E(sin2(uY1/2))

u2|f∗ε (u)|2
.

Thanks to inequality (15), we bound this term by (1/n)E(Y 2
1 ) for |u| ∈ [0, 1] and, using | sin(z)| ≤

1, ∀z ∈ R, by 4/(nu2) for |u| > 1. We get

(19) E(‖ ˜(SX∧C)m − (SX∧C)m‖2) ≤ E(Y 2
1 )

πn

∫ 1

0

du

|f∗ε (u)|2
+

4

πn

∫ πm

1

du

u2|f∗ε (u)|2
.

Plugging (17), (18) and (19) into (16) gives the result of Proposition 1.
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6.3. Proof of Theorem 1. Let Sm = {t ∈ L2(R), Supp(t∗) ⊂ [−πm, πm]}. Note that the

estimator ˜(SX∧C)m = ̂(SX∧C)m − ψm(x) satisfies

˜(SX∧C)m = arg min
t∈Sm

γn(t), γn(t) = ‖t‖2 − 2

2π
〈t∗, Ŝ∗X∧C〉

with Ŝ∗X∧C given by (8). One can see this by noticing that

γn(t) =
1

2π

(
‖t∗ − ˜(SX∧C)

∗
m‖

2 − ‖ ˜(SX∧C)
∗
m‖

2
)

is minimal on Sm for t = ˜(SX∧C)m ∈ Sm. Thus γn( ˜(SX∧C)m) = −‖ ˜(SX∧C)m‖2 = mint∈Sm γn(t).

On the other hand we have ‖ ̂(SX∧C)m‖2 = ‖ ˜(SX∧C)m‖2+‖ψm‖2, since the support of the Fourier
transforms of the functions in the norms are disjoint. Therefore

‖ ̂(SX∧C)m‖
2 = −‖ ˜(SX∧C)m‖

2 − ‖ψm‖2

= min
t∈Sm

γn(t)− ‖ψm‖2.

Therefore, definition (10) of m̂2 can be written

m̂2 = arg min
m∈{1,...,mn,2}

[−‖ ̂(SX∧C)m‖
2 +

3

2
‖ψm‖2 + pen2(m)]

= arg min
m∈{1,...,mn,2}

[min
t∈Sm

γn(t) +
1

2
‖ψm‖2 + pen2(m)].(20)

We notice that

(21) γn(t)− γn(s) = ‖t− SX∧C‖2 − ‖s− SX∧C‖2 −
2

2π
〈t∗ − s∗, Ŝ∗X∧C − S∗X∧C〉.

The equality (20) for m̂2 implies that, ∀m ∈ {1, . . . ,mn,2} and for all t ∈ Sm,

γn( ˜(SX∧C)m̂2
) +

1

2
‖ψm̂2‖2 + pen2(m̂2) ≤ γn(t) +

1

2
‖ψm‖2 + pen2(m).

Taking t = (SX∧C)m and using (21), this can be rewritten

‖ ˜(SX∧C)m̂2
− SX∧C‖2 +

1

2
‖ψm̂2‖2 ≤ ‖SX∧C − (SX∧C)m‖2 +

1

2
‖ψm‖2 + pen2(m)

+
2

2π
〈(Ŝ∗X∧C)m̂2 − (S∗X∧C)m, Ŝ

∗
X∧C − S∗X∧C〉

−pen2(m̂2).(22)

Let us define, for t ∈ Sm,

νn(t) =
1

2π

∫
t∗(−u)(Ŝ∗X∧C(u)− S∗X∧C(u))du.

Then considering the term in the second line of (22):

T :=
2

2π
〈(Ŝ∗X∧C)m̂2 − (S∗X∧C)m, Ŝ

∗
X∧C − S∗X∧C〉
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and using that ∀x, y ≥ 0, 2xy ≤ 4x2 + y2/4, we get

T ≤ 2‖(S̃X∧C)m̂2 − (SX∧C)m‖ sup
t∈Sm∨m̂2

,‖t‖=1
|νn(t)|

≤ 1

4
‖ ˜(SX∧C)m̂2

− (SX∧C)m‖2 + 4 sup
t∈Sm∨m̂2

,‖t‖=1
|νn(t)|2

≤ 1

2
‖ ˜(SX∧C)m̂2

− SX∧C‖2 +
1

2
‖SX∧C − (SX∧C)m‖2 + 4 sup

t∈Sm∨m̂2
,‖t‖=1

|νn(t)|2.(23)

Plugging (23) into (22) yields

1

2
‖ ˜(SX∧C)m̂2

− SX∧C‖2 +
1

2
‖ψm̂2‖2 ≤ 3

2
‖SX∧C − (SX∧C)m‖2 +

1

2
‖ψm‖2 + pen2(m)

+4 sup
t∈Sm∨m̂2

,‖t‖=1
|νn(t)|2 − pen2(m̂2).(24)

Now we split νn(t) = νn,1(t) +Rn(t) with

Rn(t) =
1

2π

∫
|u|≤1

t∗(−u)(Ŝ∗X∧C(u)− S∗X∧C(u))du, νn,1(t) = νn(t)−Rn(t).

We have

sup
t∈Sm∨m̂2

,‖t‖=1
|νn(t)|2 ≤ 2 sup

t∈Sm∨m̂2
,‖t‖=1

R2
n(t) + 2 sup

t∈Sm∨m̂2
,‖t‖=1

|νn,1(t)|2.

Moreover by Schwarz Inequality, we have

E

(
sup

t∈Sm∨m̂2
,‖t‖=1

R2
n(t)

)
≤ 1

2π
E

(∫
|u|≤1

|Ŝ∗X∧C(u)− S∗X∧C(u)|2du

)
,

and from the proof of Proposition 1, we easily get

(25) E

(
sup

t∈Sm∨m̂2
,‖t‖=1

R2
n(t)

)
≤ 2

2π

E(Y 2
1 )

n

∫ 1

0

du

|f∗ε (u)|2
=
c

n

where c is defined in Proposition 1. For the other term we use the following Proposition.

Proposition 2. Let p(m,m′) = n−1 log(n2)J2(m ∨m′), then

E

(
sup

t∈Sm∨m̂2
,‖t‖=1

|νn,1(t)|2 − 3p(m, m̂2)

)
+

≤ c′

n
.
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The proof of Proposition 2 follows from Talagrand inequality and is proved below. Now we notice
that 3κ2p(m,m

′) ≤ 6pen2(m) + 6pen2(m′) so that

8E

[
sup

t∈Sm∨m̂2
,‖t‖=1

|νn,1(t)|2 − pen2(m̂2)/8

]
≤ 8E

(
sup

t∈Sm∨m̂2
,‖t‖=1

|νn,1(t)|2 − 3p(m, m̂2)

)
+

+(
48

κ2
− 1)E(pen2(m̂2)) +

48

κ2
pen2(m)

≤ c′

n
+

48

κ2
pen2(m),(26)

for 48/κ2 − 1 ≤ 0 i.e. κ2 ≥ 48. Plugging (25) and (26) in (24), we obtain, ∀m ∈ {1, . . . ,mn,2},

E(‖ ˜(SX∧C)m̂2
− SX∧C‖2 + ‖ψm̂2‖2) ≤ 3‖SX∧C − (SX∧C)m‖2 + ‖ψm‖2

+2(1 + 24/κ2)pen2(m) +
8c

n
.

To conclude, we notice that

‖ ̂(SX∧C)m̂2
− SX∧C‖2 = ‖ ˜(SX∧C)m̂2

− SX∧C + ψm̂2‖2 ≤ 2(‖ ˜(SX∧C)m̂2
− SX∧C‖2 + ‖ψm̂2‖2)

which implies

E(‖ ̂(SX∧C)m̂2
− SX∧C‖2) ≤ inf

m∈{1,...,mn,2}

(
6‖SX∧C − (SX∧C)m‖2 + 2‖ψm‖2 + 6pen2(m)

)
+
c′

n
,

c′ = 16c, which is the announced result. �

6.4. Proof of Proposition 2. We set, for t ∈ Sm,

rt(x) =
1

2π

∫
t∗(u)

eiux1|u|≥1

iuf∗ε (u)
du

, so that

νn,1(t) =
1

n

n∑
j=1

[rt(Yj)− E(rt(Yj))].

Classically we write

E

(
sup

t∈Sm∨m̂2
,‖t‖=1

|νn,1(t)|2 − 3p(m, m̂2)

)
+

≤
∑

m′∈Mn

E

(
sup

t∈Sm∨m′ ,‖t‖=1
|νn,1(t)|2 − 3p(m,m′)

)
+

and we apply Inequality of Lemma 2 to R = Sm∨m′ , by using standard arguments of continuity of
t 7→ νn,1(t) and density of a countable subset of Sm∨m′ . Next we have to compute H2,M, v such
that

sup
t∈Sm∨m′

sup
x∈R
|rt(x)| ≤M, E

(
sup

t∈Sm∨m′
|νn(rt)|

)
≤ H, sup

t∈Sm∨m′

1

n

n∑
j=1

Var(rt(Yj)) ≤ v.
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Similarly to previous computation, we get H2 = J2(m ∨ m′)/n, v = J2(m ∨ m′) and M =√
J2(m ∨m′). Moreover we take ε = 6 log(n2) ∨ 1 = 6 log(n2) for n ≥ 2, and we get

E

(
sup

t∈Sm∨m′ ,‖t‖=1
|νn,1(t)|2 − 3p(m,m′)

)
+

≤ C

n

(
J2(m ∨m′)e− log(n2) +

J2(m ∨m′)
n

e−K2
√
n

)
using that ε ≥ 1. Now we have J2(m ∨m′) ≤ n, by definition of Mn,2 so that∑

m′∈Mn

E

(
sup

t∈Sm∨m′ ,‖t‖=1
|νn,1(t)|2 − 3p(m,m′)

)
+

≤ C

n

(
card(Mn)

n
+ card(Mn)e−K2

√
n

)
.

We notice that card(Mn) ≤ n and thus card(Mn)e−K2
√
n is bounded to get the result.
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